
Strategic Power Plant 
Investment Planning 

under Fuel and Carbon 
Price Uncertainty

Ansgar Geiger





Ansgar Geiger

Strategic Power Plant Investment Planning under Fuel and Carbon
Price Uncertainty





Strategic Power Plant Investment
Planning under Fuel and Carbon
Price Uncertainty

by 
Ansgar Geiger



KIT Scientific Publishing 2011
Print on Demand

ISBN 978-3-86644-633-5

Impressum

Karlsruher Institut für Technologie (KIT)
KIT Scientific Publishing
Straße am Forum 2
D-76131 Karlsruhe
www.ksp.kit.edu

KIT – Universität des Landes Baden-Württemberg und nationales
Forschungszentrum in der Helmholtz-Gemeinschaft

Dissertation, Karlsruher Institut für Technologie
Fakultät für Wirtschaftswissenschaften
Tag der mündlichen Prüfung: 27.04.2010
Referent: Prof. Dr. Stefan Nickel
Korreferent: Prof. Dr. Wolf Fichtner

Diese Veröffentlichung ist im Internet unter folgender Creative Commons-Lizenz 
publiziert: http://creativecommons.org/licenses/by-nc-nd/3.0/de/

http://creativecommons.org/licenses/by-nc-nd/3.0/de/






Strategic Power Plant Investment

Planning under Fuel and Carbon

Price Uncertainty

Zur Erlangung des akademischen Grades eines

Doktors der Wirtschaftswissenschaften

(Dr. rer. pol.)

von der Fakultät für

Wirtschaftswissenschaften

des Karlsruher Institut für Technologie (KIT)

genehmigte

DISSERTATION

von

Dipl. Wi.-Ing. Ansgar Geiger

Tag der mündlichen Prüfung: 27.04.2010

Referent: Prof. Dr. Stefan Nickel

Korreferent: Prof. Dr. Wolf Fichtner

2011 Karlsruhe





Acknowledgments

This work was done with the financial support of the Department Optimization

of the Fraunhofer Institute for Industrial Mathematics (ITWM).

First, I would like to thank Prof. Dr. Stefan Nickel for taking over the supervision

of this thesis. While he supported me, he gave me the necessary freedom to pur-

sue my own ideas.

Furthermore, I thank my former project partners, especially Rüdiger Barth from

the Institute of Energy Economics and the Rational Use of Energy of the Univer-

sity Stuttgart, for the interesting discussions we had.

I am grateful to Michael Monz and Uwe Nowak for their advice concerning soft-

ware design and the efficient implementation of algorithms. In addition, I thank

Richard Welke for his LaTeX tips. Furthermore, I would like to thank Michael

Monz for the ideas he gave me for my work.

I am especially indebted to Stefan Reicherz, who took the time to read the whole

thesis and who gave me many valuable remarks. Furthermore, I thank Martin

Berger, Helmuth Elsner, Hendrik Ewe, Matthias Feil, Ingmar Geiger, Tabea Grebe,

Volker Maag, Uwe Nowak, Heiko Peters, Manuel Scharmacher, Jörg Steeg, and

Richard Welke for proof-reading parts of the thesis and giving me their advice.

Finally, I thank all who supported me through the times of this thesis, especially

my family.

Kaiserslautern, December 2009





Contents

List of Figures vii

List of Tables ix

Preface xi

1 Introduction 1

1.1 Electricity as a Commodity . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Electricity Markets . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Peculiarities of Electricity . . . . . . . . . . . . . . . . . . . . 6

1.1.3 Spot Market Electricity Prices . . . . . . . . . . . . . . . . . . 8

1.1.4 Electricity Derivative Prices . . . . . . . . . . . . . . . . . . . 12

1.2 Electricity Pricing Theory . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.1 Price Determination under Perfect Competition . . . . . . . 13

1.2.2 Price Determination in a Deregulated Electricity Market . . 16

1.3 Uncertainties Related to Power Plant Investments . . . . . . . . . . 19

1.4 Modeling Energy Prices . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4.1 Stochastic Processes . . . . . . . . . . . . . . . . . . . . . . . 23

1.4.2 Modeling Fuel Prices . . . . . . . . . . . . . . . . . . . . . . . 25

1.4.3 Modeling Carbon Prices . . . . . . . . . . . . . . . . . . . . . 28

1.4.4 Modeling Electricity Prices as Stochastic Processes . . . . . . 31

1.4.5 Modeling Electricity Prices with Fundamental Models . . . 34

1.5 Valuation of Power Plant Investments . . . . . . . . . . . . . . . . . 36

1.5.1 Levelized Costs of Electricity Production . . . . . . . . . . . 37

1.5.2 Real Options Approach . . . . . . . . . . . . . . . . . . . . . 41

1.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1.6.1 Simulation Models . . . . . . . . . . . . . . . . . . . . . . . . 47

1.6.2 Game-Theoretic Models . . . . . . . . . . . . . . . . . . . . . 49

i



ii CONTENTS

1.6.3 Optimization Models . . . . . . . . . . . . . . . . . . . . . . . 49

1.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2 Fundamental Electricity Market Models 59

2.1 Load–Duration Curve Models . . . . . . . . . . . . . . . . . . . . . . 61

2.1.1 Basic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.1.2 Adjustments to the Basic Model . . . . . . . . . . . . . . . . 63

2.2 Supply–Demand Curves Model . . . . . . . . . . . . . . . . . . . . . 67

2.3 Linear Programming Models . . . . . . . . . . . . . . . . . . . . . . 68

2.3.1 Basic Deterministic Model . . . . . . . . . . . . . . . . . . . . 69

2.3.2 Stochastic Model . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.3.3 Model Based on Typical Days . . . . . . . . . . . . . . . . . . 79

2.3.4 Stochastic Model Based on a Recombining Scenario Tree . . 86

2.3.5 Price Determination . . . . . . . . . . . . . . . . . . . . . . . 90

2.4 Comparison with Observed Prices . . . . . . . . . . . . . . . . . . . 92

2.4.1 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

2.4.2 Measuring Model Quality . . . . . . . . . . . . . . . . . . . . 95

2.4.3 Load–Duration Curve Models . . . . . . . . . . . . . . . . . 96

2.4.4 Linear Programming Models . . . . . . . . . . . . . . . . . . 98

2.4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3 Investment Model Based on SDP 109

3.1 Problem Representation . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.1.1 States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.1.2 Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.1.3 Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

3.2 Representation of Fuel and Carbon Price Uncertainty . . . . . . . . 122

3.2.1 Aggregation of Fuel Price Scenarios . . . . . . . . . . . . . . 124

3.2.2 Difficulties Caused by Temporal Aggregation . . . . . . . . 126

3.2.3 Choice of Representative Fuel Prices . . . . . . . . . . . . . . 127

3.2.4 Determination of Contribution Margins . . . . . . . . . . . . 133

3.3 Investments of Competitors . . . . . . . . . . . . . . . . . . . . . . . 135

3.3.1 Investments Based on Shortage of Supply . . . . . . . . . . . 135

3.3.2 Investments Based on Expected Profitability . . . . . . . . . 139

3.4 Interpolation-Based SDP . . . . . . . . . . . . . . . . . . . . . . . . . 141

3.4.1 Basic Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143



CONTENTS iii

3.4.2 Uniform Grid Methods . . . . . . . . . . . . . . . . . . . . . 145

3.4.3 Adaptive Grid Methods . . . . . . . . . . . . . . . . . . . . . 146

3.4.4 Interpolation Methods . . . . . . . . . . . . . . . . . . . . . . 148

3.4.5 Splitting Criteria . . . . . . . . . . . . . . . . . . . . . . . . . 151

3.5 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

3.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

3.5.2 Choice of the Initial Grid . . . . . . . . . . . . . . . . . . . . . 160

3.5.3 Remarks on the Implementation . . . . . . . . . . . . . . . . 162

3.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

3.6.1 Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

3.6.2 Fuel Price Aggregation . . . . . . . . . . . . . . . . . . . . . . 165

3.6.3 Simplex-Based Interpolation vs. Multilinear Interpolation . 166

3.6.4 Comparison of Splitting Criteria . . . . . . . . . . . . . . . . 167

3.6.5 Fixed Number of Splits vs. Variable Number of Splits . . . . 169

3.6.6 Comparison with Alternative Approaches . . . . . . . . . . 171

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

4 Investment Model Based on ADP 183

4.1 Introduction to ADP . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

4.1.1 Basic Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

4.1.2 Basic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 188

4.1.3 Value Function Approximations . . . . . . . . . . . . . . . . 194

4.1.4 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

4.2 Application of ADP to Power Generation Expansion . . . . . . . . . 202

4.2.1 General Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

4.2.2 State Representation . . . . . . . . . . . . . . . . . . . . . . . 208

4.2.3 Marginal Value Calculation . . . . . . . . . . . . . . . . . . . 214

4.2.4 Value Function Approximation Updates . . . . . . . . . . . . 219

4.2.5 Modified ǫ-Greedy Exploration . . . . . . . . . . . . . . . . . 222

4.2.6 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

4.3.1 Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

4.3.2 Influence of Parameter Choices . . . . . . . . . . . . . . . . . 228

4.3.3 Comparison with Alternative Approaches . . . . . . . . . . 231

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236



iv CONTENTS

5 Case Studies 241

5.1 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

5.1.1 Electricity Demand . . . . . . . . . . . . . . . . . . . . . . . . 243

5.1.2 Electricity Supply . . . . . . . . . . . . . . . . . . . . . . . . . 243

5.1.3 Investment Alternatives . . . . . . . . . . . . . . . . . . . . . 245

5.1.4 Fuel and Carbon Prices . . . . . . . . . . . . . . . . . . . . . 245

5.2 Influence of the Stochastic Process . . . . . . . . . . . . . . . . . . . 248

5.2.1 Alternative Stochastic Process . . . . . . . . . . . . . . . . . . 249

5.2.2 Alternative Parameters . . . . . . . . . . . . . . . . . . . . . . 251

5.3 Influence of Other Model-Specific Parameters . . . . . . . . . . . . . 253

5.3.1 Depreciation Method and Discount Rate . . . . . . . . . . . 253

5.3.2 External Investments . . . . . . . . . . . . . . . . . . . . . . . 254

5.3.3 Consideration of an Existing Portfolio . . . . . . . . . . . . . 255

5.4 Influence of Political Decisions . . . . . . . . . . . . . . . . . . . . . 256

5.4.1 The Nuclear Phase-Out . . . . . . . . . . . . . . . . . . . . . 256

5.4.2 The Emission Allowance Allocation Scheme . . . . . . . . . 257

5.5 Evaluation of the Profitability of CCS Units . . . . . . . . . . . . . . 259

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

6 Conclusions 267

Nomenclature 277



List of Figures

1 Fuel Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1.1 Electricity Prices in Different Markets . . . . . . . . . . . . . . . . . 9

1.2 Daily and Weekly Cycles in Electricity Spot Prices . . . . . . . . . . 10

1.3 Volatility and Spikes in Electricity Spot Prices . . . . . . . . . . . . . 11

1.4 Price and Quantity Determination in a Competitive Market . . . . . 14

1.5 Price Formation in Case of Scarcity . . . . . . . . . . . . . . . . . . . 17

1.6 Uncertainties Related to Power Plant Investments . . . . . . . . . . 19

1.7 Comparison of Gas Price Forecasts and Observed Gas Prices . . . . 27

1.8 Levelized Costs of Electricity Production . . . . . . . . . . . . . . . 39

1.9 DP Representation of the Power Plant Investment Problem . . . . . 45

2.1 Price Determination Based on the LDC and the Supply Curve . . . 62

2.2 Deviations Between EEX Prices and LDC-Model Prices . . . . . . . 65

2.3 Supply–Demand Curves . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.4 Wind Power Forecasts and Realized Wind Power . . . . . . . . . . . 77

2.5 Scenario Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.6 Unit Commitment Using Different Up- and Down-Time Constraints 84

2.7 Storage Operation Based on Different Constraints . . . . . . . . . . 86

2.8 Recombining Scenario Tree . . . . . . . . . . . . . . . . . . . . . . . 87

2.9 Price–Duration Curves of the LDC model . . . . . . . . . . . . . . . 98

2.10 Adjustments Applied to Representative Load Scenarios . . . . . . . 100

2.11 Wind Power Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . 101

2.12 Price–Duration Curves of the LP and LDC Models and the EEX . . 104

3.1 DP Example without Construction Lead-Time . . . . . . . . . . . . 113

3.2 DP Example with Construction Lead-Time . . . . . . . . . . . . . . 114

3.3 Depreciation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 121

3.4 Contribution Margin Depending on the Climate Spread . . . . . . . 125

v



vi LIST OF FIGURES

3.5 Development of Coal Prices and Contribution Margins . . . . . . . 127

3.6 Example Fixed Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

3.7 Example Initial Grid and Adaptive Refinements . . . . . . . . . . . 147

3.8 Example Multilinear and Simplex-Based Interpolation . . . . . . . . 149

3.9 Example Used for the Illustration of Different Splitting Criteria . . 152

3.10 Example AE Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . 153

3.11 Example PIOS Criterion . . . . . . . . . . . . . . . . . . . . . . . . . 156

3.12 Example Initial Climate Spreads . . . . . . . . . . . . . . . . . . . . 162

3.13 Comparison of Climate Spread and Fuel Price Representation . . . 165

3.14 Comparison of Simplex-Based and Multilinear Interpolation . . . . 166

3.15 Comparison of Different Splitting Criteria . . . . . . . . . . . . . . . 168

3.16 Comparison of Expected Value and Evaluated Value . . . . . . . . . 170

3.17 Comparison of a Fixed Number and a Variable Number of Splits . 170

3.18 Deterministic Power Plant Investment Model . . . . . . . . . . . . . 172

3.19 Comparison of the ISDP Approach and the Deterministic Approach 173

3.20 Comparison of the Optimal Solution of the ISDP model and the

Optimal Solution of the Deterministic Approach . . . . . . . . . . . 174

3.21 Climate Spread Intervals for the ISDP and the SDP Approach . . . 176

3.22 Comparison of the ISDP and the SDP Approach . . . . . . . . . . . 177

4.1 Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

4.2 Contribution Margin Depending on the Number of Units . . . . . . 204

4.3 Contribution Margins for Different Climate Spreads and Residual

Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

4.4 Simple Example Illustrating Difficulties of the Extensive Represen-

tation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

4.5 Update of Neighboring Value Function Approximations . . . . . . 221

4.6 Shortcomings of the ǫ-Greedy Exploration . . . . . . . . . . . . . . . 223

4.7 Effect of Exploitation of Problem Specific Knowledge for Value Func-

tion Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

4.8 Comparison of Different Exploration Methods . . . . . . . . . . . . 231

4.9 Comparison Solution Quality ADP, ISDP, and Deterministic Model 232

4.10 Comparison Optimal Solution ADP, ISDP, and Deterministic Model 233

5.1 Development of Available Capacity . . . . . . . . . . . . . . . . . . 244

5.2 Fuel Price Forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

5.3 Fuel and Carbon Price Simulations . . . . . . . . . . . . . . . . . . . 248



LIST OF FIGURES vii

5.4 Influence of Different Stochastic Processes . . . . . . . . . . . . . . . 250

5.5 Influence of the Parameters Used for the Simulation . . . . . . . . . 251

5.6 Influence of the Parameters Used for the Stochastic Process . . . . . 252

5.7 Influence of the Discount Rate and the Depreciation Method . . . . 254

5.8 Influence of Investments by Competitors . . . . . . . . . . . . . . . 254

5.9 Influence of the Existing Portfolio . . . . . . . . . . . . . . . . . . . . 256

5.10 Influence of the Nuclear Phase-Out . . . . . . . . . . . . . . . . . . . 258

5.11 Influence of the Emission Allowance Allocation Scheme . . . . . . . 258

5.12 Evaluation of the Profitability of CCS Units . . . . . . . . . . . . . . 261





List of Tables

1.1 Traded Volumes at the EEX . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Carbon Price Forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 Example for the Value of Postponing an Investment . . . . . . . . . 42

1.4 Overview of Similar Models . . . . . . . . . . . . . . . . . . . . . . . 53

2.1 Example for an Infeasible Schedule . . . . . . . . . . . . . . . . . . . 74

2.2 Technical Parameters of the Coal and CCGT Units . . . . . . . . . . 93

2.3 Fuel and Carbon Prices . . . . . . . . . . . . . . . . . . . . . . . . . . 95

2.4 LDC Model Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

2.5 LP Model Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.1 Example for the Selection of Representative Fuel Prices . . . . . . . 128

3.2 Threshold Values for External Investments . . . . . . . . . . . . . . 138

3.3 Example for the Number of States Depending on the Representation 142

3.4 Example AE Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . 153

3.5 Example PIOS Criterion . . . . . . . . . . . . . . . . . . . . . . . . . 156

4.1 Example for the Determination of the Marginal Value . . . . . . . . 218

5.1 Expected Installed Wind Power Capacity . . . . . . . . . . . . . . . 244

5.2 Technical Parameters of New Coal and New CCGT Units . . . . . . 245

5.3 Parameters Used for the Fuel and Carbon Price Simulation . . . . . 247

5.4 Correlations Between Logs of Price Changes . . . . . . . . . . . . . 248

5.5 Technical Parameters of the CCS Units . . . . . . . . . . . . . . . . . 260

ix





Preface

Since the invention of the electric light bulb by Thomas Edison in 1879, electricity

has steadily gained in importance. Nowadays, a life without electricity is hardly

imaginable. Almost all modern technical equipment like machines or computers

relies on electricity. Worldwide electricity generation increased from 11,865 TWh

in 1990 to 20,202 TWh in 2008 (BP [BP09]). The revenues generated by electric

utilities emphasize the importance of this sector: in 2008, these revenues were over

61 billion e in Germany (Destatis [Des09b]). Associated with these high revenues

are high investment costs: a new combined cycle gas-turbine (CCGT) plant costs

about 500 million e, a new coal plant about 1,000 million e. Hence, investment

decisions must be taken with care.

Besides its importance for the whole economy, another important characteristic of

the electrical power industry is its exposure to different kinds of uncertainty. In

the past, the two main types of uncertainty have been the uncertainty about input

costs and the uncertainty about future legislation.

A large part of electricity is produced by fossil fuels—coal, lignite, natural gas,

and, to a lower extent, oil. Fuel prices exhibit significant volatility, especially those

for oil and gas, as it can be seen in Figure 1. Even though these uncertainties have

always existed, they were not very problematic in the past, since the electrical
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Figure 1: Average yearly import prices in Germany. Source: BMWi [BMW09].
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xii PREFACE

power companies could pass the risks to the consumer. This was possible due

to the special structure of the electricity market: the electricity market is a well

known example of a natural monopoly.

To be able to deliver electricity, a transmission and distribution network is re-

quired. These networks were built by integrated electricity companies. Such in-

tegrated electricity companies cover the whole value added chain of electricity:

generation, transmission, distribution and sales. The dependence on a network

to deliver electricity forms high barriers to entry for potential competitors. The

result have been regional monopolies for electricity companies.

These natural monopolies existed for a long time and were not considered as

something bad. To limit the power of the monopolists, the electricity market was

strongly regulated. Concession contracts were concluded between municipalities

and electricity producers. The main objective of these contracts was to guaran-

tee a high level of security of supply. In addition, these contracts should prevent

competing investments in transmission networks, which seem to be undesirable

from an economic point of view (Wiedemann [Wie08]). Therefore, municipalities

were allowed to grant the exclusive right for electricity supply to an electricity

company within a fixed area. In exchange, the electricity company had to ensure

a certain level of security of supply. While monopolies are generally prohibited,

they have been allowed in the electricity sector. In Germany, this was regulated

by §103 of the Act Against Restraints of Competition.1 As a result, consumers had

no choice concerning their electricity supplier, and consequently, the electricity

industry was characterized by a low level of competition.

With the beginning of the 1980s, the attitude towards the monopolies in the elec-

tricity industry slowly changed. While monopolies in the case of electricity trans-

mission and distribution still seemed to be justified, those in the case of generation

and retail were questioned. Chile was the first country to introduce privatiza-

tion and other market-oriented reforms in the early 1980s. Other Latin-American

countries followed the example (Sol [Sol02]).

In Europe, the United Kingdom was the first country that privatized its electricity

supply industry in 1990 and created competition in the retail sector. The next Eu-

ropean country that introduced an electricity market was Norway in 1991 (OECD

and IEA [OI01]). In 1996, the Council of the European Union adopted the directive

96/92/EC concerning common rules for the internal market in electricity. This di-

rective imposed an opening of the electricity market. In Germany, the directive

1Gesetz gegen Wettbewerbsbeschränkungen (GWB)
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was implemented with the amendment to the Energy Industry Act2 in 1998. Ver-

tically integrated electricity companies were obliged to keep separate accounts

for their generation, transmission and distribution activities. Access to the trans-

mission and distribution system must be granted applying a non-discriminatory

tariff.

It is often questioned whether the liberalization of the electricity market imposed

the desired level of competition (Newbery [New02], Müsgens [Müs04], Hirsch-

hausen et al. [Hh+07]). Even if the intensity of competition can still be increased,

the deregulation certainly led to a higher level of competition. With increased

competition, good planning tools gained importance. While in the days of a reg-

ulated market, the complete fuel price risk could be passed to the consumer via

increased electricity prices, this is no longer the case. Customers may change their

electricity supplier, if they are not satisfied with its prices. This happened to Vat-

tenfall in Germany after they announced a price increase in July 2007 (Manager

Magazin [Man07]). Besides the fuel price risk, generation companies are now ad-

ditionally exposed to two other forms of risk: volume risk, referring to the amount

of electricity sold, and electricity price risk. Nowadays, it is very important for the

electricity generation companies to minimize the impact of the uncertainties they

are facing.

The importance of good planning tools, combined with the challenges caused by

the uncertainties and the financial importance of the electricity sector, attracted a

lot of research. During the time of a regulated market, the focus of the research

was on the optimization of electricity generation. For this purpose, the electricity

market with its units, the electricity demand, and, in some cases, the transmission

network, was modeled. The objective was a cost minimal electricity production

subject to demand satisfaction and—depending on the level of detail modeled—

several technical constraints. Various optimization techniques varying from linear

programming (LP), mixed-integer linear programming (MILP) to different meta-

heuristics like genetic algorithms or simulated annealing have been applied to this

problem. Extensive studies of these methods have been carried out by Sheble and

Fahd [SF94] and Padhy [Pad04].

The purpose of these models was twofold: on the one hand, they could be used to

determine the cost-minimal unit commitment for the generation company. On the

other hand, they could be used from an economic point of view. As such, these

2Energiewirtschaftsgesetz(EnWG)
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fundamental electricity market models could be applied by the regulator to de-

termine an adequate level of electricity prices, which correspond in a competitive

market to the marginal costs of the most expensive unit producing electricity.

Due to the deregulation of the electricity market, another problem gained in im-

portance: the power generation expansion problem. In a regulated market, invest-

ments in new power plants were carried out such that the certain level of security

of supply could be guaranteed. The focus of the investment decision lied on the

choice of the technology. This decision was taken based on the levelized costs of

electricity production, which denote the expected average costs per MWh. In a

deregulated market, this method is no longer pertinent, as it does not consider

uncertainties related to future costs and profits in an adequate way.

A popular method for investments under uncertainty is the real options approach

(see, e.g., Dixit and Pindyck [DP94]). It is based on the idea that under uncertainty,

the option to postpone an investment has a value, which must be considered for

the investment decision. This option value is related to new information that be-

comes available in the future, and may influence the investment decision.

With the deregulation of the electricity market, the application of the real options

theory to power plant valuation became popular (e.g., Deng [Den99; Den05], Bot-

terud [Bot03], Fleten and Näsäkkälä [FN03], Jensen and Meibom [JM08], Klein

et al. [Kle+08]). Thereby, two different approaches concerning the modeling of

electricity prices used for the power plant valuation can be distinguished. The

first one assumes that electricity generation companies are price-takers [Den99;

Den05; FN03]. This assumption has the advantage that the electricity prices can

be directly modeled as a stochastic process. The other approach argues that the

construction of new capacity has an impact on electricity prices, and therefore the

assumption of a price-taker is inappropriate. In this case, a fundamental electricity

market model is used to derive electricity prices [Bot03; JM08; Kle+08]. Especially

if investments in several units should be considered, these investments influence

electricity prices, and the latter approach is the appropriate one in our opinion.

Besides fuel and electricity price uncertainty, the changing legislation introduces

additional challenges to power generation companies. In recent years, two polit-

ical decisions with a significant impact on the development of the German elec-

tricity market have been taken: the nuclear phase-out and the introduction of the

European Union emission trading system (EU ETS). The nuclear phase-out—if it is

not delayed or scrapped by the new government—increases the demand for new

generation capacity. The EU ETS obliges the generation companies to get an emis-
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sion allowance for each ton of CO2 they emit. In the past years, these emission

allowances have been allocated for free, but in the future, emission allowances

will probably, at least partly, be auctioned. Hence, the EU ETS introduced an

additional source of uncertainty, which must be taken into account when power

plant investments are planned: uncertainty about future carbon prices.

Aim of this Thesis

The objective of this thesis is to develop models for power plant investment plan-

ning that allow an adequate representation of fuel price and carbon price risks.

Thereby, we take the perspective of a single generation company. This implies

that investments of competing companies have to be modeled. As investments in

new units influence the profitability of the existing ones, the existing portfolio of

the considered company should be taken into account.

The models that are developed in this thesis should consider the interdependence

between fuel prices, carbon prices and the existing power generation fleet on the

one side and electricity production and electricity prices on the other side. While

the models developed in this thesis should be applicable to different electricity

markets, we only consider the German market in this thesis. For most power plant

projects in Germany, two alternatives are currently discussed: coal-fired units and

CCGT units. Hence, we focus on these two alternatives in this thesis.

Methods

We apply the real options approach to model power plant investments. Thereby,

we use a fundamental electricity market model to derive the contribution margins

for new units. Models combining the real options approach with fundamental

electricity market models exist already. However, the existing models suffer from

one problem: stochastic dynamic programming (SDP), the method used to solve

the investment problem, is only suited to solve low dimensional problems. For

that reason, fuel price and carbon price uncertainty is disregarded or only a few

different scenarios are considered.

In this thesis, we aim to apply state-of-the art methods from operations research

to be able to solve the power plant investment problem considering a wide variety

of different fuel and carbon price scenarios. For this purpose, we use two meth-

ods, which have—to the best of the author’s knowledge—not yet been applied to
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optimize power plant investments: SDP based on an adaptive grid method, and

approximate dynamic programming (ADP).

The first method is directly based on SDP. However, to reduce the complexity of

the problem, an approximated problem consisting of a subset of the state space is

solved instead of the original problem. The subset of the state space that is used

for the approximated problem is obtained by placing a grid in the state space. The

approximated problem is then iteratively solved and the grid is adaptively refined

by adding new states. To approximate the value of states that do not belong to the

grid, but which may be reached during the optimization, we use an interpolation

method. For this reason, we refer to this approach as interpolation-based stochas-

tic dynamic programming (ISDP).

While ISDP allows to significantly reduce the number of considered states, it still

requires several simplifications to solve the power generation expansion problem

under fuel and carbon price uncertainty. For example, to be able to consider con-

struction lead-times of a new plant, we allow investments only every four years.

ADP promises to circumvent these restrictions. Instead of explicitly saving the

value of each state in the problem, ADP approximates the value of a state, e.g.,

based on function approximations. This approach has two advantages: first, it

significantly reduces the memory requirements, and second, it avoids an enumer-

ation of the complete state space.

Combining these two methods with a detailed modeling of the electricity market,

we hope to provide a methodology suited to optimize power plant investments

under fuel and carbon price uncertainty. Thereby, the focus of our model lies on

a strategic level. This leads to several simplifications. For example, we do not

consider the location problem. In our fundamental electricity market model, we

disregard the transmission network. We do not address the question how the

investments are financed—we simply assume that the considered operator can

borrow an infinite amount of money at a fixed interest rate. While we consider

the existing portfolio of the investor, we do not explicitly model decommissioning

decisions of old units.

Thesis Outline

This thesis is organized as follows: In Chapter 1, we give an introduction into

power generation expansion planning. We start with a description of different

electricity markets and some characteristics of electricity prices. We outline how
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electricity prices are derived in a competitive market, and we discuss the uncer-

tainties to which power plant investments are exposed. We describe how energy

prices are modeled and present different methodologies used to analyze and valu-

ate power plant investments. We conclude the chapter with a summary of related

work.

Chapter 2 is devoted to the modeling of electricity prices with fundamental elec-

tricity market models. We focus on two models with different levels of detail. The

first model, based on the load–duration curve, is relatively simple. Due to its fast

running times, it is well suited to calculate the contribution margins of new units

considering many different scenarios. The second model is based on a detailed

description of the electricity market as a linear programming model. To reduce

the complexity of such a model, several simplifications like aggregation of simi-

lar units or the restriction to some typical days are generally made. We discuss

several issues with these simplifications, which are often overlooked in literature.

Then, we compare the results of the presented models with observed electricity

spot prices.

Chapter 3 describes our ISDP investment model. Based on a Monte Carlo simu-

lation of fuel and carbon prices, we select many different representative scenar-

ios for which we calculate the contribution margins with one of the fundamental

electricity market models. To reduce the computational burden, we start with an

approximated problem based on a coarse grid, which is iteratively refined. We

compare several criteria used to select the regions in the state space that are re-

fined. Thereby, two different approaches can be distinguished: one approach tries

to reduce the approximation error, the other one focuses on refinements around

the optimal policy. Our tests show that a combination of both of these approaches

works best. Finally, we compare the ISDP approach with a normal SDP approach

and a deterministic approach based on expected fuel and carbon prices.

In Chapter 4, we use ADP to model power plant investments. We assume that the

value of a state can be described by a function depending on the number of new

units. For this purpose, we propose piecewise-linear value function approxima-

tions. This approach significantly reduces the computational burden compared to

the ISDP approach and allows us to consider annual investments. In the tests we

do, the ADP approach performs slightly better than the ISDP model. However,

the algorithm turns out to be very sensitive to parameter choices, and has the fur-

ther disadvantage that it cannot be extended to consider additional investment

alternatives.



xviii PREFACE

In Chapter 5, we perform several case studies based on the ISDP model. Thereby,

we examine the effects of different assumptions used in our model, for example,

the stochastic process used to simulate fuel and carbon prices. This case study

yields a counterintuitive result: the higher the fuel prices and the uncertainty, the

more units are built on average. In addition, we analyze the effect of different

scenarios concerning the nuclear phase-out and the emission allowance allocation

scheme. We show that a delay of the nuclear phase-out will reduce the incen-

tives for investments in new units. Furthermore, we demonstrate that the current

fuel-dependent allocation of emission allowances favors coal units. When coal

units and CCGT units get the same amount of emission allowances, CCGT units

are preferred. In addition, we evaluate the profitability of coal units with the car-

bon capture and storage technology. Our tests indicate that this technology will

replace coal units without carbon capture technology.

In Chapter 6, the last part of this thesis, we give a conclusion and possible direc-

tions of future research.



Chapter 1

Introduction

In this chapter, we give an introduction into electricity markets and provide an

overview of different methods applied to power plant valuation. We start with a

description of electricity as a commodity. We introduce different markets where

electricity is traded, namely the spot market, the derivatives market, the reserve

market and the capacity market. Next, we discuss some peculiarities of electric-

ity compared to other commodities: the non-storability of electricity, the fact that

supply must always match demand, the price-inelastic demand and the grid de-

pendency. These peculiarities are the reason for some characteristics of electricity

spot prices like high volatility and extreme price peaks.

In the next section, we describe how electricity prices are determined. For this

purpose, we introduce the microeconomic concept of pricing under perfect com-

petition. Then, we discuss whether the assumption of perfect competition is justi-

fied in deregulated electricity markets. While it is questionable whether electricity

markets are fully competitive nowadays, we argue that the principle of price de-

termination under perfect competition can be used to derive electricity prices for

power plant valuation methods.

In the following section, we focus on the uncertainties to which power plant in-

vestments are exposed. These uncertainties can be classified into volume risk,

price risk and cost risk. We discuss which factors influence these risks, and how

they are related. An important source of uncertainty are future fuel, carbon, and

electricity prices. We provide an overview how these prices can be modeled.

Afterwards, we introduce the two most popular methods for valuating power

plant investments, the levelized costs of electricity production approach and the

real options approach. While the first one was mainly used in a regulated market

and does not take into account uncertainties, the latter one allows a more appro-

1
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priate consideration of uncertainties and is therefore better suited in a deregulated

market. Finally, we give an overview of the research done so far in the field of

power generation expansion models. Thereby, we describe simulation models,

game-theoretic models and optimization models.

1.1 Electricity as a Commodity

From an economical point of view, electricity is a commodity. A commodity is

some good for which there is demand, but which is supplied without qualitative

differentiation across a market (O’Sullivan and Sheffrin [OS03, p. 152]). Follow-

ing this definition, commodities produced by different producers are considered

equivalent. Most of the commodities are basic resources and agricultural products

such as iron ore, crude oil, coal, sugar or wheat. These commodities are traded at

spot and derivatives markets, like the New York Mercantile Exchange. The price

of a commodity is determined as a function of its market as a whole. However,

due to transportation restrictions and costs, regional prices may be different.

In this section, we describe electricity as a commodity. We first introduce dif-

ferent markets where electricity is traded. Then, we discuss some peculiarities

of electricity compared to other commodities. These peculiarities, e.g., the non-

storability of electricity, explain why spot market electricity prices differ signif-

icantly from spot prices of other commodities. Finally, we briefly discuss why

electricity derivative prices do not share these characteristics of electricity spot

prices.

1.1.1 Electricity Markets

Like other commodities, electricity is traded on commodity exchanges. One of the

most important power exchanges in Europe is the German power exchange, the

European Energy Exchange (EEX) in Leipzig. The EEX consists of a spot market

and a derivatives market. On the spot market, electricity, natural gas and emission

allowances are traded. On the derivatives market, also coal futures are traded. In

May 2009, the EEX and the Paris based Powernext decided to cooperate. The spot

market activities of both exchanges are now concentrated on the Paris based EPEX

Spot SE, while the derivatives are traded at the EEX Power Derivatives in Leipzig.

Both markets include France, Germany, Austria and Switzerland.
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2002 2003 2004 2005 2006 2007 2008

Spot market 31 49 60 86 89 124 154
Derivatives market 119 342 338 517 1,044 1,150 1,165

Table 1.1: Annual traded volumes on the EEX spot and derivatives market for
electricity in TWh. Source: EEX [EEX08]

The importance of the energy exchanges has steadily increased, as it can be seen

looking at the traded volumes shown in Table 1.1.1 The volumes traded on the

derivatives market are much higher than those on the spot market. In total, the

traded volumes at the EEX in 2008 have been about twice the annual electricity

demand of Germany.

In the following, we describe four different markets on which power plants can

generate revenues. Two of them, the electricity spot market and the derivatives

market, are used to sell electricity. On the reserve market, revenues are obtained

for providing reserve electricity that might be activated in case of short-term devi-

ations between supply and demand. The forth market, the capacity market, does

not exist in Germany. We describe it nevertheless, as it exists in other countries

(e.g., in the U.S., in Spain, in Italy), and it might be discussed in Germany in case

that the current framework does not provide enough incentives for investments

in new units.

• Spot market:

The spot market is composed of two different markets: a day-ahead market

and an intra-day market. On the day-ahead market, which exists since 2002,

electricity is traded for the next day. Electricity may be traded for individual

hours or for either predefined blocks (e.g., base load, peak load2) or user-

defined blocks. Bids for the next day must be submitted until 12.00 am, and

must be between −3, 000 e/MWh and 3, 000 e/MWh.

To be able to react on short-term deviations from the expected schedule, the

EEX created an intra-day market in September 2006. The intra-day market

allows the trading of hourly electricity contracts or predefined blocks of elec-

tricity contracts for the actual and the next day up to 75 minutes before the

1It should be mentioned that a part of the increase is due to the extension of the market to
Austria (April 2005) and Switzerland (December 2006).

2The base-load period comprises all hours of a day, while the peak-load period comprises the
hours from 8.00 am to 8.00 pm.
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start of the delivery. The trading for the next day starts at 3.00 pm. The al-

lowed price span is from −9, 999 e/MWh to 9, 999 e/MWh. Similar to the

day-ahead market, the volumes traded on the intra-day market have signif-

icantly increased during the last years. During the first half year of 2007, the

average traded daily volume was 2.7 GWh. During the same period in 2009,

it has risen to 10.6 GWh. However, compared to the total volume traded in

the spot market, these values correspond to less than 3%.

The spot market allows electricity generation companies to optimize their

short-term unit commitment. Based on the spot prices, generation compa-

nies may decide to commit additional units and sell their production, or they

may decide not to commit a unit and buy the required electricity at the spot

market.

• Derivatives market:

On the derivatives market, two different types of derivatives are traded: op-

tions and futures. An option gives the buyer the right to buy (call option)

or sell (put option) an underlying security for the specified price on the last

day of trading (European option) or until the last day of trading (American

option). A future on the contrary is an obligation to buy or sell an under-

lying security for the specified price at a certain point of time in the future.

On the EEX, base load and peak load futures with different maturities can be

traded. The delivery periods for these futures are a month, a quarter year or

a year. Monthly futures are traded up to nine months in the future, quarterly

futures up to eleven quarters in the future and yearly futures up to six years

in the future. Additionally to these futures, options on the base load futures

for the three different delivery periods are traded. Options can be traded up

to the next three years for the yearly futures.

The derivatives market allows electricity generation companies to reduce

their price risk by selling long-term contracts. The same is true for electricity

trading companies, which can purchase electricity for longer time periods.

This increases their planning security and allows them for example to offer

price guarantees to their customers.

• Reserve market:

One of the peculiarities of electricity described in the next subsection is the

fact that supply must always match demand. It is the task of the transmis-

sion system operators (TSOs) to ensure that this condition is fulfilled. To
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be able to achieve this, reserve energy is used to react on short-term dif-

ferences between supply and demand. Three forms of reserve energy are

distinguished in Germany: primary control power, secondary control power

and minute reserves. Primary control power must be activated within 30 sec-

onds, and can be used up to 15 minutes. Secondary control power must

be supplied within five minutes, while minute reserves must be activated

within 15 minutes and can be used up to one hour.

In Germany, the reserve market is organized by the four TSOs (50Hertz

Transmission, Amprion, EnBW Transportnetze, transpower) over the Inter-

net platform www.regelleistung.net. Minute reserves are procured via daily

tenders, primary and secondary control power are traded on a monthly ba-

sis. Primary control power comprises positive and negative control power,

while for secondary control power and minute reserves bids can be sepa-

rated for negative and positive reserves. Bids for primary control power

consist of one price, the price for the supply of control power, independent

of its usage. Secondary control power and minute reserve bids contain in

addition a price for the usage of the reserve energy.

The reserve market is particularly interesting for generation companies with

pumped-storages and fast starting peak-load units, since already the sup-

ply of reserve capacity is paid. Even though peak-load units often have

high costs for electricity generation, they may be selected to provide reserve

power, as the bids for reserve power consist of two prices, a capacity price

and an energy price. The participation in the reserve market allows these

units to generate some income even without actually being used to produce

electricity.

• Capacity market:

A controversial debate exists whether liberalized electricity markets are able

to provide enough investment incentives to ensure a long-term security of

supply. Especially peak-load units, which run only a few hours per year,

may not be able to recover investment costs. Some countries have tackled

this problem by introducing capacity payments or capacity markets.

A straightforward way to provide investment incentives is to give genera-

tors a per-MW payment for available capacity (independent of production)

or as an adder to the price for generated electricity. Such capacity payments

have been introduced in the UK, Spain, Argentina and Italy for example.
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However, in the UK, capacity payments have been dropped in 2001. De-

tails about the implementation of capacity payments in the before mentioned

countries are described for example by Perekhodtsev and Blumsack [PB09].

Instead of providing a capacity payment, another approach to ensure an

adequate level of supply is to fix the required amount of capacity. Load

serving entities must guarantee a prescribed level of reserve capacity above

their peak load within a certain time frame. Capacity obligations can be ex-

changed on a capacity market. Such capacity markets have been established

in the United States, e.g., in New York, New England and the Pennsylvania–

New Jersey–Maryland Interconnection (PJM) (for a detailed description of

capacity markets, see, e.g., Cramton and Stoft [CS05]).

There is no consensus whether capacity payments or capacity markets pro-

vide efficient investment incentives or not. Consequently, some countries

have implemented some sort of capacity remuneration, other countries—

including Germany—have not. The discussion of the most efficient market

design to ensure adequate levels of investment is beyond the scope of this

thesis. For some arguments against capacity payments or capacity obliga-

tions, see Oren [Ore05]. Arguments for the need of capacity markets are pre-

sented, e.g., by Joskow [Jos08].

1.1.2 Peculiarities of Electricity

While electricity is a commodity, it is characterized by some peculiarities, which

are important to consider since they have significant effects on electricity prices.

These peculiarities are the non-storability of electricity, the fact that supply must

match demand anytime, the (short-term) price-inelasticity of the electricity de-

mand and its grid-dependency.

• Non-storability:

An important characteristic of electricity is its non-storability. Electrical en-

ergy may be transformed to another form of energy to be stored. How-

ever, a significant amount of energy is lost during such a transformation.

There are mainly two different alternatives to store a greater amounts of en-

ergy: pumped hydro-storages and compressed air energy storages (CAES).

Pumped hydro-storages use electricity to pump water from a lower reservoir

into an upper reservoir. When additional electricity is required, water from

the upper reservoir is released through a turbine. Pumped hydro-storages
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are by far the most important storage technology with a total capacity of

about 6,610 MW installed in Germany (Konstantin [Kon08, p. 263]). The av-

erage round trip efficiency3 of pumped hydro-storages is between 70–85%.

Owing to the requirements of pumped hydro-storage locations, the potential

for additional storages is very limited in Germany.

CAES use electricity to compress air and save it in subterranean caverns or

porous rock layers. To produce electricity, the compressed air is used to

drive a generator via a turbine. Only two CAES exist worldwide. One of

those was built 1978 in Huntdorf (Germany) and has a capacity of 290 MW.

The overall efficiency of this CAES is 42% (Grimm [Gri07, p. 13]).4

Even though pumped hydro-storages and CAES provide a limited possibil-

ity to store energy that can be transformed to electricity, the principal non-

storability of electricity has significant effects on electricity prices. This is

mainly due to the second peculiarity of electricity, the requirement that sup-

ply must match demand at every moment in time.

• Supply must always match demand:

If electricity supply does not match electricity demand, the line frequency

changes. A surplus of supply leads to an increased frequency, a shortage of

supply to a decreased frequency. While minor fluctuations of the line fre-

quency cannot be avoided, exceptional or rapidly changing line frequency

leads to power outages. An example for such an outage could be observed

on November 4, 2006. Over five million people in Germany, France, Italy,

Belgium and Spain were affected by a breakdown. The outage occurred

due to power imbalance caused by a shutdown of several transmission lines

(UCTE [UCT07]). The significance of the obligation that supply must always

match demand is increased by the price-inelasticity of electricity demand.

• Price-inelastic demand:

Short-term electricity demand exhibits very low short-term price elasticity

(Lijesen [Lij07]). This low price elasticity can be explained by the fact that

most electricity companies charge their customers based on an average cost

tariff. Due to the missing price signal, consumers have no incentive to shift

demand from high price hours to low price hours.

3The round trip efficiency is the overall efficiency for converting electricity into another form
of energy and back to electricity.

4The second storage with a capacity of 110 MW is located in McIntosh, Alabama (United States)
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In recent times, the question how the demand side can improve the effi-

ciency of electricity markets has attracted a lot of attention. A precondition

for an active demand side is smart metering. Smart metering identifies elec-

tricity consumption in more detail than a conventional meter. Using smart

metering, price signals can be passed to consumers, to give them incentives

to adjust their electricity demand based on the current prices. Even though

smart metering has the potential to increase the (short-term) price elastic-

ity of electricity demand, many challenges remain. For example, it is not

clear whether the benefits of smart metering outweigh its costs (Haney et

al. [Han+09]).

Smart metering may contribute to a more efficient electricity production in

the future by providing the basis for a price elastic demand. This would

reduce the volatility of electricity prices, as it shifts some demand from peak-

load hours to periods of lower demand. However, at the moment it still

seems reasonable to model electricity demand as (almost) price-inelastic in

the short term.

• Grid dependency:

Finally, another important characteristic of electricity is its grid-dependency.

As a consequence, there exist several separated markets for electricity in Eu-

rope. These markets mainly correspond to the national territories. While

the national electricity grids are coupled, the connections between different

countries are often a bottleneck in the transmission system. Therefore, dif-

ferent prices can be observed on different markets.

Such a case can be seen in Figure 1.1. The figure shows the day-ahead elec-

tricity prices on June 18, 2009 for Germany, Switzerland, France and Den-

mark. While the prices for Germany, Switzerland and France are very simi-

lar, the prices in Denmark are considerably lower during the high price peri-

ods. This is an indicator for a congested transmission line between Denmark

and Germany. Otherwise, there would be an arbitrage opportunity by buy-

ing electricity in Denmark and selling it in Germany.

1.1.3 Spot Market Electricity Prices

Spot market electricity prices show some remarkable characteristics, which are

mainly due to the peculiarities of electricity discussed in the previous subsection

(cf. Geman and Roncoroni [GR06]). These characteristics of electricity prices are
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Figure 1.1: Day-ahead electricity prices for June 18, 2009 in Germany, Switzerland,
France and Denmark. Sources: EPEX Spot, NordPool

cycles, a high volatility combined with extreme price peaks, a mean-reverting be-

havior, and the occurrence of negative prices.

• Cycles:

Electricity prices show daily, weekly and seasonal cycles. During the low-

demand hours of the night, electricity is relatively cheap. In times of higher

demand, electricity gets more expensive. On a summer day, electricity prices

usually reach their maximum at noon, then they start to decrease. On a

typical winter day, an additional peak is reached during the evening hours,

as it can be seen in Figure 1.2(a).

The second characteristic pattern for electricity prices is the weekly cycle.

While prices show a similar curve for each weekday, they are different on

the weekend. First, the price level is generally lower. Second, the difference

between the highest and the lowest price is generally much lower than dur-

ing weekdays (see Figure 1.2(b)). The reason for lower prices on weekends is

the lower demand, mainly due to reduced demand from business activities.

In addition to these daily and weekly cycles, also seasonal cycles can be ob-

served. These cycles are caused by temperature differences and the number

of daylight hours. In hydro-dominated systems, electricity prices are addi-

tionally influenced by the availability of hydro-power.

• High volatility:

Electricity prices exhibit the greatest volatility amongst commodity prices

(see, e.g., Henning et al. [Hen+03] or Weron [Wer00]). However, as Benini

et al. [Ben+02] remark, the volatility of electricity prices is less random than
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Figure 1.2: Typical day-ahead electricity prices. Source: EEX.

those of other commodities. This is due to the fact that a large part of the

electricity spot price variations is related to load variations, which can be

relatively well predicted. Furthermore, Benini et al. point out that volatil-

ity varies on different markets, a result which is also observed by Li and

Flynn [LF04]. The main reason for this effect is the structure and the size

of the power plant fleet in these markets. Markets with a high amount of

reserve capacity relative to the peak-load exhibit a lower variance. Also in

hydro-dominated systems such as the Scandinavian power market, volatil-

ity is much lower. This can be seen in Figure 1.3(a). It shows the hourly

day-ahead prices for June 2009 at the EEX (Germany and Austria) and the

NordPool (Scandinavia) power exchange. While both price curves show the

characteristic daily and weekly cycles, it is noticeable that the amplitude of

EEX prices is much greater than those of NordPool prices.

• Spikes:

In addition to their high volatility, electricity spot market prices are charac-

terized by high price spikes. An extreme example of such a spike could be

observed at the EEX on July 25, 2006. Day-ahead electricity prices rose from

55.99 e/MWh at 6.00 am to 2,000.07 e/MWh at 11.00 am (see Figure 1.3(b)).

These extremely high prices were caused by outages of some nuclear, lignite

and coal plants due to the lack of cooling water caused by the extreme heat.

Two days later, another abnormally high peak was reached. Two additional

days later, the spot prices reached their normal level.
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Figure 1.3: Volatility and spikes in electricity spot prices. Sources: EEX, NordPool.

• Mean-reversion:

It is generally assumed that electricity prices show a mean-reverting behav-

ior (see, e.g., Deng [Den99]). This behavior is due to the way electricity prices

are determined. In a competitive market, it is assumed that electricity prices

correspond to the marginal costs of the most expensive unit producing elec-

tricity. A forced plant outage may change the power plant that sets the price.

As a consequence, electricity prices rise. When the outage is resolved, prices

return to the normal level.

Such a behavior can be be seen in Figure 1.3(b). At the beginning of the plot-

ted period, spot prices are on their normal level. Starting with the July 17,

2006, spot price peaks during the weekdays are significantly higher than

normal. This level is maintained for two weeks with extreme peaks on the

July 25 and July 27. After the reason for peaks, the forced plant outages,

disappeared, prices reverted back to their normal level.

• Negative prices:

Unlike other commodities, electricity prices can become negative. This phe-

nomena is caused by two reasons. The first one is the fact that supply must

always match demand. The second reason are the technical constraints of

power plants.

In case of unforeseen short-term deviations from the expected demand or

from the feed-in of electricity produced by intermittent sources like wind

power, electricity producers must immediately adjust their production. If
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there is an unforeseen high amount of wind power in the network, the feed-

in from conventional power plants must be reduced. However, most ther-

mal units have a minimum production level. If the units of an operator are

already producing at their lower output level, the operator may has to shut

down a plant. Shutting down a power plant has further consequences. Once

a power plant is shut down, it (generally) has to stay offline for a certain

time. Additionally, starting-up the plant later on causes additional start-up

cost due to abrasion and additional fuel usage. To avoid these additional

costs, it may be cheaper to pay some fee for producing electricity instead of

shutting down a power plant.

Negative prices for intra-day trading are allowed on the EEX since Decem-

ber 19, 2007. Negative prices could be observed for example on Decem-

ber 22, 2008. Between 1.00 am and 5.00 am, the intra-day electricity prices

have been below −20 e/MWh.

1.1.4 Electricity Derivative Prices

The characteristics of electricity prices discussed so far are typical for spot prices.

While derivative prices are generally at least partly explained by the current spot

prices, they often behave different.

A common concept in pricing derivatives of commodities is the so called conve-

nience yield. It was first introduced by Kaldor [Kal39]. The convenience yield is

the additional value an owner of a physical commodity has compared to some-

one who owns a future contract on the same commodity. This additional value

is the possibility to use the commodity when it is wanted. An example for this

additional value can be seen in the case of shortage of the commodity. In such a

case, it is beneficial to own the commodity to keep production going instead of

just owning a futures contract. The convenience yield concept plays an important

role in most models for commodity prices (e.g., Brennan and Schwartz [BS85],

Pindyck [Pin01], Schwartz [Sch97]). However, given the non-storability of elec-

tricity, the convenience yield concept is not applicable to electricity derivatives.

Bessembinder and Lemmon [BL02] propose that the forward power price will

generally be a biased forecast of the future spot price, with the forward premium

decreased by the anticipated variance of wholesale spot prices and increased by

the anticipated skewness of wholesale spot prices.
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As the delivery period of the electricity derivatives traded at the EEX is at least

a month, the derivative electricity prices can be seen as average expected future

spot prices. Therefore, they are much less marked by the characteristics typical

for spot prices. The volatility as well as the degree of mean-reversion are much

lower. This is also due to the fact that—other than electricity itself—electricity

derivatives can be stored and sold later.

1.2 Electricity Pricing Theory

An essential input for any power plant valuation model are electricity prices, as

the revenues generated by power plants strongly depend on them. In this section,

we give an overview how electricity prices are determined.

We start with an introduction to microeconomic pricing theory. Depending on

the market structure, different models are used to determine prices. The differ-

ent types of market structures are perfect competition, oligopoly and monopoly.

Most fundamental electricity market models, like the ones we use in this thesis,

are based on the assumption of perfect competition. Therefore, we present in the

following the microeconomic theory of price determination under perfect compe-

tition. A description of price determination in an oligopoly or a monopoly can be

found in most microeconomic textbooks, e.g., Varian [Var06].

In the second part of this section, we discuss whether the assumption of perfect

competition, on which most fundamental electricity market models are based, is

pertinent. While there is evidence that the German electricity market does not

correspond to a fully competitive market at the moment, it is assumed that the

degree of competition will increase further. Hence, we argue that the assumption

of perfect competition can be used for the determination of electricity prices.

1.2.1 Price Determination under Perfect Competition

A market with perfect competition is characterized by many buyers and sellers

and a homogeneous good. It is assumed that neither a single buyer nor a single

seller can influence the price. Both, sellers and buyers are therefore modeled as

“price-takers”. Every seller can specify his output quantity q as a function of the

market price p. This is the (individual) supply function Qs(p). The same function,

rewritten as a function of the quantity instead of the price, Ps(q), is called inverse



14 CHAPTER 1. INTRODUCTION

 0

 50

 100

 150

 200

q* 0  20  40  60  80  100

P
ri

ce

Quantity

p*

Supply
Demand

 0

 50

 100

 150

 200

q* 0  20  40  60  80  100

P
ri

ce

Quantity

p*

Figure 1.4: Price and quantity determination in a competitive market.

supply function.5 As we will see later, the inverse supply function—which is also

called the merit-order curve in electricity markets—is often used to explain how

electricity prices are determined. The demand function Qd(p) expresses the buy-

ers demand q as a function of the price p. Similar to the supply function, also the

demand function may be written as the inverse demand function, Pd(q). Combin-

ing the individual supply functions and the individual demand functions leads

to the aggregate demand functions and the aggregate supply functions, respec-

tively. The equilibrium market price p∗ is determined by the intersection of the

aggregated demand curve and the aggregated supply curve, Qd(p∗) = Qs(p∗).
The reason why this condition must hold in an equilibrium can be seen by con-

sidering what happens if it is not satisfied. If a price p′ < p∗ is observed, and

demand is greater than supply, some sellers will notice that they can get a higher

price. If enough sellers will notice this, they will all adjust their prices, until the

equilibrium price is reached. If p′ > p∗ and the demand is lower than the supply,

the suppliers cannot sell the calculated quantities. The only possibility to sell more

is to lower the price. If one supplier lowers the price, the other suppliers have to

follow him, as the good that is sold is assumed to be homogeneous.

Example. Figure 1.4 shows an example for the inverse aggregate demand function and the

inverse aggregate supply function. The inverse aggregate supply function is Qs(p) = p,

while the inverse aggregate demand is Qd(p) = 100− 1
2 · p. The equilibrium price p∗

and the equilibrium quantity q∗ can be determined as the intersection of both curves. In

this example, the equilibrium price is 66.66, the equilibrium quantity is 66.66.

Under perfect competition, it is assumed that sellers bid corresponding to their

marginal costs. This result can be derived considering the profit maximization

5Economists often refer to both functions as supply function.
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problem of a single producer. The profit Π is equal to:

Π =
n

∑
i=1

(pi · yi)−
m

∑
i=1

(wi · xi) .

The first term describes the revenue of the outputs yi, which can be sold for prices

pi. The second term denotes the costs associated with the production of the out-

puts. The required input factors are denoted with xi, the corresponding prices of

these input factors are wi.

Consider the simple case with one output product, for which two different input

factors are needed. Assume that the quantity of input factor two is fixed at x2. This

factor might represent the capital costs for the machines used for the production,

or a rental fee. Let f (x1, x2) be the production function specifying the output

quantities depending on the input parameters. The profit maximization problem

is then

max
x1

Π = f (x1, x2) · p−w1 · x1 −w2 · x2.

As a necessary condition for an optimum, the derivative of the profit function

must be equal to zero. Therefore, the following condition must be satisfied for the

optimal solution x∗1 :

p ·MP1(x
∗
1 , x2) = w1 (1.1)

with MP1 being the marginal product6 of input factor one. The marginal product

of a input factor multiplied by the price of the output factor must correspond to the

costs of the input factor. If the marginal product multiplied with the output price

is higher than its costs, it would be profitable to produce more. If the marginal

product multiplied with the output price is lower than the costs of the input fac-

tor, then profits can be increased by producing less. Dividing equation (1.1) by

MP1(x
∗
1 , x2), we get

p =
w1

MP1(x
∗
1 , x2)

= MC1(x
∗
1 , x2),

where MC1(x
∗
1 , x2) denotes the marginal costs of the input factor one. It is impor-

tant to note here that the optimal solution is independent of the fixed costs.

This result implies that—under the assumption of perfect competition—electricity

prices are equal to short-term marginal costs. Capital costs and other fixed costs

are irrelevant for the decision whether to produce electricity or not. However, this

6The marginal product is the extra output produced by one more unit of an input.
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result holds only under the assumption of perfect competition. In the following

subsection, we discuss whether this assumption is pertinent.

1.2.2 Price Determination in a Deregulated Electricity Market

After the introduction to microeconomic pricing theory, we examine the price for-

mation in a deregulated electricity market. In a deregulated electricity market,

prices are determined by the bids of the suppliers and the consumers in the mar-

ket. Thereby, the bidding strategy of suppliers depends strongly on the degree

of competition. Under perfect competition, profit maximizing bids are equal to

marginal costs, while a decreasing decree of competition leads to increasing profit

maximizing bids. As electricity is a homogeneous good, there is only one market-

clearing price. Under perfect competition, this market clearing price corresponds

to the marginal costs of the most expensive power plant required to satisfy the

demand.

A central idea of the electricity market liberalization has been to increase the de-

gree of competition. However, it is questionable whether observed electricity

prices correspond to those of a competitive market. There are several studies

comparing observed electricity prices in Germany with the assumed short-run

marginal costs. We summarize these studies in the following, as the results are

important for the question whether the assumption of perfect competition used

by most fundamental electricity market models is pertinent or not.

Müsgens [Müs06] studies the degree of market power in the German electricity

market based on a fundamental electricity market model. The model consists

of several regions and considers technical restrictions such as plant capacities

or start-up costs. Following the theory of pricing under perfect competition, the

marginal costs of the most expensive unit producing electricity are assumed to cor-

respond to the electricity prices. The prices derived by the model are compared to

the spot market electricity prices observed at the EEX. Differences between model

prices and observed prices are attributed to the exercise of market power. For

the period of June 2000 to August 2001, no exercise of market power can be ob-

served. For the period from September 2001 to June 2003, Müsgens reports strong

evidence for the exercise of market power with average prices being nearly 50%

above estimated costs. Most of the price differences occur during high-load peri-

ods.

Lang [Lan08a] uses a combination of a mixed-integer and a linear programming

fundamental electricity market model to study the German electricity spot prices



1.2. ELECTRICITY PRICING THEORY 17

 0

 50

 100

 150

 200

 0  20  40  60  80  100

P
ri

ce
 [

E
U

R
/

M
W

h
]

Quantity [GW]

p*

q*

Marginal costs of last unit

Supply
Demand

 0

 50

 100

 150

 200

 0  20  40  60  80  100

P
ri

ce
 [

E
U

R
/

M
W

h
]

Quantity [GW]

p*

q*

Marginal costs of last unit

Figure 1.5: Price formation in case of scarcity.

between 2000 and 2005. Lang reports that in 2003, 9.7 e/MWh of the spot prices

can be attributed to the exertion of market power. In 2005, market power is as-

sumed to be responsible for 8.0 e/MWh.

Hirschhausen et al. [Hh+07] compare EEX spot prices between 2004 and 2006 with

marginal production costs based on a merit-order curve. Hirschhausen et al. re-

port significant mark-ups on realized prices compared to marginal costs, espe-

cially for mid load and peak load segments.

However, there are also other opinions. In a study commissioned by the VRE (the

association of Germany Electricity Producers), Swider et al. [Swi+07] argue that

the conclusions of the before mentioned studies, the exertion of market power,

do not hold. Swider et al. remark that an important problem of these studies is

data uncertainty, especially concerning the real power plant availabilities and fuel

prices. An example from [Hh+07] is used to demonstrate that the deviations be-

tween marginal costs and electricity prices observed by Hirschhausen et al. can

also be explained by data uncertainty. Furthermore, Swider et al. point out that

electricity prices solely based on short-run marginal costs are not sufficient to

cover investment expenditures. Therefore, Swider et al. conclude that it is natu-

ral to observe sometimes higher prices, which allow to recover long-run marginal

costs.

Ockenfels [Ock07] also argues that electricity prices must sometimes be over short-

term marginal costs to provide sufficient incentives for investments. He points out

that this is in line with the theory of pricing under perfect competition. Figure 1.5

illustrates such a case. In case of scarcity, when demand is higher than the avail-

able capacity, the market clearing price is above the marginal costs of the most

expensive unit. The price is then determined by the demand. If the price was
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corresponding to the marginal costs of the most expensive unit, not all demand

could be satisfied. Therefore, the price is increased until the demand matches the

maximum supply. This price is called the Value of Lost Load(VoLL). However, un-

der perfect competition, this situation can only occur when demand exceeds the

available capacity,7 a situation which did not prevail in 2006 as it is mentioned by

Weigt and Hirschhausen [WH08].

An explanation why price mark-ups are mainly observed in peak hours can be

found considering the Residual Supply Index (RSI) (see, e.g., Lang [Lan08b]). The

RSI is defined as RSI = (∑n
i=1 Ci − Cx) /Load, where ∑

n
i=1 Ci is the capacity of

all operators in the market, and Cx the capacity of the considered operator for

whom the RSI is calculated. The RSI quantifies the importance of the considered

operator to satisfy the demand. The lower the RSI is, the more important is the

considered operator. An RSI smaller than one signifies that the demand cannot be

satisfied without the considered operator. It can be seen that the higher the load

is, the lower is the RSI. This relationship explains why deviations between calcu-

lated marginal costs and observed prices mainly occur during high-peak hours.

Lang [Lan08a] reports a small, but significant correlation between the RSI and the

observed differences between marginal costs and electricity prices. He finds an

RSI below one for E.ON in 2004 for 3,701 hours.

Similar values are reported by Möst and Genoese [MG09]. However, the authors

point out that these values do not consider potential electricity imports. Consid-

ering the import potential, the number of hours with an RSI below one drops to

85 for E.ON in 2004. This is the maximum observed for the years of 2001 to 2006

in the German electricity market.

Summarizing the results of the different studies, it is questionable whether elec-

tricity markets are perfectly competitive nowadays. Nevertheless, electricity mar-

ket models based on the assumption of perfect competition may be used to de-

termine electricity prices. With a future extension of cross-border transmission

capacity, market power will decline and competition will increase. Electricity mar-

kets will be closer to perfect competition as they are today. Under such circum-

stances, differences between observed electricity prices and marginal costs should

also decrease.

7There is a second case, in which electricity prices may exceed marginal costs. This can occur,
when the most expensive unit producing is at its maximum output level, and the marginal costs
of the next expensive unit are higher. In this case, the price may be somewhere in between the
marginal costs of the two units (see, e.g., Borenstein [Bor00]).
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Figure 1.6: Uncertainties related to power plant investments.

Furthermore, electricity prices based on the assumption of perfect competition

may be used as a lower bound for real electricity prices. Investments that are

profitable under these prices remain profitable in case of higher electricity prices

that may be observed due to the exertion of market power.

1.3 Uncertainties Related to Power Plant Investments

Power plant investments are heavily exposed to uncertainties. One reason for this

is the relatively long planning horizon which must be considered when deciding

on power plant investments. For example, coal units have an useful life of about

35 years (Konstantin [Kon08]). Another reason is the high volatility of fuel prices,

which have an important influence on the generation costs.

Lemming [Lem05] proposes a classification of risks based on the cash flow gener-

ated by power plants, which is equal to the electricity production multiplied by

the electricity price less the costs. Hence, Lemming distinguishes between cost,

volume, and price risk. As shown in Figure 1.6, we use this classification, but go

one step further in discussing the different sources of uncertainty and their impact

on volume, price and costs. In our opinion, it is very important to understand

these effects, and to consider these interdependencies in an investment model.

In the following, we briefly describe the most important uncertainties related to

power plant investments, and discuss how they are interrelated.

Thereby, we focus on the uncertainties influencing future contribution margins.

There exist also other sources of uncertainty, e.g., about the exact investment costs

or about the construction time of new units. However, we do not consider these
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uncertainties in our investment models, because these parameters are less uncer-

tain than future contribution margins.

• Fuel price uncertainty:

In Germany, about 55% of the electricity is produced by fossil fuels (coal, lig-

nite and natural gas). The prices of these fuels, especially the one for natural

gas, exhibit a strong volatility (as seen on Figure 1 on page xi). Depending

on the type of power plant, fuel costs account for about 30% (for coal plants)

and about 65% (for CCGT plants) of the total costs (including capital costs).8

It is obvious that fuel price uncertainty has an important effect on generation

costs. However, it also influences the electricity price. Under the assumption

of perfect competition, the electricity price corresponds to the marginal costs

of the most expensive unit producing electricity. As the price-setting unit

is often either a gas or a coal plant, fluctuating fuel prices also influence

electricity prices.

• Electricity price uncertainty:

Spot market electricity prices are characterized by high volatility, spikes and

cycles. There are different factors that influence electricity prices. Under the

assumption that the electricity price depends on the costs of the marginal

unit, these factors are the following ones: First, every uncertainty chang-

ing the costs of the marginal unit changes the price. Besides the fuel price

uncertainty, this might be a change of the carbon costs. Second, a change

of electricity demand or electricity supply can change the unit that sets the

price. On the short-term, such an effect can be due to the stochastic feed-in

from electricity produced by renewable sources (which must be integrated

into the grid due to legal obligations). On the long-term, such changes might

be due to a changing electricity demand or modifications of the power gen-

eration fleet. A change of the existing power generation fleet may be caused

by future political decisions or the behavior of competitors, which are both

uncertain.

• Legal framework:

In the last years, there were two important political decision with a major

impact on the electricity production in Germany. First, in 2002, a nuclear

8Based on the Levelized Costs of Electricity Production in OECD and IEA [OI05] for a discount
rate of 10% and carbon prices of 20 e/t.
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Phase II Phase III

Barclays 11–20 40
Cheuvreux 12–23 30
Orbeo 13.7–20 23–38

Table 1.2: Different carbon price forecasts [e/t] for Phase II (2008–2012) and Phase
III (2013–2020) of the EU ETS. Source: Capoor and Ambrosi [CA09].

phase-out was decided.9 This decision has an important impact on the struc-

ture of the future power generation fleet, and therefore also on future elec-

tricity prices.10

The second political decision having a major impact on the electricity gener-

ation was the implementation of an emission allowances trading system.11

As a consequence, new costs were created, which have to be considered for

power plant investments. Even though the generation companies have re-

ceived the emission allowances for free in the past, several studies (e.g., Ge-

noese et al. [Gen+07], Hirschhausen et al. [Hh+07]) have shown that carbon

prices are passed through to electricity prices. Furthermore, as the CO2 emis-

sions depend mainly on the fuel, the position of the different units within the

merit-order curve12 now depends not only on the fuel prices, but also on the

carbon prices. Future carbon prices are highly uncertain, amongst others

because the amount of allowed emissions is only fixed for the period until

2012. As prices mainly depend on the amount of allowed emissions, price

forecasts are difficult at the moment. This can be seen by comparing differ-

ent studies, which result in quite different carbon prices as it can be seen in

Table 1.2.

9“Vereinbarung zwischen der Bundesregierung und den Energieversorgungsunternehmen
vom 14. Juni 2000”

10Political decisions are always subject to change. The new government plans to extend the
operating life of nuclear power plants [CF09].

11Established by Directive 2003/87/EC
12The merit-order curve is the curve obtained by sorting all units from the least expensive to the

most expensive unit and plotting the marginal costs as a function of the cumulated capacity (see
Section 2.2 on page 67).
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• Electricity demand:

Changes in the electricity demand have two impacts. First, they may change

the amount of electricity that is produced by the considered units. Secondly,

by changing the marginal unit, electricity demand changes may also influ-

ence electricity prices.

• Uncertainty about the behavior of competitors:

The decisions of competitors have a similar effect as changes in the electricity

demand. On the one hand, additional units from competitors may decrease

the amount of electricity produced by the own units. On the other hand,

even if they have no impact on the electricity production of the own units,

they may change the electricity price by changing the marginal unit.

1.4 Modeling Energy Prices

The most important uncertainties related to power plant investments concern the

future contribution margins generated by new power plants. These contribution

margins mainly depend on the development of fuel, carbon, and electricity prices.

In this section, we discuss several possibilities to model these prices.

Energy prices are often modeled as a stochastic process. Hence, we start with a

short description of two basic stochastic processes used for energy price model-

ing, the geometric Brownian motion (GBM) and the mean-reverting process. We

continue with an overview of different methods of modeling fuel prices. Then,

we briefly present approaches to model carbon prices. Finally, we examine how

electricity prices can be modeled.

There are two different approaches to model electricity prices. They can either

be modeled as a stochastic process, similar to the way fuel prices are commonly

modeled. Alternatively, a fundamental electricity market model can be used to

determine electricity prices depending on the current fuel prices, electricity de-

mand and electricity supply. For our investment models, we opt for the latter

approach, as it is better suited to consider the relationship between fuel prices,

carbon prices, the existing power generation fleet on the one side and electricity

prices and electricity production on the other side.

In the last two parts of this section, we give an overview of both approaches mod-

eling electricity prices. We first consider the approach modeling electricity prices

as a stochastic process, before we briefly outline different fundamental electricity



1.4. MODELING ENERGY PRICES 23

market models. As the fundamental electricity market models are an important

part of our investment models, we describe these models in detail in Chapter 2.

1.4.1 Stochastic Processes

In this subsection, we briefly describe two relatively simple stochastic processes

used to model fuel prices: the GBM and the mean-reversion process. In spite of

their relative simplicity—or maybe just because of it—they are frequently used

to model fuel prices. Both processes are Markovian, which means that the next

price depends only on the current price, while older prices are irrelevant for future

prices. This property is a precondition for the application in an SDP model like

our investment model.13 A detailed discussion of the GBM, the mean-reverting

process as well as other stochastic processes including the derivation of the for-

mulas given in the following parts of this subsection is provided by Dixit and

Pindyck [DP94].

1.4.1.1 Geometric Brownian Motion

A GBM is a continuous time stochastic process xt that follows a stochastic differ-

ential equation of the form:

dxt = µxtdt + σxtdzt, (1.2)

where µ describes the drift of the stochastic process, σ the volatility, while dzt are

the increments of a Wiener process (also called Brownian motion) with

dzt = ǫ
√

dt. (1.3)

Thereby, ǫ is a standard normally distributed random variable with an expected

value of 0 and a variance of 1. In case of multivariate processes, the generated

random numbers may be correlated.

For an arbitrarily chosen initial value S0, equation (1.2) has the following analyti-

cal solution:

xt = x0e(µ−
σ2
2 )t+σzt ,

13Non-Markovian processes may also be used in an SDP model. However, in such a case ad-
ditional attributes must be added to a state. For a stochastic process depending on the last two
observations, these two observations (instead of just the last one for a Markovian process) have to
be saved for each state. This significantly increases the state space.
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where xt is a log-normally distributed random variable with an expected value

E(xt) = x0eµt and variance Var(xt) = e2µtS2
0(e

σ2t − 1). One characteristic of a

GBM is that, assuming a positive initial price, prices always remain positive.

The application of the GBM to model discrete price changes leads to

∆p

p
= µ∆t + σǫ

√
∆t, (1.4)

where p denotes the considered price (Weber [Web05, p. 41]). It can be seen from

equation (1.4) that the relative price change ∆p/p depends on two terms: a deter-

ministic drift µ∆t and a normally distributed stochastic variable with an expected

value of 0 and a variance of σ2∆t. This deterministic drift implies that relative

price changes depend only on time, but not on other factors like the current price

level. The variance of the relative price changes grows with the time horizon. As

a consequence, an increased time horizon leads to increased uncertainty in the

predicted values.

1.4.1.2 Mean-Reverting Processes

The independence of relative price changes from the current price level is often

criticized when commodity prices are modeled as GBM processes (e.g., Schwartz

[Sch97]). It is pointed out that high commodity prices will lead to an increase

in supply, as it might become profitable for higher cost producers to enter the

market. The higher level of supply will have a negative effect on prices. On the

other side, if prices are low, some producers might no longer be profitable and exit

the market. As a consequence, supply decreases and prices tend to rise.

Mean-reverting processes are able to consider such effects. The simplest mean-

reverting process, which is also known as Ornstein–Uhlenbeck process, follows the

equation

dxt = η(x− xt)dt + σdzt,

with η > 0 and σ > 0. Thereby, η denotes the reversion speed, x corresponds to

the “normal” level of x. For commodity prices, x is the equilibrium price to which

the prices are assumed to revert. As before, dzt are the increments of a Wiener

process defined in equation (1.3). The expected value of x based on the current

value x0 is

E(xt) = x + (x0 − x)e−ηt, (1.5)
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and the variance of (xt − x) is

Var(xt − x) =
σ2

2η
(1− e−2ηt). (1.6)

From equations (1.5) and (1.6) it can be seen that for large t, the expected value

converges to x, while the variance converges to σ2/(2η). The convergence of the

expected value to the equilibrium is an advantage of a mean-reverting process

compared to a GBM when used to model commodity prices. The boundedness of

the variance for large t is somehow problematic as it implies that forecasts for the

period t + n (with n > 0) can be made with the same accuracy than forecasts for

the period t.

Another drawback of a mean-reverting process used for commodity prices is the

possibility of negative prices. For most commodities, negative prices do not exist.

To preserve non-negative prices, the logarithm of the price may be used instead

of the price itself. This leads to the following equation (e.g., Pilipovic [Pil98]):

d ln(xt) = η(ln(x)− ln(xt))dt + σdzt. (1.7)

Note that the value x to which prices revert may be time-dependent. In such a

case, we write xt. We can use xt to model a trended mean-reverting process with

fixed annual growth rates (formulated in the logarithm of the price):

d ln(xt) = η(ln(xt)− ln(xt))dt + σdzt,

with

xt = x0 · (1 + r)t,

where x0 is the initial price and r the annual growth rate.

1.4.2 Modeling Fuel Prices

In this subsection, we briefly describe different approaches to model fuel prices.

Thereby, we focus on two popular approaches, the GBM and the mean-reverting

process. We conclude this subsection with some critical remarks about the quality

of fuel price forecasts and the implications for the power generation expansion

problem.
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1.4.2.1 Literature Review

Early works in the field of fuel price modeling are often based on GBMs. For

example, Gibson and Schwartz [GS90] describe the spot price of oil as a GBM. The

choice of the GBM can be explained with the popularity of the famous work of

Black and Scholes [BS73], who developed a model to price options based on the

assumption that the price follows a GBM.

However, in the nineteen nineties, it was questioned whether the GBM assump-

tion is pertinent. Bessembinder et al. [Bes+95] studied for several commodities

whether investors anticipate mean-reversion in spot asset prices. They found

mean-reversion in all examined markets. For crude oil, they reported that 44% of

a typical price shock is expected to be reversed over the subsequent eight months.

Schwartz [Sch97] formulates a commodity price model in which the logarithm

of the spot price is assumed to follow a mean-reverting process of the Ornstein–

Uhlenbeck type. Besides this one-factor model, Schwartz also formulates a two-

factor and a three-factor model. The advantage of these multi-factor models is

their ability to consider additional parameters influencing commodity prices. A

main difficulty of such multi-factor models is that the factors that are used in these

models are often not directly observable.

When fuel prices are used as an input parameter for fundamental electricity mar-

ket models, the approaches the most commonly used to simulate fuel prices are

GBMs (e.g., Aronne et al. [Aro+08], Botterud [Bot03]) or mean-reverting processes

(e.g., Hundt and Sun [HS09]). For this reason, we focus in the following on a

comparison of these two processes.

1.4.2.2 Comparison of GBM and Mean-Reverting Models

Pindyck [Pin99] studied the long-run evolution of oil, coal and natural gas prices

using data of up to 127 years. Based on this data, Pindyck addressed the question

whether these fuel prices should be modeled as a GBM or as a mean-reverting

process. Unit root tests and variance ratio tests suggest that the logarithms of the

prices are mean-reverting. However, the rate of mean-reversion is slow. Further-

more, the trends to which the prices are reverting fluctuate over time.

Even though the results indicate that energy prices follow rather a mean-reversion

process than a GBM, Pindyck examined the effects of investment decisions if a

GBM process is used instead. He mentions that if the rate of mean-reversion

is slow, the dependence of the optimal decision on the equilibrium price is low.
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Figure 1.7: Expected gas price development and 95% confidence interval for gas
prices modeled as a GBM. Drift and standard deviation estimations based on dif-
ferent periods. Data taken from [Pin99]. Observed gas prices taken from the US
Energy Information Administration.

However, this holds only if the implied volatility of energy prices is relatively

constant, as assumed by the GBM. As both conditions are fulfilled, Pindyck con-

cludes that the GBM assumption is unlikely to lead to large errors in the optimal

investment rule.

Considering the data Pindyck used for his analysis, another difficulty of predict-

ing fuel prices becomes obvious. The annual average price changes vary signif-

icantly depending on the considered time period. While the average annual gas

price increased by 1.88% in the years between 1930 and 1996, considering just the

years of 1970–1996, average annual increases of 4.9% are observed. The standard

deviation also increased from 0.1079 to 0.1459.

Figure 1.7 shows the expected gas prices and a 95% confidence interval for GBMs

with drift and standard deviation estimated based on the two before mentioned

periods. In addition, we added the observed gas prices until 2008.14

It can be seen that for several years, the observed prices are outside the 95% confi-

dence interval for the GBM based on the mean and standard deviation estimations

of the years between 1930 and 1996. For the GBM based on the data between 1970

and 1996, observed prices remained in the 95% confidence interval. However, this

confidence interval gets quite wide.

14We took the price of gas used by electricity generators from the US Energy Information Admin-
istration (available at http://tonto.eia.doe.gov/dnav/ng/ng_pri_sum_dcu_nus_a.htm, last time
accessed on December 02, 2009) and deflated the prices using the Producer Price Index for all
commodities (available at http://www.bls.gov/ppi/, last time accessed on December 02, 2009) as
Pindyck did it.



28 CHAPTER 1. INTRODUCTION

While the majority of researchers assume fuel prices to be mean-reverting, this

is not undisputed. Geman [Gem07] examined the development of crude oil and

natural gas prices during 15 years. She identified a mean-reversion pattern for

crude oil prices in the years between 1994 and 2000. In 2000, the pattern changed

into a random walk. For natural gas prices, a mean-reversion pattern is found

until 1999. It also changed into a random walk in 2000.

1.4.2.3 Some Critical Remarks on Fuel Price Forecasts

Even though a wide variety of fuel price forecasting models exist, the quality of

forecasts derived from the models is often questioned. Manera et al. [Man+07]

present a survey of different models used to forecast oil prices. Manera et al. note

that there is no consensus about the appropriate forecasting model. Findings vary

across models, time periods and data frequencies. The authors conclude that the

best performing econometric model for oil forecasts is still to appear in literature.

A similar conclusion is made by Fattouh [Fat07]. The author reviewed the three

main approaches used for analyzing oil prices: non-structural models, the infor-

mal approach and the demand–supply framework. Fattouh concludes that each

of these approaches suffers from major limitations, especially when used to make

predictions.

While those two papers surveyed oil price models, the results are probably also

applicable to gas price models. At least in Germany this is the case, as the gas

price is directly linked to the oil price. Summarizing the results of the literature

on fuel price forecasting, two things should be retained. First, a perfect forecast

model does not exist. Second, even if the appropriate stochastic process for a fuel

price model could be identified, the forecasts might still differ depending on the

historical data used to estimate the parameters of the process. In our opinion,

these findings emphasize the importance to consider a wide variety of different

fuel price scenarios in a power plant investment model.

1.4.3 Modeling Carbon Prices

Besides fuel prices, carbon prices have a strong impact on power generation costs.

Similar to fuel prices, carbon prices can change the profitability of the different

generation technologies. Compared to fuel prices, modeling carbon prices is even

more difficult. In the following, we briefly discuss difficulties of carbon price mod-

eling, before we give an overview of some models used in literature.
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1.4.3.1 Difficulties of Carbon Price Forecasting

The additional difficulties of carbon price modeling compared to fuel price model-

ing are due to the short history of the EU ETS and the strong influence of uncertain

future legislation.

• Short history: The EU ETS was started in 2005. As a consequence, the

amount of historical data that can be used to develop and calibrate price

forecast models is very limited. Furthermore, the first trading period from

2005–2007 can be seen as a test period. A dramatic price drop could be ob-

served in 2006, as it became obvious that member states had over allocated

allowances to emission intensive firms. It is questionable whether such a

price drop is a normal market behavior which will also occur in the future,

or whether it was mainly caused by immature markets.

• Different phases: Another problem is the division of the EU ETS into sev-

eral trading periods. After phase I, the second trading period has started in

2008 and ends in 2012. As the European Union Allowances (EUAs)15 could

only limitedly be transferred between these two periods, these periods must

be treated as separate markets. As a consequence, different carbon price

models may be pertinent for these periods. A third trading period starts in

2013 and ends in 2020. As banking between the second and the third pe-

riod is allowed, data from the second period may be used for price models

considering the third period.

• Legal framework and fundamentals: The main price determinants for CO2

are (i) policy and regulatory issues and (ii) market fundamentals that di-

rectly concern the production of CO2 (Benz and Trück [BT09]). Both of them

are highly uncertain, especially in the long-term. For example, the National

Allocation Plans for the second trading period, which determine the amount

of allowed emissions, have been finalized in January 2007. Today, only the

amount of allowed emissions until 2012 is fixed. It is very difficult to pre-

dict EUA prices without knowing future regularity conditions. However,

for power plant investments, long-term price forecasts are required. To the

extend of the author’s knowledge, there are no carbon price forecast models

covering a time-horizon of several years.

15An EUA allows the emission of one tonne CO2.
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1.4.3.2 Literature Review

In the following, we give an overview of some approaches to model carbon prices.

As the emission trading system is relatively new, only a few models for CO2 price

simulation exist. Most of them consider spot prices. Nevertheless, we present

these results, as they describe some typical characteristics of CO2 prices.

Paolella and Taschini [PT06] analyze the European Union CO2 emission allowance

spot prices. They discuss two different approaches to model carbon prices: an

approach based on fundamentals of CO2 and an approach based on future-spot

parity of CO2.

Following the first approach, Paolella and Taschini examine whether fuel prices

can be used as a proxy for CO2 prices. The authors report that the fuel price level

does not fully explain the CO2 price level in 2005. Concerning the second ap-

proach, Paolella and Taschini argue that due to the uncertainties related to emis-

sion allowances (e.g., political uncertainty), price scenario analysis based on the

existence of a well-behaved future-spot parity is not pertinent. As an alternative,

Paolella and Taschini propose different GARCH16 models.

Benz and Trück [BT09] examine the spot price dynamics of emission allowances

in the EU ETS. They propose two different models, an AR-GARCH model and a

Markov regime-switching model. The best in-sample fit is reported for a regime-

switching model. While the GARCH model is only slightly worse, models with

constant volatility like a Gaussian distribution perform clearly worse. Benz and

Trück explain the better performance of the models with conditional variance by

the dependence of the carbon prices on regularity conditions and fundamentals.

Spangardt and Meyer [SM05] use a trended mean-reverting process to model car-

bon spot prices. Thereby, the authors assume an annual growth rate of carbon

prices of 3%.

Dannenberg and Ehrenfeld [DE08] assume that carbon prices fluctuate around the

expected marginal abatement costs. Hence, Dannenberg and Ehrenfeld propose to

model carbon spot prices with a mean-reverting process. To consider the effects

of new informations that can significantly change the expectations of marginal

abatement costs, Dannenberg and Ehrenfeld introduce jumps in the level to which

prices revert.

Daskalakis et al. [Das+09] analyze spot and future prices of three different mar-

kets: NordPool, PowerNext and the European Climate Exchange (ECX). The anal-

16Generalized autoregressive conditional heteroscedasticity (Bollerslev [Bol86])
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ysis of spot prices suggests that spot prices are likely to be characterized by jumps

and non-stationarity. A test amongst six different stochastic processes shows best

results for a GBM with jumps.

In addition to spot prices, Daskalakis et al. examine two different types of fu-

tures: intra-period futures and inter-period futures. The maturity of intra-period

futures is within the same emission allowances trading phase in which they are

first traded. The maturity of inter-period futures is not in the same phase in which

they are first traded.

While intra-period futures evolved closely with spot prices, there were significant

deviations for inter-period futures. Inter-period future prices are reported to be

higher and less volatile than those of intra-period futures. A possible explanation

for that observation is the prohibition of banking of emission allowances between

phase I and phase II of the EU ETS. For inter-period futures, the authors propose

a two-factor equilibrium model based on a jump-diffusion spot price process and

a mean-reverting stochastic convenience yield.

Kanamura [Kan09] studies some properties of EUA future prices traded on the

ECX. The author reports that EUA future prices cannot be shown to be mean-

reverting or exhibiting seasonality.

Seifert et al. [Sei+08] present a stochastic equilibrium model for CO2 spot prices.

Seifert et al. report that CO2 spot prices do not show mean-reversion, nor do

they have to follow any seasonality. The volatility of the prices is time- and

price-dependent, with increasing volatility when the end of the trading period

is approaching. The authors further remark that spot prices are bounded by the

penalty cost plus the cost of having to deliver any lacking allowances.

A consequence of the relatively short existence of the EU ETS is the lack of estab-

lished price forecasting models, as it can be seen from the brief literature summary.

So far, no commonly accepted model exists for long-term price forecasts required

for power generation expansion models. Therefore, most power generation ex-

pansion models use either deterministic carbon prices (e.g., Sun et al. [Sun+08],

Swider and Weber [SW07]) or consider different predefined scenarios within the

optimization (e.g., Jensen and Meibom [JM08], Klein et al. [Kle+08]).

1.4.4 Modeling Electricity Prices as Stochastic Processes

Electricity prices can either be modeled as a stochastic process, or they can be

determined by a fundamental electricity market model. In this subsection, we

discuss the first approach, the latter one is presented in detail in Chapter 2.
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There are two different approaches for modeling electricity prices as stochastic

processes. The first one are financial models, which focus on the stochasticity,

and do not (or only marginally) consider the influence of deterministic effects. In

contrast, econometric models are based on the assumption that price changes are

caused by a superposition of deterministic and stochastic effects. However, the

distinction is not always unambiguous. Most models presented in this subsection

consider somehow the influence of deterministic effects.

In the following, we first discuss the advantages and disadvantages of electricity

prices modeled as a stochastic process compared to fundamental electricity mar-

ket models. Then we give a brief literature overview.

1.4.4.1 Strengths and Weaknesses

Financial and econometric models are best suited to forecast electricity prices in

the short-term (see Schmutz and Elkuch [SE04]). Most of these models focus on

a good approximation of the electricity spot price characteristics described in Sec-

tion 1.1.3. Compared to fundamental electricity market models, financial and

econometric models have the following advantages:

• In general, financial and econometric models models capture the statistical

properties of electricity price distribution better than fundamental models.

• There is enough data available to calibrate these models.

• Simulations based on a financial or an econometric model are very fast com-

pared to fundamental electricity market models.

• Financial and econometric models do not depend on the type of competition

in the considered market. The only assumption is that the degree of compe-

tition does not change. For short-term periods, this condition is fulfilled.

However, financial and econometric models have two disadvantages, which make

them unsuitable for long-term investment models in our opinion:

• Financial and econometric models rely on a relatively stable market struc-

ture. As the models are calibrated using historical data, price forecasts may

no longer be accurate if market fundamentals change. For example, such

models cannot predict the effects of increasing wind power penetration, if

these effects are not yet observable on the markets.
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• When such models are used for power generation expansion models, it is in

general implicitly assumed that the construction of new units has no effect

on observed prices. At least if investments in several units are allowed, this

assumption is not pertinent. While econometric models might somehow

incorporate the available capacity, fundamental electricity market models

are better suited for such a case.

1.4.4.2 Literature Review

In this paragraph, a brief overview of different financial and econometric elec-

tricity price models is given. As it can be seen from the wide variety of different

approaches, there is no consensus about the best method.

Deng [Den99] proposes three different mean-reverting jump-diffusion processes

for modeling electricity spot price. Deng includes in these models an additional

process, which may be correlated with the electricity prices. This other process

can be the spot fuel prices or the electricity demand. To account for short periods

of high electricity prices, which may be caused by forced plant outages, Deng ex-

tends the basic model to a Markov regime-switching model. This extended model

allows to switch between normal states and high price states.

Lucia and Schwartz [LS02] formulate a pricing model for spot and derivative

prices based on observations from NordPool, the Scandinavian power exchange.

For the spot market, they use a simple one factor model consisting of a determinis-

tic function depending on the time and a stochastic Ornstein–Uhlenbeck process.

The deterministic function can be used to represent seasonality in the model. The

one-factor model is extended by a correlated second stochastic process modeled

as an arithmetic Brownian motion. The authors stress that the inclusion of the

deterministic factor accounting for regularities in the behavior of electricity prices

is important. At the same time, Lucia and Schwartz point out that it is difficult to

estimate this seasonal pattern, as it requires a time series of several years.

Barlow [Bar02] uses a simple supply/demand model17 to determine electricity

spot prices. The electricity demand is modeled as an Ornstein–Uhlenbeck process.

The resulting model for electricity spot prices is a diffusion model including price

spikes.

17This model could also be classified as a fundamental model, as it considers the supply curve
as described in Section 2.2. On the other side, the supply is modeled as a stochastic process, and
the model is discussed from the point of view of statistical models.
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Escribano et al. [Esc+02] present a multi-factor model for average daily spot prices.

The model considers seasonality, mean-reversion, stochastic volatility and jumps.

To allow jumps in their model, Escribano et al. use an explicit jump term.

Burger et al. [Bur+04] develop a model considering seasonality, mean-reversion,

price spikes, price-dependent volatilities and long-term non-stationarity. Their

model is a three-factor model consisting of a stochastic load process, a short-term

process and a long-term process. While the stochastic load process combined with

the deterministic supply function represents the part of the price explained by fun-

damental data, the short-term and long-term process are used to account for price

determinants like psychological facts or the behavior of speculators. The load

process and the short-term process are modeled as a seasonal ARIMA18 process,

while the long-term process is modeled as a random walk with drift.

Geman and Roncoroni [GR06] introduce a “jump-reversion” component in their

spot price model to account for price jumps. They define two different states based

on a threshold value. If the current price is below the threshold, only positive

jumps can occur. If the price is above, only negative jumps are possible. The

intensity of the jumps may be time-dependent.

Weron and Misiorek [WM08] compare 12 time series methods for short-term spot

price forecasting. The considered methods include autoregressive models, regime

switching models and mean-reverting jump diffusions. The performance of the

models is tested based on time-series from the Californian market and from the

Nordic market. Weron and Misiorek find that for point forecasts, models includ-

ing the system load as exogenous variable perform better than models without, at

least for the Californian market. Using the air temperature as exogenous variable

does not necessarily improve model quality.

As this literature survey shows, there are many different approaches and stochas-

tic processes used to model electricity prices. A common point of most models is

the inclusion of fundamentals to improve price forecasts.

1.4.5 Modeling Electricity Prices with Fundamental Models

Fundamental electricity market models calculate the cost-minimal electricity pro-

duction for the considered market. They can be used to determine the electricity

production of each unit as well as electricity prices. The main advantage of fun-

damental electricity market models compared to simulation models is the more

18AutoRegressive Integrated Moving Average, see, e.g., Box et al. [Box+08]
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appropriate consideration of the relationship between fuel prices, electricity de-

mand and electricity supply on the one side and electricity production and elec-

tricity prices on the other side.

Depending on the type of fundamental market model, they can also consider

short-term uncertainties, e.g., the feed-in from wind power, as well as technical re-

strictions of power plants like minimum up-times or reduced part load efficiency.

For these reasons, we argue that fundamental electricity market models are best

suited to model electricity prices for the valuation of power plant investments.

However, fundamental models face several difficulties, which should be men-

tioned in the following:

• Most fundamental electricity market models (including the ones we use in

this thesis) are based on the assumption of a competitive market. As it was

discussed in Section 1.2.2, this assumption is still questionable nowadays.

However, the planned extension of cross-border transmission capacity will

increase competition on national markets, and may result in a common Eu-

ropean electricity market. Under such circumstances, the assumption of per-

fect competition will be more appropriate.

• In order to be able to make long-term price forecasts, assumptions about

future market conditions like fuel prices or the existing power plant fleet

must be made. As we saw in Subsections 1.4.2 and 1.4.3, this is quite difficult.

• Fundamental electricity market models cause a high computational burden.

Especially LP or MILP models have significantly longer running times than

simulation models.

• A further problem of fundamental models is data availability. While the

data required for financial and econometric models is in general publicly

available (e.g., historical electricity prices), the exact technical parameters of

power plants are often not publicly known.

Despite these disadvantages, we belief for the before mentioned reasons that fun-

damental electricity market models are the appropriate way to determine elec-

tricity prices for power plant valuation methods. We describe different types of

fundamental electricity market models in detail in Chapter 2. In the following,

we briefly outline three different kinds of fundamental electricity market models,

because they are used afterwards in the literature review in Section 1.6.
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• Load–duration curve (LDC): Fundamental models based on the LDC are the

simplest type of fundamental models. The LDC for a whole year is used to

determine the corresponding electricity production and prices. LDC models

do not consider any technical constraints.

• Supply–demand curves (SDC): These models use several different SDCs to

determine electricity prices. As the models based on the LDC, these models

do not consider technical constraints. However, models based on the SDC

can consider a price elastic demand. As the application of a SDC model de-

livers only results for one moment in time, more computations are required

compared to LDC models.

• LP/MILP models: Describing the power generation as an LP or an MILP

problem makes it possible to model technical constraints like minimum op-

eration or minimum shut-down restrictions. Furthermore, reduced part-

load efficiency and short-term uncertainties like the demand or the feed-in

from wind power can be considered. The disadvantage of such models is

the high computational burden.

1.5 Valuation of Power Plant Investments

The uncertainties discussed in Section 1.3 have a strong influence on the profitabil-

ity of power plants investments. Hence, these uncertainties have to be considered

by power plant valuation methods.

In this section, we present two different approaches to optimize power plant in-

vestments. The first approach is based on the Levelized Costs of Electricity Produc-

tion (LCEP). This method calculates the expected costs of electricity production

for different technologies and selects the technology with the lowest cost. The

LCEP approach was mainly used in a regulated electricity market. It does neither

consider the timing of investments, nor does it consider the before mentioned un-

certainties in an appropriate way.

Owing to these shortcomings of the LCEP approach, the real options approach, a

method developed for investments under uncertainty, became popular to evaluate

power plant investments in a deregulated market. Other than the LCEP approach,

it does explicitly address the timing of investments.
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In the following, we first describe the LCEP approach, as it still seems to be ap-

plied in practice (see, e.g., Konstantin [Kon08]). Then, we introduce the real op-

tions approach, which we use for our investment models.

1.5.1 Levelized Costs of Electricity Production

The LCEP is based on the Net Present Value (NPV) approach, a standard method

to evaluate investment opportunities (see, e.g., Brealey et al. [Bre+07]). The NPV

is the sum of a series of cash-flows discounted to its present value. As discount

factor, the firm’s weighted average cost of capital may be used. Formally defined,

the NPV is

NPV =
T

∑
t=0

Rt

(1 + r)t
,

with Rt equal to the returns in year t, r the discount rate and T the planning hori-

zon. To emphasize the initial investment I0 and a possible salvage value L at the

end of the planning horizon, it is often written as

NPV = −I0 +
T

∑
t=1

Rt

(1 + r)t
+

L

(1 + r)T
.

Based on the NPV criterion, an investment is carried out if the NPV is positive. If

one of several investment alternatives has to be chosen, the one with the highest

NPV is realized.

Even though the NPV approach has some pitfalls (e.g., choosing an appropri-

ate risk-adjusted discount rate), it is widely used in practice. A survey of 392

chief financial officers of large and small firms showed that 74.9% of them use al-

ways or almost always the NPV method for project valuation (Graham and Har-

vey [GH01]).

The LCEP correspond to the average costs of electricity production in e/MWh

considering all discounted costs that occur during the system lifetime. They are

calculated in such a way that the NPV of a possible power plant investment is

zero. The LCEP are defined as (see, e.g., OECD and IEA [OI05]19)

LCEP =
∑

n
t=0

It+Mt+Ft+Et
(1+r)t

∑
n
t=0

Pt
(1+r)t

,

19The emission allowance expenditures are not yet considered by the definition given in [OI05],
probably due to the date of the publication. As emission allowance expenditures are costs related
to the electricity production, we follow [Kon08] and include them in the LCEP.
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with It = Investment expenditures in year t [e],

Mt = Operation and maintenance expenditures in year t [e],

Ft = Fuel expenditures in year t [e],

Et = Emission allowance expenditures in year t [e],

Pt = Electricity production in year t [MWh],

r = Discount rate,

n = System lifetime.

To evaluate different investment alternatives, the LCEP are calculated for each

investment alternative. Then, the project with the lowest LCEP is chosen.

An example of an LCEP calculation is depicted in Figure 1.8(a). It shows the LCEP

for different units based on the assumptions of an 85% average load factor (cor-

responding to 7,446 full load hours per year), a discount rate of 10% and carbon

prices of 20 e/t. It can be seen that the different cost blocks for a coal unit are

about the same size, while the costs of a CCGT unit are mainly influenced by the

fuel costs. The most important costs for nuclear units are the investment costs.

The LCEP concept was a popular method for project valuation in a regulated

market environment. However, it has several severe shortcomings, which are de-

scribed in the following.

• No appropriate consideration of uncertainty: The LCEP calculation is based

on expected values, ignoring any kind of uncertainty. To get an idea what

happens when the value of one of the parameters deviates from the expected

values, a sensitivity analysis is usually performed. For this purpose, the

LCEP are calculated as a function of a chosen input parameter. Besides this

chosen parameter, all other parameters remain fixed.

An example of such a sensitivity analysis is shown in Figure 1.8(b). It shows

the LCEP for lignite plants, coal plants, CCGT plants and gas turbine plants

depending on the number of full load hours. It can be seen that above about

3,500 full load hours, lignite plants are the cheapest option. If the number

of full load hours is less, CCGT units are cheaper. For this example, the

investment in lignite plants seems to be a robust decision, as the threshold

value changing the ranking of the technology is far away from the assumed

number of full load hours for lignite units, which is 7,500 [Kon08]. Even

though a sensitivity analysis gives meaningful insights, it also suffers from

some limitations.
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Figure 1.8: Levelized Costs of Electricity Production

First of all, the sensitivity analysis varies only the value of one parameter

and assumes the values of all other parameters to be fixed. Second, while

it varies the value of one parameter, it is assumed that the changed values

remain constant throughout the whole planning horizon. For example, a

sensitivity analysis that considers the impact of gas prices still assumes that

the alternative gas prices are constant during the whole optimization hori-

zon. It compares scenarios with gas prices of 10 e/MWh and 15 e/MWh

for example, but it does not consider scenarios where gas prices change from

year to year, e.g., from 10 e/MWh in the current year to 15 e/MWh the next

year.

Compared to reality, this is a very simplistic consideration of uncertainty.

Especially fuel prices and carbon prices exhibit a high volatility. As the prof-

itability of the different technologies strongly depends these prices, fuel and

carbon price uncertainty must be considered adequately by a power plant

valuation method.

• Assumptions about electricity production: To calculate the LCEP, assump-

tions about the expected electricity production are made. While this ap-

proach was pertinent in a regulated market, it is no longer applicable in a

deregulated market. In a competitive electricity market, a unit produces

only if its marginal costs are lower than or equal to the electricity prices.

• No consideration of electricity prices: Another drawback of the LCEP ap-

proach is its focus solely on the cost side. Blindly applying the LCEP method
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ignores that peak load units operate mainly during periods with high prices.

Hence, they may be profitable in spite of their relatively high costs.

• No consideration of operational flexibility: Due to the increasing amount

of electricity produced by intermittent sources like wind power, operational

flexibility becomes more and more important. Power plants with short start-

up times, which are able to react on wind power fluctuations, will gain mar-

ket shares from inflexible units. The LCEP approach does not consider this

value of operational flexibility.

• No evaluation of the profitability of investments: The LCEP method does

not explicitly address the question whether an investment should be carried

out or not. It only determines the cheapest technology based on the assump-

tion that an investment is required. In a regulated market, the generation

companies were obliged to guarantee the security of supply. Based on the

existing reserve capacity and the expected demand growth, they could de-

cide whether new investments were required or not. In a deregulated mar-

ket, generation companies will only invest if an investment is profitable. To

be able to answer this question using the LCEP approach, one may com-

pare the current electricity prices with the calculated LCEP. However, such

a comparison does not consider the uncertainty related to future electricity

prices.

• No consideration of timing: Additionally to the question whether to invest

or not, also the question when to invest must be answered. The NPV ap-

proach (and also the LCEP approach) are based on the implicit assumption

that the investment is either reversible or that the investment opportunity

is a “now or never” opportunity. Reversibility of investments means that

the investments may be undone in the future and the costs can be recovered

somehow. The “now or never” opportunity implies that the investment is

either realized immediately, or never. However, these two conditions do not

hold for power plant investments. Once the investments are carried out, the

investments can hardly be undone. Investment costs must be considered as

sunk costs which cannot be recovered. In most cases a company has the pos-

sibility to postpone power plant investments. Hence, methods based on the

NPV are not appropriate for power plant investments.

Due to these shortcomings of the NPV method, an alternative method, the real

options approach, became popular for power plant valuation.
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1.5.2 Real Options Approach

The real options approach is based on the observation that the possibility to delay

an irreversible investment has some additional value which must be included in

a project valuation (see, e.g., McDonald and Siegel [MS86]). The term “real op-

tions” was introduced by Myers [Mye77]. Myers noticed that a firm is composed

of two asset types: real assets, which have market values independent of the firm’s

investment strategy, and real options, which are opportunities to purchase real as-

sets on possibly favorable terms.

The concept of real options is closely related to financial options. Having the op-

portunity to invest is analogous to holding a financial call option—the holder has

the right, but not the obligation to buy an asset in the future. Carrying out the in-

vestment corresponds to exercising the option. Investing “kills” the option. Con-

trary to the NPV analysis, it is not sufficient for an investment to have a positive

NPV to be carried out, but the NPV of the immediate investment must exceed the

option value.

In the following, we use a simple example to demonstrate the main idea of the real

options approach. Then, we discuss the influence of different problem parameters

like the degree of uncertainty on investment decisions. In the second part of this

subsection, we give a brief introduction to SDP and demonstrate how SDP can

be used to model power plant investment problems based on the real options

approach.

1.5.2.1 Introduction

The value of the option to postpone an investment is closely related to the un-

certainty of the project’s future cash flows. This can be illustrated with a simple

example.

Example. Assume that an electricity generation company has the possibility to invest

either in a new coal plant or in a CCGT plant. Assume further that the future contribution

margins strongly depend on future carbon prices, which themselves depend on a political

decision concerning the amount of allowed emissions. However, this decision is taken in

one year, so its outcome is not yet known. There are two possible carbon price scenarios

with equal probability. Postponing the investment results in lost discounted cash flows

(DCFs) for both alternatives. The assumed payoffs for the two investment alternatives are

summarized in Table 1.3.
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Coal unit CCGT unit

Investment costs 1,000 500
DCFs High carbon prices 1,050 650

Low carbon prices 1,200 500
Lost DCFs due to postponing the decision 50 30

Table 1.3: Data used for a simple example to demonstrate the value of postponing
an investment.

Applying the NPV method results in a NPV of 125 (−1,000 + 0.5 · 1,200 + 0.5 · 1,050)

for the coal unit and 75 (−500 + 0.5 · 650 + 0.5 · 500) for the CCGT unit. As both NPVs

are positive and the NPV of the coal unit is greater than the NPV of the CCGT unit, one

would choose to invest in the coal unit (remember that only one investment is allowed).

Postponing the investment by one year reveals additional information. In case of low

carbon prices, the NPV of the coal unit is 150 (−1,000 + 1,200 − 50), while the NPV

of the CCGT unit is −30 (−500 + 500 − 30). If the high carbon price scenario occurs,

the NPV of the coal unit is 0 and the NPV of the CCGT plant is 120. If the investment

is postponed, then the optimal decision depends on the realized scenario. In case of low

carbon prices, the coal unit is preferable. In the case of high carbon prices, the CCGT unit

is the better choice. The expected NPV of postponing the investment is 135 (0.5 · 150 +

0.5 · 120). This value corresponds to the option value. As the NPV for both immediate

investment alternatives is lower than the option value, the optimal decision is to postpone

the investment.

One should note that the fact that the optimal decision depends on the realization of the

uncertain carbon prices is not a sufficient condition for postponing the investment. As-

sume that the lost DCFs for postponing the investment are now 70 for the coal unit and

50 for the CCGT unit. If the investment is postponed, it is still preferable to build the

coal unit under the low carbon price scenario and the CCGT unit under the high carbon

price scenario. However, the option value drops to 115 due to the increased lost DCFs.

Now, the NPV of an immediate investment is higher than the option value. Assuming a

risk-neutral investor, the optimal decision is to invest immediately.

Real options have some common characteristics, which are described for example

by Dixit and Pindyck [DP94]. We summarize them in the following, as they allow

to gain interesting insights on the influence of some parameters on investment

decisions in general, which are also important for our investment model.

• Changing the cost of the investment: The option value associated to a pos-

sible investment increases with the sunk costs of the investments. As a con-
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sequence, the incentive to delay capital-intensive investments like coal units

is higher than the one for cheaper units like CCGT plants. Such a behavior

is for example observed by Olsina [Ols05].

• Degree of uncertainty: Increasing the degree of uncertainty leads to a higher

option value. On the one hand, the downside risk of the option is zero. If un-

favorable future scenarios occur resulting in a negative NPV, the option will

not be exercised (no investments will be done). On the other hand, the up-

side payoff of the option increases. As increasing the volatility of uncertain

payoffs without changing the expected values has no influence on the NPV

of an immediate investment, an increase of volatility delays investments.

• Influence of hedging: The ability to hedge risk with contracts on forwards

or future markets does not change the option value. This fact can be ex-

plained by the observation that on efficient markets, risks are fairly priced.

Any decrease of risk correlates with a decrease in return. As a consequence,

the possibility to hedge does not need to be considered in an investment

model based on the real options approach.

• Effects of interest rates on investments: A reduction of interest rates leads

to a higher NPV. Hence, it increases the incentive for investments. At the

same time, it makes future cash flows more important relative to present

ones. As a consequence, the uncertainty increases, and with it the option

value. These two opposite effects explain why interest rates seem to have

only little effect on investments. Even though interest rates are still an im-

portant parameter, they have less impact when the real options approach is

applied to valuate power plant investments compared to the case when the

LCEP approach is used.

1.5.2.2 Using Stochastic Dynamic Programming to Model Real Options

To solve real options problems, either SDP or the contingent claims approach can

be used [DP94]. The concept of contingent claims analysis is closely related to

financial option pricing. To be able to apply the contingent claims analysis, a

portfolio of traded assets which exactly replicates the pattern of returns of the

investment project is required. It is at least questionable whether this condition is
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met in the case of electricity power plants.20 For this reason, we opt for the SDP

approach in this thesis. In the following, we briefly describe the main ideas of

SDP.

Dynamic programming (DP) goes back to Bellman [Bel57]. The main idea of DP

is to break a complicated problem down to smaller subproblems which can be

solved recursively. A discrete-time dynamic optimization problem consists of

state variables xt and decision variables at. The set of states at time t is denoted

by Xt, the set of possible decision depending on the current state xt is denoted

by Γ(xt). Based on the transition function Tt+1(xt, at), a new state xt+1 is reached

when decision at is applied while being in state xt. In case of a stochastic problem,

to which we refer as SDP, we write the transition function as Tt+1(xt, at, wt+1),

where wt+1 denotes the state of the stochastic process. Associated with each ac-

tion at which is taken at state xt is an immediate payoff F(xt, at). The optimal

value, written as a function of the state is the value function Vt(xt).

The DP approach calculates for each state the profit maximizing decision. In other

words, DP calculates the optimal policy, where the policy determines for every

state which action is taken. Using the Bellman equation, the problem can be re-

cursively defined as:

Vt(xt) = maxat

(
F(xt, at) + β · ∑

x′∈Xt

(P(xt+1 = x′ | xt, at) ·Vt+1(xt+1))

)

subject to at ∈ Γ(xt)

xt+1 = T(xt, at, wt+1).

Thereby, P(xt+1 = x′ | xt, at) denotes the probability that x′ is reached when

decision at is taken while being in state xt, and β denotes a discount factor with

0 ≤ β ≤ 1.

This problem can be solved using the backward induction. Let T be the number

of time steps considered. We start with solving the problems of the last stage,

VT(xT) for all state variables xT. Using this solution, we can solve VT−1(xT−1).

We continue stepping backwards through time, until we solve V0(x0).

To be able to apply DP, some preconditions must be met. First, the cost functions

must be additive over time. Furthermore, the optimal decision at state xt must be

independent of the previous decisions.

20For example, derivatives are traded only for six years in advance at the EEX. Hence, it is
impossible to construct today a portfolio which replicates the cash-flows obtained by a new power
plant for the next 30 to 40 years.
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Figure 1.9: Simple example for a power plant investment problem.

If an SDP problem is considered, as it is the case for real options problems, then it

is important that the stochastic process is Markovian, i.e., the transition probabil-

ity depends only on the current state of the process, but not on its history. For an

extensive introduction to SDP see, e.g., Bertsekas [Ber05].

Example (Power plant investments formulated as an SDP problem). Let us briefly

outline how SDP can be used to evaluate power plant investments. Assume that the

investment in one coal plant should be evaluated. The investment costs are 1,000. The

possible decisions are either to invest or not invest. This may be encoded the following

way:

at =

{
1 if the investment is carried out,

0 otherwise.

A state can be composed of several attributes, e.g.,

x =

(
Number of new units

Electricity price

)
,

with number of new units equal to 0 or 1 and electricity prices being low or high. Assume

that there is a probability of 0.5 to switch from low electricity prices to high electricity

prices and vice versa. Let the payoff in the case of high electricity prices be 100, in the case

of low electricity prices 20. Figure 1.9 visualizes this problem.

The initial state x0 is characterized by low electricity prices and no existing units. We then

take our decision a0 before the outcome of the stochastic event w0 is revealed. Depending

on our decision and the stochastic event we get to the next state x1. Assume that we take

the decision to build the new plant, and that the electricity prices during the next period
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are high. The payoff F(x0, a0) is −1,000, the one for F(x1, a1) is 100. To solve this simple

problem, the backward induction approach can be used.

While the given example is a very simplistic example, modeling power plant

investments as real options using SDP generally follows the outlined approach.

However, there are several design decisions in which the existing models differ.

The most important design decisions are the choice of the investment alternatives,

the way the contribution margins for the new units are determined and the param-

eters for which uncertainty is considered. We discuss several alternatives in the

next section, where we give an overview of related work.

1.6 Related Work

Power generation expansion planning has attracted a lot of research in recent

years. Depending on the objective of the research, a wide variety of different mod-

els is applied. In this section, we give an overview of previous work classified by

the chosen approach.

Different classifications of decision support models in long-term electricity plan-

ning exist. Ventosa et al. [Ven+05] distinguish single-firm optimization models,

equilibrium models and simulation models.

Weber [Web05] differentiates between descriptive and prescriptive models. De-

scriptive models try to describe how things actually work, while prescriptive

models say how things should work. On the first sight, it may seem that a classifi-

cation of a model as either descriptive or prescriptive is unambiguous. However,

as pointed out in [Web05, p. 27], also prescriptive models may contain a descrip-

tion of optimizing agents, and might therefore also be formulated as a descriptive

model.

Olsina [Ols05] uses basically the same classification as Weber, however he uses

the terms optimization models (instead of prescriptive) and simulation models

(instead of descriptive). The difficulty to classify some models can be seen com-

paring classifications of game-theoretic models. While Sensfuß [Sen07, p. 24] clas-

sifies them as simulation models, Olsina [Ols05, p. 6] treats them as optimization

models.

To avoid this difficulty, we follow the classification applied in [Ven+05], treating

game-theoretic models as a separate class of models. In the following, we de-

scribe simulation models, game-theoretic models and optimization models. As
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our model is an optimization model, we review optimization models in more de-

tail. For these models, we consider some additional classification criteria pro-

posed by Botterud [Bot03]. These additional criteria are the representation of sup-

ply, demand and the electricity market and the representation of investment deci-

sions.

A detailed discussion about the strengths and weaknesses of the different types

of models can be found in [Sen07]. A survey comparing different approaches for

power generation expansion planning from monopoly to competition is given by

Kagiannas et al. [Kag+04].

1.6.1 Simulation Models

The main objective of descriptive electricity market models is to gain insights

about the way the electricity market works. Using this knowledge about the func-

tionality of the market, these models aim for predicting the future development of

the market. Descriptive models do not rely on the assumption of a perfect market,

but can consider market imperfections. This is an important feature, as electricity

markets show different types of imperfections (see, e.g., IEA and OECD [IO03],

Lemming [Lem05]). Descriptive models are based on a simulation. Two differ-

ent methodologies are applied to study the long-term development of electricity

markets: system dynamics and agent based simulation.

1.6.1.1 System Dynamics

The system dynamics approach goes back to Forrester [For58]. System dynamics

describes the development of a complex system with stocks and flows. Feed-

back loops are used to model the interdependencies between the components

of the system under study. A famous example of a system dynamics model is

The Limits to Growth – A Report for the Club of Rome’s Project on the Predicament of

Mankind [Mea+72]. This model was built to analyze five major trends of global

concern: accelerating industrialization, depletion of nonrenewable resources, a

deteriorating environment, rapid population growth, and widespread malnutri-

tion.

There are some applications of system dynamics to long term electricity market

modeling. Bunn and Larsen [BL92] use a system dynamics model to test how

power plant investments are influenced by various regulatory conditions, eco-

nomic assumptions and the strategic behavior of the separate companies. Ford
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[For01] simulates power plant investments in the Californian market. The domi-

nant investment pattern follows a boom and bust cycle similar to the one observed

for example in the real estate industry. Vogstad [Vog04] uses a system dynam-

ics model to analyze long-term versus short-term implications of various energy

policies within the context of the Nordic electricity market. Concerning power

generation expansion, he also observes the boom and bust cycle. The same is true

for Olsina [Ols05], who investigates the long-term development of the generation

capacity. Thereby, he notices a preference for less capital-intensive technologies.

1.6.1.2 Agent Based Simulation

While the system dynamics approach assumes a centralized decision maker, the

agent based simulation considers multiple independent agents. The agents may

behave differently (e.g., based on their risk aversion) or they may face different re-

strictions. In addition, agents are able to learn. Agent based modeling of electric-

ity markets became popular during the last years. For recent surveys see Sensfuß

et al. [Sen+07] or Weidlich and Veit [WV08].

Czernohous et al. [Cze+03] present a long-term energy model considering invest-

ment decisions. Three different types of agents are modeled: suppliers, customers

and a regularity authority. The electricity prices are determined by an auction,

where the suppliers and customers place their bids. Two different planning lay-

ers are used. In the short-term planning layer, the suppliers decide on the plant

utilization and the bids for the auction. The long-term planning layer is used to

determine the investment decisions. The investment decisions are formulated as

an LP profit maximization problem. Thereby, the profit calculations are based on

the electricity prices observed during the last short-term period. The regularity

authority decides on taxes for emissions of harmful substances.

Genoese et al. [Gen+08] study the impact of different emission allocation schemes

on power plant investments in the German electricity market. The work is based

on the PowerACE model, an agent based simulation of the German electricity

market. The model includes a short-term spot market, a forward market, an emis-

sion allowances market and a balancing market. The prices obtained at the spot

market and the forward market are used to forecast electricity prices, which are re-

quired for the investment planner. Based on these predicted prices, the investment

planner calculates the net present value for the different investment alternatives.

Five different emission allowance allocation schemes are tested. It is observed that

the emission allowance trading leads to increasing electricity prices and that the
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design of the allocation scheme has a significant impact on power plant invest-

ments.

1.6.2 Game-Theoretic Models

The focus of game-theoretic models lies on the interaction of different market play-

ers. Game-theoretic models are especially well suited for markets with imperfect

competition like oligopolies, where strategic behavior can be observed. However,

they often use a simplified description of the electricity market. Uncertainty, e.g.,

about future fuel prices, is not considered or only in a simplistic manner. Game-

theoretic models are mainly used to analyze market power and test different mar-

ket designs. While the majority of the game-theoretic models focuses on short-

term questions, there are also some models considering capacity expansion.

Chuang et al. [Chu+01] study the effect of different levels of competition on capac-

ity expansion. Ventosa et al. [Ven+02] compare capacity expansion under differ-

ent assumptions about the timing of the investments. They use a cournot-based

model where the players decide simultaneously on their investments. The re-

sults are compared with a stackelberg-based model, in which a leader decides

first on its investments. Murphy and Smeers [MS05] study capacity expansion

in an oligopolistic market. They compare the case of selling electricity in long-

term contracts with the case when electricity is sold on a spot market. Pineau and

Murto [PM03] analyze capacity expansion in the Finish market under uncertain

demand growth.

1.6.3 Optimization Models

Prescriptive models, also called normative models, aim to identify the optimal de-

cision for the considered decision maker. Most optimization models rely at least

partly on the assumption of a perfect competition. The majority of recent opti-

mization models in the field of power generation expansion is based on the real

options approach. While these models are not able to represent strategic behav-

ior as it can be done with a game-theoretic approach, they generally model the

electricity market and the uncertainties related to power generation expansion in

more detail.

Amongst the optimization models, there are important differences in the way the

investment decisions and the electricity market are represented. Concerning the
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representation of investment decisions, Botterud [Bot03] distinguishes three per-

spectives: centralized decision making, decentralized decision making consider-

ing multiple decision makers and decentralized decision making considering a

single decision maker. The representation of the electricity market can either be

based on simulation, or on a fundamental electricity market model.

In the following, we first discuss the differences between centralized and decen-

tralized decision making, before we present different power generation valua-

tion approaches based on electricity price simulation. Then, we give a detailed

overview of power generation expansion models based on fundamental electric-

ity market models.

1.6.3.1 Representation of Investment Decisions

Centralized decision making can be observed in regulated electricity markets. As

these markets are monopolies, there is one single decision maker who controls the

whole system. From the modeling approaches presented, the system dynamics

approach as well as some optimization models use a centralized decision maker.

However, in deregulated electricity markets, there are several competing actors on

the market. In such an environment, a decentralized approach considering differ-

ent market players is more realistic. Decentralized decision making can be further

distinguished. The first possibility is to model several individual decision makers

interacting through the power market. The decision makers may have individ-

ual objectives or may be restricted by individual constraints. Such an approach is

taken by agent based models and also by game-theoretic models. The other pos-

sibility is to optimize the investment of a single decision maker, and represent all

other decision makers as an aggregated decision maker. The decisions of this ag-

gregated decision maker may be fixed externally or depend on the feedback from

the power market. Such an approach is taken by some optimization models. We

also follow this approach.

It is often stated that in a competitive market, the social welfare maximization

problem leads to the same result as the profit maximization for single generation

companies (e.g., Klein et al. [Kle+08], Weber and Swider [WS04]). Hence, the de-

centralized investment problem may be replaced with a centralized approach.

However, as discussed by Botterud [Bot03], there are several special characteris-

tics of a power market that can distort the social welfare equilibrium. These factors

are the limited price elasticity of demand, a price cap introduced by regulators, the

potential exercise of market power and the lumpiness of investments. Botterud
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compared the outcomes of centralized and decentralized investment models, and

concludes that under the centralized model, investments are higher.

From the modeling point of view, it makes a great difference whether a centralized

or a decentralized decision maker is chosen. If the contribution margins for new

units are determined by a fundamental market model based on an LP or an MILP

formulation, then using a centralized decision maker makes it possible to integrate

the investment decisions into the existing model. This is possible because the

problem can be formulated as a cost minimization problem subject to demand

satisfaction.

Taking the perspective of a single, decentralized decision maker, the demand sat-

isfaction constraint no longer exists in a deregulated market. The objective of

the considered decision maker is profit maximization. The profit depends on the

amount of produced electricity, the costs for producing the electricity and the elec-

tricity prices. While the amount of produced electricity is a variable in the unit

commitment problem and the costs can also be expressed as a variable in the unit

commitment problem, the electricity prices are indirectly determined as dual vari-

ables of the electricity demand constraint.21 This indirect determination of elec-

tricity prices makes it impossible to incorporate the investment decisions into a

decentralized unit commitment model.

As a consequence, unit commitment decisions and investment decisions must be

taken by two separate models. The investment problem can be formulated as an

SDP problem as briefly outlined in Subsection 1.5.2.2. However, as a consequence,

the unit commitment must be optimized for all states of the SDP problem. De-

pending on the number of considered investment alternatives and the number of

stochastic scenarios, this number can be huge.

1.6.3.2 Pure Simulation-Based Models

The electricity price models presented in Section 1.4.4 can be used for power plant

valuation. To determine the profits of new units, assumptions must be made about

the amount of produced electricity. A common assumption is that a unit produces

when the simulated electricity prices are higher than the marginal costs of the unit.

Deng [Den05] studies the option to invest in a gas plant based on stochastic gas

and electricity spot prices. The model contains spikes and jumps in the spot prices.

21See Section 2.3.5.
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It is shown that the presence of jumps and spikes can have a strong impact on in-

vestment decisions. While upward jumps increase the option value (and therefore

delay investments), downward jumps have a contrary effect.

Instead of spot prices, Fleten and Näsäkkälä [FN03] use stochastic forward prices

to evaluate the option to invest in a CCGT unit. Upper and lower bounds for

investment thresholds are determined depending on the level of operational flexi-

bility of the plant. It is shown that the operating flexibility has a significant impact

on the investment thresholds.

Keppo and Lu [KL03] incorporate in their model a penalty for the investment

which should reflect the price impact of the new unit on the existing portfolio. It

is shown that if an investor has an exclusive option to invest, this penalty signif-

icantly increases the investment threshold. However, if other investors may also

carry out the investment, then this is no longer the case.

Other than the before mentioned contributions, Tseng and Barz [TB02] incorpo-

rate operational constraints like minimum up-time and minimum down-time con-

straints in their power plant valuation model. The valuation is based on spot

prices modeled as stochastic mean-reversion processes. A central result of the

paper is the fact that ignoring operational constraints can lead to a significant

overestimation of the plant value.

1.6.3.3 Models Based on Fundamental Electricity Market Models

Table 1.4 gives an overview of the models that are the most similar to our ap-

proach. It can be seen that there is no consensus which uncertainties should

be considered.22 These models and some more are described in the following

paragraphs. Thereby, we distinguish between models following a centralized ap-

proach, and models opting for a decentralized approach.

Centralized Decision Making

Swider and Weber [SW07] use a stochastic fundamental electricity market model

to estimate the costs of wind’s intermittency. The model also incorporates invest-

ments in new capacity. The focus of the model lies on the consideration of short-

term uncertainty in the unit commitment caused by stochastic feed-in of wind

power. Wind power is modeled using a recombining scenario tree with three dif-

ferent wind power scenarios for each timestep. Transition probabilities for the

22It should be noted that the three models considering short-term wind fluctuations are based
on the same underlying fundamental power market model.
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Swider and Weber [SW07] c LP Wind -
Sun et al. [Sun+08] c MILP Wind -
Klein et al. [Kle+08] c LDC - CO2, F
Botterud et al. [Bot+05] c/dc SDC - D
Hundt and Sun [HS09] dc LP Wind F
Jensen and Meibom [JM08] dc LP - CO2, Wind, T

Table 1.4: Overview of similar approaches to ours. Legend: c = centralized, dc =
decentralized, D = demand, F = fuel prices, T = additional transmission capacity

different scenarios are derived from historical data. However, no long-term un-

certainties are considered in the model. As the model is formulated from a central-

ized point of view, the unit commitment and the investment decisions are taken

within the same model. Investments are allowed in coal units, CCGT units, gas

turbine units and lignite units. Applying their model to a case study considering

the German electricity market, the authors conclude that a static, deterministic

model overestimates the value of intermittent energy sources. The reasons for the

higher costs in the stochastic model are the increased hours of partload operation

and increased start-up costs as well as a higher amount of required investments

in conventional plants.

Sun et al. [Sun+08] extend this model with a mixed-integer formulation and fur-

ther technical constraints like start-up time for example. In addition, combined

heat and power (CHP) plants are modeled in more detail and investments in CHP

units are added. The case study confirms the result from [SW07] that ignoring

short-term uncertainty leads to an underestimation of the total investments re-

quired.

Klein et al. [Kle+08] optimize the power plant investments in the US market using

an SDP formulation. They consider three different scenarios for fuel and carbon

prices. However, only one switch from the reference scenario to either the low

price or high price scenario is allowed. The electricity production is determined
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based on an LDC model. The problem is formulated as a cost minimization prob-

lem subject to demand satisfaction.

Contrarily to the majority of power generation expansion models, Meza et al.

[Mez+07] formulate the generation expansion planning as a multi-objective de-

terministic optimization problem. Besides the sum of the total costs, the CO2

emissions, the amount of imported fuel and the energy price risk are considered.

Newham [New08] uses stochastic dual dynamic programming to solve a genera-

tion expansion planning problem with stochastic demand growth. In addition to

the generation expansion, also the transmission network extension is considered.

Decentralized Decision Making

Göbelt [Göb01] uses a combination of a single-stage and a multi-stage stochastic

optimization model to optimize power plant investments. While electricity and

heat demand are modeled using a multi-stage stochastic programming formula-

tion, fuel prices are modeled based on the single-stage stochastic programming

approach. Thereby, expected fuel prices are increased by a penalty term that re-

flects the uncertainty related to the prices. This penalty term is obtained by mul-

tiplying the standard deviation of the fuel prices with a factor representing the

degree of risk aversion of the considered operator.

Botterud et al. [Bot+05] use a stochastic dynamic optimization framework to com-

pare centralized and decentralized investments decisions. For the centralized in-

vestment decisions, the maximization of social welfare is taken as objective, while

for the decentralized case, a profit maximization is performed. Investments in

two different technologies can be chosen. The electricity demand is modeled as a

stochastic parameter using a recombining scenario tree. It is shown that the cen-

tralized as well as the decentralized problem formulation react similar to demand

growth and demand uncertainty. However, the profit maximization tends to lead

to lower investments than the social welfare maximization. This behavior is ex-

plained by the negative effect of new investments on electricity prices as well as

by a price cap in the spot market which is below the VoLL.

The model described by Jensen and Meibom [JM08] is similar to the approach we

are following. A fundamental electricity market model for the Nordic electricity

market is used to determine the contribution margins for a stochastic dynamic

investment model. Different uncertain events are included: the construction of

an additional transmission line, the extension of the installed wind power capac-

ity and high or low carbon prices. To keep the model computational tractable,
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only one investment alternative exists. The investor may invest in one combined

heat and power gas turbine (combined cycle) at four predefined points in time.

Two different cases are considered. In the first case, the investor does not hold

any other plants in the market. In the second case, he already owns some power

plants. It is shown that investors holding a portfolio of existing plants have a

tendency to delay investments.

Hundt and Sun [HS09] use a linear mixed-integer, stochastic optimization model.

A natural gas unit and a coal unit may be build in the period between 2008 and

2012. The fuel prices are modeled as a stochastic parameter. It is assumed that

the logarithm of the natural gas price and the coal price are following a mean-

reverting process. Correlated fuel price paths are created using a Monte Carlo

simulation, then these price paths are reduced to a scenario tree with 16 different

fuel price scenarios in 2012. It is assumed that the carbon prices are known for the

whole period. Electricity prices are determined by a fundamental electricity mar-

ket model considering short-term wind fluctuations using a recombining scenario

tree. The main difference to our model can be found in the objective of the model.

While our model focuses on a strategic, long-term horizon, the model presented

in [HS09] focuses on a shorter time horizon.

The investment model we propose is similar to the models used in [HS09; JM08;

Kle+08]. While all of these models consider fuel price or carbon price uncertainty,

the consideration of uncertainty is limited to a few scenarios only. The objective

of this thesis is to provide a framework that allows the consideration of a greater

variety of stochastic fuel and carbon price scenarios. In the same time, electricity

prices and electricity production of our model should be based on a fundamental

electricity market model.

1.7 Summary

In this chapter, we gave an introduction to electricity markets. Thereby, we fo-

cused on the parts that are important for the valuation of power plants. We started

with a description of different electricity markets. These markets are the electricity

spot market, the derivatives market, the reserve market and the capacity market.

For the investment alternatives we consider in this thesis, coal units and CCGT

units, the most important markets are the markets for selling electricity, i.e., the

spot and the derivatives market. Hence, we focus on these markets when we de-

termine the contribution margin for new units. As forward electricity prices are
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assumed to be a predictor of future spot prices, we argue that it is sufficient to

consider one of these markets. In the following parts of this thesis, we use the

electricity spot market to derive electricity prices and production, as this is the

market that is commonly modeled by fundamental electricity market models.

Furthermore, we discussed some peculiarities of electricity compared to other

commodities. These peculiarities are the non-storability of electricity, the fact that

supply must always match demand, the price-inelastic demand and its grid de-

pendency. It is important to consider these peculiarities when electricity prices are

modeled, as they are the reason for several characteristics of electricity spot prices:

cycles, high-volatility, spikes, mean-reversion and negative prices.

In the next section, we described how electricity prices are determined. As most

electricity market models are based on the assumption of perfect competition, we

briefly introduced the microeconomic theory of pricing under perfect competi-

tion. It was shown that in a competitive market, prices correspond to the marginal

costs of the most expensive unit required to satisfy the demand. Thereby, fixed

costs are not considered. Next, we examined whether the assumption of perfect

competition is pertinent for the German electricity market. Several studies indi-

cate that the German electricity market was not fully competitive during the last

years. Nevertheless, we argue that the assumption of perfect competition can be

used to determine electricity prices, amongst others because the planned exten-

sion of transmission capacity between the European countries will increase com-

petition.

In the following section, we reviewed the different uncertainties to which power

plant investments are exposed. These uncertainties can be classified into volume

risk, price risk and quantity risk. The main factors influencing these risks are

fuel, carbon, and electricity price uncertainty as well as uncertainty about the le-

gal framework. As the different risks are highly interrelated, it is important that

this relationship is captured by the method used to determine future contribution

margins for new units. We argue that a fundamental electricity market model is

best suited for this purpose.

In the next section, we described different approaches to simulate fuel, carbon

and electricity prices. There are a wide variety of different stochastic processes

used for the simulation of these prices, and there is no consensus in literature

which approach is appropriate. In our opinion, the difficulties related to fuel and

carbon price modeling stress the importance to consider a wide variety of different

scenarios.
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In the following section, we presented two different methods used to evaluate

power plant investments: the LCEP approach and the real options approach. The

first one was mainly used in regulated market, and is not suited to consider the

uncertainties to which generation companies are exposed in a deregulated mar-

ket. The real options approach was developed for investments under uncertainty.

Besides the question whether to invest or not, the real options approach also ad-

dresses the question when to invest. It is based on the assumption that the option

to invest has a value, which must be considered when an investment opportunity

is evaluated. The value of this option is related to new information that becomes

available at later times. Due to its ability to consider uncertainties in an appro-

priate way, the investment models we describe in this thesis are based on the real

options approach.

In the last section of this chapter, we gave an overview of related work. Thereby,

we briefly described some simulation based and some game-theoretic approaches

to power generation expansion, before we discussed in more detail the optimiza-

tion based power generation expansion models. While there are some models that

follow a similar approach as we do, combining the real options approach with a

fundamental electricity market model, the consideration of fuel and carbon price

uncertainty in these models is restricted to a few different scenarios. The focus

of the investment models we propose in this thesis lies on the consideration of a

wide variety of different fuel and carbon price scenarios.





Chapter 2

Fundamental Electricity Market

Models

Fundamental electricity market models are—in our opinion—best suited to model

electricity prices for the valuation of power plant investments. The reason there-

fore is that they can consider the interrelationship between fuel prices, carbon

prices, the existing power generation fleet on the one side and electricity produc-

tion and electricity prices on the other side.

In Section 1.4.5, we briefly outlined three different types of fundamental market

models: the LDC model, the SDC model, and LP/MILP models. In this chapter,

we describe these three models in more detail. Thereby, we focus on the LDC

model and LP models, as these are the models we use in our investment models.

We start with a description of the LDC model. While its computational require-

ments are the lowest, it is also the most simplistic model. It does neither consider

technical constraints, nor can it model uncertainty or price elastic demand. The

inability of the model to consider technical constraints and uncertainty leads to

an underestimation of prices in times of high demand, and an overestimation of

prices in times of low demand. To account for these issues, we propose a func-

tion that increases electricity prices in times of high demand and decreases prices

in times of low demand, while it does not change average prices. In addition,

we use a mark-up function to consider disproportionately high prices in times of

scarcity.

In the following section, we describe the SDC model. As the LDC model, it dis-

regards technical constraints and uncertainty. The difference between the LDC

and the SDC model is that the latter one can consider price elastic demand. In

addition, the SDC model can use different merit-order curves, e.g., to consider

59
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different seasonal availabilities. If demand is assumed to be completely price in-

elastic and a constant merit-order curve is used, then both models give the same

results.

In the third section of this chapter, we focus on models based on an LP formula-

tion of the electricity market. These models can consider technical constraints as

well as short-term uncertainties like uncertainty of the feed-in from wind power

or short-term demand uncertainty. A further advantage of LP based models is

their ability to determine carbon prices endogenously. While these models are the

most detailed, they also require the most computational effort. For power plant

investment models, that require the electricity production and electricity prices for

several years and different fuel price scenarios as input parameters, these models

are computational intractable without simplifications.

For this reason, different simplifications are generally applied. Most of these sim-

plifications are based on aggregation. For example, units of the same technology

with similar constraints are often aggregated to unit groups. The aggregation of

units with similar characteristics to unit groups makes the commonly used for-

mulation of minimum up-time and minimum down-time constraints inapplica-

ble. We propose an alternative formulation that also holds for unit groups, and is

in addition more efficient than the formulation commonly used.

Another form of simplification is related to the optimization horizon. Instead of

considering a whole year, only some typical days are often considered. However,

also these simplifications have effects on the model, which are often disregarded

in literature. The selection of some typical hours for the optimization has implica-

tions on all intertemporal constraints like the minimum up-time constraints. Espe-

cially the constraints related to the storage operation have to be adjusted to guar-

antee an—at least approximately—feasible storage operation. We discuss these

issues and propose two alternative formulations that take these problems into ac-

count.

In the last part of this chapter, we compare the prices obtained with the LDC and

the LP model with prices observed at the EEX. We select these two types of models

for the comparison, as these are the models we use in our investment models in

the following chapters. We choose the LDC model, as it is the fastest model. The

LP-based model is much slower, but has the advantage that it offers a possibility

to determine carbon prices endogenously. The comparison shows that average

EEX prices are relatively well approximated, especially by the LDC model with

the adjustments we propose. However, the standard deviation of model prices is
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significantly below the standard deviation of EEX prices. Nevertheless, we argue

that these models can be used for power plant valuation, as a good approximation

of average prices is more important for the valuation of mid-load or base-load

units than the approximation of the standard deviation.

2.1 Load–Duration Curve Models

The simplest electricity market model, which can be used to determine electricity

prices and the electricity production, is based on the LDC. While its computa-

tional requirements are low, it has the drawback that it cannot consider technical

restrictions and uncertainty. As a consequence, model prices exhibit a lower vari-

ance compared to observed electricity prices. Especially in times of scarcity, model

prices are significantly below observed prices. For that reason, some models use

scarcity mark-ups to adjust model prices.

In the following, we first introduce the basic LDC model. Next, we present two

functions that can be used to adjust model prices. The first one is a mark-up

function that is applied in times of scarcity, while the second function is used to

increase the variance of the prices. Thereby, it aims to simulate the effect of start-

up costs and avoided start-up costs, respectively.

2.1.1 Basic Model

The LDC model determines electricity production and electricity prices based on

the LDC and the merit-order curve. On the top right of Figure 2.1, a typical LDC

is shown. The LDC corresponds to the electrical load for a given period sorted in

descending order of magnitude. In electricity markets where electricity produc-

tion from renewable sources must be fed-in, like it is the case in Germany, this

production is in general directly deduced from the load.

The merit-order curve shows the available capacity sorted in ascending order of

marginal costs. Based on the assumption of perfect competition, under which

operators bid corresponding to their marginal costs, the merit-order curve corre-

sponds to the supply curve.

Under the assumption that the cheapest units are used to satisfy the demand, the

price–duration curve can be derived, as it is shown in Figure 2.1. Starting from

the LDC (the curve on the top right), the corresponding electricity prices for a

given duration are determined by going to the (rotated) supply curve on the top
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Figure 2.1: Determination of the price–duration curve based on the LDC and the
supply curve.

left. The price of the supply curve and the duration of the LDC define a point of

the price–duration curve. The complete price–duration curve can be derived by

repeating this procedure for every point of the LDC.

The main advantage of LDC models is the fast computation. However, there are

several disadvantages:

• No consideration of uncertainty like stochastic feed-in from renewables or

short-term demand uncertainty.

• No consideration of technical restrictions. For example, it is assumed that

units operate with a constant efficiency. Operational constraints like mini-

mum up-times or minimum down-times are neglected.

• No consideration of start-up costs.

• It is assumed that the merit-order curve is the same for the whole period.

This implies a constant availability of the power plants as well as constant

fuel prices within the considered period.

• No consideration of price-elastic demand.

• Pumped-storage operation cannot be considered realistically.1

1A possibility to approximate storage operation is to represent pumped-storages through in-
creased demand in periods of low demand. During these periods, prices are low, and storages may
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Despite these disadvantages, the application of the LDC to determine electricity

prices is relatively popular, especially in cases where a fast computation is impor-

tant. Examples for the usage of the LDC in power generation expansion models

are Klein et al. [Kle+08] and Olsina [Ols05].

2.1.2 Adjustments to the Basic Model

The before mentioned limitations of the LDC model have several effects on model

prices, which we discuss in the following. Then, we propose two different func-

tions to adjust model prices to get more realistic results.

The effects of the limitations of the LDC model are:

• The non-consideration of start-up costs leads to an underestimation of elec-

tricity prices. This effect is particularly distinct during short periods of high

load, when peak load units have to be started to satisfy electricity demand.

As peak load units operate only during a short period, high prices occur

because the whole start-up costs must be gained in this short period.

• The disregard of minimum down-times results in an overestimation of avail-

able capacity. Hence, model prices underestimate real prices.

• The non-consideration of minimum up-times has the opposite effect. If a

unit cannot be shut-down, electricity prices may be below the marginal costs

of such a unit.

• A similar effect can be observed when start-up costs can be avoided by not

shutting-down a unit. In such a case it might be cheaper to produce electric-

ity even if the marginal costs of the unit are higher than the electricity price.

One may think that such situations can only occur during low load periods,

e.g., during the night. However, such a situation can also occur during high-

load periods in case of unforeseen high feed-in from intermittent sources like

wind power.

• The assumption of a constant merit-order curve has several effects. First, the

variance of model prices is lower than in reality, because model prices are

be charged. The production of electricity by pumped-storages can be included by adding storage
capacity to the merit-order curve at high price levels. However, the determination of accurate
price-levels is a non-trivial task (for different possibilities, see Burger et al. [Bur+07, p. 171-173]).
Furthermore, this representation of storage operation may violate storage content restrictions, e.g.,
storages may produce more electricity than they have stored.
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based on average fuel and carbon prices. The real price curve can signifi-

cantly fluctuate within the considered period. For example, the EEX spot

price for natural gas increased from 3.50 e/GJ on July 02, 2007 to 6.61 e/GJ

on the December 28, 2007.2

Second, during seasons of high demand, model prices tend to be higher than

observed prices, while for seasons with low demand, it is the other way

around. The reason for this behavior is that maintenance of plants is gen-

erally scheduled during seasons of low demand. Hence, the availability is

below average during this periods, and above average during periods of

high demand, when no maintenance is scheduled.

• Owing to short-term uncertainties, an increased number of units must op-

erate in part-load to be able to react on short-term fluctuations. If the feed-

in from wind power is significantly below the predicted values, new units

must be started to balance these deviations. Hence, uncertainty increases

electricity prices. The effects of uncertainty can only be partly considered in

LDC models. One possibility is to assume lower efficiencies for units due

to the less efficient part load operation. Another possibility is to reduce the

availability of units by the amount of required reserve power, or to add the

reserve power to electricity demand.

Deviations between model prices and observed prices are often reported in liter-

ature (e.g., Hirschhausen et al. [Hh+07], Möst and Genoese [MG09]). In general,

these deviations are the greatest in times of scarcity. The explanations of these

deviations are different and range from abuse of market power [Hh+07] over in-

vestment cost recovery [MG09] to data imprecisions (Swider et al. [Swi+07]).

To account for such deviations, Möst and Genoese use a piecewise constant mark-

up function to adjust electricity prices. Based on the scarcity factor, which is the

available supply divided by the demand, they define five different intervals for

a scarcity factor below 2.0. If the scarcity factor is in one of these five intervals,

a constant share of a unit’s fixed costs is added to the unit’s marginal costs. The

lower the scarcity factor is, the higher is the share of the unit’s fixed costs that is

added.

In the following, we propose similar adjustments, which are motivated by the re-

sults shown in Figure 2.2. This figure shows deviations between observed EEX

2Note that even if generation companies purchase their fuel on long-term contracts with fixed
costs, fluctuating spot market prices might create opportunity costs which have to be included in
the electricity price.
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Figure 2.2: Deviations between EEX prices and model prices as a function of
the available capacity divided by the demand and possible linear and piecewise-
linear regression lines.

prices and model prices depending on the available capacity divided by the de-

mand, i.e., the scarcity factor. Besides these deviations, two trendlines are in-

cluded, a linear one and a piecewise linear one. A perfect model would produce

points which all lie on a horizontal line with price deviations of zero. Most of

the reasons why this optimal result is not achieved have been discussed at the

beginning of this subsection, e.g., the non-consideration of technical constraints.

Based on the reasons for price deviations we mentioned so far, one would expect

the model to underestimate prices in case of scarcity, while real prices might be

lower in times of low demand. The deviations should be around the trendlines

plotted in Figure 2.2. However, negative price deviations can also be observed

when supply is relatively scarce. Some of these deviations can be explained by

the non-consideration of pumped-storages and hydro-reservoirs. Other reasons

for these deviations are the non-consideration of uncertainty, an underestimation

of the available capacity during these periods, and possibly too high fuel prices.

But it should also be mentioned, that some of the deviations may be due to data

inaccuracy. For example, the exact efficiencies are not known for all plants, neither

are the hourly availabilities of the plants.

A straightforward approach to adjust electricity prices would be to use either the

linear or the piecewise-linear trendline depicted in Figure 2.2. Depending on the

scarcity factor, the corresponding price difference would be added to the model’s

prices. These functions—especially the piecewise linear function—provide good

approximations of electricity prices for the period we examined, the years 2006–
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2009. However, there is a problem with these functions, which makes them un-

suitable, at least in the form they are shown in Figure 2.2. Under certain circum-

stances, the application of these adjustments can result in average electricity prices

that are below the marginal costs of a unit. Such a behavior may be realistic in the

short-term due to technical restrictions, but no operator sells electricity during

longer time-periods below marginal costs.

This problem is caused by the introduction of negative price adjustments. In our

tests, these negative price adjustments significantly improve electricity price fore-

casts in periods of low prices. While the linear and piecewise-linear functions

depicted in Figure 2.2 work well for electricity markets with a similar ratio of sup-

ply and demand as those in the years between 2006 and 2009, an increase of the

supply/demand ratio leads to the mentioned problem. In such a case, the number

of negative price adjustments increases and average prices decrease. The conse-

quence can be negative contribution margins for some units.3

To circumvent this problem, we use two different types of adjustments: a linear

function that accounts for effects that are mainly due to the non-consideration of

technical constraints, and a piecewise-linear function that represents mark-ups in

case of scarcity.

The first function we use balances two opposing effects: lower model prices dur-

ing peak load periods, and higher model prices during periods of low load. As

discussed before, the reason for these deviations can be the non-consideration of

technical constraints like start-up costs or minimum down-times respectively the

non-consideration of avoided start-up costs or minimum up-times. To avoid that

units operate (on average) below marginal costs, we define this function such that

it does not change average electricity prices. For this purpose, we use the follow-

ing function to calculate price adjustments (in e/MWh):

price adjustmentst =

(
loadt

average annual load
− 1
)
· 50. (2.1)

In periods of low load, the first factor is negative and prices are decreased. If

load is above average, the first factor is positive and prices are increased. The

value of 50 was obtained by linear regression based on the comparison of model

prices and EEX prices for 2006 and 2007. Note that this formulation guarantees

that the contribution margin of a unit does not get negative. The reason is that

3These contribution margins consider only variable costs. Therefore, negative contribution
margins are not realistic.
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the cheapest units are always committed first. If a unit produces during periods

of low load (and prices are decreased), it also produces during all hours when

load is above average (and prices are increased). As function (2.1) is defined such

that the sum of the positive adjustments corresponds to the sum of the negative

adjustments, a unit that produces during all periods of price increases cannot get

a lower contribution margin than without these adjustments.

The second function we use to adjust model prices is related to the scarcity of

supply. These mark-ups can be interpreted as exertion of market power or fixed

cost recovery. Consequently, the mark-ups calculated by this functions are greater

or equal to zero. We use the following formula to determine these mark-ups (in

e/MWh):

price adjustmentst =

{
91− 70 · supplyt

loadt
if supplyt

loadt
< 1.3,

0 otherwise.
(2.2)

The values chosen for the adjustments have been found by linear interpolation

between deviations of EEX prices and those of the LDC model adjusted following

function (2.1) for the years 2006 and 2007.

Note that we use constant plant availabilities. Therefore, the supply in equation

(2.2) is constant. Combining functions (2.1) and (2.2) results in a piecewise-linear

adjustment function depending on the (residual) load.

2.2 Supply–Demand Curves Model

The determination of electricity prices based on SDCs is similar to the LDC model.

Owing to the faster running times of the LDC model, we opt to use an LDC model

to determine the contribution margins for the new units in our investment models.

Therefore, we only briefly outline the SDC model in the following.

SDC models determine electricity prices as the intersection of the merit-order

curve and the demand curves for different moments in time. This is illustrated

in Figure 2.3. The figure shows three different demand curves (the vertical lines),

each representing the demand at a different moment in time. The left demand

curve is price inelastic, while the other two are examples of price-elastic demand

curves. All units that are left of the intersection between the supply and the de-

mand curve produce electricity, all units right of the intersection are not used. To

reduce the number of calculations, a demand curve may represent several hours.
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Figure 2.3: Price determination based on the SDC. One supply curve and three
different demand curves are shown.

Compared to the LDC model, the SDC model has two advantages. First, price-

elastic demand can be considered. Second, different supply curves can be used

to represent different seasonal plant availabilities or fuel prices. However, as the

LDC model, the SDC model is not able to consider technical constraints, nor can

it represent storage operation in an appropriate way. As multiple demand curves

(and possibly supply curves) are used, the SDC model is slower than the LDC

model.

If no price-elastic demand and only one supply curve are used, the results of

SDC models correspond to the results of LDC models. An example for the us-

age of an SDC model in the context of power generation expansion is Botterud

et al. [Bot+05].

2.3 Linear Programming Models

The main disadvantage of LDC models as well as SDC models is the non-con-

sideration of technical constraints of power plants. To be able to consider technical

constraints, the power generation can be described as an MILP problem. In such a

model, continuous variables are used to represent the electricity production of the

different units. To be able to consider technical constraints like reduced part-load

efficiency, binary variables are required to model the status (on/off) of the units.4

Depending on the size of the considered market, MILP models are computational

intractable. In general, LPs can be solved faster than MILPs. Therefore, it is a

common technique to solve the continuous relaxation of the problem instead of

4In the (common) case of unit aggregation, integer variables are used instead of binary vari-
ables.
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the MILP (see Weber [Web05]). However, it should be noted that by replacing the

MILP with an LP, some constraints—like reduced part-load efficiency—can only

be approximated.

Modeling an electricity market as MILP or LP is quite popular, see, e.g., Leuthold

et al. [Leu+08], Meibom et al. [Mei+06], Müsgens [Müs06], Ravn et al. [Rav+01],

Weigt and Hirschhausen [WH08]. As a comparison done by the author of this

thesis [Bar+08] between an MILP description of the German electricity market

and its LP relaxation shows similar results for both models, we use an LP model.

In this section, we present several LP formulations of fundamental electricity mar-

ket models with different levels of detail. We start with a simple deterministic

model, before we introduce some stochastic elements based on a scenario tree. De-

pending on the level of detail modeled, it is computationally intractable to solve

such models for a longer time period (like a year for example), even with efficient

commercial solvers.5 To circumvent such problems, a common approach is to rep-

resent a longer time period by some typical days (e.g., Hundt and Sun [HS09],

Sun et al. [Sun+08], Swider [Swi07], Swider and Weber [SW07]). Compared to

normal models considering a complete period, these models require some extra

constraints, which are often overlooked in literature. After discussing these ad-

ditional constraints, we present a method based on a recombining scenario tree

that allows to add stochasticity to the model without adding too much computa-

tional burden. Finally, we show how electricity prices and carbon prices can be

determined using an LP-based electricity market model.

2.3.1 Basic Deterministic Model

The basic deterministic model described in this subsection is the basis for the other

models presented afterwards. In all of our models, we only consider the electric-

ity production. The heat production is disregarded. Furthermore, we assume that

there is enough transmission capacity, so that we do not have to model the trans-

mission network. As a consequence, we do not have to consider different regions.

Electricity exchange with regions outside of the model is assumed to be known

and subtracted from or added to the demand. Finally, we assume that electricity

demand is completely price-inelastic. All variables mentioned in our models are

non-negative continuous variables.

5To solve the LP models described in this thesis, we use ILOG CPLEX 11.2.
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Objective Function:

The objective function of a fundamental electricity model is the minimization of

the total costs TC over the whole optimization horizon. The total costs for each

unit are composed of three different types of costs: the costs for the fuel consump-

tion FC including carbon costs, operating and maintenance costs OC and start-up

costs SC. Let U be the set of all units in the market, and T the set of all timesteps.

Then, the objective function can be defined as:

min TC = ∑
u∈U

∑
t∈T

(FCut + OCut + SCut). (2.3)

Fuel Costs:

Thereby, the fuel consumption costs are defined as the product of the fuel con-

sumption F and the associated costs. These costs consist of the fuel price cFuel
f (u)

(with f (u) denoting the fuel used by the unit u) and carbon costs. The carbon

costs are obtained by multiplying the CO2 costs per tonne cCO2 by a factor κ f (u)

describing the amount of emissions produced depending on the fuel. We assume

that the fuel prices and the carbon price remain constant within the considered

period.

FCut = Fut · (cFuel
f (u) + cCO2 · κ f (u)) ∀u, t. (2.4)

We make the simplifying assumption that the fuel consumption depends linearly

on the produced electricity P. To model lower part-load efficiency, a fixed amount

of fuel consumption is added if a unit is online. As we use an LP model, we follow

the approach proposed by Weber [Web05] and use the continuous variable POnline

to describe the capacity (in MW) currently online.6 The parameters α and β can be

determined depending on the full-load efficiency, the part-load efficiency, and the

maximum and minimum production of a plant.

Fut = αu · POnline
ut + βu · Put ∀u, t.

6Using an MILP, one would use instead of POnline a binary variable UOnline, which indicates
whether a plant is online or not. To transform our continuous model into an MILP model, one has
to replace POnline with UOnline · pmax, whereby pmax denotes the maximum capacity of the plant.
One should note that, compared to the MILP, the LP formulation leads to an underestimation of
the costs. The reason is that one may decide to start only a fraction of a unit. Thereby, two effects
occur. First, the start-up costs are lower, as these costs depend on the amount of capacity started.
Second, the unit is assumed to operate under full-load efficiency instead of part-load efficiency.
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Operating and Maintenance Costs:

In addition to the fuel consumption costs, there are costs for the operation and

maintenance of a plant. We assume that these costs depend solely on the electricity

production. The factor γ denotes the operating and maintenance costs ine/MWh.

OCut = γu · Put ∀u, t.

Start-Up Costs:

The start-up costs are composed of two different parts: additional fuel usage and

abrasion. The parameter θ denotes the additional fuel usage in MWhfuel/MWelec,

cabrasion are the costs ine/MW calculated for abrasion. The capacity that is started-

up is denoted PStartUp.

SCut = (θu · (cFuel
f (u)

+ cCO2 · κ f (u))) · PStartUp
ut ∀u, t.

Power Balance Constraint:

The power balance constraint ensures that supply matches demand at every mo-

ment in time. The sum of electricity produced by all units must correspond to

the electricity load plus the electricity W used to charge pumped-storages. As we

assume that electricity production by renewable resources (wind power, run-of-

river plants) must be fed-in, we deduce this production directly from the load. The

difference between the load and the production by renewable sources is denoted

with l.
∑

u∈U
Put = lt + ∑

u∈U Storage
Wut ∀t. (2.5)

Reserve Constraints:

As explained in Section 1.1.1, three different types of reserve energy exist in Ger-

many. However, from a modeling point of view, primary and secondary control

power are similar. As it is done by many fundamental market models (e.g., Burger

et al. [Bur+07], Meibom et al. [Mei+06]), we consider just one type of negative

reserves, PRes−. Concerning positive reserves, we distinguish spinning reserves

PResSpin+ and non-spinning reserves PResNonSpin+. Spinning reserves must be pro-

vided by units that are already online. Non-spinning reserves may also be pro-

vided by units that are offline, if they can start-up fast enough. We assume that

gas-turbine units fulfill this requirement. Other units may also contribute to the
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non-spinning reserves in our model, but they must be online to do so. For each

type of reserves, a given demand (dRes−
t , dResSpin+, and dResNonSpin+, respectively)

must be satisfied.

∑
u∈U

PRes−
ut = dRes−

t ∀t,

∑
u∈U

P
ResSpin+
ut = d

ResSpin+
t ∀t,

∑
u∈U

P
ResNonSpin+
ut = d

ResNonSpin+
t ∀t.

Production Constraints:

The maximum production of a unit is restricted by the capacity that is online.

Furthermore, if a unit provides positive reserve energy, this amount must be sub-

tracted from the maximum production. For units that do not start fast enough to

provide positive non-spinning reserves when they are offline, the following con-

straint is used:

Put + P
ResSpin+
ut + P

ResNonSpin+
ut ≤ POnline

ut ∀u /∈ UFastStart, t. (2.6)

For units that are able to provide non-spinning reserves when they are offline, we

use the following constraint:

Put + P
ResSpin+
ut ≤ POnline

ut ∀u ∈ UFastStart, t.

Most plants have a minimum production level. The following inequality ensures

that electricity production does not drop below this minimum production level.

Thereby, pmin denotes the minimum output relative to the capacity online. Similar

to the maximum production constraint, the supply of negative reserves must be

considered.

Put + PRes−
ut ≥ pmin

u · POnline
ut ∀u, t.

The capacity online is restricted by the maximum capacity pmax of a unit. As

we do not explicitly model plant outages, we reduce the maximum capacity of a

plant by multiplying it with typical availability rate ρ. If a longer time horizon is

considered, ρ may depend on the timestep.

POnline
ut ≤ pmax

u · ρut ∀u, t.
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For fast-starting units, we have to ensure additionally that the sum of electricity

produced and positive reserves provided does not exceed maximum available ca-

pacity (for all other units, the maximum production constraint (2.6) guarantees

this requirement):

Put + P
ResSpin+
ut + P

ResNonSpin+
ut ≤ pmax

u · ρut ∀u ∈ UFastStart, t.

The capacity started-up must be greater or equal to the difference of the capacity

online at the moment and the capacity online during the previous timestep.7

P
StartUp
ut ≥ POnline

ut − POnline
u,t−1 ∀u, t. (2.7)

We also define the capacity shut-down PShutDown, which we need later for the

minimum down-time constraints. The reasoning in the definition is the same as

for PStartUp.8

PShutDown
ut ≥ POnline

u,t−1 − POnline
ut ∀u, t. (2.8)

Minimum Up- and Down-Time Constraints:

Once a unit is started, it has to stay online for a certain time. A common for-

mulation for minimum up-time constraints for an MILP formulation of the unit

commitment problem is the following (e.g., Carrión and Arroyo [CA06]):

t+t
MinUp
u −1
∑

τ=t
UOnline

uτ ≥ t
MinUp
u · (UOnline

ut −UOnline
u,t−1 ) ∀u, t, (2.9)

with UOnline being a binary variable equal to one if the unit is online and zero

otherwise. If a unit is started at timestep t, the right hand side of the inequality

gets positive. In such a case, the unit must stay online for at least its minimum up-

time. This is ensured by summing up the status variables for the next tMinUp − 1

timesteps9 on the left hand side of inequality (2.9).

7Formally defined, the following equation must hold for the capacity started: P
StartUp
ut =

max(0; POnline
ut − POnline

u,t−1 ). Inequality (2.7) defines only a lower bound for PStartUp. However, as
we consider a cost minimization problem, and PStartUp is (indirectly over the term SC) included in
the objective function, this formulation is sufficient.

8However, we have no costs associated with shutting-down units. Hence, inequality (2.8) is
not sufficient to guarantee that PShutDown

ut = max(0; POnline
u,t−1 − POnline

ut ) holds. Therefore, we add
relative low costs for shutting down units to the objective function. For a better readability, these
costs are not shown in the objective function (2.3).

9As the current timestep t is included, the -1 is required.
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time 10 11 12 13 14

units online 2 2 4 2 1

Table 2.1: Example for an infeasible schedule not detected by constraint (2.10).

However, there are circumstances under which restriction (2.9) does not work.

This is the case if either similar units are aggregated to unit groups, or if the bi-

nary variables UOnline are replaced by continuous variables as it is done for LP

formulations.

This problem is often disregarded in literature. For example, Weber [Web05] pro-

poses a constraint similar to (2.9) for his LP model:

POnline
ut − POnline

u,t+1 ≤ POnline
uτ ∀u, t, ∀τ ∈ (t− t

MinUp
u ; t]. (2.10)

This constraint is also used for the LP model by Meibom et al. [Mei+06]. Let us

briefly demonstrate with a simple example why this formulation does not work

in LP models or models using unit aggregation, before we propose an alternative

formulation, which is also more efficient.

Example. Assume there are four units aggregated to one unit group. The minimum up-

time of these units is three hours. Table 2.1 shows a schedule which is infeasible. At noon,

two additional units are started. These units must stay online until at least 14 o’clock.

Applying inequality (2.10), we get:10

POnline
13 − POnline

14 ≤ POnline
13 ,

POnline
13 − POnline

14 ≤ POnline
12 ,

POnline
13 − POnline

14 ≤ POnline
11 .





⇔






2− 1 ≤ 2,

2− 1 ≤ 4,

2− 1 ≤ 2.

It can be seen that the constraint that should guarantee the minimum up-time restriction

fails. The reason for this is that the constraint is unable to detect that some units are

already shut-down at 13 o’clock. If no units are shut-down at 13 o’clock, constraint (2.10)

detects the infeasible schedule.

10Following the way the restriction is defined in [Web05], we must additionally check for
POnline

13 − POnline
14 ≤ POnline

10 . That is probably a typo, as otherwise one would require a minimum
up time of tMinUp + 1.
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To avoid this problem, we propose to ensure that the capacity online is always

greater as or equal to the sum of the capacity started during the previous tMinUp−1

periods. Formally defined, this is:

POnline
ut ≥

t

∑
τ=t−(tMinUp

u −1)

P
StartUp
u,τ ∀u, t. (2.11)

Example (continued). Applying the proposed inequality (2.11) to the simple example

presented before, the infeasibility of the schedule in Table 2.1 is detected by the following

restriction:

POnline
14 ≥ P

StartUp
12 + P

StartUp
13 + P

StartUp
14 ⇔ 1 ≥ 2 + 0 + 0  .

We define the minimum down-time constraints in a similar manner. The capacity

that is offline at the moment must be greater as or equal to the sum of the capacity

shut-down during the tMinDown − 1 previous periods:

pmax
u − POnline

ut ≥
t

∑
τ=t−(tMinDown

u −1)
PShutDown

u,τ ∀u, t. (2.12)

Empirical tests have shown that using restrictions (2.11) and (2.12) instead of (2.10)

and the corresponding minimum down-time constraint is much more efficient.

The average runtime of a fundamental electricity market model of Germany with

the new constraints is between 16% and 55% lower than those with the old con-

straints (see Geiger et al. [Gei+08]).

Storage Constraints:

The content of the pumped hydro storages V (in MWh) at the current timestep

is equal to the content at the previous timestep minus the production at the cur-

rent timestep plus the electricity used for charging the storage multiplied by the

charging efficiency η.

Vut = Vu,t−1− Put + ηu ·Wut ∀u ∈ UStorage, t. (2.13)

To avoid that the model considers the initial storage content as free energy and

completely empties storages at the end of the planning horizon, there are two

possibilities. The first one is to associate some value to the final storage content

in the objective function (see, e.g., Meibom et al. [Mei+06]). The second possibil-
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ity is to require that the final storage content is equal to the initial content (e.g.,

Swider [Swi07]). As the determination of appropriate values for the storage con-

tent is a non-trivial task, we follow the latter approach.

Vu,T = Vu,0 ∀u ∈ UStorage.

Similar to the electricity production, there is an upper bound for the storage charg-

ing, wmax, and the storage content, vmax:

Vut ≤ vmax
u ∀u ∈ UStorage, t,

Wut ≤ wmax
u ∀u ∈ UStorage, t.

CO2 Constraints:

The method commonly used to consider CO2 restrictions in electricity market

models is to include the CO2 costs in the objective function, as it is done in con-

straint (2.4) defining the fuel costs. To be able to apply this method, carbon price

forecasts are required. As discussed in Section 1.4.3, carbon price forecasting is

quite difficult.

Instead of adding a penalty for emitted CO2, another possibility is to restrict the

maximal amount of allowed emissions in the model. For this purpose, the follow-

ing constraint can be used:

∑
t

∑
u

Fut · κ f (u) ≤ emmax, (2.14)

where emmax corresponds to the maximum allowed tons of CO2 in the considered

period. This value can be taken from the National Allocation Plans (NAP), in

which each state participating in the EU ETS decides on the allowed emissions for

the different industry sectors.

Using constraint (2.14) to limit the amount of emissions is too strict compared

to reality. There are different possibilities to get additional emission allowances.

They can either be bought from abroad or other industry sectors. Alternatively,

some non-used allowances from another year (of the same trading period) may be

used. Nevertheless, equation (2.14) is valuable, as it allows to determine the value

of emission allowances for the considered period. This approach is presented in

Section 2.3.5.
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Figure 2.4: Wind power forecasts and realized wind power [MW] in the trans-
power control area in May 2009. Source: transpower.

2.3.2 Stochastic Model

The model described in the previous subsection is based on the assumption that

all input parameters are known with certainty. However, this assumption is not re-

alistic. An example for a stochastic parameter is the production from wind power.

Figure 2.4 shows the predicted and the observed wind power production in the

transpower control area, one of the four control areas in Germany. While the gen-

eral trend is well approximated by the forecasts, there are sometimes deviations

of over 2,000 MW.

To account for these uncertainties, electricity market models can be formulated as

stochastic programming problems. In the following we briefly outline the main

ideas of stochastic programming. For a general introduction to stochastic pro-

gramming, see, e.g., Birge and Louveaux [BL97] or Kall and Wallace [KW94].

Stochastic programming considers uncertainty usually in the form of a scenario

tree. An example for a three-stage scenario tree is shown in Figure 2.5. A stochas-

tic programming problem consists of at least two stages. Each stage can comprise

one or several timesteps. The first stage is a deterministic stage, in which all pa-

rameters are known with certainty. The succeeding stages are stochastic, which

means that there are different possible outcomes for the uncertain parameters.

Let N be the set of nodes of the scenarios tree. Each node in Figure 2.5 corre-

sponds to one realization of the stochastic parameter. If wind power is modeled

as stochastic parameter, each node represents a different wind power scenario. It

should be noted that even if two nodes in the scenario tree (e.g., node 4 and 6)
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Figure 2.5: Illustration of a scenario tree used for stochastic programming.

represent the same outcome of a scenario (in our case wind power production),

they cannot be combined if the problem contains intertemporal constraints. An

example for such a constraint is the storage content constraint (2.13).11

The arcs between the nodes represent possible transitions from one scenario to

another. Based on the transition probabilities ψn′→n between the nodes, the occur-

rence probability πn can be determined for each node n.

To account for the different scenarios, an additional index must be added to all

variables that are influenced by the stochastic parameter (or that can react on the

variations of the parameter). Depending on the size of the scenario tree, this in-

creases the problem size significantly.

Extending our deterministic electricity market model to a stochastic one with the

wind power production as stochastic parameter is straightforward. Every vari-

able (with a possible exception for the variables used to provide reserve energy12)

depends additionally on the scenario, and every constraint must hold for all sce-

narios. In the following, only the constraints that substantially differ from the

deterministic version are described.

11The reason why nodes cannot be combined is the following: Assume that the wind power
production for node 4 and 6 is the same, while the one for the previous nodes 1 and 2 is different.
Therefore, electricity production of a pumped-storage in node 1 may be different from the one in
node 2. As a consequence, also the storage content is different. As the current storage content
depends on the previous content, the storage content for node 4 and 6 may be different, even if
the electricity production of the storage is the same at this stage. The problem is a path-dependent
problem.

12In Germany, bids for minute reserves must be made until 10 a.m. for the succeeding day.
Therefore, the supply of minute reserves is fixed at least 14 hours in advance. The supply of
primary and secondary control power is even fixed for a whole month. If the supply is fixed in
advance, it must be the same for all scenarios.
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The different parts of the objective function remain the same, but the costs for all

possible scenarios must be multiplied by their occurrence probability:

min TC = ∑
u∈U

∑
t∈T

∑
n∈N

πn · (FCutn + OCutn + SCutn).

As we subtract wind power directly from electricity demand, the residual electric-

ity demand becomes scenario dependent. The power balance constraint is now:

∑
u∈U

Putn − ∑
u∈U Storage

Wutn = ltn ∀t, n.

The minimum up-time restriction can be written as

POnline
utn ≥

t

∑
τ=t−(tMinUp

u −1)

P
StartUp
uτn′ ∀u, t, n.

Thereby, n′ is the corresponding predecessor node of n at timestep τ. The mini-

mum down-time restriction is

pmax
u − POnline

utn ≥
t

∑
τ=t−(tMinDown

u −1)
PShutDown

uτn′ ∀u, t, n.

The storage content is now restricted by the following constraint

Vutn = Vu,t−1,n′ − Putn + ηu ·Wutn ∀u ∈ UStorage, t, n.

2.3.3 Model Based on Typical Days

Both models presented in the previous subsections are based on the assumption

of consecutive timesteps. For our investment module, we are interested in power

market results for a whole year. Modeling a whole year is computationally in-

tractable. A common approach to circumvent such problems is to consider just

a few characteristic days (e.g., Sun et al. [Sun+08], Swider [Swi07], Swider and

Weber [SW07]). In [Sun+08; Swi07; SW07], every two months of a year are rep-

resented by one workday and one weekend day. Each of these days consists of

twelve typical load profiles with a duration of two hours each.

While the representation of the year by typical days significantly reduces the com-

putational burden, it requires some model modifications. We discuss these modi-

fications in the following for the basic deterministic model.
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Objective Function:

As there are more workdays than days of the weekend, the different timesteps in

the model do not occur equally often. Hence, they must be accordingly weighted.

This can be done by introducing the weighting factor ft.13 If several hours are ag-

gregated to one timestep, then an additional parameter dt indicating the duration

of each timestep is added. It is important to notice that only the fuel costs and

the operating costs have to be multiplied by dt. The start-up costs are indepen-

dent of the duration of a timestep, a fact that is often not considered (e.g., [Swi07;

SW07]14). The objective function is now the following:

min TC = ∑
u∈U

∑
t∈T

ft · (dt · (FCut + OCut) + SCut).

Besides the modification of the objective function, further modifications are re-

quired. To the best of the author’s knowledge, these modifications are not consid-

ered in other models. These modifications concern all intertemporal restrictions.

In the following, we demonstrate the need for modifications with simple exam-

ples, and propose two alternative formulations for the corresponding constraints.

Example (Assumptions). For the following examples, we assume that every two months

are represented by a weekday and a weekend day. Every day is represented by 12 timesteps.

Let us further assume that the first day is a weekend day. Timesteps 1–12 are used to

represent the first weekend day. Timesteps 13–24 are used for the first workday.

Start-Ups and Shut-Downs:

Start-up restriction (2.7) and shut-down restriction (2.8) are used to determine the

capacity started-up and the capacity shut-down at every timestep. These values

are required for the minimum up-time and minimum down-time restrictions. Fur-

thermore, the variable PStartUp is used to determine start-up costs. Inequalities

(2.7) and (2.8) are intertemporal constraints, and need to be adjusted for a model

based on typical days. In the following, we briefly demonstrate the need for a

modified problem description with a simple example, before we propose two dif-

ferent formulations that take these problems into account.

13If every two months are represented by one workday and one weekend day, and there are 41
workdays in January and February, then ft is 41 for each timestep representing a workday in this
period.

14The duration of timesteps is not at all considered in [Sun+08].
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Example (Strict start-up constraints). Let us consider how the capacity started at time-

step 13 is determined. Using start-up constraint (2.7), we get:

P
StartUp
13 ≥ POnline

13 − POnline
12 . (2.15)

This is correct, but only if we assume that the considered workday that is represented is a

Monday. If the typical workday is not a Monday, the restriction would be the following:

P
StartUp
13 ≥ POnline

13 − POnline
24 . (2.16)

As we assumed that the current day is not a Monday, the previous day is also a workday.

Since we use just one workday to represent all workdays within two months, the previous

day is represented by the same typical day as the current day. Hence, the previous timestep

of timestep 13 is timestep 24 in this case. One possibility to cope with this problem is to

use both constraints.

Formally written, we use in addition to the “normal” start-up constraint (2.7) the

following restriction:

P
StartUp
ut ≥ POnline

ut − POnline
u,t+tPerDay−1

∀u, t mod tPerDay = 1, (2.17)

with tPerDay being the number of timesteps per day. Note that this restriction is

quite strict. Compared with the original problem (which is not based on represen-

tative timesteps), some feasible solutions are excluded. In the following, we refer

to this formulation as strict model.

Example (Weighted start-up constraints). Another possibility is to use a weighted sum

of restrictions (2.15) and (2.16) to define P
StartUp
13 . Therefore, we have to define two addi-

tional variables that are, as all variables we use, non-negative. Thereby, P
StartUp
12,13 denotes

the capacity that is started from timestep 12 to 13, while P
StartUp
24,13 denotes the capacity

started from timestep 24 to 13:

P
StartUp
12,13 ≥ POnline

13 − POnline
12

and

P
StartUp
24,13 ≥ POnline

13 − POnline
24 .
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We can now define P
StartUp
13 as:

P
StartUp
13 ≥ 1

5
· PStartUp

12,13 +
4
5
· PStartUp

24,13 . (2.18)

Note that the auxiliary variables P
StartUp
12,13 and P

StartUp
24,13 in inequality (2.18) cannot be re-

placed with the right hand sides of restrictions (2.15) and (2.16). The reason is that the

right hand sides of the restrictions may get negative, while the variables are greater or equal

to zero. A negative right hand side in one of both restrictions would offset the number of

start-ups of the other restriction. Assume for example, POnline
12 = 500, POnline

13 = 100 and

POnline
24 = 0. Without the additional variables, one would get P

StartUp
13 = 1/5 · (100−

500) + 4/5 · (100− 0) = 0. As a consequence, no start-up costs are considered in this

case, even though—considering a whole week—in total 400 MW of capacity are started.

To write the weighted start-up constraint (2.18) in a general form, we first have to

define mt as:15

mt =

{
5 if t belongs to a workday,

2 otherwise.

Thereby, mt counts how often the day to which timestep t belongs is repeated, be-

fore the following typical day occurs. It is different from ft defined earlier, which

is a weighting factor that counts the total frequency of the hours represented by

t, independent of the fact whether these timesteps occur in a row or with other

timesteps in between.16

The general form of the weighted start-up constraint (2.18) is

P
StartUp
ut ≥ 1

mt
· PStartUp

u,t−1,t + mt−1
mt
· PStartUp

u,t+tPerDay−1,t
∀u, t mod tPerDay = 1,

(2.19)

with

P
StartUp
u,t−1,t ≥ POnline

ut − POnline
u,t−1 ∀u, t mod tPerDay = 1

and

P
StartUp
u,t+tPerDay−1,t

≥ POnline
ut − POnline

u,t+tPerDay−1
∀u, t mod tPerDay = 1.

15We assume here a normal week with five workdays and two weekend days. The definition
can easily be adjusted to consider holidays.

16Assuming there are nine weekends in January and February, ft for timesteps of a weekend
day of this period would be 18, while mt is 2.
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We refer to this model as weighted model. The shut-down restrictions of the basic

model can be extended the same way, either as described in the strict model or the

weighted model.

Minimum Up- and Down-Time Constraints:

If just the minimum up-time constraint (2.11) and the minimum down-time con-

straint (2.12) from the basic deterministic model are used, a model based on typical

days might deliver solutions that are infeasible in reality. This can be illustrated

with the following simple example.

Example. Assume that there is a unit with a minimum up-time of two timesteps. As-

sume further that the unit is started on the last timestep of a weekday, while on the last

timestep of the previous weekend day, the unit was already started earlier. Then, on the

first timestep of the weekday, we might turn off the unit. However, in four out of five cases

(namely from Tuesday to Friday), this decision is not allowed in reality, as the unit was

just started one timestep before.

To handle this problem, the two different methods already used for the start-up

and shut-down variables can be applied. We demonstrate how to use them on the

example of the minimum up-time restriction. The first possibility, applied in the

strict model, is to use in addition to the normal minimum up-time restriction (2.11)

the following restriction:

POnline
ut ≥

t

∑
τ=t−(tMinUp

u −1)

P
StartUp
u,t̂(τ)

∀u, ⌈(t− (t
MinUp
u − 1))/tPerDay⌉ < ⌈t/tPerDay⌉, (2.20)

with17

t̂(τ) = τ +
(
⌈t/tPerDay⌉ − ⌈τ/tPerDay⌉

)
· tPerDay.

Thereby, t̂(τ) simply denotes the preceding timesteps of t that are represented by

the same typical day. For example, if t = 14 and τ = 13, then t̂(13) = 13. If τ = 12,

then t̂(12) = 24.

While the normal minimum up-time constraint (2.11) ensures that the minimum

up-time constraint holds if the previous day is represented by another typical day

17We assume that the maximum minimum up-time and the maximum minimum down-time is
not greater than 24 hours.
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Figure 2.6: Capacity online of a group of coal units using different constraints.

(e.g., the current day is a Monday and the previous day was a Sunday), the ad-

ditional minimum up-time constraint (2.20) ensures that the minimum up-time

constraint also holds if the previous day is represented by the same typical day

(e.g., Tuesday/Monday).

While this approach excludes some solutions that are feasible in the original prob-

lem, it guarantees that no solutions that violate the minimum up-time restrictions

in reality are allowed in the model. In the weighted model, we combine the two

minimum up-time restrictions (2.11) and (2.20) to

POnline
ut ≥ 1

mt
·

t

∑
τ=t−(tMinUp

u −1)

P
StartUp
u,τ + mt−1

mt
·

t

∑
τ=t−(tMinUp

u −1)

P
StartUp
u,t̂(τ)

∀u, t.

(2.21)

If ⌈(t − (t
MinUp
u − 1))/tPerDay⌉ = ⌈t/tPerDay⌉, then the weighted minimum up-

time constraint (2.21) corresponds to normal minimum up-time constraint (2.11).

Note that the weighted formulation of the minimum up-time constraint allows

infeasible solutions as well as it excludes feasible solutions, but both to a lower

extend compared with the basic model and the strict model, respectively.

Figure 2.6 shows an example of the operation of a group of coal units for a week

applying the basic model, the weighted model and the strict model. In this ex-

ample, both the weighted model as well as the strict model lead to a feasible unit

commitment. The unit commitment of the basic model is infeasible due to a vio-

lation of the minimum up-time constraint during the night of Saturday.
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Storage Constraints:

It is very important to adjust the storage content constraint accordingly. The nor-

mal storage content constraint (2.13) ignores that timesteps have a different fre-

quency. If just constraint (2.13) is used,18 a very monotone storage operation as

the one depicted in Figure 2.7(a) can be observed. During workdays, the storage

produces electricity at its maximum level, while during weekends, the storage

gets charged. Storage operation seems to be independent of electricity prices. At

the moment of the highest prices, the storage is charged at the maximum charging

level.

This behavior is caused by the non-consideration of the different frequencies of

the timesteps. For the storage operation, the model assumes equal frequencies for

all timesteps, which is not true. As there are more workdays than weekend days,

much more electricity is produced compared to the electricity used to charge the

storage. The obtained solution is infeasible in reality.

To get a more realistic storage operation, we use two additional constraints. For

the last timestep of each representative day (i.e., t+ 1 mod tPerDay = 0), we replace

the normal storage content restriction (2.13) with the following equation:

Vu,t+tPerDay = Vu,t +
t+tPerDay

∑
τ=t+1

(mτ · dτ · (ηu ·Wuτ − Puτ))

∀u ∈ UStorage, t mod tPerDay = 0. (2.22)

Equation (2.22) ensures that the storage content at the end of a representative day

corresponds to the the storage content at the end of the previous representative

day adjusted by the electricity usage of the storage during the period represented

by the representative day. For example, constraint (2.22) guarantees that the stor-

age content at the end of Friday corresponds to the storage content at the end of

Sunday adjusted by the production and charging during the whole week.

The second constraint we add ensures that the storage content at the end of the

two months period represented by one weekday and one weekend day corre-

sponds to the storage content at the last timestep of the previous period adjusted

18Note that also constraint (2.13) must be adapted using the duration of a timestep dt.
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(a) Using only constraint (2.13)
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(b) Using constraints (2.13), (2.22) and (2.23)

Figure 2.7: Storage operation (left axis) and electricity prices (right axis). Negative
values for the storage operation correspond to storage charging, positive values
represent electricity production.

by the storage production and charging within this period:

Vu,t+2·tPerDay = Vu,t +
t+2·tPerDay

∑
τ=t+1

( fτ · dτ · (ηu ·Wuτ − Puτ))

∀u ∈ UStorage, t mod 2 · tPerDay = 0. (2.23)

Examining Figure 2.7(b), it can be seen that considering constraints (2.22) and

(2.23) in addition to constraint (2.13) gives a much more realistic storage opera-

tion. The storage operation is now strongly correlated with the electricity prices.

During high price periods, electricity is produced, while during low price peri-

ods, the storage is charged. Compared with Figure 2.7(a), one can notice that

the price peaks are now lower—a result of the more appropriate storage opera-

tion.19 However, as the storage produces more electricity in the version depicted

in Figure 2.7(a) than it can produce in reality, average electricity prices rise from

60.59 e/MWh to 62.49 e/MWh with the new constraints.

2.3.4 Stochastic Model Based on a Recombining Scenario Tree

As described before, an electricity market model with perfect foresight is not very

realistic. However, owing to the path-dependence, a stochastic programming for-

mulation of the model as described in Section 2.3.2 becomes computationally in-

19It should be remarked that the proposed formulation does not guarantee a feasible storage
operation. However, compared to the standard formulation, the proposed changes are a significant
improvement.
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Figure 2.8: Illustration of a recombining scenario tree.

tractable if a longer time horizon is considered. There are two different methods

that try to circumvent this problem.

The first possibility is to divide the problem into overlapping subproblems with

a shorter time horizon. These subproblems can be solved as stochastic program-

ming problem. This approach is called rolling horizon and is used for example by

Meibom et al. [Mei+06]. However, using a rolling horizon approach, many smaller

stochastic problems have to be solved. Depending on the level of detail, this can

be very time consuming. Another problem of this approach is the management of

hydro reservoirs. For a model considering a whole year it is reasonable to require

the final reservoir content to be equal to the initial content. For a model with a

short time horizon (e.g., a day or a week) this is not the case, as the water inflows

exhibit seasonal variations.20

The second possibility to add stochasticity to an electricity market model is to

relax the path-dependence of the problem and use a recombining scenario tree.

Such a recombining scenario tree is depicted in Figure 2.8. This approach is fol-

lowed in [SW07; Swi07; Sun+08; HS09]. The recombining scenario tree prevents

the number of nodes to grow exponentially. However, the path-dependence of

the problem cannot be considered. Therefore, average values are used for vari-

ables that depend on the values of preceding variables from different scenarios.

Despite this disadvantage, we choose this approach as a rolling horizon model

is too time consuming for our investment model. The way we adjust the model

based on typical days to consider stochasticity is described in this section, espe-

cially the cases where our approach is different from the one applied by the other

models in this area.

20A possible approach to deal with the problem is to determine a value for the electricity saved in
the reservoir, which is added to the objective function. However, the determination of appropriate
values for the saved electricity is a non-trivial task.
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Analogous to the normal stochastic programming model, an index for the scenario

is added to all variables that can take different values depending on the scenario.

In our model, this are all variables except the ones used to model reserve energy.

Similar to the case of the model based on typical days, problems arise through the

time coupling constraints. The adaption of all other constraints is straightforward.

As in the stochastic programming model, these non time-coupling constraints just

have to hold additionally for every scenario.

Objective Function:

The objective function in this model is a combination of the objective function

used in the stochastic programming model and the one used in the model based

on typical days:

min TC = ∑
u∈U

∑
t∈T

∑
n∈N

πtn · ft · (dt · (FCutn + OCutn) + SCutn).

Start-Ups and Shut-Downs:

Weber et al. [Web+06] propose the following restrictions21 to determine the capac-

ity started:

P
StartUp
utn ≥ 1

∑
n′

ψt−1,n′→t,n
·∑

n′

(
ψt−1,n′→t,n · (POnline

utn − POnline
u,t−1,n′)

)
∀u, t, n.

However, there are two issues with this formulation. First of all, the shut-down

of units from one of the preceding nodes may offset the start-up of units from

other preceding nodes. Furthermore, we think that it is not enough to consider

just the transition probabilities for the weighting of the preceding nodes. In our

opinion, it would be more appropriate to consider also the occurrence probability

of the preceding nodes. We propose the following constraints, corresponding to

the start-up constraints (2.7) of the basic model:

P
StartUp
utn ≥ 1

∑
n′
(ψt−1,n′→t,n·πt−1,n′)

·∑
n′
(ψt−1,n′→t,n · πt−1,n′ · PStartUp

u,t,n′,n ) ∀u, t, n,

(2.24)

21We adapted the formulation to our notation.
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with P
StartUp
u,t,n′,n denoting the capacity that is started-up in timestep t and scenario n,

when the previous scenario was n′. This capacity is defined as:

P
StartUp
u,t,n′,n ≥ POnline

utn − POnline
u,t−1,n′ ∀u, t, n′, n. (2.25)

The extension to the model based on typical days is relatively straightforward. In

the case of the strict model, we just have to apply the logic used in inequalities (2.24)

and (2.25) to the strict start-up restriction (2.17).

For the weighted model, things are a bit more complicated, as we need additional

variables. Applying the same idea to the weighted start-up restriction (2.19), we

get:

P
StartUp
utn ≥ 1

mt
· PStartUp

u,t−1,t,n +
mt−1

mt
· PStartUp

u,t+tPerDay−1,t,n
∀u, n, t mod tPerDay = 1,

with P
StartUp
u,t−1,t,n being the average amount of capacity started in t considering all

possible preceding scenarios at the previous timestep t− 1:

P
StartUp
u,t−1,t,n ≥

1
∑
n′
(ψt−1,n′→t,n · πt−1,n′)

·∑
n′
(ψt−1,n′→t,n · πt−1,n′ · PStartUp

u,t−1,t,n′,n)

∀u, n, t mod tPerDay = 1

and

P
StartUp
u,t−1,t,n′,n ≥ POnline

utn − POnline
u,t−1,n′ ∀u, t, n′, n.

The constraints for P
StartUp
u,t+tPerDay−1,t,n

are defined accordingly.

Minimum Up- and Down-Time Constraints:

To be able to apply the minimum up- and down-time constraints (for either the

strict or the weighted model), we define additional variables P
StartUp
ut that represent

the average started capacity per timestep:

P
StartUp
ut = ∑

n

(
πtn · PStartUp

utn

)
∀u, t.

Now, we simply have to add the index n to the minimum up-time and minimum

down-time constraints of the chosen model.
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Storage Constraints:

The storage restrictions have to be extended similar to the other time-coupling

constraints. The “normal” storage content constraint (2.13) becomes:

Vutn = 1
∑
n′
(ψt−1,n′→t,n·πt−1,n′)

·∑
n′
(ψt−1,n′→t,n · πt−1,n′ ·Vu,t−1,n′)

− (Putn + ηu ·Wutn) · dt

∀u ∈ UStorage, t mod tPerDay 6= 0, n.

For the adaption of equation (2.22), we use the following equation:22

Vu,t+tPerDay,n = Vutn +
t+tPerDay

∑
τ=t+1

∑
n′
(mτ · dτ · πt−1,n′ · (ηu ·Wuτn′ − Puτn′))

∀u ∈ UStorage, t mod tPerDay = 0, n.

Equation (2.23) is adjusted accordingly.

2.3.5 Price Determination

To calculate the contribution margin of power plants, the electricity production,

the costs for this production and the electricity prices are required. While the de-

termination of the first two parameters is obvious in an LP or an MILP electricity

market model, there are different ways how electricity prices can derived. In the

following, we briefly describe two of these methods, before we discuss a possibil-

ity to determine carbon prices.

Electricity Price Determination:

The probably most common method to determine electricity prices in fundamen-

tal market models described as an LP or an MILP problem is based on dual vari-

ables (for an introduction to duality in LP models see, e.g., Hillier and Lieber-

man [HL05]). The value of the dual variables of the power balance restriction (2.5)

corresponds to the marginal costs of electricity production. Based on the assump-

tion of perfect competition, the electricity prices should be equal to these marginal

22Instead of using the occurrence probability πt−1,n′ , one might use the conditional probability
of each node between t and t + tPerDay under the assumption of being in node n at timestep t.
For the sake of simplicity, we omit the calculation of the conditional probabilities and use πt−1,n′
instead.
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costs. This method to determine electricity prices is widely used (e.g., Burger et

al. [Bur+07], Meibom et al. [Mei+06], Swider [Swi07]).

Note that this method is only directly applicable to LP models, as it requires strong

duality, which is not guaranteed for MILP models. To derive shadow values for

MILP models, all integer variables have to be fixed. The resulting LP–problem

can then be used to get the shadow values. However, in such a case start-up

costs are not included in the marginal costs. This issue is discussed by the author

in [Bar+08].

Another approach to determine electricity prices, mentioned in [Bur+07, p. 178],

is to vary the demand by±∆d for a time period τ, and solve the problem for these

two cases. Based on the cost difference ∆TC, specific marginal costs S′τ can be

derived as S′τ = ∆TC/(2∆d). The advantage of this method is that it considers

start-up costs (and other integer constraints) also in case of an MILP. The disad-

vantage is that for each time period τ for which prices should be determined, two

problems must be solved. To get hourly prices for a whole day, 48 problems must

be solved. If electricity prices are determined based on dual variables, only one

problem must be solved. Therefore, we use the approach based on dual values.

Carbon Price Determination:

Similar to the determination of electricity prices, the dual value of constraint (2.14)

can be interpreted as carbon price. Using this method, the carbon price is derived

based on fundamental factors such as the amount of emitted CO2.

However, this method implies several simplifications compared to the real emis-

sion allowances trading system. First of all, only the electricity sector of Germany

is considered for the price determination. No trades of emission allowances with

other countries or other industry sectors are possible. Otherwise, Germany is by

far the greatest emitter of CO2 in the EU ETS and accounts for about 25% of the

total emissions (European Commission [Eur07]). Thereby, about 70% of the emis-

sions are allocated to the electricity sector (BMU [BMU07]).

Another simplification of this method is the non-consideration of banking (the

transfer of non-used emission allowances from one year to another). At least

within the different phases of the EU ETS, banking is possible.

Besides the simplifications discussed before, the proposed method is quite use-

ful, as it determines carbon prices depending on the existing power plant fleet

and fuel prices. Considering the difficulties of long-term carbon price forecasts,

this method may contribute to obtain more realistic carbon prices. To integrate
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external influences on emission prices like the trade with foreign countries, the

method can be combined with external price forecasts, using a weighted price of

the external forecasts and the model endogenous price.

To be able to combine endogenous prices based on the value of the dual variables

of constraint (2.14) with exogenous price forecasts, we solve our LP model twice.

During the first iteration, no carbon costs are considered in the objective function.

The costs of CO2 used in equation (2.4) defining the fuel and carbon costs are

set to zero. At the same time, the amount of allowed CO2 emissions is restricted

by constraint (2.14). After this problem has been solved, we determine the value

of the dual variable of constraint (2.14). Then, we set the CO2 costs equal to a

weighted value of this endogenously determined CO2 price and an exogenous

CO2 price forecast. We remove constraint (2.14) from the model, and solve the

model again. Based on the results of this iteration, electricity prices, electricity

production and the associated costs are determined.

2.4 Comparison with Observed Prices

For the investment models proposed in the following two chapters, any of the

presented fundamental electricity market models can be used. We opt for the

LDC model due to its low computational requirements. Besides the LDC model,

we also use an LP-based model to evaluate the profitability of coal units with

carbon capture and storage (CCS) technology.

In this section, we compare the electricity prices of these two models with ob-

served prices. We start with a description of the input data that we use for the

comparison. Then, we briefly discuss how model quality can be measured, be-

fore we compare the results of both models with EEX prices. The comparison is

based on the year 2008 and the first half of 2009. Finally, we discuss the results

of both models and motivate our choice for the fundamental electricity market

model which we choose for the investment model in the following chapters.

2.4.1 Input Data

In this subsection, we describe the input data that we use for our fundamental

models. We consider the German electricity market. Foreign markets are not

explicitly modeled, but included with time-series of expected cross-border elec-

tricity exchanges. For model calibration, data from the years 2006 and 2007 is
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Unit Nuclear Lignite Coal Gas CC Gas GT Oil

Availability % 94.0 84.7 82.1 88.7 90.7 90.7
Capacity GW 20.3 21.5 26.2 14.6 4.6 4.4
Minimum
Up-Time

h 12 8 8 8 0 0

Minimum
Down-
Time

h 8 8 8 4 0 0

Operating
costs e/MWh 0.5 1.6 2.0 1.2 1.2 1.2

Start-up
costs e/MW 2.0 5.0 5.0 8.0 8.0 8.0

Start-up
fuel usage MWth/MWel 16.7 6.2 6.2 3.5 1.1 1.1

Table 2.2: Technical parameters of the considered units. Sources: Bagemihl
[Bag02], Swider and Weber [SW07], Swider et al. [Swi+07].

used. In the following, we describe how electricity supply and electricity demand

are modeled, and we give an overview of the fuel and carbon prices used for the

comparison.

Electricity Supply:

The power plants considered in our model correspond to the existing units in Ger-

many. The data is combined from different publicly available sources like the EEX,

data provided by generation companies, and a list of power plants of the German

Federal Environmental Agency [Umw09]. We adjusted the data by adding a coal

unit, an oil-fired unit and a lignite unit such that the total capacity of each fuel

type corresponds approximately to the capacities provided by the German Fed-

eral Statistical Office [Des08].

For each unit, we multiply the capacity with an availability factor. This factor

is used to account for non-availabilities of plants due to maintenance or forced

outages. The values for the availabilities are taken from Swider et al. [Swi+07, p.

67]. In the LDC model, we are constrained to use a constant factor for each unit

for the whole year. As most planned maintenance is scheduled in the summer

months when demand is low, a seasonable availability factor is more realistic than

a constant one. In the LP model, we consider such seasonal availabilities.

Table 2.2 shows the constant availability factors used in the LDC model as well as

other parameters of the considered units. As far as the efficiencies of the plants are
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publicly available, we use these efficiencies. For those plants where the efficiencies

are unknown, we approximate the efficiency based on the plant type, the fuel and

the age of the plant, as described by Schröter [Sch04].

Electricity Demand:

For the electricity demand, hourly load profiles provided by the European net-

work of transmission system operators for electricity (ENTSO-E) are used.23

As there is an obligation to feed-in electricity produced by renewable sources, we

directly subtracted the production of hydro-units (run-of-river plants and hydro

reservoirs with a natural inflow) and wind power units from the demand. For the

calculation of the (expected) hydro-production, we use the time-series of hydro-

production from the publicly available database of the EU project Wind Power In-

tegration in Liberalised Electricity Markets (WILMAR). 24 Concerning the electric-

ity produced by wind power, we use two different data sources. For the elec-

tricity produced by onshore wind units, we use the (hourly) wind power feed-

in provided by the four TSOs (EnBW, Amprion, transpower, 50Hertz). As the

offshore wind speed characteristics are different from the onshore ones, we use

the (offshore) wind speed time-series of the FINO (Forschungsplattformen in Nord-

und Ostsee) project25 to derive the expected offshore wind production. The wind

speed forecasts are transformed to power using a power transform curve (see, e.g.,

McLean [McL08]).

The increased amount of wind power leads to an increasing demand of control

power. Therefore, we model the control power demand depending on the in-

stalled wind power capacity as described by DEWI et al. [DEW+05]. In the LDC

model, we add the control power demand to the total electricity demand, as pro-

posed by Burger et al. [Bur+07, p. 174].

Additionally, electricity demand is adjusted by electricity exchanges with neigh-

boring countries. This is based on hourly time-series of cross-border physical load

flows published by the TSOs.26

23These hourly load profiles are available in the “Country Package - Production, Consumption,
Exchange” at http://www.entsoe.eu/, last time accessed December 01, 2009

24For a documentation, see Kiviluoma and Meibom [KM06]. The WILMAR database is available
at http://www.wilmar.risoe.dk/Results.htm, last time accessed December 01, 2009.

25Data provided by the Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU),
the Projektträger Jülich (PTJ) and the Deutsches Windenergie Institut (DEWI). The data is available (af-
ter registration) at http://www.bsh.de/de/Meeresdaten/Beobachtungen/Projekte/FINO/, last
time accessed December 1, 2009

26As there are no transmission values to Sweden published by transpower, we took this data
from NordPool.
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Coal Gas Carbon

2006 2.11 e/GJ 5.93 e/GJ 17.40 e/t
2007 2.33 e/GJ 5.55 e/GJ 0.68 e/t
2008 3.77 e/GJ 7.45 e/GJ 22.45 e/t
200927 2.35 e/GJ 3.80 e/GJ 12.68 e/t

Table 2.3: Fuel and carbon prices. Sources: BMWi [BMW09], EEX.

Fuel Prices:

The fuel and carbon prices that we use for the comparison are shown in Table 2.3.

While electricity demand and wind power production are based on the values of

2006 and 2007, we use the observed fuel prices of 2008 and 2009 for the following

comparison. This choice is motivated by the objective to test how well our models

perform under the assumption of pertinent fuel prices. For the power generation

expansion problem, fuel price uncertainty is reflected by considering different fuel

price scenarios.

2.4.2 Measuring Model Quality

An important issue related to modeling in general is the question how to measure

model quality. For descriptive models, different measures comparing the pre-

dicted values with the observed values in reality are proposed. Examples for such

measures are the goodness-of-fit measure, the root mean squared error (RMSE),

the mean absolute error (MAE), the mean percentage error and the value of the

likelihood function (Weber [Web05, p. 27]). The appropriate measure depends on

the use of the model and the predicted values.

For the assessment of the quality of electricity prices predicted by our fundamen-

tal electricity market models, we use the MAE and the RMSE. This choice is mo-

tivated by the fact that for price forecasts measures of absolute errors are more

meaningful than measures of relative errors [Web05].

The RMSE is defined as

RMSE =
1
n

√
n

∑
i=1

(xi − x̂i)2,

27Data for the year 2009 is based on the period between January and July.
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while the MAE is defined as

MAE =
1
n

n

∑
i=1
|xi − x̂i| ,

with xi being the prices observed in reality, x̂i the prices predicted by the model

and n the number of observations.

Concerning the data sets that are used to assess the model quality, there are two

different options. The first possibility is to evaluate a model with the data sets

that were used to calibrate the model. However, this is only a weak indicator of

model quality, as the model generally delivers the best results for these data sets.

Nevertheless, such a comparison may be performed to get a first idea about model

quality especially if the purpose of the model is not predicting future values but,

for example, comparing different market designs.

A more appropriate indicator of model quality is to test the models with data sets

that were not used for calibration, but for which data samples are already ob-

served. A common approach is to use data sets for model calibration that are two

to three years old. Model quality can then be assessed by comparing the predicted

values for the following year with the observed values. We follow this approach

and use the years 2006 and 2007 for model calibration, while we compare the

model results of 2008 and the first half of 2009 with observed EEX prices.

2.4.3 Load–Duration Curve Models

In this subsection we compare the electricity prices obtained with our LDC model

with observed EEX spot prices. We use three different versions of the LDC model:

the basic model without adjustments, a model using the linear adjustments of

the function (2.1), and a model using in addition the scarcity mark-ups described

by function (2.2). We refer to these models as LDC, LDC linear, and LDC SMU,

respectively.

Table 2.4 shows average, minimum and maximum prices, the standard deviation,

the MAE, and the RMSE for the different models for the years 2008 and 2009.

All LDC models approximate average electricity prices quite good. However, the

volatility of model prices is much lower than the volatility of EEX prices. The rea-

son for the lower volatility is the non-consideration of technical restrictions and

28The lower average price for the LDC linear model compared to the LDC model is due to the
consideration of the period between January and July. Considering the whole year, the average
electricity price would be equal for both models.



2.4. COMPARISON WITH OBSERVED PRICES 97

LDC LDC
EEX LDC Linear SMU

2008

Average price 65.76 63.99 63.99 65.42
Min. price −101.52 42.34 22.47 22.47
Max. price 494.26 132.31 152.87 171.68
St. dev. 28.66 7.15 14.74 17.23
MAE – 16.02 9.05 8.08
RMSE – 21.75 14.66 12.19

2009

Average price 38.43 36.93 36.4128 37.22
Min. price −151.67 31.15 11.31 11.31
Max. price 159.92 44.68 61.27 74.23
St. dev. 17.22 2.49 10.19 11.57
MAE – 9.69 3.84 3.01
RMSE – 15.05 9.03 7.24

Table 2.4: Model results for 2008 and January–July 2009. All values are given in
e/MWh. MAE and RMSE are calculated based on sorted prices.

uncertainty. Compared with the other two models, the LDC model without ad-

justments produces the highest MAE and RMSE. As expected, the two other mod-

els produce a higher volatility, even though the volatility of both models is still

considerably lower than the volatility of EEX prices. Concerning average prices,

the MAE as well as the RMSE, the model with scarcity mark-ups delivers the best

results for the considered periods.

Similar conclusions can be derived by looking at the price–duration curves shown

in Figure 2.9. Note that the model with scarcity mark-ups and the model using

only linear adjustments deliver the same prices during periods of low load (there-

fore, the LDC linear curve is hidden behind the LDC SMU curve during these

periods).

Electricity prices are better approximated for the first half of 2009 than in 2008.

It is remarkable that the lowest electricity prices are overestimated by all models.

The fact that the model with mark-ups delivers the best results of the three models

is not surprising. An explanation for this is the structure of the merit-order curve,

which is non-linear. Deviations in the case of scarcity have the highest impact, as

the merit-order curve is the steepest in this region. This characteristic can be better

approximated by a piecewise-linear function than by a linear one.
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Figure 2.9: Price–duration curves for 2008 (a) and January - July 2009 (b).

The RMSE and the MAE error are, especially in 2008, relatively high. The con-

sequences of a high RMSE and MAE of electricity prices used in an investment

model depend on the types of units considered. If peak load units, which operate

only during few hours a year, should be evaluated, then high RMSE and MAE of

electricity prices can result in significant errors concerning the contribution mar-

gins of these units. If base load units, which operate during most hours of a year,

are evaluated, average electricity prices are the more important quality measure

than the RMSE and the MAE. Assuming that the CCGT units and coal units we

evaluate are at least mid load units, we argue that the quality of the prices ob-

tained with our LDC models is sufficient for the use in our investment models.

2.4.4 Linear Programming Models

In this subsection, we present the results of different LP models presented in Sec-

tion 2.3. We test deterministic and stochastic models and compare the results of

three different model formulations: the strict model, the weighted model, and the

model without the additional constraints used for the two other models. We refer

to this model (which corresponds approximately to the models used in literature)

as basic model in this subsection. Note that it does not correspond to the basic de-

terministic model presented in Section 2.3.1, but is based, as the other considered

models, on typical days.

Besides the representation of a complete year based on typical days, another sim-

plification is used to reduce the computational burden: units of the same technol-

ogy and similar efficiencies are aggregated to unit groups. Before we present the
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model results, we describe how the load-profiles and the wind power scenarios

for the typical days are selected.

Determination of Typical Load Profiles:

For the comparison presented in this section, we use six typical weekdays and

six weekend-days, each representing a period of two months. Each day consists

of twelve timesteps of two hours. To determine typical load profiles for these

timesteps, we use the relative hourly load profiles29 of 2006 and 2007.

For every typical day, we transform the 24 hours load-profiles to 12 timesteps

load-profiles by taking the average value of every two hours. We divide these

load profiles into different clusters based on the timestep of the day, the weekday

(weekend/workday) and the month.

To select a representative load profile for each of these clusters, different methods

can be applied:

• The simplest one is to use average values for every timestep of the day. How-

ever, using average values results in a non-consideration of extreme scenar-

ios. Especially the ignorance of high-load scenarios is critical, as the merit–

order curve is very steep in this region. Disproportionately high prices which

occur in high-load periods cannot be captured by a model based on average

values.

• To circumvent this problem, one might consider additionally high-load (and

low-load) scenarios. Such scenarios can be chosen for example using the

fast forward selection, a method commonly used in stochastic programming

to construct scenarios trees (see, e.g., Gröwe-Kuska et al. [GK+03]).30

While the inclusion of high-load and low-load scenarios led to slightly more

accurate results during empirical tests we did, it has the disadvantage to

increase the problem size by a factor of three.

• An alternative method to better represent the LDC is the following: After the

selection of the representative load scenarios for every typical day (which

29The hourly load relative to the total annual load.
30The fast forward selection is a heuristic for the minimization of the distance between a prede-

fined number of selected scenarios and all other scenarios. The algorithm iteratively selects a
scenario and adds it to the set of selected scenarios, until the predefined number of selected sce-
narios is reached. To select a scenario, the algorithm calculates for every scenario s the sum of the
minimum distance of all other scenarios to one of the already selected scenarios or s. The scenario
s∗ with the minimum sum of distance is added to the selected scenarios.
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Figure 2.10: Original, representative and adjusted representative LDCs.

can be based on average values for example), these scenarios are used to

build the representative LDC. Every timestep of the representative LDC is

adjusted such that it equals the average value of the corresponding hours of

the original LDC for the whole year.

This procedure is depicted in Figure 2.10 for periods of maximum load. The

red curve is the original LDC based on all hourly load values. The green

line represents the chosen representative (non-adjusted) load profiles. It can

be seen that the non-adjusted representative LDC is significantly below the

original LDC in this section. Therefore, the representative LDC is adjusted

as described before. The result is the blue adjusted LDC curve in the figure.

We opt for the last method, as it allows a better approximation of the LDC com-

pared to the first method, while it does not increase the computational complexity

of the LP model.

Determination of Wind Power Scenarios:

The selection of wind power scenarios is based on hourly time series of the wind

power capacity factor (the production divided by the capacity). As the offshore

wind speed characteristics are different from the onshore ones, we use two differ-

ent time series.31 For onshore wind production, we derive the time series based

on the hourly wind feed-in published by the TSOs (as before, the base for the

model calibration are the years 2006 and 2007). The time series for offshore wind

production is based on wind speed measurements of the FINO project.

31For the comparison done in this section, we use only the existing onshore capacity. Never-
theless, we include the offshore capacity in this description here, to illustrate how representative
wind scenarios for future years used in the investment model are derived.
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Figure 2.11: Capacity factor and corresponding probability for the representative
scenarios.

These two time series of the capacity factor are used for all years within the op-

timization horizon. As one timestep in our model corresponds to two hours, we

calculate the average capacity factor for every two hours for offshore and onshore

wind power. To determine the wind power scenarios for a single year, we multi-

ply both time series with the installed onshore and offshore capacity, respectively.

We combine these two time series and obtain a single time series with the expected

average wind power production for every two hours of the year.

This time series is divided into several clusters. As for the determination of the

average electricity demand, we consider periods of two months. For each of these

periods, we determine the wind power scenarios for each of the twelve daily

timesteps. Note that for the wind power scenarios, it makes no sense to distin-

guish between weekdays and weekends. For each of these typical timesteps, we

have now about 120 different wind scenarios (as the basis for the scenario cre-

ation are two years, we are considering four months, e.g., January and February

2006 and 2007). To select the representative wind power scenarios, we use the fast

forward selection.

The occurrence probability for each (reduced) scenario s is determined based on

the number of non-representative scenarios that are closest to s (compared to the

other representative scenarios). The transition probabilities between the different

timesteps are calculated based on the transitions of all scenarios (the representa-

tive as well as the non-representative scenarios).

Figure 2.11 shows the resulting reduced scenarios and the corresponding proba-

bilities for the year 2009. In Figure 2.11(a), we additionally included the expected

capacity factor. It can be seen that the capacity factor is the highest in the period
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between November and February. Furthermore, the capacity is higher during the

day than during the night.

It is interesting to see that we get quite different representative scenarios com-

pared with Swider and Weber [SW07], who did a scenario selection based on clus-

ter analysis. While our medium scenario is always except once above the expected

capacity factor, the one in [SW07] is always below it. While we get approximately

the same probabilities for the medium and low wind scenario and slightly lower

probabilities for the high wind scenario, the low wind scenario dominates with a

probability of almost 60% in [SW07].

The choice of only three scenarios has been made to reduce the computational

burden. However, one problem specific to the choice of a very small number of

scenarios and the model based on typical days should be mentioned. Due to the

consideration of wind power scenarios from different days used for the same typ-

ical timestep, these scenarios are quite different, as it can be seen in Figure 2.11(a).

As a result, the transition probability between the different timesteps and scenar-

ios, e.g., from the low wind scenario to the medium wind scenario are relatively

low. In most cases, only the “neighboring” scenario can be reached. Sometimes,

the same succeeding scenario is selected (e.g., from low wind to low wind) with

probability 1.

Model Results:

Table 2.5 shows the results obtained by different models for 2008 and January–

July 2009. As the results of the different deterministic models are similar, only one

of the three deterministic models, the weighted model, is shown. The standard

deviation of all model prices is significantly lower than the one observed at the

EEX, and average prices are about 3e/MWh to 4.50e/MWh lower than observed

prices. Besides the general problem of fundamental models (e.g., data inaccuracy),

these deviations are probably also caused the applied simplifications, especially

the simplified representation of uncertainty and the selection of typical days.

Compared with the stochastic models, the deterministic models perform worse.

Standard deviation is smaller, while the MAE and the RMSE are greater. Compar-

ing the three stochastic models, it can be seen that the basic model delivers—as it

can be expected—the lowest average prices. The strict model delivers in 2008 the

most appropriate results except for the average price, which is best approximated

by the weighted model. In 2009, the weighted model delivers the best results for

all examined criteria. While the basic stochastic model performs worse compared
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Det. Stoch. Stoch. Stoch.
EEX Weighted Basic Weighted Strict

2008

Average price 65.76 61.06 61.02 62.22 62.13
Min. price −101.52 37.25 31.01 31.01 31.01
Max. price 494.26 107.65 162.53 169.53 172.87
St. dev. 28.66 14.52 17.20 17.48 17.57
MAE – 12.39 11.01 10.84 10.80
RMSE – 16.48 14.14 13.72 13.62

2009

Average price 39.12 35.68 35.62 36.05 35.88
Min. price −151.92 30.71 21.65 24.18 24.22
Max. price 159.92 58.27 59.51 60.83 60.83
St. dev. 18.00 6.33 6.81 6.93 6.87
MAE – 9.58 8.95 8.90 8.98
RMSE – 13.47 12.50 12.39 12.49

Table 2.5: Model results for 2008 and January–July 2009. All values are given in
e/MWh. MAE and RMSE are calculated based on sorted prices.

with the weighted and the strict stochastic models, the differences are less distinct

compared to those between stochastic and deterministic models.

2.4.5 Conclusion

Compared with LDC models, the advantage of LP models is their ability to con-

sider technical constraints, pumped-storage operation and uncertainties. How-

ever, due to the increased computational burden, simplifications must be made.

These simplifications are one reason for deviations between model prices and EEX

prices. The consideration of some typical days instead of all hours leads to longer

horizontal sections on the LDC and therefore also to longer horizontal sections

on the price–duration curve. The aggregation of units with the same technical

constraints and similar efficiencies has a comparable effect. Several units with

slightly different variable costs are represented by one unit with variable costs

corresponding to the weighted average of the single units.

Figure 2.12 shows the price–duration curves for EEX prices, the stochastic, weigh-

ted LP model, the LDC model and the LDC model with scarcity mark-ups for the



104 CHAPTER 2. FUNDAMENTAL ELECTRICITY MARKET MODELS

 0

 50

 100

 150

 200

 0  1000  2000  3000  4000  5000  6000  7000  8000

E
le

ct
ri

ci
ty

 p
ri

ce
 [

E
U

R
/

M
W

h
]

Duration [h]

EEX LP LDC LDC SMU

Figure 2.12: Price–duration curves 2006.

year 2006.32 Comparing the curves of the LDC model with mark-ups and the LP

model, it can be seen that the LDC curve is smoother. While the LP model approx-

imates the price–duration curve better than the LDC model without adjustments,

the LDC model with scarcity mark-ups performs best. This result can also be seen

by comparing the results of the years 2008 and 2009 shown in Table 2.4 and Ta-

ble 2.5.

Even though the LDC model with scarcity mark-ups performs better and is faster

than the LP model, there are reasons for using the LP model nevertheless. First

of all, the mark-up function used for the LDC model has been derived based on

data of the years 2006 and 2007. While data of 2008 and 2009 was not used for

the function fitting, it is probable that the structure of the electricity market in

these years is similar to the one during the periods used for model calibration.

Even though the adjustment function has been chosen with great care to avoid

problems such as negative contribution margins, it is not clear whether the mark-

up function we use is still pertinent if the structure of the market changes.

Second, using an LP model, carbon prices can be determined endogenously. This

reduces one source of uncertainty, and is—due to the complexity of modeling car-

bon prices—an important feature. Therefore, we use the LP model in the case

study presented in Chapter 5.5 focusing on the profitability of coal units with the

32We depict the values of 2006, as these values demonstrate the differences between the models
the most clearly. The curves for the other years are similar, but the differences are less distinct.
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CCS technology. As the relative long running times of the LP model make an ex-

tensive evaluation of model results impossible, we use for all other case studies in

Chapter 5 the LDC SMU model.

2.5 Summary

In this chapter, we presented three different types of fundamental electricity mar-

ket models, which can be used to determine the contribution margins of new units

for an investment model. These three types of models are the LDC model, the SDC

model, and models based on an MILP or an LP formulation of the electricity mar-

ket.

The advantage of the first two types of models is their low computational burden

compared to LP and MILP models. However, neither of them can consider techni-

cal restrictions of power plants, nor can they consider uncertainty. The difference

between LDC models and SDC models is that LDC models cannot consider price-

elastic demand while SDC models can. In addition, LDC models are based on

the assumption of a constant merit-order curve for the considered period, while

SDC models can use different merit-order curves. As LDC models require less

computations compared to SDC models, we focused more on LDC models in this

chapter.

The effects of the non-consideration of technical restrictions, uncertainty and the

assumption of a constant merit-order curve on electricity prices have been dis-

cussed in detail. In general, the model tends to underestimate prices in times of

high load periods, while it overestimates prices during low load periods. To ac-

count for these effects, we have proposed two different functions to adjust model

prices. The first one should simulate the effect of start-up costs and avoided start-

up costs as well as minim down-time restrictions and minimum up-time restric-

tions. Without changing average prices, we apply linear adjustments depending

on the load relative to the average load. If load is above average load, prices are

increased, while in case of load below average, prices are decreased. The second

function we use is based on the scarcity of supply. In times of scarce supply, mark-

ups are added to the model’s prices.

The advantage of electricity market models based on an MILP or an LP formula-

tion is their ability to consider technical restrictions of plants as well as uncertainty.

In addition, they can be used to determine the carbon price endogenously. How-

ever, due to the detailed description of the electricity market, the computational
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burden of these models is much higher than the one of LDC models and SDC

models. To be able to use an MILP or an LP model for the determination of con-

tribution margins in an investment model, several simplifications must be made.

The exact MILP formulation is often replaced with an LP approximation, which

can be solved faster in general. In addition, units with similar technical restric-

tions are often aggregated to unit groups. Furthermore, instead of considering a

whole year, some typical days are selected for the optimization.

These simplifications make the original MILP formulation inapplicable, a fact that

is often disregarded in literature. The relaxation of the MILP formulation, and also

the aggregation of units to unit groups, requires an adjustment of the minimum

up-time and minimum down-time constraints. We have proposed a formulation,

which is applicable in these cases, and which is also more efficient than the for-

mulation commonly used in literature.

Diverse adjustments—to the best of the author’s knowledge not yet discussed in

literature—that are required due to the use of typical days have been made. These

adjustments concern all intertemporal constraints like start-up constraints, min-

imum up-time constraints, and minimum down-time constraints. It was shown

that it is especially important to adjust the storage constraints to account for differ-

ent frequencies of the representative timesteps. As a result, a much more realistic

storage operation is obtained.

The selection of a few representative days has a further drawback: Depending on

how these representative days are selected, they do not consider extreme scenar-

ios, e.g., days with extreme high load. Due to the non-linearity of the merit-order

curve, prices increase disproportionately strong in case of high load. Disregard-

ing extreme scenarios results in an underestimation of prices. We have proposed a

method to adjust the selected representative load scenarios such that the original

load–duration curve is better approximated.

Besides the deterministic models, an approach based on recombining scenario

trees to consider short-term uncertainties like the feed-in from wind power was

presented. Even though this approach is a simplification of the computationally

intractable stochastic programming formulation based on scenario trees, it deliv-

ers better results than the deterministic models.

In the last section of this chapter, we have compared LDC model prices and LP

model prices with EEX spot prices in 2008 and the first seven months of 2009. It

was shown that the proposed adjustments to the LDC models result in a better

approximation of EEX prices compared to the standard LDC model. While aver-
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age prices are well approximated by the LDC models, the MAE and MRSE are,

especially in 2008, relatively great. However, as the units we consider in our in-

vestment model are at least mid load units, we argue that a good approximation of

average electricity prices is more important than the MAE and the RMSE. Hence,

we conclude that the LDC model is suited as a basis for our investment models.

The comparison of electricity prices obtained by the LDC model with the pro-

posed adjustments with electricity prices obtained by the LP models delivered an

unexpected result: Despite the drawbacks of the LDC model, it approximated ob-

served spot prices better than the LP models. The reason for this result are prob-

ably the simplifications that are required to reduce the running time of the LP

models. Despite these results, LP models are useful for two reasons: first, as LP

models consider technical constraints, they are better suited to adapt to changing

markets, and second, they allow to determine carbon prices endogenously.

For the investment models described in the next two chapters, any of the pre-

sented fundamental electricity market models can be used. Due to its fast running

times and its good approximation of average prices, we use the LDC model with

the proposed adjustments for most of the case studies presented in Chapter 5. For

the case study examining the profitability of CCS units, we opt for the LP model

due to its ability to determine carbon prices endogenously.





Chapter 3

Investment Model Based on

Stochastic Dynamic Programming

In this chapter, we present an SDP formulation of the power generation expansion

problem. Thereby, we model the coal price, the gas price and the carbon price

as stochastic parameters. The contribution margins of the states are determined

by one of the fundamental electricity market models presented in the previous

chapter.

As a straightforward implementation of a normal SDP formulation results in a

computationally intractable problem, we have to apply different techniques to

simplify the problem. A common technique to reduce the complexity of an SDP

problem is aggregation. We use two different forms of aggregation. The first one

is temporal aggregation, a technique which is often used in SDP. Instead of con-

sidering stages of one year, we aggregate four years into a stage. This aggregation

has the advantage that we can consider construction times of new units without

adding extra attributes to a state.

The second form of aggregation is problem specific, and—to the best of the au-

thor’s knowledge—not yet used in literature. Instead of explicitly considering

coal, gas and carbon prices, we use the climate spread, which represents the cost

difference between coal and CCGT units.

The model we propose differs in two points from similar SDP based formulations

of the power plant investment problem (e.g., Jensen and Meibom [JM08], Klein et

al. [Kle+08]). First, we consider investments by competitors. For this purpose, we

propose two different methods to model such investments. One approach is based

on the scarcity of supply, while the other one reflects in addition the expected

profitability of new units.

109
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Secondly, to represent fuel and carbon price uncertainty in an appropriate way,

we use more fuel and carbon price scenarios than similar models in literature.

To be able to handle a great number of different fuel and carbon price scenarios,

we introduce another approach not yet used in this area: adaptive grid methods.

Instead of solving the original problem, we solve an approximated problem con-

sisting of a subset of the state space. This approximated problem is obtained by

placing a grid in the state space. All grid points correspond to the states that are

used for the approximated problem. To obtain a good solution quality, we itera-

tively solve the approximated problem, and then adaptively refine it by adding

some new states.

The refinements we do are based on priorities calculated by a splitting criterion.

We distinguish two kinds of splitting criteria: value-function based criteria and

policy based criteria. While the first ones try to minimize the approximation error,

the latter ones refine the problem around the optimal policy. We present differ-

ent value function based splitting criteria, a policy based one and a combination

of both. It turns out that the combination of both approaches works best in our

problem setting.

While we consider only a subset of the state space, we do not restrict the decision

space. Consequently, we may choose a decision that leads to a non-considered

state. Hence, we need an approximation of the value of non-considered states.

We obtain these approximations by interpolation. For this reason, we refer to

our approach as interpolation-based stochastic dynamic programming (ISDP). We

present and compare two different interpolation methods: multilinear interpola-

tion and simplex-based interpolation. Multilinear interpolation uses more states

for the interpolation than simplex-based interpolation. Hence, multilinear inter-

polation is slower, but yields generally more accurate results. Numerical tests

show that for our problem, the more accurate interpolation results outweigh the

slower running time.

Compared to a normal SDP model, our ISDP approach significantly reduces the

number of considered states. As a consequence, uncertainties can be modeled

in more detail. To be able to compare the performance of both approaches, we

have to use relatively small problems that can also be solved by the normal SDP

approach. Even for these small problems, the ISDP approach is preferable under

certain conditions.

The remainder of this chapter is organized as follows: We start with a general de-

scription of the different parts of an SDP problem, namely the states, the decisions
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and the transitions. Next, we explain how we derive the fuel and carbon price sce-

narios for our model and how they are used to calculate the contribution margins

for the states. Then we describe how we model investment decisions of competi-

tors, before we present in detail the adaptive grid method. Afterwards, we give

an overview of the different steps of the algorithm that we use to solve the prob-

lem, and comment on some design choices and implementation details. Finally,

we evaluate our algorithm and conclude the chapter with a brief summary.

3.1 Problem Representation

In this section, we give a formal description of a straightforward implementation

of the power plant investment problem as an SDP model. Thereby, we model fuel

prices and carbon prices as stochastic parameters. We discuss the representation

for the states, the decisions and the transitions in the SDP problem, and we out-

line how the rewards associated to the states and the costs of the decisions are

determined.

3.1.1 States

An important design decision for the power generation expansion problem is the

choice of an appropriate representation for the dynamic programming formula-

tion. The chosen representation should catch all important characteristics of the

model without being too detailed. An optimal representation rarely exists for real-

world problems. In general, most problems are too complex to be modeled in full

detail.

In the power generation expansion problem, the representation of a state should

be chosen such that the contribution margin of this state can be determined with

as much accuracy as possible. The appropriate description of a state depends on

the way electricity prices, fuel costs and electricity production are modeled. As

we use a fundamental electricity market model to derive these values, an ideal

state representation should contain all relevant input parameters for such a fun-

damental model.

The difficulty is that there are many relevant input parameters: electricity de-

mand, fuel prices, carbon prices, and the power generation fleet. These input pa-

rameters can be grouped into two parts: parameters that depend on the decisions

in the dynamic problem, and parameters that do not depend on these decisions.
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Obviously, parameters of the first group must be modeled as state attributes. In

our problem, the new units belong to this group. Parameters belonging to the

second group only have to be explicitly modeled, if different scenarios for these

parameters should be considered, i.e., if they should be modeled as stochastic pa-

rameters. Because of their high volatility and their important influence on the

contribution margins of new plants, we model the fuel prices and the carbon price

as stochastic parameters. In this subsection, we use a simple example to derive

the state representation that we use in our model. Thereby, we start with a deter-

ministic problem, ignoring the construction times of new units. Next, we add the

construction times to the model, before introducing stochastic fuel prices. Finally,

we add investments of competitors to the problem. As this model is too complex

to be solved, we introduce temporal aggregation to reduce the state space of the

problem. Finally, we outline how the profits associated to a state are determined.

Deterministic State Representation Without Construction Lead Time

We start with a simple model, making several simplifications. First, we assume

that all relevant data is known with certainty. This assumption implies that fuel

prices, carbon prices and electricity demand are known as well as the investment

decisions of competing companies. Second, we assume that new units are avail-

able in the year after the investment decision is taken.

In such a simple model, the states of a stage differ only in the number of new

units. Therefore, it is sufficient to use the number of new units of each type as

state variables. A graphical representation of this problem allowing investments

in one CCGT unit and one coal unit is depicted in Figure 3.1.

For such a simple representation, the state space is manageable. Let U be the set

of all investment alternatives, e.g., U = {CCGT unit, coal unit}. Elements of U are

denoted with u. The number of new units of type u at time t is xu
t . Let xmax,u be

the maximum number of new units of unit type u allowed in the model.

Then the number of states per stage is equal to ∏u (x
max,u + 1). In total, this sums

up to (T − 1) ·∏u (x
max,u + 1) + 1 states,1 with T denoting the optimization hori-

zon in years. Allowing ten new coal units and ten new CCGT units while con-

sidering an optimization horizon of 20 years, this simple formulation leads to 121

states per stage and 2,300 states in total.

1At the first year, there is only one state, therefore we have to use T − 1 instead of T.
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Figure 3.1: A simple dynamic programming representation considering a con-
struction lead time of one year.

Deterministic State Representation Considering Construction Lead Time

One of the unrealistic assumptions in the before mentioned simple example is

the non-consideration of construction and planning times. Typical construction

times of new power plants are two years for new CCGT plants and three years

for new coal plants (Konstantin [Kon08, p. 237]). OECD and IEA [OI05] report

construction times between two to seven years for CCGT units, and between three

to six years for coal units.

To consider construction times, additional attributes must be added to a state for

units that are currently under construction. For each year of construction time be-

yond the first one, an additional attribute for each unit type is required. Changing

the construction time of the problem shown in Figure 3.1 from one year to two

years, we get the problem depicted in Figure 3.2.

The consideration of construction time significantly increases the state space. As-

suming a planning and construction time of four years for coal units and three

years for CCGT units, the total number of states for the before mentioned ten new

coal units and ten new CCGT units is 286,286 per stage.2

2There is no simple formula which can be used to determine the number of states per stage. The

formula ∏u

(
(xmax,u + 1)tconstr

u

)
with tconstr

u being the construction time of unit u forms only a very
loose upper bound for the number of states. This is because there are additional constraints for the
possible values of the attributes. If we allow a maximum number of ten units per type, and ten
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Figure 3.2: A simple dynamic programming representation considering a con-
struction lead time of two years.

Depending on the number of allowed investments, the consideration of construc-

tion times of units makes the problem computationally intractable. There are three

different possibilities to cope with this problem:

• The simplest one is to ignore construction times. This approach is followed

for example by Klein et al. [Kle+08]. The disadvantage of this approach is

that it underestimates the effects of uncertainty. When an investment deci-

sion is taken, the decision maker in the model has more knowledge than in

reality. For example, assume that the construction of a new coal unit with

a construction time of four years should be finished in 2010. Ignoring con-

struction lead time, the decision to build this unit is based on the fuel prices

of 2009 (or 2010, depending on whether units are immediately available or

the next year). In reality, the decision must be taken in 2006, when fuel prices

for the year 2010 are still highly uncertain.

• An alternative approach is to restrict the number of investment possibilities

to a small number such that the state space remains tractable. For example,

coal units have already been built, then the other attributes representing coal units currently under
construction must be zero. For the given example, using the upper bound results in 19,487,171
states per stage.
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Hundt and Sun [HS09] consider a problem where investments in one coal

unit and one CCGT unit are allowed.

• Instead of restricting the number of investment alternatives, one can also

restrict the points in time when investment decisions can be taken. If the

period between two points in time where investment decisions are allowed

is at least as long as the construction time of new units, then no additional

attributes are required. This approach is followed by Botterud [Bot03].

In our opinion, the first approach is too simplistic if the focus of the model lies

on an appropriate consideration of fuel and carbon price uncertainty. The second

approach is well suited for shorter time periods. However, if a longer optimization

horizon is considered, the restriction of the amount of new units to a low number

is not realistic, because a longer optimization horizon requires the replacement of

a greater amount of old units. Hence, we opt for the third approach. As the focus

of our thesis lies on a strategic level, we believe that allowing new investments

only every four years is the least constraining of the presented alternatives.

To implement this approach, we simply extend the period a state covers in our

model. Instead of considering states representing one year, a state in our model

represents four years. This approach is called temporal aggregation. We now

have to distinguish between years and stages in the SDP problem. Therefore, we

introduce the index s, which denotes the stage in the SDP problem.

Stochastic Fuel Prices

The representations presented so far are based on the assumption that all input

data is known with certainty. To account for fuel and carbon price uncertainty,

additional attributes must be added to a state.

There are different possibilities how stochastic fuel prices can be considered. Klein

et al. [Kle+08] define three different scenarios: high prices, normal prices and low

prices. In the high price scenario, all stochastic prices (coal, gas, and carbon) are

assumed to be high. Such scenarios aggregating all stochastic parameters have

the advantage that only one additional state attribute is required.

Though fuel prices are correlated, they are not perfectly correlated. As a conse-

quence, it is more realistic to consider the different prices individually. For each

stochastic price, an additional attribute must be added to a state.
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In the following, we denote the set of stochastic fuel and carbon prices with F .

Elements of F , e.g., coal, gas or carbon are denoted with f . For a better readabil-

ity, we often refer to stochastic fuel prices in the following, instead of stochastic

fuel and carbon prices. The value of the fuel price scenario for fuel f is denoted

with x f .

Consideration of External Investments

In a competitive market, investors behave differently than in a monopoly, where

it can be beneficial to limit the amount of investments to gain higher prices. To

prevent that the considered investor behaves like a monopolist, investments of

competitors have to be considered. There are two different approaches, how in-

vestments of competitors can be considered: they can either be assumed to be

independent of the state in the SDP problem, or they can depend on the state.

The first approach assumes that the investments of competitors are known with

certainty and that the they are independent of the investment decisions of the

considered operator. In this case, these units can be added to the existing power

plant fleet when they are built. As these external investment decisions are fixed,

no new attributes have to be added to a state.

However, this approach is too simplistic. Several simplifying assumptions are

made. First of all, it is assumed that the decisions are independent of fuel prices.

Furthermore, it is assumed that investments of competitors are independent of the

decisions of the considered investor, and hence the total capacity in the market.

Both assumptions are unrealistic and can have strange effects. For example, a

competitor may build completely uncompetitive CCGT units in case of high gas

and low coal prices.

A more realistic alternative is to model investments of competitors depending on

the current state of the problem. There are different possibilities how this can be

done. We present two possible approaches later on in this chapter in Section 3.3.

To be able to model external investments depending on the current state and/or

the current decision, an additional attribute must be added to a state for each type

of new unit that can be built by competitors. As for the attributes representing the

new units built by the considered operator, these attributes count the number of

external new units of each type.
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Representation in our Model

Based on the given descriptions, a state in our model consists of three different

groups of attributes: the number of own new units xuOwn
, the number of new units

built by competitors xuExt
, and the fuel prices x f modeled as stochastic parameters.

Note that xuOwn
, xuExt

, and x f are vectors.

Assuming that we consider investments in CCGT units and coal units, and that we

model the coal price, the gas price, and the carbon price as a stochastic parameter,

then a state x is represented as follows:

x =




xuOwn

xuExt

x f


 =




xCCGT unitOwn

xCoal unitOwn

xCCGT unitExt

xCoal unitExt

xCoal

xGas

xCO2




.

Profits

In Section 1.1.1, we have presented four different markets, on which electricity

generation companies can earn profits: the electricity spot market, the electricity

derivatives market, the reserve market, and the capacity market. In principle, any

of these markets can be considered in our investment model.

However, in this thesis we consider only revenues for the production of electric-

ity. As the electricity prices modeled by our fundamental electricity market model

correspond to spot prices, we only consider the spot market. This choice is moti-

vated as follows: for the investment alternatives we consider, coal units and CCGT

units, revenues obtained for the production of electricity are by far the most im-

portant revenues. Revenues for the supply of control power are more important

for peak load units. As the fundamental electricity market models we use do not

allow an appropriate determination of control power prices, we disregard reserve

markets.3 Capacity markets do not exist in Germany, hence we do not take them

into account in our case studies. Nevertheless, the model can be easily extended

to consider capacity remuneration, as it is done by Botterud [Bot03].

3One possibility to derive control power prices in LP based fundamental electricity market
models would be to take the dual values of the control power restrictions (2.3.1). However, prices
determined this way deviate significantly from observed prices.
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The total reward R(x) of a state corresponds to the discounted sum of rewards

obtained for electricity production RProd
t (x) during each year belonging to the

state. These rewards are calculated by one of our fundamental electricity market

models. In addition, we must consider the fixed costs cFixed(x) of the units. As

fixed costs are irrelevant for the unit commitment, they are not considered by our

fundamental electricity market models. However, they must be taken into account

for the investment decisions. Hence, we have to subtract the fixed costs from the

annual rewards.

As a state consists of several years, all values have to be discounted to the first

year of the state, t1
s . This is done by applying the discount factor β. The total

expected reward for state x is then:

R(x) =
t1
s+Ts−1

∑
t=t1

s

βt−t1
s ·
(

RProd
t (x)− cFixed(x)

)
, (3.1)

with Ts denoting the number of years per stage.

3.1.2 Decisions

The representation of decisions in our SDP model is straightforward. In this sub-

section, we briefly outline how decisions are represented in our model and how

the costs associated to a decision are determined.

Representation

The decision of an investor is the number of new units of each considered type

which he wants to build. To keep the problem computationally tractable, we de-

fine an upper bound for the number of new units of each type that can be built.

Such a limitation is—if the upper bound is not chosen too low—realistic. It can be

interpreted as a regulatory requirement to prevent market power.

As a consequence of the limitation of the maximum number of new units, deci-

sions are state dependent. For example, being already in a state with the max-

imum number of allowed new units, only the decision to build no new units is

possible. We denote the set of possible decisions depending on the state with

Γ(x), while we use a to refer to decisions.4

4In dynamic programming, either d or a is commonly used for decisions. The abbreviation a
stands for action.
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Thereby, a is a vector of dimension equal to the number of different types of new

units that can be built. If investments in coal units and CCGT units are considered,

then a decision has the following representation:

a = (auOwn
) =

(
aCCGT unitOwn

aCoal unitOwn

)
.

Costs

Associated with each decision are the costs for building new units. The invest-

ment costs per unit might depend on the stage. For example, we might use lower

investment costs in later years to represent technological progress. We assume

that the investment costs are known with certainty.

As the time horizon of the optimization problem can be shorter than the useful

life of the new units, the investment costs for the new units are only considered

proportionally. The share of investment costs associated to years considered in the

investment model depends on the chosen depreciation method. We define these

proportional investment costs cInvest(a) of a decision at stage s as:

cInvest(as) = ∑
uOwn


auOwn ·

T

∑
t=t1

s+1

ADV(uOwn, t)


 ,

with ADV(uOwn, t) denoting the annual depreciation value (per unit) depending

on the type of new unit and the year. As we assume that new units are operable at

the first year of the next stage, we just sum up the annual depreciation values for

each unit from the first year of the next stage to the end of the optimization hori-

zon. Then, we multiply this sum by the number of new units of the corresponding

type that are built.

To determine the annual depreciation values, different depreciation methods can

be used. In the following, we briefly outline two popular approaches, the straight-

line depreciation and the sum-of-years’ digits method.

• Straight-line depreciation: The simplest depreciation method is straight-

line depreciation. The straight-line depreciation distributes the investment

costs evenly over the expected useful life of a plant. The annual depreciation

value is calculated as

annual depreciation value =
investment costs - scrap value

life span (years)
.
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Straight-line depreciation is appropriate if generated revenues are approxi-

mately evenly distributed over the life span. For power plants, this assump-

tion is questionable.

During the first years of their operation, new plants are in general more ef-

ficient than most other plants. As time goes by, additional new plants are

built. Due to technological progress, these newer plants are more efficient

than the plants built before. At the same time, older, less efficient plants may

be shut-down. The position of the new plant in the merit–order curve shifts

from the left (where the relative cheap units are located) to the right. As a

consequence, the amount of generated electricity may decrease with time.

This reduced generation tends to result in a lower contribution margin.

• Sum-of-years’ digits depreciation: To consider these effects, a depreciation

method based on decreasing returns can be used. These methods associate

higher costs to early periods. A example for such a method is the sum-of-

years’ digits method.

To determine the annual depreciation value, the sum of the years’ digits is

calculated. For a useful life of 5 years, the sum of digits is 5 + 4 + 3 + 2 +

1 = 15. The relative depreciation value of each year is calculated dividing

the number of remaining years of useful live (including the current year)

by the calculated sum of digits. For the given 5-year example, the relative

depreciation value for the first year is 33.3%, for the second year 26.7%, for

the following years 20.0%, 13.3% and 6.7%.

Figure 3.3 shows relative accumulated depreciation values for straight-line de-

preciation and the sum-of-years’ digits depreciation. Especially for decisions at

the end of the planning horizon (when only few years of the new plants operat-

ing time are considered within the optimization), the choice of the depreciation

method has a great impact. If only the first five years of operation fall into the

planning horizon of our investment problem, the linear depreciation method as-

signs 16.7% of the investment costs to these five years, while the sum-of-years’

digits method considers 30.1% of the costs.

The choice of the depreciation method can be used to reflect the risk-aversion of

an investor. A risk-averse investor would choose a depreciation method with rel-

atively high depreciation values for the first years of operation. A risk-neutral

investor might use a depreciation method with more evenly distributed deprecia-

tion values.
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Figure 3.3: Relative accumulated depreciation values depending on the number of
years of operation for the straight-line depreciation and the sum-of-years’ digits
method.

3.1.3 Transitions

The transitions from one state to another in our SDP problem depend on three

parts: the decision of the considered operator to build new units, the decisions of

competitors to build new units, and the simulated fuel prices. In the following,

we describe the effect of these parts on the transitions to a new state.

• New units built by the considered operator: As the number of years be-

longing to one state is chosen such that the construction time of new units is

equal to or less than this number, new units are immediately available at the

next stage. This part of the transition is deterministic, it only depends on the

decision of the considered operator. For the attributes of a state representing

the number of units built by the considered operator, the transition function

is the following:

xuOwn

s+1 = xuOwn

s + a
uOwn

s .

• New units built by competitors: The number of new units built by competi-

tors is determined by an investment module described in the Section 3.3. Let

us denote the external investment decisions at stage s depending on the cur-

rent state xs and the current decision as with aExt
s (xs, as). Then, the transition

function for the number of external units is

xuExt

s+1 = xuExt

s + auExt

s (xs, as).

Note that we assume that the investments by competitors depend on the

current state as well as the current decision of the considered operator.
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• Fuel prices: The transition from one fuel price scenario to another is stochas-

tic in our model. We denote the transition probability from fuel price sce-

nario x
f
s to scenario x

f
s+1 P(x

f
s+1
′ | x

f
s ). In the next section, we describe how

we derive these transition probabilities.

3.2 Representation of Fuel Price Uncertainty

In the previous section, we gave a general description of the SDP representation

that we use. While we described how stochastic fuel and carbon prices are consid-

ered, we did not explicitly specify, how we model these prices. In this section, we

describe how we use a Monte Carlo simulation of fuel and carbon prices to derive

different scenarios for our SDP model.

There are basically two possibilities how fuel and carbon prices can be modeled.

Either one defines a set of scenarios, e.g., low, medium, high, based on assump-

tions of future prices, or one simulates fuel prices as a stochastic process, and

selects some representative scenarios. The first approach is followed for example

by Jensen and Meibom [JM08] and Klein et al. [Kle+08], the latter one is used by

Hundt and Sun [HS09]. After the simulation of fuel prices, Hundt and Sun use a

scenario reduction method to select some representative fuel prices.

While we also use a Monte Carlo simulation of fuel prices, our approach is slightly

different from the one followed in [HS09]. For every state, we define an interval for

each stochastic fuel price that should be represented by the state. These intervals

are based on the fuel prices of the first year of each stage and correspond to the fuel

price scenarios x f used for the states in our SDP model.5 While we use intervals

of 1 e/MWh for fuel prices and 1 e/t for carbon prices, the exact size and the

number of intervals might also be chosen differently. For our representation, an

example for a state representation is:

x f =




xCoal

xGas

xCO2


 =




[8.50; 9.50)

[16.50; 17.50)

[21.50; 22.50)


 .

To determine the probabilities of a state, we use a Monte Carlo simulation to gen-

erate a great number, e.g., 50,000, of fuel price paths for the whole optimization

5Note that we have to define states by the values of the first year of the stage, as the information
of the following years is not yet available (e.g., the fuel price development). Therefore, we cannot
use for example average fuel prices to characterize a state.



3.2. REPRESENTATION OF FUEL AND CARBON PRICE UNCERTAINTY 123

horizon. We can use any stochastic process that is Markovian for the simulation.

In our tests we either use a GBM or a trended mean-reverting process.

The simulated fuel price scenarios are then mapped to the corresponding states.

For example, the simulated fuel prices (8.52, 17.24, 22.50)T would be mapped to

the previously given state, as well as the scenario (9.43, 16.84, 21.57)T. Based on

the mapping of the simulated fuel price scenarios to the states, we can determine

the transition probabilities between the states in our SDP model.

Let I(x f
s ) be the set of the indices of all scenarios that are mapped to x

f
s , where s

denotes the stage of the considered state. Then, we can determine the transition

probability from x
f
s to x

f
s+1
′ as the number of scenarios that belong to both x

f
s and

x
f
s+1
′ divided by the total number of scenarios belonging to x

f
s :

P(x
f
s+1
′ | x

f
s ) =

|I(x f
s ) ∩ I(x f

s+1
′)|

|I(x f
s )|

.

Based on this representation of fuel price uncertainty, a state is not characterized

by one fuel price scenario as it is usually the case, but it represents possibly many

different scenarios. Hence, the question arises how the contribution margin for a

state is calculated. A consideration of all fuel price scenarios is computationally

intractable, while a determination of contribution margins based on average fuel

prices does not necessarily yield accurate results. This problem is mainly caused

by the introduction of temporal aggregation. While for the first year of a state,

fuel prices are within the relatively small interval, fuel prices evolve stochastically

during the following years of a state. Especially during the last years of a state,

the fuel price intervals get quite large and make a determination of contribution

margins based on average fuel prices inappropriate.

Another issue of the chosen representation is that the choice of small fuel price

intervals results in many different fuel price scenarios, and hence significantly

increases the state space of our problem.

In the following parts of this section, we address these two issues. We first propose

a method to reduce the number of fuel price scenarios considered in the SDP prob-

lem. For this purpose, we aggregate the three different stochastic prices, namely

the gas, the coal and the carbon price, into one single measure based on the cost

difference between CCGT units and coal units. Next, we illustrate the difficulties

related to the determination of the contribution margin of a state with a simple

example. To account for these difficulties, we select for every state several repre-
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sentative fuel price scenarios that are used to determine the expected contribution

margin of a state.

3.2.1 Aggregation of Fuel Price Scenarios

Despite the temporal aggregation, the state space of the problem might still be too

huge, depending on the chosen parameters like the number of new units or the op-

timization horizon. If an LP-based fundamental electricity market model is used

to determine the contribution margins, then even relatively small state spaces can

cause very long running times of the model. For that reason, we propose a sec-

ond form of aggregation based on aggregation fuel prices. Instead of considering

stochastic coal, gas and carbon prices explicitly for the state representation, we

might use the resulting cost difference between coal units and CCGT units as a

state attribute. We refer to this cost difference as climate spread.

Let us briefly motivate this choice, before we define how we calculate the cli-

mate spread. With the investment model described in this thesis, we focus on a

comparison between new coal units and new CCGT units. The unit commitment

determined by our fundamental electricity market model depends mainly on the

variable costs of a unit compared to other units, not on the absolute costs of a

unit. The (conventional) units with the lowest variable costs are nuclear plants,

followed by lignite units. Based on current fuel prices, coal units come next, while

gas-fired units have the highest variable costs (besides the few oil units). How-

ever, depending on the future fuel price development, especially the rank order

between coal units and CCGT units might change. Such a change—and the re-

sulting differences in the electricity production—can be captured by the climate

spread.

Before we define the climate spread, two other indicators must be introduced,

the clean dark spread (CDS) and the clean spark spread (CSS) (see Caisse des Dépôts

[Cai07]). The CDS is the revenue generated by selling power produced by coal

units subtracting fuel and carbon costs. Formally defined, the CDS is

CDS = pElec − (cCoal/ηCoal + cCO2 · FECoal).

Thereby, pElec denotes the electricity price, cCoal the coal price, cCO2 the carbon

price, ηCoal the efficiency of a coal unit and FECoal the CO2 emission factor of a

coal unit (in t CO2/MWh).
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Figure 3.4: Contribution margins of a new CCGT unit and a new coal unit in 2008
depending on different fuel prices and carbon prices.

The CSS is the analogous indicator for CCGT units, defined as

CSS = pElec − (cGas/ηGas + cCO2 · FEGas).

We can now define the climate spread CS as difference between the CDS and the

CSS. In addition, we account for operation and maintenance costs, which are as-

sumed to be variable costs depending on the electricity production in our model.

Then, the climate spread is

CS = (CDS− cO&M,Coal)− (CSS− cO&M,Gas).

Following this definition, the climate spread corresponds to the difference in vari-

able costs between coal units and CCGT units. If its value is positive, electricity

generated by coal units is cheaper. If the value is negative, CCGT units are more

competitive. Coal units will produce more electricity in case of a positive climate

spread. Consequently, revenue generated under positive climate spread tends to

be higher for coal units than under negative climate spread.

Note that the CDS as well as the CSS depend on the assumed efficiencies ηCoal and

ηGas for coal and CCGT units. In [Cai07], an efficiency of 40% for coal units and

55% for CCGT units is used. We do not adopt these values, but use the efficiencies

of new units (the chosen values are described in Section 5.1).

Figure 3.4 shows the contribution margin of a new coal unit and a new CCGT

unit for different fuel and carbon prices in 2008. To derive these values, the LDC

model with piecewise-linear adjustments (described in Section 2.1) was used. We

took the average fuel prices of 2008, and varied the coal price, the gas price, and
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the carbon price within an interval of ±50% of their original value. Increments of

5% of the respective prices have been made independently of the other prices.

Two things should be retained from Figure 3.4. First, contribution margins are

highly correlated with climate spreads. Average correlation values for 2008 and

2009 are -0.94 for CCGT units and 0.93 for coal units. These values are significantly

higher than the correlation with fuel prices or carbon prices.

However, despite the high correlation, representing the contribution margin of a

climate spread value with a single value is clearly a simplification. The interval

in which a contribution margin lies for a fixed climate spread is relatively wide.

To account for this problem, we use several representative fuel price scenarios to

determine the contribution margin of a state represented by the climate spread.

This approach is described later on in this section.

3.2.2 Difficulties Caused by Temporal Aggregation

While temporal aggregation helps us to significantly reduce the state space, it

causes some problems concerning the determination of contribution margins. The

reason is that the fuel price scenarios represented by a state can develop differ-

ently during the years belonging to the state. If fuel prices vary only within a

small interval, resulting deviations in contribution margins are relatively modest.

Consequently, the expected contribution margin for all fuel prices within such a

small interval might be approximated by the contribution margin obtained with

average fuel prices. If fuel price intervals get larger, contribution margins may

vary significantly. Due to the non-linear relationship between fuel prices and con-

tribution margins, the contribution margin of average fuel prices does in general

not correspond to the average contribution margin considering all fuel price sce-

narios of a state.

Figure 3.5 illustrates this problem. Figure 3.5(a) shows the results of 1,000 coal

price simulations (all other parameters have been fixed). In the first year, coal

prices are within the interval [8.5 e/MWh, 9.5 e/MWh). In the forth year, coal

prices vary between 3.42 e/MWh and 18.45 e/MWh.

Figure 3.5(b) depicts the resulting contribution margins for one coal unit and one

CCGT unit (the contribution margins of both units are summed up). During the

first year, the contribution margins are between 82 and 91 million e. In the forth

year, the interval grows to 65–199 million e.
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(b) Contribution margins.

Figure 3.5: Boxplot chart for 1,000 coal price simulations and corresponding con-
tribution margins for one coal and one CCGT unit. Bottom and top of the box are
the lower and upper quartiles, the ends of the whiskers correspond to minimum
and maximum values.

The variance and the skewness of both—coal price and contribution margin—

distributions increase with time. In the first year, the contribution margin of av-

erage coal prices as well as the average contribution margin (of all coal price sce-

narios) are 86 million e. In the forth year, the contribution margin of average coal

prices is 88 million e, while the average contribution margin of all coal price sce-

narios is 95 million e. These deviations get even greater, if we do not fix other fuel

prices as it was done for the ease of simplicity in this example.

Due to this problem, the determination of the expected contribution margin for a

state based on average fuel prices does not deliver accurate results. For this rea-

son, we select several representative fuel prices to calculate the expected contribu-

tion margin. The way we determine these representative fuel prices is described

in the following subsection.

3.2.3 Choice of Representative Fuel Prices

The computation of the contribution margins for all simulated fuel price scenarios

is computational intractable. Consequently, we have to select some representative

scenarios for each year of a stage. For this purpose, we use the fast forward selection,

a popular method in stochastic programming to select representative scenarios.

Before we can apply the fast forward selection, we have to answer two questions:

• Should the simulated prices for the different fuels (coal, gas) and carbon be

treated together or independently?
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Simulation run Gas price Coal price Carbon price
[e/MWh] [e/MWh] [e/t]

1 20 8 20
2 16 7 21
3 17 6 16

Table 3.1: Example of fuel price simulations used to illustrate different possibilities
to select representative fuel prices.

• Should the simulated fuel and carbon prices be treated as complete time

series, or can we consider each year independently?

In the following, we first discuss these two questions. Then, we define a dis-

tance metric, which we use for the selection of representative scenarios. Next, we

present the algorithm that we use to select these scenarios based on an explicit rep-

resentation of fuel prices. Finally, we briefly outline how the algorithm is adjusted

if the climate spread is used instead.

3.2.3.1 Treatment of Different Fuels

The question we face here is whether we can reduce the simulated prices for the

different fuels and the carbon price independently of each other. Let us first illus-

trate the problem with a simple example.

Example. Assume that there are three different fuel price simulations as shown in Ta-

ble 3.1. Selecting a representative scenario for each fuel (and carbon) separately, we would

select for each fuel the scenario that lies between the two other scenarios. The result is a

gas price of 17 e/MWh, a coal price of 7 e/MWh, and a carbon price of 20 e/t.

If we consider the coal price, the gas price and the carbon price together, this solution is

not feasible as the prices do not belong to the same simulation run. To be able to select

representative scenarios, we need a distance metric to determine the distances between the

fuel price scenarios of the different simulation runs. Assume that we use the Manhattan

distance as distance metric. Then, we would choose the second simulation run. Note that

this choice results in a worse approximation of the gas price and the carbon price in this

example.

Considering different types of fuels and carbon together reduces the degrees of

freedom for the scenario selection. The set of scenarios that can be chosen is a

subset of the set of scenarios that can be chosen considering each fuel and carbon
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separately. Consequently, the solution of a combined consideration cannot be a

better representation of the fuel prices than a separate consideration.

Nevertheless, we argue that different fuels and carbon must be considered to-

gether for the selection of representative scenarios. There are two reasons for this.

First, our true objective is to find a good approximation of the expected contribu-

tion margin, not of the fuel prices. The contribution margin of a state is obtained

by optimizing the power market operation. This power market operation depends

on the value of all fuel prices as well as the carbon price.

Secondly, fuel prices are correlated.6 If gas prices are high, coal prices tend to

be also high. If we select representative fuel prices independently, we lose this

relationship between the different fuel prices. Therefore, we consider complete

fuel price scenarios consisting of prices of all fuels and the carbon price for the

selection of representative scenarios.

3.2.3.2 Treatment of Different Years

The second decision to take is whether complete time-series should be treated

together. If complete time-series are treated together, the selected scenarios of the

different years of a state must belong to the same simulation run, e.g., if fuel price

scenario 4 is selected for the second year of the stage, it must also be selected for

the other years. If we do not consider complete time-series, we may choose for

example fuel price scenario 4 for the second year, and scenario 8 for the third year.

Considering complete time-series may be appropriate when current fuel prices

have an important impact on future fuel prices. This is especially the case, if there

is a lagged correlation in prices (as it can be observed between gas and oil prices

for example). However, we do not consider such lagged correlations.

While the fuel price for the next year depends on the current price,7 we do not

think that this argument is strong enough to consider complete time-series to-

gether. Power market operation in year t + 1 is independent of the power market

operation in year t in our model. As a consequence, fuel prices in year t have

no impact on the power market operation in year t + 1. Hence, the problem of

approximating the contribution margins of a complete state can be divided into

approximating the contribution margins of each year separately. Treating each

6See, e.g., Weber [Web05, p. 58]
7This holds for GBMs and mean-reverting processes, two stochastic processes commonly used

to simulate fuel prices. Other stochastic processes like ARMA models for example, may use a
longer price history. As we use either a (correlated) GBM or a (correlated) mean-reverting process,
we do not consider processes relying on a longer price history.
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year independently of the others allows for a better approximation, as the deci-

sion space for considering all time-series together is a proper subset of the decision

space for treating each year separately.

3.2.3.3 Distance Metric

As we consider the different fuel prices of a year together for the scenario selec-

tion, a distance metric for fuel price scenarios has to be defined. A simple possibil-

ity would be to use the Manhattan distance or the Euclidean distance. However,

the application of one of these distance metrics without any adjustments has an

important drawback in our opinion.

As already pointed out, our objective is to find a good approximation of the contri-

bution margins for a state. The impact of the different fuel prices on the contribu-

tion margin depends on many factors and cannot be exactly predicted. However,

the influence of the coal price, the gas price and the carbon price is not the same.

This is due to the different units of fuel and carbon prices as well as the different

efficiency of CCGT units and coal units.

Consider the case of coal units: An average coal unit with an efficiency of 40%

requires 2.5 MWh of coal to produce 1 MWh electricity. Thereby, it emits about

0.86 t of CO2. The fuel price has a stronger impact on costs compared to the carbon

price. Using a distance metric without adjustments does not consider the different

impact these prices have on the costs of a unit, and with it on the contribution

margin.

We propose to consider these differences in the definition of the fuel price dis-

tance function. However, as the efficiencies and the emissions factor of units

differ, the choice of the adjustment weights is not obvious. The values we use

are based on average efficiencies taken from Caisse des Dépôts [Cai07]. The av-

erage efficiency of coal units is assumed to be 0.4, those of CCGT units 0.55. To

adjust carbon prices, we take the average of the emission factor for CCGT units

(0.36 t CO2/MWh) and the one of coal units (0.86 t CO2/MWh). With these val-

ues, we define the distance D(cFuel
a , cFuel

b ) between fuel price scenarios cFuel
a and

cFuel
b as:

D(cFuel
a , cFuel

b ) :=
√√√√
(
(cCoal

a − cCoal
b )

0.4

)2

+

(
(cGas

a − cGas
b )

0.55

)2

+
(
(cCO2

a − cCO2
b ) · 0.61

)2
. (3.2)
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3.2.3.4 Algorithm

We use Algorithm 1 (which is based on the fast forward selection as described

e.g., by Gröwe-Kuska et al. [GK+03]) to determine the representative fuel price

scenarios for each state. Note that if two states xa and xb differ only in the number

of new units xu, but not in the fuel price scenarios x f , then we do run Algorithm 1

only once.

Let us briefly comment the algorithm. To select representative fuel prices for a

state, we consider all fuel price scenarios associated to this state, CFuel(x). For

each year of the state, the algorithm iteratively selects a fuel price scenario, until

the predefined number of selected scenarios per year, R, is reached.

We start by setting the set of non-selected scenarios CFuel,NonRep
t (x) for the current

year equal to the set of all fuel price scenarios for this year (line 2). The set of se-

lected fuel price scenarios CFuel,Rep
t (x) is empty at the beginning of the algorithm

(line 3). At each iteration, a fuel price scenario cFuel
s is selected such that it mini-

mizes the weighted sum of the distance between all non-selected scenarios to one

of the already selected scenarios or to cFuel
s (lines 10, 21).

We define d(cFuel
j , cFuel

i ) as the minimum distance between scenario cFuel
j and a

scenario of the set of selected scenarios or scenario cFuel
i . During the first iteration,

d(cFuel
j , cFuel

i ) corresponds to the distance between cFuel
i and cFuel

j (line 6), as the set

of selected scenarios is empty.

Then we calculate for each non-selected scenario cFuel
i the weighted sum of mini-

mum distances from all non-selected scenarios to one of the selected scenarios or

cFuel
i (line 8). Thereby, P(cFuel

j ) denotes the occurrence probability for fuel price

scenario cFuel
j . The sum of weighted distances, zcFuel

i
, corresponds the sum of min-

imum distances between all non-selected scenarios and all selected scenarios un-

der the assumption that cFuel
i is added to the selected scenarios.

Next, we select the scenario with the minimum sum of weighted distances (line

10), remove this scenario from the set of non-selected scenarios (line 11) and add

it to the set of selected scenarios (line 12).

In the subsequent iterations, we only have to adjust d(cFuel
j , cFuel

i ). If the scenario

chosen during the last iteration, cFuel
sr−1

, is closer to cFuel
j than any of the previously

chosen scenarios and cFuel
i , then d(cFuel

j , cFuel
i ) is updated with the distance be-

tween cFuel
j and cFuel

sr−1
. The other steps (line 19 - 23) are the same as the ones in the

first iteration.
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Algorithm 1 Fast forward selection of representative fuel price scenarios

1: for t = t1
s to t1

s + Ts do

2: CFuel,NonRep
t (x) := CFuel

t (x)

3: CFuel,Rep
t (x) = ∅

4: for all cFuel
i ∈ CFuel,NonRep

t (x) do

5: for all cFuel
j ∈ CFuel,NonRep

t (x) do

6: d(cFuel
j , cFuel

i )[1] := D(cFuel
j , cFuel

i )

7: end for
8: z

[1]
cFuel

i

:= ∑

cFuel
j ∈CFuel,NonRep

t (x)

P(cFuel
j ) · d(cFuel

j , cFuel
i )[1]

9: end for
10: cFuel

s1
= argmin

cFuel
i ∈CFuel,NonRep

t (x)

z
[1]
cFuel

i

11: CFuel,NonRep
t (x) = CFuel,NonRep

t (x) \ {cFuel
s1
}

12: CFuel,Rep
t (x) = CFuel,Rep

t (x) ∪ {cFuel
s1
}

13:
14: for r = 2 to R do
15: for all cFuel

i ∈ CFuel,NonRep
t (x) do

16: for all cFuel
j ∈ CFuel,NonRep

t (x) do

17: d(cFuel
j , cFuel

i )[r] := min
(

d(cFuel
j , cFuel

i )[r−1], d(cFuel
j , cFuel

sr−1
)[r−1]

)

18: end for
19: z

[r]

cFuel
i

:= ∑

cFuel
j ∈CFuel,NonRep

t (x)

P(cFuel
j ) · d(cFuel

i , cFuel
j )[r]

20: end for
21: cFuel

sr
= argmin

cFuel
i ∈CFuel,NonRep

t (x)

z
[r]

cFuel
i

22: CFuel,NonRep
t (x) = CFuel,NonRep

t (x) \ {cFuel
sr
}

23: CFuel,Rep
t (x) = CFuel,Rep

t (x) ∪ {cFuel
sr
}

24: end for
25: end for
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3.2.3.5 State Representation Based on the Climate Spread

The algorithm just described is based on the assumption of an explicit representa-

tion of the stochastic fuel prices. If we use the climate spread to reduce the prob-

lem’s dimension, the choice of the representative fuel price scenarios deviates a

little bit from the approach outlined before. In principle, we also use Algorithm 1

to select representative climate spread scenarios for each year of the stage. But

instead of using the distance metric defined in equation (3.2), we take the absolute

difference between two climate spreads values (e.g., for climate spread values of

2.3 and 3.7, we use 1.4 as distance, independent of the concrete fuel prices associ-

ated to these climate spreads).

While the use of the climate spread helps us to reduce the complexity of the prob-

lem by decreasing the dimensionality, it has its drawbacks. As we have seen in

Figure 3.4 on page 125, the same climate spread values obtained with different

fuel prices can result in different contribution margins. To account for these prob-

lems, we do not only use one fuel price scenario per representative climate spread.

Instead, we use Algorithm 1 to select several (for example three or five) represen-

tative fuel price scenarios for each representative climate spread scenario. Note

that in line 2 of the algorithm, we replace the set of all fuel prices associated to

state x with the subset of all fuel prices with the selected climate spread associ-

ated to state x.

3.2.4 Determination of Contribution Margins

The selected representative fuel price scenarios are used in our fundamental elec-

tricity market model to determine the corresponding contribution margins of the

new units. To consider also the other, non-selected fuel price scenarios, we inter-

polate the contribution margins of these scenarios.

Thereby, we distinguish two cases: If we use the climate spread, we linearly in-

terpolate the contribution margin for a non-selected fuel price scenario by its two

nearest neighbors. We opt for the linear interpolation due to its low computational

burden.

If we do not use the climate spread, the problem is more complicated. Assuming

that we have at least two stochastic parameters (e.g., the gas price and the coal

price), the identification of the nearest neighbors of a fuel price scenario is more

complex than in the one-dimensional case. Under these circumstances, we use
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a kernel regression to estimate the contribution margin for the non-selected fuel

prices.

Kernel regression is a non-parametric technique that estimates the value of a query

point based on the known values of points in the neighborhood of the query point.

The weight of each known value in the neighborhood of the query point is deter-

mined by the Kernel function. Note that Kernel regression requires us to find

the nearest neighbors of the query point. Therefore, it is slower than a linear re-

gression, but its results are in general more accurate. An introduction to kernel

regression is given, e.g., by Härdle [Här92].

To estimate the contribution margins of the non-selected fuel price scenarios, we

use a Nadaraya-Watson kernel regression (Nadaraya [Nad64], Watson [Wat64]):

R̃Prod(x, cFuel, t) =

∑

cFuel
r ∈CFuel,Rep

t (x)

(
K
(

D(cFuel,cFuel
r )

h

)
· RProd(xu, cFuel

r , t)
)

∑

cFuel
r ∈CFuel,Rep

t (x)

K
(

D(cFuel,cFuel
r )

h

) ,

with RProd(xu, cFuel
r , t) denoting the calculated contribution margin for the repre-

sentative fuel prices. To determine the weights of the representative fuel prices,

we use the Epanechnikov kernel as Kernel function K(u). The Epanechnikov ker-

nel is defined as

K(u) =
3
4
· (1− u2) · 1[|u|<1].

The parameter h is the kernel bandwidth. The smaller the parameter h, the less

points are used for the estimation, as more points get a weight of 0.

Based on the contribution margins of the representative fuel prices and the inter-

polated contribution margins, we determine the expected contribution for state x

in year t as:

RProd
t (x) = ∑

cFuel∈CFuel,Rep
t (x)

(
P(cFuel | x, t) · RProd(xu, cFuel, t)

)

+ ∑
cFuel∈CFuel,NonRep

t (x)

(
P(cFuel | x, t) · R̃Prod(xu, cFuel, t)

)
.

Thereby, P(cFuel | x, t) denotes the conditional probability for fuel price scenario

cFuel in year t and state x. The contribution margins calculated by the fundamental

electricity market model are denoted with RProd(xu, cFuel, t), the interpolated ones

are R̃Prod(xu, cFuel, t).
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3.3 Investments of Competitors

An important, but difficult task in an SDP based investment model is the inclu-

sion of competitors. Most other SDP based models either ignore the problem of

competitors or circumvent it by taking a centralized point of view, optimizing the

power generation expansion for the whole market.

Botterud [Bot03] introduces an electricity price cap in his model which he justifies

as the effect of new investments by competitors. This approach has the advan-

tage that it does not introduce additional complexity by increasing the state space.

However, it has two drawbacks. First, the price cap constitutes only a rough ap-

proximation of the effect of new units. Secondly, it has only an effect when prices

are high. If—for example due to decreasing fuel prices—electricity prices drop

again, the price cap does no longer influence electricity prices. In reality, if new

units are built, their influence on the market persists.

In this section, we propose two different approaches how investments of com-

petitors can be considered in our model. The first approach is simply based on

the difference between the electricity supply and the maximum annual load. The

second approach considers the expected profitability of new plants.

For both approaches, we assume that the investment decisions by competitors are

taken after the considered operator has made his decision. New units built by

competitors are operable at the beginning of the next stage, e.g., if investments

are triggered during stage one, the new units are added to the power generation

fleet at the first year of stage two. For the sake of simplicity, we assume in the

following that new coal units and CCGT units have the same capacity. The model

can be easily adopted to different capacities.

3.3.1 Investments Based on Shortage of Supply

When electricity demand exceeds electricity supply, electricity prices reach ex-

treme peaks. During these times, the normal, marginal cost based mechanism

to determine electricity prices ceases to be valid. Under these circumstances, the

electricity price depends on the willingness to pay of the demand side, which

corresponds to the VoLL. In our electricity market models, we set the VoLL to

2,000 e/MWh.

Such price peaks are considered as necessary investment incentives in literature.

In a competitive market, investments are stimulated by such extreme prices. In a

monopoly though, the opposite may be the case. The monopolist may try to limit
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the supply to obtain these extreme high prices. If we do not consider investments

of competitors, we can observe such a behavior in our model. The considered op-

erator will build just a few plants to profit from these high prices, but not enough

to satisfy the demand.

To avoid such a scenario, we may model investments by competitors based on the

scarcity of supply. Thereby, two decisions must be taken: the number of new units

that are built by competitors must be determined, and the type of new unit must

be selected.

3.3.1.1 Determination of the Number of New Units

In the approach based on the scarcity of supply, we decide on new investments

such that for every year the available capacity is greater or equal to the maximum

demand plus a predefined margin. Formally written, we determine the total num-

ber of new units nTotal
s as

nTotal
s (xs, as) = max

(
0; ⌈max

t∈Ts+1

(
(peak loadt + margin)− supplyt(xs, as)

capacity per unit

)
⌉
)

.

(3.3)

Thereby, we denote the set of years belonging to stage s + 1 with Ts+1. Note that

the number of new units is based on the maximum difference between the peak

load plus the margin and the supply occurring during one of the years belonging

to the next stage.

The margin can be used to simulate different degrees of competition in the market.

Using a low value (or even negative) for this margin can be interpreted as a market

with a low degree of competition. For a high value, the inverse is the case.

It is important to note that investments based on equation (3.3) are different from

a predefined, fixed investment schedule. As we assume that the considered op-

erator takes its decision first, investments by competitors are only carried out, if

the considered operator does not invest sufficiently. This is ensured by equation

(3.3) as the capacity of new units built by the considered operator is added to the

supply in the following years.

3.3.1.2 Determination of the Type of New Units

Besides the amount of new units, we have to decide on what type of new units

should be built. One possibility would be to build the same number of CCGT

units and coal units. However, such a behavior is not be very realistic. In case of a
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positive climate spread, one might prefer coal units, while for a negative climate

spread, CCGT units are more attractive.

To take these considerations into account, we use the observed CDSs and CSSs

to select how many units of each type are built. Remember that the CDS and the

CSS correspond to the difference between the electricity price and the variable

costs for coal units and the electricity price and the variable costs of CCGT units,

respectively.

In our SDP problem, there are different paths—corresponding amongst others to

different fuel price scenarios—through which a state can be reached. As the ob-

served CDSs and CSSs depend on the realized path, we cannot use the values of

previous stages.

We might use the average CDS and CSS of the current state to decide what kind

of units are built. However, as we assume that new units are ready for operation

at the first year of the next stage, the construction of the new units must be started

before all CDSs and CSSs of the current state are observed. Therefore, we use only

the CDS and CSS of the first year of the current state to determine the number of

new units of each type.

A drawback of the CDS and CSS is that they consider only variable costs. Invest-

ment costs or other fixed costs are not considered. To account for these costs, we

calculate a threshold value for the CDS and CSS that must be exceeded to cover

these costs. Then, we determine the relative profitability of CCGT units and coal

units as the ratio between the observed CDS respectively CSS and the calculated

threshold values.

To determine these threshold values, we have to make several simplifying as-

sumptions. First, we assume that a new unit generates constant contribution

margins during each year of operation. This allows us to calculate the annual

contribution margin R′Prod required to cover investment costs cInvest as

R′Prod !
=

cInvest

an|i
.

Thereby, an|i denotes the annuity factor,8 which is calculated as

an|i =
1
i
− 1

i · (1 + i)n
,

8An introduction to the concept of annuities including the derivation of the formula for the
annuity factor can be found in most finance textbooks, e.g., Brealey et al. [Bre+07].
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Unit CCGT Coal

Capacity MW 1,000 1,000
Investment costs Me 500 1,000
Useful life a 25 35
Required annual contribution margin Me 42.9 77.2
Annual fixed costs Me 15 20
Full load hours h/a 5,000 5,500
Threshold value e/MWh 11.58 17.67

Table 3.2: Determination of threshold values for external investments based on an
interest rate of 0.07. Sources: DEWI et al. [DEW+05], Konstantin [Kon08], own
calculations.

with i denoting the risk free interest rate, and n the useful life of the new unit.

To be able to determine a threshold value for the CDS and the CSS, respectively,

we further need to make assumptions about the number of full load hours, tFL.

Based on the required annual contribution margins, the annual fixed costs and the

number of full load hours, we can determine the threshold value for the CDS as

CDSThreshold =

R′Prod
coal +cFixed

coal
pmax

coal

tFL
coal

, (3.4)

where pmax
coal denotes the capacity of a new coal unit. The threshold value for the

CSS is calculated correspondingly as

CSSThreshold =

R′Prod
gas +cFixed

gas
pmax

gas

tFL
gas

, (3.5)

where pmax
gas corresponds to the capacity of a new CCGT unit. Table 3.2 shows

possible threshold values.

To determine the number of new units of each type, we divide the observed an-

nual CSS during the first year of the stage, CSSt1
s
(xs), and the observed annual

CDS during the first year of the stage, CDSt1
s
(xs), by the corresponding threshold

value:

γCCGT(xs) =
CSS

t1s
(xs)

CSSThreshold ,

γcoal(xs) =
CDS

t1s
(xs)

CDSThreshold .

Note that for the ease of simplicity, we use the average annual electricity price to
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determine the spread values. Considering only the hours in which a unit operates

to determine the spread values would result in higher spreads (as a unit tends to

be shut-down during periods of lower electricity prices). As the determination of

spreads based on the operating hours is more complicated, and because the usage

of the average annual electricity price has similar effects on both spreads, we use

the average annual electricity price to determine the spread values.

The value of γ is an indicator of the profitability of new CCGT units and new coal

units, respectively. If γ is greater than one, investments in new CCGT units are

profitable under the assumption that the future contribution margins correspond

to the one on which the calculation of the threshold value is based. If the value is

between 0 and 1, the unit is only able to recover a part of the investment costs. A

negative value would signify that a unit is even not able to cover any part of the

investment costs.

The assumption of constant contribution margins for the whole useful life of a

unit is obviously not realistic. Therefore, we do not only select the more profitable

unit type, but use the ratio of the calculated γ to select the number of new units.

Formally defined, we determine the number of new CCGT units nCCGT
s as

nCCGT
s (xs, as) = Round

(
nTotal

s (xs, as) ·
γCCGT+(xs)

γCCGT+(xs) + γcoal+(xs)

)
. (3.6)

Note that we have to use γ+, the maximum of γ and 0, to avoid that the number

of units of a type gets negative. The number of new coal units nCoal
s is calculated

as

nCoal
s (xs, as) = nTotal

s (xs, as)− nCCGT
s (xs, as). (3.7)

The investment decision of competitors is then

auExt

s (xs, as) =

(
nCCGT

s (xs, as)

nCoal
s (xs, as)

)
.

3.3.2 Investments Based on Expected Profitability

The investment rule presented in the previous subsection can be used to avoid that

the considered operator exploits the VoLL to generate extreme profits. But still,

even if there is enough capacity to satisfy demand, there might be situations in

which the considered operator has an incentive to invest much less than it would

be the case in a competitive market.
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Such a situation can occur for example, if the fuel price development is favorable

for one technology. Under such circumstances, electricity produced by the unfa-

vorable technology gets very expensive. In a competitive market, investments in

the cheaper technology will take place. In our model with investments by com-

petitors solely based on missing capacity, it might be profitable for the considered

operator not to invest in too many units with the cheaper technology, as this re-

duces electricity prices.

Such a behavior can be avoided, if the investments of competitors are based on

the expected profitability of new units. We can use the threshold values for the

profitability of new coal units and CCGT units defined in equations (3.4) and (3.5)

as a basis for such an investment rule.

If these threshold values are exceeded, investments in new units are profitable. To

account for uncertainties or risk aversion, we might require the observed CDS and

CSS to exceed the corresponding threshold value by a predefined security margin

∆Sec before investments are triggered. Fore example, investments in CCGT units

might be triggered if CSSt1
s
(xs) ≥ (CSSThreshold + ∆Sec,CCGT).

Based on this rule, we can decide whether competitors invest or not. However,

if investments are profitable, we must somehow decide how many new units are

built. Obviously, the greater the difference between observed CDS and CSS, re-

spectively, and the corresponding threshold values, the more profitable are in-

vestments in new units. Consequently, a greater difference tends to result in the

construction of more new units.

The difficulty is that each new unit has an influence on electricity prices and elec-

tricity production. Every new unit reduces the profitability of existing units. The

exact effect of a new units depends on multiple factors like current fuel prices and

the current power generation fleet. In case of scarcity of supply, the impact of a

new unit is the greatest. In such a case, a new unit either reduces the periods in

which demand exceeds supply and the VoLL is paid, or it replaces the most ex-

pensive units. If electricity supply is much greater than electricity demand, a new

unit might only replace a unit that is slightly more expensive than the new unit.

Consequently, the average electricity price decreases only marginally. For the sake

of simplicity, we assume a constant price effect peUnit in our model.

Let us denote the amount by which electricity prices are (assumed to be) reduced

by a new unit with peUnit. With this price effect, we determine the total number of
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new units as

nTotal
s (xs, as) = max


0, Round


 exMax(xs)

peUnit − ∑
uOwn

auOwn




 , (3.8)

with the maximum excess exMax defined as

exMax(xs) = max
(

CSSt1
s
(xs)− (CSSThreshold + ∆Sec,CCGT),

CDSt1
s
(xs)− (CDSThreshold + ∆Sec,coal)

)
.

Note that we subtract the number of new units built by the considered operator

from the number of new units built by competitors, as we assume that the consid-

ered operator takes its decision first. Consequently, the competitors can consider

the assumed price effect of these new units. As before, we use the CDS and CSS

observed during the first year of the current stage to determine the number of new

units.

A disadvantage of this approach is that it leads to lagged external investments.

The construction of new units is only started after a high profitability is observed.

It seems plausible that at least rising prices caused by scarcity of supply can be

anticipated.

Therefore, instead of using only equation (3.8) to determine the number of new

units built by competitors, we use the maximum of the number of new units based

on the scarcity of supply in equation (3.3) and the number of new units based on

expected profitability in equation (3.8). To decide how many new units of each

type are built, we still use equations (3.6) and (3.7).

3.4 Interpolation-Based Stochastic Dynamic Program-

ming

In the previous sections we described the representation of our investment model.

While we have introduced two kinds of simplifications, temporal aggregation and

aggregation of fuel prices, the consideration of external investments increases the

problem size. The resulting power generation expansion problem might still be

too complex to be solved. Depending on the number of new units which can be

built, the optimization horizon, and the number of considered fuel price scenarios,

the state space may get too large.
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Base TA TA + CS

# permutations of attributes representing units 1.0E+12 14,641 14,641
# permutations of attributes representing prices 125 125 20
Number states per stage 1.26E+14 1,830,125 292,820

Table 3.3: Example for the number of states per stage depending on the represen-
tation. Base stands for the model without simplifications, TA denotes temporal
aggregation, CS denotes the representation based on the climate spread.

Table 3.3 gives an example for the problem size depending on different state repre-

sentations. It is based on the assumption that investments in up to ten CCGT units

and up to ten coal units are allowed, while the same amount of external invest-

ments is considered. The construction time of new units is four years. Concerning

the number of fuel price scenarios, we assume that five different scenarios are

used for the gas price, the coal price and the carbon price, respectively. As these

prices are not perfectly correlated, any combination of these price scenarios may

occur, resulting in 53 = 125 different scenarios in case of a fuel price based rep-

resentation.9 We furthermore assume that if the climate spread is used, we only

need 20 scenarios.

The total number of states per stage is obtained by multiplying the number of con-

sidered price scenarios by the number of possible scenarios concerning the num-

ber of new units. Especially the temporal aggregation reduces the state space sig-

nificantly. But even if we apply temporal aggregation and use the climate spread,

we still have 292,820 states per stage. The great number of states is undesirable for

two reasons: First, we may get memory problems.10 Secondly, we have to calcu-

late the expected contribution margin for every state. Even if we use the fast LDC

model, the determination of the contribution margins might be the bottleneck of

the algorithm.

In this section, we present another method to further reduce the complexity. In-

stead of solving the problem based on the original state space, we solve an approx-

imation of the problem consisting of a compact subset of the state space. While

we restrict the number of considered states, we do not restrict the set of possible

9One may think that we do not need that many fuel and carbon price scenarios. This might
be true for the next two or three years. However, if we consider an optimization horizon up to
30 years, 125 scenarios are not that many. For example, 90% of carbon prices in the year 2030
are—based on our simulations—in the intervall of 27 e/t–93 e/t. For such an interval, we will
probably use more than five scenarios.

10Remember that we do not only have to save the states, but also the transition matrix.
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decisions. Hence, decisions may lead to non-considered states. For these non-

considered states, we interpolate the expected value.

A popular choice for the selection of the considered states is the grid-based ap-

proach. Thereby, a grid is placed in the state space. The grid points form the

subset of the state space that is used for the optimization. Such grid-based meth-

ods are for example commonly used to discretize continuous problems.

Different grid-based methods exist. The most straightforward one is the choice

of uniform grids. A more elaborated method are adaptive grid schemes. Instead

of equidistant grid points, these methods try to use a finer grid in the interesting

region of the state space. The selection of these interesting regions is based on the

priority calculated by a splitting criterion. These priorities are used to determine

which hyperrectangles of the grid are refined to get a better approximation of the

corresponding area of the state space.

Adaptive grid methods allow to significantly reduce the complexity of a problem.

Coming back to the example depicted in Table 3.3, we might start with a coarse

grid considering three different scenarios for each attribute representing the num-

ber of new units, and five scenarios for the climate spread. In this case, we only

consider 405 states per stage during the first iteration of the algorithm. The num-

ber of states required before the algorithm converges depends on multiple factors.

In our tests, we need for problems with the same size as the one described here in

most cases only between 1,000–10,000 states per stage before the algorithm con-

verges.

In the following, we start by describing the basic idea of our ISDP approach. Then

we briefly introduce uniform grid methods, before we present adaptive grid meth-

ods. Next, we compare two methods that can be used to interpolate the value

function of non-considered states. These methods are multilinear interpolation

and simplex-based interpolation. In the last part of this section, we present and

discuss several splitting criteria.

3.4.1 Basic Idea

The basic idea of ISDP is to replace the computationally intractable original prob-

lem with a more tractable approximated problem. Instead of calculating the opti-

mal decision a∗ and the value function V(x) for all states of the state space X, this

is only done for a subset of the state space, X Saved.

A pseudo-code notation of the backward-induction algorithm applied to our ap-

proximated investment problem is given by Algorithm 2. We start by setting the
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Algorithm 2 Backward induction

1: V(xN+1) = 0
2: for s = N down to 0 do
3: for all xs ∈ X Saved

s do

4:

V(xs) = max
as∈Γ(xs)

(
F(xs, as)

+βTs · ∑
x′s+1∈T(xs,as)∩X Saved

s+1

(
P(x′s+1 | xs, as) ·V(x′s+1)

)

+βTs · ∑
x′s+1∈T(xs,as)∩XNonSaved

s+1

(
P(x′s+1 | xs, as) · Ṽ(x′s+1)

))

5:

a∗s = argmax
as∈Γ(xs)

(
F(xs, as)

+βTs · ∑
x′s+1∈T(xs,as)∩X Saved

s+1

(
P(x′s+1 | xs, as) ·V(x′s+1)

)

+βTs · ∑
x′s+1∈T(xs,as)∩XNonSaved

s+1

(
P(x′s+1 | xs, as) · Ṽ(x′s+1)

))

6: with: F(xs, as) = R(xs)− cInvest(as)
7: end for
8: end for

value function for dummy state xN+1 to zero.11 We assume that xN+1 is the (only)

successor of all states of the last stage, independent of the chosen decision. Then

we iteratively determine the optimal decision and the value function for all se-

lected states of a stage. Thereby, we start with the states of the last stage and move

forward stage by stage.

The optimal decision as well as the value function of a state depend on the imme-

diate payoff-function of the current state and decision, F(xs, as), and the expected

discounted value of the succeeding states. The payoff function is composed of

the investment costs cInvest(as) associated to the investment decision and the (ex-

pected) profit R(xs) for being in xs (defined in equation (3.1) on page 118).

For the calculation of the expected value of the succeeding states, the (stochastic)

transition function T(xs, as) is used. Thereby, P(x′s+1 | xs, as) denotes the transition

probability from state xs to state x′s+1 if action as is taken.

If a succeeding state is part of the grid, we have already calculated its value func-

tion. If the successor is part of the set of non-selected states XNonSaved, then we

use an approximation of its value function, Ṽ(x′s+1), which we obtain by interpo-

lation. The expected values of succeeding states are discounted by the discount

11Salvage values of new units at the end of the optimization horizon are directly deduced from
investment costs.
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Figure 3.6: Example of a fixed grid considering only coal units.

factor β, which must be taken to the power of the number of years per stage, Ts.

While Algorithm 2 outlines the general idea of the approach we use, it does not

specify how the set of considered states is selected, and how the expected value

of non-selected states is interpolated. We discuss these issues in the following

subsections.

3.4.2 Uniform Grid Methods

The selection of the subset of the states that are used for the optimization is often

based on grids. The simplest grid based method is the application of a uniform

grid. If a uniform grid is used, every saved state has the same distance to its

neighbors.

Figure 3.6 depicts a possible uniform grid for a simplified example allowing only

investments in coal units. The points represent the subset of the state space used to

solve the dynamic programming problem, while the lines represent the complete

state space (assuming that coal prices are between 0 and 20 e/MWh and that the

maximum number of allowed new units is eight).

The advantage of a uniform grid is its simplicity. The only parameter that has to be

chosen is the distance between the saved states. Thereby, a compromise must be

found between accuracy of the approximated solution and complexity. On the one

hand, a smaller distance results in a better approximation of the value function.

On the other hand, it also increases the computational burden.

Especially for higher-dimensional problems, it is difficult to find an acceptable

solution using uniform grids. Either the number of grid points is too low to get

a good approximation of the value function, or the number of grid points is too

high to solve the problem.
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Under such circumstances, more intelligent methods are required. The main prob-

lem of uniform grids is that they try to approximate the value function over the

whole state space with the same accuracy. However, there are regions in the state

space that are more important than others. Three different cases in which a coarse

grid is sufficient can be distinguished:

• Some regions of the state space are never reached during the optimization.

For example, assume that the construction of more than six new coal units

always results in losses independent of the fuel prices. Then, it is sufficient

to know that the value function is negative in this region. It does not matter

whether the losses are 100 million e or 1 billion e.

• While the number of new units is fixed by our decisions, we cannot influ-

ence the fuel price development. Hence, we cannot guarantee that some

fuel prices are never reached. However, some fuel price scenarios are more

probable than others. Therefore, it is more important to have a good approx-

imation for these scenarios compared to unlikely scenarios.

• Finally, we do not need a detailed representation of regions in which the

value function can be well interpolated. This is basically the case in regions

with a flat value function. For example, if no new units are built, the con-

tribution margin is—independent of the fuel price—zero. Consequently, the

value of states on the lowest line in Figure 3.6 can be well approximated.

Note however, that it may depend on the interpolation method whether the

value function within a region can be well approximated.

3.4.3 Adaptive Grid Methods

Adaptive aggregation methods (e.g., Grüne and Semmler [GS04], Monson et al.

[Mon+04], Munos and Moore [MM02]) try to focus on the most important regions

of the state space. These methods start with a relatively coarse grid, which is itera-

tively refined. The refinement of the grid is based on splits of the (hyper)rectangles

of which the grid is composed. Figure 3.7 shows an example in 2D.

Algorithm 3 gives a pseudo-code notation of adaptive grid methods. Let us briefly

comment the different parts of the algorithm. We start with an initial grid, which

may be relatively coarse, as it is iteratively refined. Then, we solve the SDP prob-

lem based on the reduced state space as described in Algorithm 2.
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(a) Initial grid. (b) Possible grid after two re-
finements.

Figure 3.7: Example of an initial grid and possible refinements.

Algorithm 3 Adaptive grid methods

1: Select initial grid
2: Solve (S)DP problem with initial grid
3: while Stopping criterion not fulfilled do
4: Calculate splitting priority and splitting dimension for all (hyper-) rectan-

gles of the grid
5: Refine the grid
6: Solve (S)DP problem with refined grid
7: end while

After the solution of the problem based on the initial grid, we enter a loop which

is iteratively executed until a predefined stopping criterion is met. This stopping

criterion may be a fixed number of refinements, or it may be based on the splitting

priority for the hyperrectangles of the grid.

If the stopping criterion is not met, we calculate the splitting priority and the split-

ting dimension for all hyperrectangles of the grid. This is probably the most im-

portant part of the algorithm, and is described in detail in Subsection 3.4.5.

Based on the splitting priorities, the grid is refined. We either select a fixed number

of rectangles with the highest splitting priorities, or we select all rectangles with a

splitting priority exceeding a predefined threshold. If possible, we split the chosen

rectangles in the middle.12 Then, we solve the problem based on the refined grid,

and continue with this procedure until the stopping criterion is met.

12This might not always be possible, e.g., if the resulting split would result in a non-integer
number of new units. In such a case, we take the next smaller integer value.
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3.4.4 Interpolation Methods

For the determination of the optimal decision in our approximated problem, we

need an approximation of the value of the non-saved states. This approxima-

tion is obtained by interpolation. Different interpolation methods can be used.

Grüne and Semmler [GS04] use a multilinear interpolation, while Munos and

Moore [MM02] propose a simplex-based interpolation. In this subsection, we

present these two methods. An empirical comparison is performed at the end

of this chapter in Subsection 3.6.3.

3.4.4.1 Multilinear Interpolation

The multilinear interpolation uses all corner points of a hyperrectangle to interpo-

late the value of a point inside the hyperrectangle. Thereby, the value of a point

in the space is interpolated by the corner values of the hyperrectangle in which

the point is located. The following interpolation algorithm for a d-dimensional

problem is taken from Davies [Dav97]:

• Pick an arbitrary axis. Project the query point along this axis to each of the

two opposite faces of the box containing the query point.

• Use two (d − 1)-dimensional multilinear interpolations over the 2d−1 dat-

apoints on each of these two faces to calculate the values at both of these

projected points.

• Linearly interpolate between the two values generated in step 2.

Assume that the considered hyperrectangle is the unit hyperrectangle with one

corner at (x0, x1, . . . , xd−1) = (0, 0, . . . , 0) and the diagonally opposite corner at

(1, 1, . . . , 1), then the weight w of each corner point ξi used for the interpolation of

point x′ is

w(ξi) =
d−1

∏
k=0

(
1− |ξi

k − x′k|
)

,

where ξi
k is the k−th coordinate of ξi. The approximated value of a point x′ inside

the hyperrectangle with the corner points {ξ0, ξ1, . . . , ξ2d−1} is then obtained as:

Ṽ(x′) =
2d−1

∑
i=0

w(ξi) ·V(ξi).
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Figure 3.8: Example used to demonstrate multilinear and simplex-based inter-
polation. Depicted are the corner points of a hyperrectangle and the resulting
triangulation.

Example (Multilinear interpolation). Consider the example depicted in Figure 3.8. As-

sume that we want to interpolate the value of x′ = (0.2, 0.6).

We calculate the weight of ξ0 as w(ξ0) = (1− |0− 0.2|) · (1− |0− 0.6|) = 0.32. The

weights for the other corner points are w(ξ1) = 0.08, w(ξ2) = 0.48 and w(ξ3) = 0.12.

Consequently, we approximate Ṽ(x′) = 0.32 · 0+ 0.08 · 20+ 0.48 · 15+ 0.12 · 25 = 11.8.

Multilinear interpolation processes 2d datapoints for the interpolation of a single

value. For high dimensional problems, this becomes prohibitively expensive.

3.4.4.2 Simplex-Based Interpolation

In contrast to multilinear interpolation, simplex-based interpolation does not use

all corners for the interpolation. Instead, it uses only d + 1 points. For this pur-

pose, a hypercube is divided into d! simplexes following a Coxeter-Freudenthal-

Kuhn triangulation (Moore [Moo92]). Only the corner points of the simplex in

which the interpolated state lies are used for the interpolation.

A Coxeter-Freudenthal-Kuhn triangulation can be obtained the following way: As-

sume that the considered hyperrectangle is the unit hyperrectangle. Then, the

Coxeter-Freudenthal-Kuhn triangulation divides the hyperrectangle into d! simplexes

such that each of those simplexes corresponds to one possible permutation p of

(0, 1, . . . , d− 1), and covers the region satisfying 1 ≥ xp(0) ≥ · · · ≥ xp(d−1) ≥ 0.

Example (Coxeter-Freudenthal-Kuhn triangulation). Figure 3.8 shows a Coxeter-

Freudenthal-Kuhn triangulation in the case of two dimensions. For two dimensions, there

are two possible permutations p1 = (0, 1) and p2 = (1, 0). The first permutation results

in simplex 1 satisfying 1 ≥ x0 ≥ x1 ≥ 0, the second permutation in simplex 2 with

1 ≥ x1 ≥ x0 ≥ 0.
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Note that we do not have to explicitly save all d! simplexes of a hyperrectangle to

apply the simplex-based interpolation. It is sufficient to determine the simplex in

which a query point lies.

Munos and Moore [MM02] show how the simplex-based interpolation can be per-

formed in O(d log d): Let {ξ0, . . . , ξ2d−1} be the corners of the d-dimensional unit

hyperrectangle. We choose the indices i of the corners such that i = ∑
d−1
k=0 ξi

d−1−k ·
2k, e.g., for a three-dimensional hyperrectangle, ξ0 = (0, 0, 0), ξ1 = (0, 0, 1), ξ2 =

(0, 1, 0), . . . , ξ7 = (1, 1, 1).

To interpolate the value of a point x′, we first have to find the simplex in which the

point lies. For this purpose, we sort the coordinates of x′ from the highest to the

smallest, such that 1 ≥ xj0 ≥ xj1 ≥ · · · ≥ xjd−1
≥ 0, where the indices j0, . . . , jd−1

are a permutation of {0, . . . , d− 1}. Then, the indices i0, . . . , id of the corners of the

simplex containing x′ are:

i0 = 0, i1 = i0 + 2j0 , . . . , ik = ik−1 + 2jk−1, . . . , id = id−1 + 2jd−1 = 2d − 1.

We can now use the barycentric coordinates of x′ as weights of the corner points of

the simplex used for the interpolation. Let ξi0 , . . . ξid be the vertices of the simplex

in which x′ lies. Then, the barycentric coordinates λ0, . . . , λd of x′ are defined as

∑
d
k=0 λk = 1 and ∑

d
k=0 λk · ξik = x′. In the case of a Coxeter-Freudenthal-Kuhn

triangulation, these barycentric coordinates are:

λ0 = 1− xj0 , λ1 = xj0 − xj1, . . . , λk = xjk−1
− xjk , . . . , λd = xjd−1

− 0 = xjd−1
.

With the barycentric coordinates, we can approximate the value of a point x′ as

Ṽ(x′) =
d

∑
k=0

λk ·V(ξik ).

The advantage of simplex-based interpolation is its efficiency. However, as it uses

less points for the interpolation, its approximation quality tends to be worse than

the quality of multilinear interpolation.

Example (Simplex-based interpolation). Let us demonstrate how the value of point

x′ = (0.2, 0.6) in Figure 3.8 is approximated using the simplex-based interpolation.

First, we have to determine the indices j. Sorting the coordinates of x′ in descending order

leads to j0 = 1 and j1 = 0. Now, we can determine the indices i defining the corner points
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of the simplex in which x′ lies. We get i0 = 0, i1 = 0 + 21 = 2 and i2 = 2 + 20 = 3. The

simplex that contains x′ is defined by the vertices ξ0, ξ2 and ξ3.

Next, we need to determine the barycentric coordinates. These are λ0 = 1− 0.6 = 0.4,

λ1 = 0.6 − 0.2 = 0.4 and λ2 = 0.2. We approximate the value of x′ as Ṽ(x′) =

0.4 · 0 + 0.4 · 15 + 0.2 · 25 = 11.

3.4.5 Splitting Criteria

The most important part of an adaptive aggregation method is the selection of re-

gions that require a finer resolution. In our algorithm, the refinement is obtained

by the splitting of the hyperrectangles that form the grid. The selection of the

hyperrectangles that are split as well as the dimension, in which these hyperrect-

angles are split, is based on a splitting criterion.

In this subsection, we present different splitting criteria. These splitting criteria

can be classified into three categories: criteria based on the value function, criteria

based on the policy and a combination of both.

Splitting criteria based on the value function aim to obtain a good approximation

of the value function. To this class of splitting criteria belong the average corner-

value difference (ACVD) criterion and the value non-linearity (VNL) criterion pro-

posed by Munos and Moore [MM02], as well as the rule proposed by Grüne and

Semmler [GS04], to which we refer as approximation error (AE).

Policy based splitting criteria focus on the optimal policy to determine the split-

ting priority for a hyperrectangle. An example for a policy based criterion is the

policy disagreement criterion proposed in [MM02]. It splits those hyperrectangles

with a different optimal decision at the states that are the vertices of the hyper-

rectangle. However, as it performs relatively poor, we do not present this criterion

in detail here. Instead, we present an alternative policy based criterion, which we

call the probability interpolated optimal solution (PIOS) criterion.

The idea of a combination of a value function based splitting criterion and a policy

based criterion is to focus on a good approximation of the value function around

the (assumed) optimal policy. We present a combination of our PIOS criterion with

different value function based criteria. A numerical evaluation of the different

splitting criteria is made at the end of this chapter in Subsection 3.6.4.

In the following, we first describe the value function based criteria, before we

introduce the PIOS criterion. Finally, we describe how these criteria can be com-

bined.
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Figure 3.9: Two-dimensional rectangle used to illustrate the different splitting cri-
teria.

3.4.5.1 Average Corner-Value Difference

The ACVD criterion is based on the idea that refinements are unnecessary if the

value function is flat, i.e. values of neighboring states are similar.

To determine the splitting priority for a hyperrectangle, we calculate the average

of the absolute difference of the values at the corners of the edges for all direc-

tions i = 0, . . . , d− 1. The maximum of the calculated values corresponds to the

splitting priority, the direction for which the maximum is taken is the splitting

dimension.

Example. Consider the two-dimensional example depicted in Figure 3.9. The splitting

priority for dimension 0 is

SP0 = 0.5 · (|V(x0)−V(x1)|+ |V(x2)−V(x3)|) = 20,

while the splitting priority for dimension 1 is

SP1 = 0.5 · (|V(x0)−V(x2)|+ |V(x1)−V(x3)|) = 100.

Consequently, the splitting priority for the rectangle is 100, and the splitting dimension

is 1.

3.4.5.2 Value Non-Linearity

The ACVD criterion splits when the value function is not constant. However, this

may result in many splits, even in cases when splits are not needed, because a

good interpolation of the region is possible. The VNL criterion tries to avoid splits

in such regions.
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Instead of the absolute difference, the variance in the absolute increase of the val-

ues at the corners of the edges is calculated for all directions 0, . . . , d− 1. The VNL

criterion splits when the value function is not linear.

Example. For the example shown in Figure 3.9, the variance in the absolute increase of

the values at the corners of the edges is zero for direction 0, as the increase between x0

and x1 is the same as between x2 and x3. The same applies to the variance in direction 1.

Hence, the splitting priority is 0 for the rectangle.

3.4.5.3 Approximation Error

The ACVD criterion and the VNL criterion try to identify regions in the state space

that should be refined based on the values of the corner points of a hyperrectangle.

The advantage of this approach is that all required information is available, as the

states at the corner of the hyperrectangle have already been evaluated during the

previous optimization run.

A slightly different approach is taken by Grüne and Semmler [GS04]. They pro-

pose to refine all rectangles with an approximation error exceeding a predefined

threshold value. To determine the approximation error, they use a set of test points

xt
i as depicted in Figure 3.10. For each of the test points, they calculate the approx-

imation error. The splitting priority of a hyperrectangle is equal to the maximum

approximation error.

Grüne and Semmler allow splits in several dimensions. For a better comparability

with the other splitting criteria, we allow splits only in one dimension. We choose

the splitting dimension such that the test point with the greatest approximation

error lies on the hyperplane splitting the hyperrectangle.13

Figure 3.10: Additional test points to
estimate the approximation error.

V(x) Ṽ(x)

xt
0 10 10

xt
1 55 50

xt
2 80 70

xt
3 130 110

xt
4 65 60

Table 3.4: Evaluated values V(x) and
interpolated values Ṽ(x).

13Grüne and Semmler use the same criterion, however, they split in all dimensions, for which
the maximum approximation error of the test points lying on the corresponding hyperplane is
relative large compared to the maximum approximation error of all points.
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Example. Consider the additional test points depicted in Figure 3.10. Table 3.4 shows

the corresponding interpolated values,Ṽ(x), and the real values, V(x). The maximum

approximation error is 20 and is made by the interpolation of xt
3. Hence, the splitting

priority of the rectangle is 20, and the splitting dimension is d0.

Note that for the calculation of the approximation error, the test points have to be

evaluated (the optimal decision for the test points has to be determined). Com-

pared to the other criteria, this method requires significantly more computational

effort. The advantage of this method is that the error estimates are more appro-

priate than those obtained by the other methods.

3.4.5.4 Probability Interpolated Optimal Solution

The objective of the value function based splitting criteria is a good approximation

of the value function. However, our true objective is to find the optimal policy for

the considered problem. The previous splitting criteria may waste a significant

amount of time refining regions that are not important because they are subopti-

mal. For example, it may never be profitable to build more than six units. In such

a case, we do not need a very precise approximation of the value function in this

region, even if the value function is highly non-linear there.

In the following, we first present the main ideas on which the new PIOS criterion is

based. Then, we describe how the splitting priorities and the splitting dimension

are determined.

Idea

Deviations between the optimal solution of the approximated problem and the

optimal solution of the real problem can be caused by two issues: underestimation

of the value of the optimal solution of the real problem, or overestimation of the

quality of the optimal solution of the approximated problem.

As we do not know the optimal solution of the real problem, it is difficult to fo-

cus on a better approximation of the real solution. However, if we refine the grid

such that all states of the optimal solution of the approximated problem are grid

points, then we can exclude an overestimation of the optimal solution of the ap-

proximated problem.

A further argument to refine the state space around the optimal policy of the ap-

proximated problem is the following: if the value function of the considered prob-

lem is relatively smooth, then we can assume that states in the neighborhood of
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the optimal solution have also a high value function. Consequently, we might

assume that the optimal solution of the real problem is somewhere in the neigh-

borhood of the optimal solution of the approximated problem. Hence, it can be

beneficial to concentrate the refinements in this area.

The PIOS criterion considers both of these ideas. Hyperrectangles that are used

to interpolate the optimal solution of the approximated problem get the highest

priority. Hyperrectangles that contain states of the optimal solution, but are not

used to interpolate the optimal solution get a lower priority, while the priority

of all other hyperrectangles is zero. To be able to prioritize the hyperrectangles

correspondingly, we need to save the probability that a hyperrectangle is used to

interpolate the optimal solution.14

Splitting Priority and Splitting Dimension

If a hyperrectangle is used to interpolate the optimal solution, the splitting prior-

ity of this hyperrectangle is set to one plus the probability of the optimal states

that are interpolated by the hyperrectangle. If a hyperrectangle is not used to in-

terpolate the optimal solution, but at least one of its corner points is part of the

optimal solution, then the priority is equal to the probability of the optimal corner

points of the hyperrectangle. Otherwise, the priority is set to zero.

Formally written, the splitting priority is

SP =





1 + ∑
x∗∈X Rect,I∩XOpt

P(x∗) if X Rect,I ∩ XOpt 6= ∅,

∑
x∗∈X Rect,C∩XOpt

P(x∗) otherwise.
(3.9)

Thereby, X Rect,I denotes the set of all states whose value is interpolated using the

considered hyperrectangle. These are all states that lie within the hyperrectangle

or at the border of the hyperrectangle, excluding the corners of the hyperrectangle.

The set of states at the corners of the hyperrectangle is X Rect,C, while the set of

states belonging to the optimal solution is XOpt. The probability that a state is

visited when the optimal policy is applied is P(x∗).

Note that formula (3.9) only calculates the splitting priority of a hyperrectangle,

but not the splitting dimension. To determine the splitting dimension, we use the

VNL criterion.

14This criterion is only suitable for stochastic problems. Otherwise, only one state per stage
belongs to the optimal solution. Consequently, only one rectangle per stage would be refined per
iteration.
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Figure 3.11: Rectangle including
points of the optimal solution.

Coordinates P(x)

x∗0 (0,0) 0.15
x∗1 (0,2) 0.15
x∗2 (2,3) 0.05

Table 3.5: Points belonging to the op-
timal solution.

Example. Consider the example depicted in Figure 3.11. Three points (x∗0 , x∗1 , x∗2) of the

optimal solution lie at the edge or inside the rectangle. The coordinates and the probabili-

ties of the corresponding points are given in Table 3.5.

Note that point x∗0 does not need to be interpolated, as it belongs to the grid. Hence, x∗0
is not considered to determine the splitting priorities. Consequently, the splitting priority

for the rectangle is equal to 1.2, the sum of the probabilities for x∗1 and x∗2 plus 1.

As we have seen before, the splitting priorities of the VNL criterion are 0 for both di-

mensions. In such a case, we select the first possible splitting dimension, in this example

dimension 0.

3.4.5.5 Combined Splitting Criteria

The splitting criteria presented so far are either value function based criteria or

policy based criteria. On the one hand, value function based criteria deliver a good

approximation of the value function, but may waste significant effort in refining

non-optimal regions. On the other hand, the PIOS criterion delivers a realistic ap-

proximation of the optimal solution of the approximated problem. However, it

may underestimate the optimal solution of the real problem. Due to this underes-

timation it may not refine the grid in this region.

A combination of a value function based and a policy based splitting criterion

might overcome such problems. We can combine any of the value function based

criteria with the PIOS criterion. As the approach is the same for all combinations,

we first describe how we combine the criteria. Then, we give an example for each

of the combined criteria.

There are several possibilities to determine the splitting priority when different

criteria are combined. One possibility is to use a weighted sum of the splitting
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priorities of both criteria. However, the problem is that the priorities calculated

by the different splitting criteria differ significantly. While the priorities calculated

by the PIOS criterion are in the interval between 0 and 2, those of the ACVD for

example can be much greater. To make the priorities comparable, they must be

normalized.

To avoid this problem, we might use the product of the splitting priority of both

splitting criteria as priority for the hyperrectangle. However, also the product of

both priorities is problematic. The reason is the way we defined the PIOS criterion.

If a hyperrectangle is used to interpolate the value of a state of the optimal so-

lution, the splitting priority for this hyperrectangle is between 1 and 2. Conse-

quently, if there are two hyperrectangles A and B that are used to interpolate the

optimal solution, the priority of A can be at most twice the priority of B. For any

of the value function based criteria, the priority of hyperrectangle A can be much

more important than the one of B (or the other way round). Hence, if we use

the product of both splitting priorities, much more weight is given to the value

function based criterion.

To get a more balanced result, we define the splitting priority for the combined

criteria as follows:

SP =





SPVF · (SPPIOS − 1) + 2 if SPPIOS
> 1,

min(2, SPVF · SPPIOS · ǫ1 + 1) if 0 < SPPIOS
<= 1,

min(1, SPVF · ǫ2) otherwise.

Thereby, SPVF denotes the splitting priority of the value function based splitting

criterion, SPPIOS the one calculated by the PIOS criterion.

We define three different intervals for the splitting priority: if a hyperrectangle

is used to interpolate the value of a state of the optimal solution, then we ensure

that the splitting priority is at least 2.15 Note that the value of SPPIOS − 1 is in

the interval between 0 and 1. Consequently, the importance of a hyperrectangle

relative to another hyperrectangle is no longer restricted to a maximum of 2.

If a hyperrectangle is not used to interpolate the optimal solution, but at least one

of the states at its corners belongs to the optimal solution, we assign a priority

between 1 and 2 to that hyperrectangle. To achieve this, we multiply the product

of both splitting priorities with a small constant ǫ1 and add 1 to the result. The

15The value of 2 is chosen arbitrarily. If we split a fixed number of hyperrectangles per iteration,
we are only interested in the relative priorities of the hyperrectangles. Only if we use a variable
number of splits per iteration, the (absolute) splitting priority of a hyperrectangle is important.
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constant should be chosen such that the product of the splitting priorities and the

constant is less than 2. For example, we might choose ǫ1 = 0.0001.

If the splitting priority of the PIOS criterion is equal to zero, the splitting priority

for the hyperrectangle is 1 or less. In such a case, we use the priority calculated by

the value function based criterion and multiply it with another small constant ǫ2.

For the determination of the splitting dimension, we use the value function based

criterion.

Let us briefly demonstrate this approach based on the examples already used for

the different criteria. Thereby, we refer to the combination of the PIOS with the

AE criterion as weighted approximation error (WAE). The other two combinations

are correspondingly named weighted average corner-value difference (WACVD) and

weighted value non-linearity (WVNL). As the splitting dimension corresponds to the

splitting dimension selected using the respective value function based criterion,

we omit the splitting dimension in the following examples.

Example (Weighted approximation error). Let us consider the example depicted in

figures 3.10 and 3.11. The splitting priority of the AE criterion is 20, the splitting priority

of the PIOS criterion is 1.2. Consequently, the splitting priority for the rectangle is SP =

20 · (1.2− 1) + 2 = 6.

Example (Weighted average corner-value difference). Let us now consider the exam-

ple shown in figures 3.9 and 3.11. The splitting priority of the ACVD criterion is 100,

the splitting priority of the PIOS criterion is 1.2. Hence, the splitting priority for the

rectangle is 22.

Example (Weighted value non-linearity). The splitting priority of the VNL criterion

based on the example depicted in Figure 3.9 is 0. As the splitting priority of the PIOS

criterion is greater than 1, the splitting priority is 2.

3.5 Algorithm

In this section, we give an overview of the different parts of the algorithm that we

use to solve the power generation expansion problem. We start with a descrip-

tion of the algorithm. Next, we go in details about how we select the initial grid

used in the algorithm. Finally, we conclude this section with some remarks on the

implementation.
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Algorithm 4 ISDP algorithm to optimize power plant investments

1: Simulate fuel prices
2: Select initial grid
3: Determine transition probabilities
4: Select representative fuel price scenarios for the saved states
5: Calculate the expected contribution margins for the saved states
6: Solve the approximated problem
7: while Stopping criterion is not met do
8: Calculate splitting priorities and splitting dimension for each hyperrectan-

gle
9: Refine the grid based on the calculated splitting priorities

10: Calculate the (expected) contribution margins for the new states
11: Solve the refined approximated problem
12: end while

3.5.1 Overview

Algorithm 4 gives a pseudo-code description of the approach we use to solve

the power generation expansion problem. The first step is the simulation of fuel

prices. We assume that the stochastic process used to simulate the prices is Marko-

vian. Then, based on these simulations, we select the states of the initial grid as

described in the next subsection. Next, we use the simulated fuel prices to deter-

mine the transition probabilities between the states of succeeding stages. Then,

we select the representative fuel price scenarios for each of the saved states.

Afterwards, we determine the expected contribution margin for every saved state.

This contribution margin is based on the optimization of the power generation

with one of the fundamental electricity market models described in Chapter 2.

For this purpose, we use the representative fuel price scenarios of the considered

state. The expected contribution margins for the non-selected fuel price scenarios

are interpolated. Next, we use the backward induction to solve the initial approx-

imated SDP problem.

Then, we enter a loop in which the approximated problem is iteratively refined

and solved again. To refine the problem, we calculate the splitting priority and

the splitting dimension for all hyperrectangles of the grid. For each stage of the

problem we select some—either a fixed or a variable number of—hyperrectangles

that are split. We add the states at the corner points of the split hyperrectangles to

the approximated problem. Next, we determine the expected contribution mar-

gins for these states. Then, we solve the refined problem. We continue with this

loop, until the stopping criterion is met. This stopping criterion may be a fixed
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number of iterations. Alternatively, we may stop when the optimal solution did

not change for a predefined number of iterations, or if the expected value of the

optimal solution does not change any more.

3.5.2 Choice of the Initial Grid

An issue we have not discussed so far is the choice of the initial grid, defining

which states are used for the initial approximation. Two decisions have to be

taken: the choice of the distance between two neighboring grid points in each

dimension, and the minimal and maximal values of the grid points in each di-

mension.

The more important decision is the second one. While the number of states saved

between the extreme points is adapted during the optimization (and therefore also

the distance between the grid points), the extreme points of the hyperrectangle

are fixed. Solutions outside of the hyperrectangle cannot be reached during the

optimization.

Remember that a state in our model consists of several attributes, which can be

grouped into two categories: attributes representing power plants, and attributes

representing fuel prices. For each of these attributes, we define a set of initial

values. In the following, we first describe how we select the initial values for the

attributes representing the new units, before we discuss our choice of the initial

values for attributes representing the fuel price scenarios. The initial states are

obtained as the set of all possible permutations of the values of the attributes.

3.5.2.1 Units

The choice of the initial values for attributes representing power plants is straight-

forward. We define a maximum number of allowed new units for each unit type,

xmax,u. Based on the idea to limit market power, the number of allowed new units

of the considered operator may be chosen such that a predefined market share

cannot be exceeded. The number of allowed new units may depend on the con-

sidered operator. For a new entrant to the market, we may allow more new units

compared to one of the big four operators (E.On, RWE, EnBW, Vattenfall). The

minimum number of new units is obviously zero.

The maximum number of new units that can be built by external competitors

should be chosen such that it does not restrict the investment decisions of the
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external investment module. This number depends amongst others on the op-

timization horizon and the chosen investment module. If external investments

are only based on the scarcity of supply, less investments are carried out by com-

petitors compared to the case when additional investments are done based on the

expected profitability.

Besides the minimum and maximum number of new units, we specify the number

of scenarios for each unit that should be initially saved. This number must be

between 2 and xmax,u + 1.16 Then, we select the initial values for these attributes

such that all neighboring values are equidistant. If equidistant values result in

non-integer values, we use the next lower integer instead. For example, if we

allow nine new CCGT units and start with three different scenarios, we take 0, 4

and 9 as initial values.

3.5.2.2 Fuel Prices

One might be tempted to use the same approach for attributes representing fuel

prices. There are two problems though. First, it might be difficult to define a

pertinent upper bound (and if the climate spread is used, this applies also to the

lower bound) for fuel prices a priori. Second, the choice of equidistant fuel prices

is not necessarily reasonable, as fuel prices have different occurrence probabilities.

Hence, we propose an alternative approach, taking into account these difficulties.

We start by specifying a confidence interval for fuel prices. Based on the fuel

price simulations carried out before, we determine minimum and maximum fuel

prices such that a predefined percentage of the fuel prices lies within this inter-

val. For example, assume that we use a 95% confidence interval. In that case,

the 2.5 percentile of the simulated fuel prices forms the lower bound, while the

97.5 percentile corresponds to the upper bound.

Then, we specify the number of initial fuel price scenarios. To obtain the addi-

tional values between the maximum and the minimum fuel price scenarios, we

use equidistant percentiles instead of equidistant values. For example, if we de-

cide to start with five fuel price values and a 95% confidence interval, then the

initial fuel prices are those corresponding to the 2.5, 26.25, 50, 73.75 and 97.5 per-

centiles.

16If the number was one, the investment decision would be fixed. Therefore, we do not allow
this case.
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Figure 3.12: Example for climate spread percentiles used as initial values. Logs of
fuel prices are simulated as trended mean-reversion process.

Figure 3.12 illustrates the previously mentioned example based on 50,000 fuel

price simulations, where the logs of fuel prices are simulated as trended mean-

reversion process. Two advantages of this approach can be seen in the figure:

First, the resolution around most probable fuel prices is higher than the one at

the tail of the distribution. Second, the intervals adapt to increasing uncertainty.

For later stages, uncertainty increases and thereby also the considered interval in-

creases. To take this increasing uncertainty into account, one may decide to use

more initial fuel price scenarios at later stages. This is especially beneficial if fuel

prices are simulated as a GBM, where the interval between maximum and mini-

mum climate spread can get significantly larger than the one shown in Figure 3.12.

3.5.3 Remarks on the Implementation

Let us briefly comment on two details of the implementation: parallelization and

efficient data structures for the interpolation.

3.5.3.1 Parallelization

A challenge of an SDP formulation of the power generation expansion problem

is the huge state space. For every state, the contribution margin must be calcu-

lated. Especially if an LP-based fundamental electricity market model is used,

these computations are very time intensive.

Since each run of the fundamental electricity market model is independent of the

others, the calculation can be completely computed in parallel. Concerning the
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solution of the ISDP problem, we can parallelize the determination of the opti-

mal solution for states of the same stage. In addition, the calculation of splitting

priorities for all hyperrectangles of the grid can be performed in parallel.

3.5.3.2 Efficient Data-Structures for the Interpolation

For the interpolation of states that are not saved, we first have to find the hyper-

rectangle in which the requested state is saved. To allow an efficient retrieval of

specific hyperrectangles, we follow the proposition of Munos and Moore [MM02]

and use a kd-trie, a special case of a kd-tree, to store the hyperrectangles.

A kd-tree is a binary tree, in which every node represents a k-dimensional point,

or, as in our case, a k-dimensional hyperrectangle. Every (non-leaf) node gener-

ates a splitting hyperplane that divides the space into two subspaces. Points or

hyperrectangles left of the hyperplane represent the left subtree, points or hyper-

rectangles right of the splitting hyperplane represent the right subtree. While the

splitting hyperplane of a kd-tree can be somewhere between the lower and the up-

per value of the hyperrectangle, a kd-trie splits always in the center. For a detailed

description of kd-trees, see, e.g., Moore [Moo91].

In our case, the root of the kd-trie is the hyperrectangle covering the whole state

space. All other nodes are hyperrectangles covering only a subset of the state

space. The leafs of the tree represent the “active” hyperrectangles used for the

interpolation of non-saved states. Every time a hyperrectangle is split, the two

new hyperrectangles are added as left and right subtree of the hyperrectangle that

is split.

3.6 Evaluation

In this section, we evaluate our algorithm according to several criteria. We start

with an outline of how the tests were performed and a description of the test data.

Then, we test the influence of different parameters for the algorithm. Finally, we

compare the performance of the algorithm with alternative approaches.

A first parameter test compares the approach based on an explicit representation

of fuel and carbon prices with the representation of the climate spread. While

the representation based on the climate spread is faster and allows to model other

parts of the model in more detail, the quality of the solutions is only slightly worse

than those based on an explicit fuel price representation.
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Next, we compare multilinear interpolation with simplex-based interpolation for

the approximation of the value function of non-saved states. It turns out that

multilinear interpolation works better for our problem.

Afterwards, we compare the different splitting criteria that have been presented

in Subsection 3.4.5. According to our evaluations, the splitting criteria based on

a combination of a value function based criterion with the PIOS perform best.

In general, the WAE criterion works best, despite the additional computational

burden caused by the calculation of the approximation errors.

Besides the choice of the splitting criterion, we also test whether a fixed number

of splits or a variable number of splits performs better. The results indicate that a

variable number of splits yields better performance.

In the last part of this section, we compare the quality of the solutions obtained

by our algorithm with the quality of solutions obtained by alternative methods.

First, we compare our algorithm to a deterministic approach using the expected

value for the fuel prices. Our algorithm outperforms the deterministic approach,

since the latter one disregards the stochasticity of fuel prices.

Finally, we compare the solution of our ISDP approach to the solutions of a normal

SDP approach. The main advantage of our algorithm is its capability to handle

more complicated problems. For comparison reasons, we consider lower dimen-

sional problems that can also be solved by a normal SDP approach. Even for these

simpler problems, it is still preferable to apply our algorithm under certain condi-

tions.

3.6.1 Test Data

For all the tests in this section, we use our LDC model with scarcity mark-ups to

determine the contribution margins for the states. We perform tests with different

parameters like the number of new units, the optimization horizon, the deprecia-

tion method or the stochastic process used for the fuel price simulations.

More important than the exact test configuration is in our opinion to understand

the way we evaluate our tests. During each iteration of our algorithm, we solve

an approximated problem to optimality. Due to the approximations, the expected

value of the optimal solution of the approximated problem does in general not

correspond to the real value of this solution.

To measure the quality of the solution of the approximated problem, we evaluate

this solution based on a Monte Carlo simulation of fuel prices. After each itera-

tion of our algorithm, we simulate 10,000 fuel price scenarios for each year of the
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Figure 3.13: Solution quality based on climate spread and explicit fuel price rep-
resentation.

optimization horizon. Based on these simulations, we determine the profits we

get if the optimal solution of the approximated problem is applied. To keep the

evaluation results comparable, we use the same 10,000 fuel price scenarios for the

evaluation of all solutions. Note however, that these fuel price scenarios are not

the same as those used within the optimization. For the comparison of the inter-

polation method as well as for the comparison of the different splitting criteria,

we split ten hyperrectangles per stage and iteration.

3.6.2 Fuel Price Aggregation

One of the techniques we have proposed to reduce the dimensionality of the prob-

lem is to replace the explicit representation of fuel prices and the carbon price with

an aggregated one, based on the climate spread. In this subsection, we briefly test

the effects of this aggregation. To be able to consider problems with an explicit

representation of fuel and carbon prices, we have to neglect investments by com-

petitors to limit the size of the state space.

An exemplary comparison of both approaches is shown in Figure 3.13. Due to

the significant smaller state space, the approach based on the climate spread runs

faster, and hence it finds a good solution earlier. Once both algorithms are con-

verged, the solution of both approaches are of very similar quality. The approach

based on an explicit fuel price representation performs only slightly better. In al-

most all of our tests, differences between the evaluated solutions are below 1%.

As the climate spread approach allows us to model other characteristics of the

problem, e.g., the representation of investments by competitors, in more detail

without significantly degreasing solution quality, we opt to use the climate spread
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Figure 3.14: Comparison of the solution quality obtained with simplex-based in-
terpolation and multilinear interpolation for two different data sets.

representation for the following comparisons. However, it should be remarked

that this approach is especially suited to compare coal units and CCGT units. If

additional units, e.g., lignite units, should be imcluded in the comparsion, the

approach might perform worse.

3.6.3 Simplex-Based Interpolation vs. Multilinear Interpolation

We have presented two methods for the interpolation of the value of non-saved

states: simplex-based interpolation and multilinear interpolation. Simplex-based

interpolation uses less points for the interpolation than multilinear interpolation.

Consequently, simplex-based interpolation is faster than multilinear interpolation,

but in general less accurate.

Both methods have been compared by Davies [Dav97] based on two different

problems: a two-dimensional and a four-dimensional problem. Davies reports

that multilinear interpolation needs (especially in the four-dimensional case) less

attempts to find the optimal solution, but simplex-based interpolation is up to two

times faster.

Our observations differ. Concerning the number of iterations before the algorithm

converges, we observe a similar result as Davies. The application of multilinear in-

terpolation results in faster convergence in terms of iterations than simplex-based

interpolation. This behavior can be explained by the more accurate approximation

results of multilinear interpolation.
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Figure 3.14(a) shows an exemplary comparison of both approaches. It depicts the

quality of the obtained solutions using multilinear and simplex-based interpola-

tion as a function of the number of iterations of the algorithm. The comparison is

based on a five dimensional problem. Especially during the first iterations, when

the number of saved states is small and many values have to be interpolated, the

more accurate multilinear interpolation leads to a better solution.

Concerning the running time of the algorithm, our observations differ from those

reported by Davies. While simplex-based interpolation is slightly faster per iter-

ation, this computational advantage does not outweigh the slower convergence,

as it can be seen in Figure 3.14(b), showing the quality of obtained solutions as a

function of the running time for another five-dimensional problem.

Let us briefly add two comments, which are independent of the interpolation

method. In Figure 3.14, we see two typical patterns for our algorithm. First, the

greatest improvements of the solutions are obtained during the first iterations. Af-

terwards, the solution may still improve, but only to a smaller extent. Second, a

refinement does not automatically lead to a better solution. Especially during the

first iterations, refinements may result in a considerably worse solution.

3.6.4 Comparison of Splitting Criteria

Probably the most important design parameter of our algorithm is the splitting

criterion. A good splitting criterion should be reliable and efficient Grüne and

Semmler [GS04]. A reliable splitting criterion is able to detect hyperrectangles

with great approximation errors. An efficient splitting criterion avoids unnec-

essary refinements. As we cannot directly measure the efficiency and reliability of

a splitting criterion, we compare the different splitting criteria based on numerical

tests with different problem parameters.

The importance of the splitting criterion depends on the problem parameters.

Some data sets turn out to be relatively easily solvable. These are mostly prob-

lems that do not consider investments by competitors, or that are exposed to a

low degree of fuel price uncertainty. Here, all splitting criteria work relatively

well.

Figure 3.15(a) shows an example of such an problem without external invest-

ments. The performance of the different splitting criteria can hardly be distin-

guished. If anything can be noticed, then that the value function based splitting

criteria perform slightly worse than the other ones. Amongst the value function

based criteria, the AE criterion performs worst in this case. This is an untypical
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Figure 3.15: Solution quality for different splitting criteria for a problem without
external investments (a) and (a different problem) with external investments (b).

result—in most of our tests, the AE criterion performs best amongst the different

value function based criteria.

There are other problems though, where the choice of the splitting criterion is

more important. Consider the results depicted in Figure 3.15(b). The data set used

for this problem is similar to the one before. The difference is that we consider now

investments of competitors.

Comparing both figures, two things stand out: First, the convergence of the algo-

rithm is much slower. While the solutions in Figure 3.15(a) improve only slightly

after the first ten iterations, it takes much longer until the algorithm converges for

the problem depicted in Figure 3.15(b).

Second, the performance of the splitting criterion plays a more important role for

the second data set. The value function based criteria perform significantly worse

than the other criteria, especially the ACVD criterion and the VNL criterion. The

PIOS criterion performs similar to the value function based criteria during the first

30 iterations. Then, it starts to outperform the value function based criteria. The

combined criteria work best in this case. The WAE and the WACVD perform best

in terms of number of iterations.

The results of our tests indicate that there is no single criterion that is best in any

case. In most cases, the combined criteria perform best, however it is hard to say

which one of the combined criteria should be used. In general, the WAE results in

the fastest convergence in terms of iterations. The calculation of the approxima-

tion error can take a long time though. Sometimes, the more accurate estimate of

the approximation error outweighs this additional time, sometimes not.
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Comparing the PIOS criterion with the value function based criteria, results are

ambiguous. In the majority of the test cases, the PIOS criterion performed better,

but we observed also the opposite.

A difference between both kinds of criteria can be seen regarding Figure 3.15(b).

The curve of the PIOS criterion exhibits more ups and downs compared to the

value function based splitting criteria. The PIOS criterion focuses on an adequate

estimate of the value of the optimal solution for the approximated problem. Pos-

sible overestimations are soon corrected, while the value function approximations

of the other states are less accurate. Consequently, the algorithm may select an-

other overestimated solution that is in reality worse than the current solution.

After this overestimation is corrected, the algorithm proceeds to the next solution.

The value function based criteria try to correct approximation errors in the whole

state space. As a consequence, the approximation error of the optimal solution of

the approximated problem is in general similar to the approximation error in other

regions of the state space. Hence, value function based criteria change the optimal

solution less frequent due to an overestimation somewhere else in the state space.

The different approaches of the splitting criteria can also be seen in Figure 3.16.

This figure shows the difference between the expected value of a solution and

the evaluated value of the solution (for the same data set as the one used in Fig-

ure 3.15(b)). During the first iterations, the solution quality is significantly over-

estimated.17 Splitting criteria considering the optimal policy correct this overesti-

mation much faster than purely value function-based criteria. It is interesting to

see that the combined criteria correct this overestimation slightly faster than the

PIOS criterion.

3.6.5 Fixed Number of Splits vs. Variable Number of Splits

Besides the choice of the splitting criterion, we also have to select the number of

rectangles that are split. Basically, we choose between two options: a fixed number

of splits or a variable number of splits per iteration and stage.

We compare the performance of a fixed number and a variable number of splits

based on the WACVD criterion and the WAE criterion. We choose these two crite-

ria, as those are the criteria that performed best on average in our previous tests.

For the evaluation of a fixed number of splits, we decided on the ten rectangles

per stage and iteration with the highest splitting priority. We exclusively select

17This is not always the case. It depends on the chosen parameters (e.g., initial grid) whether
solution quality is overestimated or underestimated.
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hyperrectangles with a splitting priority greater than zero. If there are less than ten

rectangles with a splitting priority greater than zero, we only split the rectangles

with a positive priority.

For the application of a variable number of splits, all rectangles with a splitting

priority greater than a predefined threshold value are split. If there are less than

ten hyperrectangles exceeding the threshold value, we split the ten hyperrectan-

gles with the highest probability greater than zero.

For this comparison, we use two different threshold values. The first one is a

threshold value of two. This relatively low threshold value results in many splits

per iteration. Every hyperrectangle that is used to interpolate the optimal solution

is split using this threshold value. Note that applying a threshold value of two

results in (almost) the same splits for both different splitting criteria.18

The second threshold value is different for both criteria. For the WAE criterion,

we choose a threshold of 2.5. This threshold value leads to splits for all hyperrect-

angles, where the product of the probability that they are used to interpolate the

optimal solution and the approximation error is greater than 0.5 million e. For

the WAE, we use a threshold value of 4. This higher threshold value is motivated

by the fact that the corner-value difference is in general (much) higher than the

interpolation error.

The results of an exemplary comparison are shown in Figure 3.17. The quality

of the optimal solutions is depicted as a function of the running time. For this

18If there are less than ten hyperrectangles with a splitting priority greater than two, the splits
may be different.
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problem, the WACVD performs better than the WAE criterion. For both splitting

criteria, the fixed number of splits performs worst. The variable number of splits

show a similar performance for the different threshold values, with a small ad-

vantage for the lower threshold value.

However, there is a drawback of a low threshold value for the variable number of

splits that cannot be seen in Figure 3.17: it may add too many states to the approx-

imated problem. After one hour of running time, the number of considered states

is about twice (for the WAE) respectively four times (for the ACVD) as high as

for the splitting criterion with a threshold value of two compared to the splitting

criterion with the higher threshold value. If we use a more time-intensive fun-

damental electricity market model, the evaluation of the additional states might

change the advantageousness of the different threshold values.

3.6.6 Comparison with Alternative Approaches

The evaluations we presented so far focused on finding the best parameters for

our algorithm. The results we have seen indicate that our algorithm works. In

most cases, the quality of the obtained solutions improves during the runtime of

the algorithm. However, there are some results questioning the performance of

the algorithm. For some splitting criteria, the algorithm seems to be converged,

but not to the optimal solution. This leads to the question whether the results of

the algorithm using the best splitting criterion are (nearly) optimal, or whether

there may exist a much better solution.

Unfortunately, this question cannot be answered. Due to the stochasticity of the

problem and the huge state space, we cannot calculate the optimal solution. To get

an idea how good the solution of our algorithm is, we compare the quality of the

solutions of our algorithm applying the WAE criterion to the quality of solutions

of two alternative approaches. The first method we use for the comparison is a

deterministic DP problem based on expected fuel prices. The second method is a

normal SDP approach without interpolation.

3.6.6.1 Expected Value Approach

A simple method to reduce the complexity of the power generation expansion

problem is to disregard the stochasticity of fuel and carbon prices. Omitting the

uncertainty reduces the state space significantly, such that the simplified problem

can be solved to optimality. In the following, we first describe how we model the
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(a) Example with additional attributes to con-
sider construction time.

(b) Example without additional attributes to
consider construction time.

Figure 3.18: Two approaches to model a deterministic power generation expan-
sion problem.

deterministic problem, before we compare the results of the deterministic formu-

lation with the results of our algorithm.

Description

The determination of the deterministic problem is straightforward. We replace

the different fuel price scenarios for every year with the expected value of the fuel

prices. In addition, we allow investments in new power plants every year.

In a complete deterministic setting, we do not have to add extra attributes for the

construction time. Instead, we assume that new units are immediately available

the next year. To consider construction times, we must shift back the decisions by

the construction time minus one year. Consequently, the first year in which we

allow new decisions is the year equal to the construction time minus one. Let us

illustrate this approach with a simple example.

Example. Assume that we might invest in a coal unit. The construction time of the unit

is three years. In a stochastic setting, a state uses three attributes to represent the number

of units: an attribute for the number of coal units active at the moment, an attribute

for the number of coal units under construction that are finished the next year, and an

attribute for the number of coal units under construction that are finished in two years.

Figure 3.18(a) illustrates this problem formulation. Assume that the investment costs

for a new unit are 1,000 million e. With an annual discount rate of 7%, we obtain the

discounted investment costs shown in the figure.
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Figure 3.19: Comparison between the expected value approach and our algorithm
for different degrees of uncertainty

Figure 3.18(b) depicts the equivalent problem without additional attributes for the number

of units under construction. Two things should be noted: First, the discount factor for the

decision costs must be applied with care. As the decision taken during the second year in

Figure 3.18(b) is in reality taken during the initial year, we have to apply the discount

factor associated with the initial year (and not the one associated with the second year).

The second thing to note is that such a representation is only possible in a deterministic

case. In a stochastic setting, we get additional information (e.g., about the fuel price devel-

opment) as time goes by. One may use this additional information to improve his decision.

In the deterministic case, no additional information is obtained. Hence, the solutions of

both models models shown in Figure 3.18 are the same.

Comparison

Figure 3.19 compares the evaluated value of the optimal solution of the deter-

ministic approach with the evaluated value of the solution of our ISDP approach.

The tests are based on a simulation of the logarithm of fuel prices as correlated

GBMs. To demonstrate the effect of uncertainty, we vary the standard deviation

of the GBMs. As a basis, we use a standard deviation of 0.23 for the logarithm

of the annual gas price change and 0.14 for the logarithm of the annual coal price

change. These values are based on the annual import prices of fuels in Germany

[BMW09] deflated using the consumer price index. We compare the quality of the

solutions based on fuel price simulations with these standard deviations, with half

of these standard deviations and with a standard deviation of zero, i.e., without

uncertainty.

In both test runs with stochastic prices, our model performs significantly better

than the expected value approach. The higher the uncertainty, the greater the ad-
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Figure 3.20: Optimal solution of the deterministic approach and the ISDP model.
First column shows shows optimal solution of the deterministic model, second
column the average values of the optimal ISDP solution, third column is the opti-
mal ISDP solution for the expected fuel prices.

vantage of an approach explicitly accounting for it. Only in the test run without

uncertainty, the deterministic model outperforms our model. This is possible be-

cause we allow annual decisions in the deterministic model, while in our model,

decisions are taken every four years.

The optimal solution for the data set with the normal standard deviation is shown

in Figure 3.20. We use three different columns to depict the optimal determinis-

tic solution, the average values for the optimal solution of our approach and the

optimal solution of our approach for the expected fuel price scenarios.

In the first column, the optimal solution of the expected value approach is shown.

The optimal solution of this approach consists only of some coal units built at

the end of the optimization horizon. The second column depicts the average new

capacity built following the optimal solution of our approach. As the optimal

solution depends on the realized fuel prices, there is not a single optimal solution

per year. The depicted values are the average values of new units built during the

evaluation based on 10,000 fuel price simulations. The third column shows the

optimal solution of our algorithm for the expected fuel prices.

Comparing the solution of our algorithm with the expected value approach, two

observations are remarkable. First, the optimal solution of our algorithm starts

earlier with adding new capacity, and it also builds more new units on average.

As our algorithm considers the stochasticity of fuel prices, it starts building new

units if fuel prices develop such that one technology is more profitable than the

other one. However, if the fuel price development follows the expected values,

our algorithm comes to a similar solution as the expected value approach.
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Secondarily, it is remarkable that our algorithm prefers CCGT units. While the

expected value approach builds only coal units, our algorithm builds more CCGT

units on average. There are two reasons for the construction of CCGT units. First,

they are built when fuel price development favors CCGT units. Second, they are

built because they are cheaper than coal units. Consequently, the risk is lower as

they require fewer years for amortization. These observations are in line with the

results by Dixit and Pindyck [DP94] that uncertainty favors less capital intensive

investments.

To be fair, it has to be mentioned that the value of a stochastic model is in gen-

eral lower than the difference between both approaches. The comparison is based

on the assumption that the planning process is carried out only once. In reality,

several re-planning steps will take place. During this re-planning, expected fuel

prices can be adjusted to the observed fuel price development. This rolling hori-

zon approach generally leads to better results compared to one single planning.

Therefore, the advantage of a stochastic approach is in general smaller than the

one we observe here.

3.6.6.2 Stochastic Dynamic Programming Approach

While the comparison with the expected value approach shows that our algorithm

performs better, this result is not surprising. Considering a stochastic problem,

any stochastic approach should outperform a deterministic one.

A more meaningful comparison is one with other stochastic methods. A common

approach is normal SDP (e.g., Jensen and Meibom [JM08], Klein et al. [Kle+08]).

Note that our problem formulation is also an SDP formulation. The difference

between our approach and a normal SDP formulation is the interpolation and

refinements we use. As it is computationally intractable to solve the problem in

full resolution, our algorithm tries to focus on the evaluation of promising states

by refining around these states.

Description

The main motivation of our ISDP approach was the inability of solving higher-

dimensional problems with a normal SDP approach. However, we must consider

lower dimensional problems to be able to compare both approaches. Hence, we

do not allow investments of competitors for this comparison.

Besides the fact that the normal SDP approach considers the whole state space,

the two approaches differ slightly in the selection of the fuel price scenarios. In
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Figure 3.21: Climate spread intervals for the ISDP approach and the normal SDP
approach. Dashed boxes indicate non-saved states (ISDP approach), the ‘x’ marks
the selected representative climate spreads (normal SDP approach).

principle, we use the approach described in Subsection 3.2.3 to select the fuel price

scenarios for the SDP model. The only difference lies in the interval that a fuel

price scenario represents.

In our model, a fuel price scenario covers all fuel prices in a fixed interval around

the chosen price. For example, a fuel price scenario of 10.00 incorporates all fuel

prices between 9.50 and 10.49. We use intervals of equal size for all fuel price

scenarios (except the extreme ones).

For the SDP approach, we do not use fixed intervals. The interval that a fuel price

scenario covers depends on the selection of the representative fuel price scenarios.

We use Algorithm 1 (page 132) to select a fixed number of representative fuel price

scenarios for the first year of each stage. The bounds of each fuel price interval are

the middle between the representative fuel price scenario and its two neighbors.

Figure 3.21 illustrates this approach based on the climate spread. The left figure

shows the states used in our ISDP algorithm. All climate spread intervals are of

size 1, except the two intervals representing the maximum and minimum climate

spread.

The right part of Figure 3.21 shows the climate spread intervals of the normal

SDP approach. We assume that three representative climate spreads have been se-

lected. These representative climate spreads are−2.5,−0.5 and 2.0. Consequently,

the climate spread interval covered by scenario −0.5 is between −1.5 and 0.75.

Besides the interval of each fuel price scenario, there is no difference to our ap-

proach in the determination of the contribution margin for a state or in the deter-

mination of the transition probabilities. As the normal SDP approach considers
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(a) Fuel prices simulated as correlated GBM.
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(b) Logs of fuel prices simulated as correlated
mean-reversion processes.

Figure 3.22: Comparison of the ISDP and the normal SDP approach. The depicted
SDP values differ in the number of considered climate spread scenarios.

the whole state space for the solution of the problem, no refinements are required.

Consequently, the problem needs to be solved only once.

Comparison

Comparing the ISDP model to a normal SDP approach for models that can be

solved with both approaches yields ambiguous results. The advantage of one

approach compared to another one depends on the considered problem. As long

as the considered problem is solvable with a normal SDP approach, the solutions

of both models are of similar quality.

Figure 3.22 visualizes the solution quality and the running time for the ISDP ap-

proach and the normal SDP approach. The solutions depicted for the ISDP ap-

proach correspond to the solutions obtained after each iteration of the algorithm.

The SDP solutions are independent solutions based on a different number of con-

sidered climate spread scenarios. The better the solution, the more climate spread

scenarios have been considered.

The results in Figure 3.22(a) and 3.22(b) are based on different stochastic processes

and lead to different expected profits. However, the performance of the ISDP ap-

proach compared to the SDP approach is similar in both cases. The ISDP approach

needs less time than the SDP model to find a solution. The quality of the first solu-

tion of the SDP (that is based on five different climate spread scenarios per stage)

is worse than the solutions of the ISDP approach found during the same time. In-

creasing the number of considered fuel price scenarios to seven or more, solution

quality and running times are comparable for both approaches.
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However, the ISDP approach has an advantage, since we do not know the optimal

solution of any approach.19 With our approach, we receive at least a rough idea

about the quality of the current solution by comparing it to the quality of previous

solutions.

If we apply the normal SDP approach, we need to solve the model from scratch to

get another solution based on a different number of fuel price scenarios applicable

for comparison.

Consider for example the first solution of the SDP approach in Figure 3.22(a).

This solution is based on five climate spread scenarios per stage. The next so-

lution, based on seven climate spread scenarios per stage, is significantly better

and requires only slightly more running time. Unfortunately, we have to solve the

model from scratch to calculate this additional solution for comparison purposes.

We might reuse some of the contribution margins calculated by the fundamental

electricity market model, but the SDP problem must be solved again as the num-

ber of states and the transition matrix change. Hence, the determination of these

two solutions takes somewhere between 13 minutes (the time to solve the model

based on seven fuel price scenarios) and 22 minutes (the time to solve both mod-

els). With our algorithm, we have already calculated five different solutions after

13 minutes.

The ISDP model has another important advantage compared to the normal SDP

approach: the explicitly considered state space is significantly smaller. This yields

two benefits.

First, less states have to be evaluated. In our test instances based on the LDC

electricity market model, the savings due to the evaluation of less states did not

clearly outweigh the overhead of the ISDP model. However, if a computational

intensive electricity market model—like the LP models for example—is used, the

determination of the contribution margins for the states consumes most computa-

tion time. In such a case, the ISDP model is significantly faster.

Second, the ISDP model scales better. As less states are explicitly saved, it requires

less memory. Consequently, it can still be used to solve problems that cannot be

solved by a normal SDP approach.

19The solution of the normal SDP approach is optimal for the fuel price scenarios used in the
model. As these fuel price scenarios are just a simplification of the real stochasticity of fuel prices,
the solution of the normal SDP approach is not optimal in reality.
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3.7 Summary

In this chapter, we presented and evaluated an ISDP formulation for the power

generation expansion problem. To keep the problem computationally tractable,

we introduced several simplifications. The first one is temporal aggregation. To be

able to consider construction times of new units without increasing the complexity

of the problem, we allow new decisions only every four years. As the focus of our

model lies on the strategic level, we believe that this simplification is acceptable.

The second simplification is an aggregation of the coal price, the gas price and

the carbon price into one single value, the climate spread. The idea behind this

aggregation is that for the unit commitment decisions between CCGT units and

coal units, the exact fuel prices are less important than the cost difference between

these units. This cost difference is captured by the climate spread. Using the cli-

mate spread instead of the exact fuel prices allows us to decrease the dimension-

ality of the problem by two dimensions. To the best of the author’s knowledge,

such an aggregation has not yet been used in literature. In our tests, the quality of

the solutions obtained with this approach is only slightly worse than the quality of

solutions based on an explicit representation of fuel prices. In the same time, the

approach based on climate spreads is significantly faster, and allows for a more

detailed representation of other aspects of the problem, e.g., external investments.

In contrast to many other approaches in the literature (e.g., Jensen and Meibom

[JM08], Klein et al. [Kle+08], Swider and Weber [SW07]), we do not take the per-

spective of a single, centralized decision maker in the market. Consequently, we

have to model the decisions of competitors. We presented two simple approaches,

how such investments of competitors can be modeled. The first one is solely based

on the scarcity of supply. The second one additionally considers the expected

profitability of new units. As the decisions of the competitors depend on the de-

cisions of the considered operator, we need to add extra attributes to the states.

These attributes are used to represent the number of new units built by competi-

tors. Compared to other models that ignore these decisions, the consideration of

external investments makes our model more complex.

To be able to solve this complex problem, we use an adaptive grid method. The

adaptive grid method is the main difference of our model compared to existing

approaches in literature. Instead of solving the original problem, we solve an

approximated problem considering only a subset of the state space. To improve

the solution quality, we adaptively refine the grid.
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These adaptive refinements are based on the splitting priority assigned to each hy-

perrectangle of the grid. For the calculation of this splitting priority, we presented

and compared different splitting criteria from literature with a new splitting cri-

terion. It turns out that for our problem, a combination of a value function based

splitting criterion and our PIOS criterion works best on average.

While we iteratively solve approximated problems, we consider only a subset of

the state space, but the whole decision space. Hence, we have to approximate

the value of states that are not explicitly considered. For this purpose, we tested

two different interpolation methods: multilinear interpolation and simplex-based

interpolation. For our problem, the more accurate results of multilinear interpola-

tion outweigh the faster computation times of simplex-based interpolation.

Finally, we compared the performance of our algorithm with two alternative ap-

proaches, the deterministic approach based on expected values for the stochastic

fuel prices, and a normal SDP approach. Our algorithm clearly outperforms the

deterministic approach. Compared to the deterministic approach, more of the

less-capital intensive CCGT units are built.

The solutions of the normal SDP problem and our algorithm are similar concern-

ing the quality of the solutions as well as the running time. However, our algo-

rithm has two important advantages, that cannot be captured by our tests. First,

our algorithm scales better than the normal SDP approach as it does not consider

all states of the state space. For the test data, we had to select the problems such

that they could still be solved with the normal SDP approach. To be able to solve

more realistic problems, e.g., considering investments of competitors, we need to

use the ISDP approach.

The second advantage of our algorithm is also related to the consideration of a

subset of the state space. With our algorithm, we only have to calculate the contri-

bution margins for the considered subset of the state space. With the LDC-based

electricity market model, which we used for the comparison, the calculation of the

contribution margins for a state is relatively fast. Consequently, the advantages of

evaluating only a subset of the states is modest. However, if we replace the LDC

model with a (significantly) slower LP model, our algorithm will also be much

faster for small problems than the normal SDP approach. For example, the case

study evaluating the profitability of CCS units, which we present in Section 5.5,

would take much longer if a normal SDP approach is used (if it could be solved at

all).
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While the ISDP formulation presented in this chapter allows us to solve the power

generation expansion problem considering many different fuel price scenarios, the

ISDP model has its limitations. First, we have to apply temporal aggregation to

consider construction lead times of new plants. Consequently, we cannot model

annual decisions. Second, the ISDP approach does not break the curse of dimen-

sionality of DP. It just allows us to push the limits a bit further, but we are still

restricted to low dimensional problems. Hence, we cannot consider many dif-

ferent types of new units in our problem. In the next chapter, we describe an

investment model based on an alternative method that might circumvent these

problems: approximate dynamic programming (ADP).





Chapter 4

Investment Model Based on

Approximate Dynamic Programming

In this chapter, we describe an investment model based on ADP, which allows us

to consider annual investments while taking into account fuel and carbon price

uncertainties. ADP is a technique that gained in importance during the last years.

It is best described as a combination of simulation, optimization and statistics.

ADP has been successfully applied for example in the area of transportation and

logistics (Powell et al. [Pow+02], Simão et al. [Sim+08]), finance (Tsitsiklis and

Van Roy [TV01]), inventory management (Van Roy et al. [Van+97]), for discrete

routing and scheduling problems (Spivey and Powell [SP04]) and for batch service

problems (Papadaki and Powell [PP03]).

The main idea of ADP is to make decisions based on an approximation of the

value function instead of the exact value function, as it is done in DP. It is assumed

that the value of a state can be described as a function of some of its attributes.

For example, the value of a state might depend on the number of power plants.

A wide variety of different functions can be used to approximate the value of a

state. In our model, we use a relatively simple, but popular choice: piecewise-

linear function approximations.

Making decisions based on approximated values has two advantages, which are

discussed in detail later on in this chapter: First, it avoids the complete enumera-

tion of the state space. Second, it allows us to choose the value function approx-

imation such that it can be stored more efficiently than the lookup table used in

normal DP. As a consequence, ADP can tackle high-dimensional problems that

cannot be solved with DP.

183
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In this chapter, we examine how ADP can be applied to solve the power gen-

eration expansion problem. While the idea is appealing, we encounter several

problems. First, the choice of a state representation and the modeling of the in-

formation flow is more complicated than in normal SDP. Second, there are many

design choices that need to be tuned for the specific problem. A wrong choice can

result in a diverging algorithm or in an algorithm that converges to a suboptimal

solution. But even if we find the right values for these parameters, we have no

guarantee that the algorithm converges to the optimal solution. To be able to as-

sess the quality of the solutions, we compare the solutions of the ADP approach

with the solutions of our ISDP model. Due to its ability to consider annual invest-

ments, the solutions of the ADP model are slightly better than those of the ISDP

model.

The remainder of this chapter is organized as follows: We start with an introduc-

tion to ADP. Thereby we present the most important ideas of ADP, and point out

to the links and differences to DP. Next, we show how ADP can be applied to solve

the power generation expansion problem. Then, we discuss different problems of

the ADP formulation of our investment model. Finally, we evaluate the solutions

of our ADP formulation and conclude the chapter with a summary.

4.1 Approximate Dynamic Programming

ADP deals with large-scale stochastic problems evolving over time. Such prob-

lems arise in many disciplines, including operations research, artificial intelligence

and engineering. Different communities tackled such problems within their own

context. As a result, similar solution approaches with different names and nota-

tions have been developed. These names are reinforcement learning, neuro-dynamic

programming and approximate dynamic programming.

In the artificial intelligence community, the methods for solving Markovian Deci-

sion Problems became known as reinforcement learning. Thereby, an agent learns

through trial-and-error interactions with a dynamic environment. The agent se-

lects an action that changes the state of the environment. Based on the new state

of the environment, the agent receives a reward or a penalty. Through this “re-

inforcement” signal, the agent learns whether its decision was good or not. The

objective of the agent is to maximize the reward over time.

Reinforcement learning is mainly applied to robot control, but also for game play-

ing (e.g., Backgammon, Go, Chess). An introduction to reinforcement learning
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has been written by Sutton and Barto [SB98], for an extensive study covering the

most important aspects of reinforcement learning see Kaelbling et al. [Kae+96].

In the control-theory community, the term neuro-dynamic programming is used for

a solution method of control and sequential decision making under uncertainty.

The name neuro-dynamic programming has been chosen to reflect the reliance on

concepts of dynamic programming and neural networks. As ADP, neuro-dynamic

programming approximates the value-function of a state. This approximation is

based on a neural network approach. An introductory textbook to neuro-dynamic

programming has been written by Bertsekas and Tsitsiklis [BT96].

The term approximate dynamic programming is mainly used in the operations re-

search community. Similar to neuro-dynamic programming, it stresses the con-

nection to dynamic programming. However, the term approximate is more gen-

eral: the approximation of the value function may be based on aggregation, on

linear or piecewise-linear functions, or also on neural nets.1 A detailed descrip-

tion of ADP can be found in the textbook by Powell [Pow07].

In the following, we give a short introduction to ADP based on the book by Pow-

ell. We start with a description of the main ideas of ADP: forward dynamic pro-

gramming and value function approximation. Next, we outline a basic ADP al-

gorithm, before we discuss several possibilities for the value function approxi-

mation. Finally, we present different algorithms that can be used to solve ADP

problems.

4.1.1 Basic Idea

Dynamic programming is suited to solve low-dimensional dynamic problems effi-

ciently. However, the state space of a problem grows often exponentially with the

number of dimensions. This problem is known as the curse of dimensionality, and

is a significant obstacle for the application of DP to high-dimensional problems.

Powell points out that there are actually three different curses of dimensionality.

These are:

• The state space: If a state variable has I dimensions, and can take on L pos-

sible values per dimension, we have up to LI different states.

1The terms neuro-dynamic programming and approximate dynamic programming are some-
times used synonymously. In their overview of neuro-dynamic programming, Bertsekas and Tsit-
siklis [BT95] use the term “neural network” as a synonym to “approximating architecture”.
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• The outcome space of the stochastic parameters: The random variable may

have J dimensions with M possible outcomes. Then, there might be up to

MJ outcomes.

• The action space: The decision vector might have K dimensions with N out-

comes. Then, there are up to NK outcomes.

Applying the backward induction approach to solve an SDP problem requires an

iteration over the whole state space. For each state, we solve the equation:

Vt(xt) = max
at∈Γ(xt)

(F(xt, at) + β ·E {Vt+1(xt+1) | xt})

= max
at∈Γ(xt)

(
F(xt, at) + β · ∑

xt+1∈Xt+1

P(xt+1 | xt, at) ·Vt+1(xt+1)

)
.

(4.1)

The solution of problem (4.1) requires an iteration over all possible decisions and

all outcomes of the stochastic parameter. For many real-world problems, such an

enumeration is computationally intractable.

4.1.1.1 Forward Dynamic Programming

The main idea of ADP is to replace the exact value function Vt+1(xt+1) with an

approximation, to which we refer as Ṽt+1(xt+1). Instead of computing the optimal

solution of equation (4.1) stepping from the last stage to the first one, ADP goes

forward in time, and makes decisions based on value function approximations.

ADP starts with the initial state, and makes a decision based on the solution of the

following problem:

a∗t (xt) = argmax
at∈Γ(xt)

(
F(xt, at) + β ·E

{
Ṽt+1(xt+1) | xt

})
. (4.2)

The optimal decision of this equation, and a sample realization of the random vari-

ables determine the next state. The new information that is gathered through solv-

ing problem (4.2) and sampling the random variables is used to update the value

function approximations. To obtain a good approximation of the value function,

this approach is repeated iteratively.

During each iteration, the current value function approximation is updated with

the new information. Assume that we are in state xt in iteration n, and the value

function approximation of xt based on the information available up to the last

iteration is Ṽn−1(xt). Let v̂n
t be the expected value of the optimal decision for state
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xt (based on equation (4.2)). Then, we update the value function approximation

as follows:

Ṽn(xt) = (1− αn−1) · Ṽn−1(xt) + αn−1 · v̂n
t .

Thereby, the parameter α is the stepsize, which we are going to discuss later on in

this section.

While forward dynamic programming avoids the complete enumeration of the

state space, there are several difficulties. The first problem is to get a good value

function approximation of the relevant states. Assuming that we use a lookup

table representation, i.e. we save the value of each state in a lookup table, we only

update the value function approximation of states we visit. However, we might

never visit some interesting states, as the value function approximation is too low.

We deal with this problem in Subsection 4.1.3, where we describe alternative ways

of approximating the value function of a state.

The second problem with formulation (4.2) is that it still requires the calculation of

an expectation. There are two issues with the calculation of this expectation: First,

we have to save the transition probabilities, and second, we have to iterate over all

succeeding states to calculate the expected value. Following Powell [Pow09], this

is the most problematic curse of dimensionality. Powell circumvents this problem

by introducing the post-decision variable.

4.1.1.2 Post-Decision Variable

Instead of using one state variable, we might use two: one variable directly before

a decision is taken, and one variable indicating the state directly after the decision

is taken, but before any new information about the realization of the stochastic

parameters is available. We denote the first variable, the pre-decision variable,

with xt, while the second one, the post-decision variable, is denoted with xa
t . Fig-

ure 4.1 illustrates this approach.

The introduction of the post-decision variable allows us to break the transition

function xt+1 = T(xt, at, wt+1) into two parts with xa
t = Ta(xt, at) and xt+1 =

Tw(xa
t , wt+1).

The advantage of this approach is that it allows us to split problem (4.2) in two

parts: a deterministic optimization problem, and a simple simulation. The opti-

mization problem is the following:

a∗t (xt) = argmax
at∈Γ(xt)

(
F(xt, at) + β · Ṽt(T

a(xt, at))
)

. (4.3)
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Figure 4.1: A decision tree using post-decision states. Pre-decision states are
shown as squares, post-decision states as circles. Solid lines are decisions, dot-
ted lines are the outcomes of random events.

Note that the value function approximation is now based on the post-decision

variable. The main difference between problems (4.2) and (4.3) is that we no longer

have to calculate the expectation in the optimization problem. After we solve

problem (4.3), we sample an outcome of the random variable, and determine the

next pre-decision state xt+1 = Tw(xa
t , wt+1).

4.1.2 Basic Algorithm

In this section, we are going to discuss several design decisions of ADP based

on a generic ADP algorithm (Algorithm 5). This algorithm is taken from Pow-

ell [Pow07, p. 106].

The algorithm starts with an initialization of the value function approximation.

Then, the main part of the algorithm is run for a fixed number of iterations N.

We start with choosing a sample path of the random variables. In our problem,

this sample path is one realization of the stochastic fuel and carbon prices for the

whole optimization horizon. Then, we determine the optimal decision (line 5)

of the current pre-decision state. The choice of this optimal decision is based on
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Algorithm 5 Generic ADP algorithm using the post-decision variable

1: Initialize Ṽ0
t (xt) for all states xt.

2: for n = 1 to N do
3: Choose a sample path wn.
4: for t = 0 to T do
5: an

t = argmax
at∈Γ(xn

t )

(
F(xt, at) + β · Ṽt (Ta(xt, at))

)

6: v̂n
t = F(xt , an

t ) + β · Ṽt(Ta(xt, an
t ))

7: if t > 0 then
8: Ṽn

t−1(x
a,n
t−1) = (1− αn−1) · Ṽn−1

t−1 (xa,n
t−1) + αn−1 · v̂n

t .
9: end if

10: xa,n
t = Ta(xn

t , an
t )

11: xn
t+1 = Tw(xa,n

t , wn
t+1)

12: end for
13: end for
14: return ṼN

the contribution function and the value function approximation of the succeeding

post-decision state.

The contribution function depends on the current (pre-decision) state and the de-

cision we choose. In our problem, this contribution function is composed of the

contribution margins for the electricity production of new power plants less the

investment costs for new plants. The value function approximation of the post-

decision state is an expectation of the value of being in this state. It depends on

the succeeding decisions, as well as on the outcomes of the stochastic variables.

Next, we determine the expected value of the optimal decision (line 6). This value

is used to update the value function approximation of the preceding post-decision

state (line 8). Then, we select the next post-decision state based on the chosen

decision (line 10), and the next pre-decision state, which depends on the post-

decision state and the outcome of the stochastic variable (line 11).

Algorithm 5 is not very specific in some points, which we are going to address

in the following. These points are the initialization of the value function approx-

imations and the choice of the stepsizes. Furthermore, we are going to discuss

different possibilities, how it can be avoided that the algorithm explores only a

small subset of the state space. This problem is known as the exploration vs. ex-

ploitation problem.
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4.1.2.1 Initialization

Before we start with the main part of the algorithm, we have to determine initial

value function approximations. Our objective is to start with value function ap-

proximations that are close to the real value functions. However, as we have only

limited knowledge about the problem, we can only guess the real value functions

in most problems.

There are basically two different approaches to initialize value function approx-

imations: We might either underestimate the values or overestimate them. Both

strategies result in a different behavior of the algorithm.

Assume that we underestimate the values. In our problem, we might start with

initial value function approximations of zero for each state (which will be in most

cases an underestimation). In that case, the decision we chose depends only on the

contribution function (line 5 of Algorithm 5). Consequently, the optimal decision

will always be to build no new units, as this is the only decision that does not in-

volve any costs. No update of the value function approxmation takes place, as the

value function for the optimal decision is correct. Obviously, if the optimal solu-

tion of the problem involves the construction of new units, we will not find it with

Algorithm 5 and an initialization of zero for the value function approximations.

An overestimation of the value of a state results in an opposite behavior. The

expected future value of a state dominates the value of the contribution func-

tion. The solution of the first iteration will be the same as with an initialization

of zero (assuming that all value functions are initialized with the same value). Af-

ter the first iteration, the value function approximations of the visited states are

decreased, and in the next iteration, a new solution is chosen.

If we consider a deterministic problem, this approach always leads to the optimal

solution. However, optimality is not guaranteed in a stochastic setting. The disad-

vantage of overestimating the value functions is that it results in the exploration

of many states. We might even iterate several times over the whole state space,

before the correct values are found. Nevertheless, Algorithm 5 combined with an

initialization that overestimates the value function approximations is a popular

algorithm in the artificial intelligence community, known as A* algorithm (Hart

et al. [Har+68]).
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4.1.2.2 Exploration vs. Exploitation

The two different initialization strategies can be seen in a more general context as

the problem between exploration and exploitation. This is a common problem that

also occurs in many other algorithms like meta-heuristics. Thereby, exploration

is used to gather new information, even if the actions required to do so are not

optimal. If the chosen decisions are optimal based on the current knowledge, this

knowledge is “exploited”, hence one refers to this as exploitation.

Algorithm 5 is written as a pure exploitation algorithm. In line 5, we always select

the best decision based on the current value function approximations. We use this

decision in line 10 to determine the next state. As we have illustrated with the

simple example of an underestimation of initial value functions, we might never

find the optimal solution, because we never visit underestimated states.

A pure explorative strategy would replace the optimal decision in line 10 with an

arbitrary decision. However, the drawback of this approach is that it corresponds

to a pure random search, which is not efficient. In general, it is a very impor-

tant, but also a very difficult task to find a good balance between exploration and

exploitation.

A simple strategy to mix exploration and exploitation consists in defining an ex-

ploration rate ρ specifying the ratio of decisions that are chosen randomly. More

sophisticated strategies are the following two strategies:

• ǫ-greedy exploration uses instead of a fixed exploration rate a variable ex-

ploration rate depending on the current iteration. With an increasing num-

ber of iterations, the tendency for exploration is decreased. The idea behind

this decreasing probability for exploration is the assumption that with an in-

creasing number of iterations, the value function approximations get more

accurate. Consequently, the need for exploration is decreased.

The probability for an exploration step at iteration n is denoted with

Pn(xt) = ǫn(xt).

Powell suggests to use ǫn(xt) = c/Nn(xt) where 0 < c < 1, and Nn(xt) is the

number of times state xt has been visited up to iteration n. If an exploration

step is taken, each decision is chosen with the same probability.

• Boltzmann exploration uses the expected value of a decision to assign a

probability to each possible decision. Following the same reasoning as ǫ-
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greedy exploration, the probability of exploration steps is decreased with

time.

Boltzmann exploration uses the following formula to calculate the probabil-

ity for any possible action:

P(at | xt) =
eQ(xt ,at)/T

∑
a′t∈Γ(xt)

eQ(xt ,a′t)/T
.

Thereby, Q(xt, at) corresponds to the expected value of decision at, which

is Q(xt, at) = F(xt, at) + Ṽ(xa
t ). The parameter T is known as tempera-

ture. In general, a high value of T is chosen during initial iterations, and

with increasing number of iterations, T is steadily decreased to account for

more accurate value function approximations. Powell proposes the follow-

ing formula to calculate the temperature depending on the current state xt

and iteration n:

Tn(xt) =

max
at∈Γ(xt)

|Q(xt, a∗t )− Q(xt, at)|

Nn(xt)
, (4.4)

where a∗t denotes the optimal decision at state xt. Applying formula (4.4),

the temperature is equal to the difference in the expected value of the best

and the worst decision, divided by the number of times the current state has

been visited.

4.1.2.3 Stepsizes

A very important parameter of an ADP algorithm is the choice of the stepsize rule.

Powell [Pow07, p. 184] states that “it is possible to find problems where provably

convergent algorithms simply do not work, and the only reason is a poor choice

of stepsizes.” The choice of the stepsize rule has also an important influence on

the convergence speed of the algorithm.

An extensive comparison of different stepsize rules is given by George and Pow-

ell [GP06]. In the following, we describe some of the most popular stepsize rules.

Thereby, n denotes the current iteration of the algorithm.
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• Constant stepsizes are the simplest kind of stepsize rule. The stepsize is

defined as

αn−1 =

{
1 if n = 1,

α otherwise,

with α being a constant value. In general, declining stepsizes are preferred to

constant ones in ADP. As the accuracy of the value function approximation

generally increases with time, declining stepsizes are more appropriate than

constant ones.

• Generalized harmonic stepsizes belong to the class of declining stepsizes

and are defined as:

αn−1 =
a

a + n− 1
.

The parameter a determines how fast the stepsize declines. Increasing a

leads to a slower decrease of the stepsize.

• Polynomial learning rates are similar to generalized harmonic stepsizes.

They are defined as:

αn−1 =
1

nβ
,

with β ∈ (0.5, 1]. Smaller values of β result in a slower decline of the stepsize.

• The Search-then-converge stepsize rule (Darken and Moody [DM90]) is a

very versatile stepsize rule. Powell uses the following definition:2

αn−1 = α0 ·
b
n + a

b
n + a + nβ

.

The parameters a, b and β can be used to adjust the speed with which the

stepsize declines. The stepsize rule is named “search-then-converge”, as it

allows an initial period with high stepsizes (the search period), before the

stepsizes are reduced to achieve convergence.

Unfortunately, there is no single best stepsize rule. The performance of stepsize

rules is problem dependent. It depends furthermore on the choice of the different

parameters of the stepsize rules, which also depend on the considered problem.

2This definition is slightly different from the original proposal.
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4.1.3 Value Function Approximations

So far, we have not specified how the value function approximations are saved.

We just assumed that there is a value function approximation for each state, which

can be used and updated.

The standard way of saving values of states in DP is a lookup table representation.

For every state in the state space, the expected value is explicitly saved. While

this approach might be suitable for small problems, it is intractable for many real

world problems where the state space gets too large.

In this subsection, we present three different methods of approximating the value

function without explicitly saving the value of each state. The methods we present

are based on the idea that the value of a state can be described as a function of a

few attributes of the state.

We start with a description of the simplest case: a linear relationship between the

number of attributes and the value of a state. However, for many problems such a

linear relationship is too simplistic. A more realistic approach for many problems

is a piecewise-linear value function approximation. We present this approach in

the second part of this subsection.

There are many more possible approximation architectures that might be used,

for example neural nets (see Bertsekas and Tsitsiklis [BT96]). We restrict our small

introduction to the before mentioned methods, as the piecewise-linear value func-

tion approximation is the basis for the method we apply, and linear value func-

tion approximations are a simple special case of piecewise-linear value function

approximations.

After presenting these two approaches, we briefly describe how these approaches

can be combined with the standard lookup table approach, to be able to consider

the influence of attributes that cannot be described with a function approxima-

tion. This indexed piecewise-linear value function approximation is the method

we choose for our problem. In the last part of this subsection, we discuss advan-

tages and difficulties of value function approximations.

4.1.3.1 Linear Approximations

A linear value function approximation assumes that there is a linear or nearly

linear relationship between the attributes of a state and the value of this state. For

example, if we consider a resource allocation problem, one might assume that the
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value of an additional resource is constant, independent of the current number of

resources we have.

If such a linear relationship exists, we do not have to explicitly save the value of

each state. Instead, we can use a linear value function approximation. Let Rti

describe the number of resources of type i at time t, then we can use the following

function to approximate the value:

Ṽt(xt) = ∑
i∈I

ṽti · Rti,

where I is the set of different resources (e.g., machines), and ṽti is the approxi-

mated value of an additional resource of type i.

Assume that we have I different resources, where each of the resources can take

up to L different values. Using a lookup table, we would have to save the values

of LI states. Using a linear value function approximation, we only have to save I

values (the value of an additional resource of each type).

If we use a linear value function approximation instead of a lookup table, the up-

date mechanism of our algorithm slightly changes. Instead of updating the value

of being in a specific state, we update the slope of the value function approxima-

tion. This can be done by defining v̂t as the gradient of the value function with

respect to Rt:

v̂t =




v̂ti1

v̂ti2
...

v̂ti|I|




,

where

v̂tij
=

∂Vt(Rt)

∂Rtij

.

To obtain the elements of the gradient, we can use numerical derivatives. Once

the gradient is computed, ṽt−1 can be updated following

ṽn
t−1 = (1− α) · ṽn−1

t−1 + α · v̂t.

4.1.3.2 Piecewise-Linear Approximations

For most real world problems, a linear relationship between the number of re-

sources and the value of a state is too simplistic. Instead of remaining constant,
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the value of an additional resource is often diminishing. In economics, this con-

cept in known as the law of diminishing marginal returns.

In such a case, a piecewise-linear value function approximation can be used in-

stead of a linear one. We can write the value function approximation as

Ṽt(xt) = ∑
i∈I

Ṽti(Rti).

When a linear value function approximation is used, only one slope per attribute

has to be estimated. Now, we have to estimate multiple slopes per attribute, which

is expressed by Ṽti(Rti).

Let Ṽt(Rt) be the slope to the right of Rt. If we assume that the value of an addi-

tional resource is diminishing, then the slopes of our value function approxima-

tion are monotonically decreasing, i.e.,Ṽt(Rt) ≥ Ṽt(Rt + 1). The standard updat-

ing mechanism would be similar to the one used for the linear approximation:

Ṽn
t−1(Rt) = (1− α) · Ṽn−1

t−1 (Rt) + α · v̂t(Rt).

Note that Ṽn
t−1 and v̂t depend now on Rt, as we no longer use a constant slope per

attribute. If we apply this updating mechanism, the resulting slopes of the value

function approximation may no longer be monotonically decreasing.

To enforce the monotonicity of the slopes, we apply the separable, projective ap-

proximation routine (SPAR) proposed by Powell et al. [Pow+04]. The SPAR algo-

rithm proceeds the following way: Assume that we sample r = Rn and obtain

the estimate of the slope Ṽn(Rn). Then, we determine the normal updates (ignor-

ing possible violations of the monotonicity) and save them in the vector ỹn(r) as

follows:

yn(r) =

{
(1− αn−1) · Ṽn−1(Rn) + αn−1 · v̂n(Rn) if r = Rn,

Ṽn−1(r) otherwise.

For all slopes different from r, we use the approximations from the previous iter-

ation. We update only the slope to the right of r.

If an update violates the monotonicity, then either ỹn(Rn) < ỹn(Rn + 1) or ỹn(Rn−
1) < ỹn(Rn). We fix this violation by solving the problem:

min
v
‖v− ỹn‖2

s.t. v(r + 1)− v(r) ≤ 0 ∀r.
(4.5)
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The solution of problem (4.5), v, is the feasible solution that has the minimal dis-

tance to ỹn.

The solution of this problem is simple. Assume that we have a monotonicity vi-

olation to the left of Rn, i.e.,ỹ(Rn) > ỹ(Rn − 1). To resolve this violation, we set

v(Rn − 1) = v(Rn) = 1/2 · (ỹ(Rn) + ỹ(Rn − 1)). If v is a monotone decreasing

function now, we are done. Otherwise, we have a violation to the left of Rn − 1.

Then, we continue with averaging until monotonicity is restored.

If the monotonicity violation is to the right of Rn, we use the same approach aver-

aging the values to the right of Rn. The solution of problem (4.5) is our new value

function approximation Ṽn.

4.1.3.3 Indexed (Piecewise) Linear Approximations

There are problems where the value of some, but not of all attributes can be de-

scribed by a linear or a piecewise-linear function approximation. For such prob-

lems, the linear or piecewise-linear function approximation approach can be com-

bined with the lookup-table approach. This method is called the indexed (piece-

wise) linear value function approximation approach.

Assume that a state consists of several attributes, e.g., some resources and some

other attributes that represent information about the price of raw materials. For

the attributes representing the different resources, we might find a linear or piece-

wise-linear relationship such that we can use a function approximation. However,

this function approximation may depend on the price of raw materials. In such a

case, we can use separate function approximations for each price scenario.

Let φ(xt) be the value of the attributes that cannot be expressed as a function ap-

proximation. We assume that these values are discretized into a set Φt, which

should not get too large. Then, instead of using one value function approxima-

tion for each of the attributes that can be expressed as a linear or piecewise-linear

function, we use for every of these attributes a separate value function approxi-

mation for each element of Φt. The value function approximation is then (using a

piecewise-linear function approximation)

Ṽt(xt) = ∑
i∈I

Ṽti(Rti | φ(xt)).
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4.1.3.4 Advantages and Problems

An important advantage of value function approximations is the compact repre-

sentation, which requires significantly less memory than a lookup table represen-

tation. However, there is a second advantage that might not be so obvious.

Using a lookup table representation, an update of the value function concerns

only the currently visited state. As a consequence, we obtain only value function

approximations for states we have visited. Hence, we need to iterate over the

whole state space to get a value function approximation for all states.

If we use a linear or a piecewise-linear value function approximation, an update

of the slope of the value function results in a better approximation for many states.

Thus, we do not need to iterate over the whole state space to solve the problem.

Besides the requirement of a linear or a piecewise-linear value function, there is

a second condition, which must be fulfilled if a linear or piecewise-linear value

function approximation should be applied: the attributes used for the approx-

imation must be independent. Otherwise, the approach does not work, as we

calculate the value of a state as the sum of the value of the different attributes. If

a state consists of several attributes, where some of them are not independent, we

might use the indexed (piecewise) linear value function approximation approach.

4.1.4 Algorithms

There are many different algorithms that can be used to solve ADP problems.

Many of these algorithms are variations of algorithms that are commonly applied

to solve Markov decision problems. Examples of such algorithms are the value

iteration and the policy iteration.

In this subsection, we first briefly describe two possible choices of ADP algorithms

concerning the timing of the value function approximation updates. Next, we de-

scribe the value iteration and the policy iteration. Then, we present a combination

of the value iteration and the policy iteration, the Monte Carlo value policy itera-

tion. This is the algorithm we use to solve the power generation expansion prob-

lem. A description of many other algorithms can be found for example in [Pow07].

4.1.4.1 Single-Pass vs. Double-Pass

One design decision of an ADP algorithm is the timing of the value function up-

dates. There are basically two possibilities: either the update takes place imme-
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diately after the new estimation of the value of a state is available, or the update

takes place after each iteration.

The first approach corresponds to the one we have seen in Algorithm 5 and is

know as single-pass procedure. Applying this approach, the value function ap-

proximation of the previous state is updated before the algorithm proceeds to the

next stage. The single-pass approach is simple to implement, but not necessarily

very efficient.

The alternative method, the double-pass procedure, is in general more efficient. In-

stead of performing updates immediately, the algorithm proceeds to the last stage

without any updates. Then, the algorithm starts with the value function updates

at the last stage, stepping back until the initial state is reached. The advantage of

this approach is that the information gathered at later stages is already used for

the update of states at earlier stages.

4.1.4.2 Value Iteration

Value iteration is one of the most popular algorithms used to solve Markov deci-

sions problems. It is similar to the backward induction approach which we use to

solve our ISDP formulation presented in the previous chapter. The difference is

that value iteration can also be used to solve infinite horizon problems.

The basic ADP algorithm (Algorithm 5 on page 189) is a variant of the value it-

eration. During each iteration, we estimate and update the value functions. The

difference between this ADP value iteration and the standard value iteration used

for Markov decision problems is the following: The standard value iteration up-

dates the value functions for all states during each iteration, the ADP version only

those of some states.

The ADP version selects one sample path of the stochastic parameters per itera-

tion. It starts at the initial state, takes a decision and—based on this decision and

the realization of the stochastic process—moves to the next state. This procedure

is repeated until a state of the last stage is reached. Only the value functions of

visited states are updated. Once a state at the last stage is reached, we go back to

the initial state, and repeat these steps with another sample path of the stochastic

parameters. The value iteration is run until the value functions converge.

4.1.4.3 Policy Iteration

A disadvantage of the value iteration is that it can take many iterations until the

value functions converge and the value iteration stops. Often, the optimal policy
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converges faster than the value functions. The policy iteration, another popular

method to solve Markov decision problems, is based on this idea.

The policy iteration consists of two steps: policy evaluation and policy improve-

ment. We start with an initial policy π0, and determine the value of this policy.

For this purpose, we fix the policy and calculate the value function for each state

as follows:

Vπn(x) = F(x, πn(x)) + β ·∑
x′

P(x′ | x, πn(x)) ·Vπn(x′).

Thereby, πn(x) denotes the decision that is followed by the current policy in state

x. The calculated value functions are then used to update the policy as follows:

πn+1(x) = argmax
a∈Γ(x)

(
F(x, a) + β ·∑

x′
P(x′ | x, a) ·Vπn(x′)

)
.

If the new policy corresponds to the previous one, then the algorithm has con-

verged. Otherwise, we have to evaluate the new policy, and update the policy

again, until it does not change any more.

As the value iteration, also the policy iteration requires an iteration over the whole

state space, and is therefore only applicable for smaller state spaces. An ADP

version of the policy iteration can be found in [Pow07, p. 283]. The basic idea

is similar to the one used for the ADP version of the value iteration: instead of

iterating over the whole state space, we sweep forward in time applying a chosen

policy. Only the value functions of the visited states are updated.

4.1.4.4 Monte Carlo Value Policy Iteration

In general, the policy iteration converges faster in terms of iterations than the

value iteration. However, the evaluation of the policy takes much longer than

the value iteration updates. The modified policy iteration algorithm (Puterman and

Shin [PS78]) replaces the exact calculation of Vπn with an approximation obtained

by performing some modified value iteration steps where the policy is fixed for

some iterations. In practice, the modified policy iteration can result in substantial

speed-ups.

Powell uses the same idea for the Monte Carlo value and policy iteration algo-

rithm, which is described by Algorithm 6. The outer loop of the algorithm with

the index n corresponds to the policy-improvement iterations. The loop with the
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Algorithm 6 Monte Carlo value policy iteration

1: Initialize Vπ,0
t ∀t ∈ T .

2: Set n = 1.
3: for n = 1 to N do
4: for m = 1 to M do
5: Choose a sample path wm.
6: for t = 1 to T do
7: am

t = argmax
at∈Γ(xm

t )

(
F(xm

t , at) + β ·Vπ,n−1
t (Ta(xm

t , at))
)

8: v̂m
t = F(xm

t , at) + β ·Vπ,n−1
t (Ta(xm

t , am
t ))

9: xa,m
t = Ta(xm

t , am
t )

10: xm
t+1 = Tw(xa,m

t , wm
t+1)

11: Ṽm
t−1 ← UV(Ṽm−1

t−1 , xm
t−1, v̂m

t )
12: end for
13: end for
14: Vπ,n

t (xt) = ṼM
t (xt) ∀xt

15: end for
16: return Vπ,N

index m is used to carry out M value iterations to obtain an approximation of the

value functions of the current policy.

The main difference between the Monte Carlo value and policy iteration (Algo-

rithm 6) and the value iteration (Algorithm 5) can be found in lines 7 and 8 of

Algorithm 6. The value function approximations used to determine am
t and v̂m

t are

fixed during M iterations. This corresponds to fixing the policy that is followed,

as fixing Vπ determines the decision that is taken (depending on the state). After

M iterations, the value function approximations Vπ are updated with Ṽ.

Another difference between Algorithm 5 and Algorithm 6 can be found in line 11

of Algorithm 6. However, this difference is only a difference in notation. When we

introduced Algorithm 5, we assumed that a lookup table representation is used to

save the value function approximations. Hence, the way we defined the value

function updates was adopted to this notation. As we have seen, value function

updates of linear or piecewise-linear value function approximations are different

from the updates of lookup table based value functions. Line 11 of Algorithm 6

refers to the update of the value function, independent of the chosen value func-

tion approximation.
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4.1.4.5 Convergence of ADP Algorithms

Let us conclude this introduction to ADP with some brief remarks concerning

the convergence of ADP algorithms compared to their counterparts used to solve

Markov decision problems. The standard value iteration as well as the standard

policy iteration converge to the optimal solution.

The standard value iteration provides an error bound during each iteration. Let

ǫ be the maximum difference between the value functions of two successive iter-

ations. Then, it can be shown that the obtained policy differs from the from the

value function of the optimal policy by no more than 2 · ǫ · β · (1− β) at any state

(Kaelbling et al. [Kae+96]).

The standard policy iteration selects during each iteration a better policy. As the

selection of the better policy is based on the exact value of the current policy, and

because the number of possible policies is restricted, it is guaranteed that the op-

timal policy is found.

In general, the ADP algorithms do not provide a guarantee that the optimal so-

lution is found. There are some formulations (depending amongst others on the

chosen value function representation) that provide a guaranteed convergence, but

these formulations require an iteration over the whole state space and are there-

fore often not very efficient. The algorithm we use to optimize power plant in-

vestments does not guarantee that we reach the optimal solution.

4.2 Application of ADP to the Power Generation Ex-

pansion Problem

In this section we present how ADP can be used to solve the power generation

expansion problem. We start with a description of the general idea, before we

discuss several possible state representations. We propose an indexed piecewise-

linear value function approximation to determine the value of a state. Thereby,

we approximate the value of new units with a piecewise-linear value function. To

consider the influence of current fuel and carbon prices as well as the influence of

other new units, we define several climate spread and residual demand clusters.

The climate spread clusters indicate the cost difference between new CCGT and

new coal units, while the residual demand clusters indicate the difference between

the electricity demand and the installed capacity excluding the capacity of the
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considered new units. We use a separate value function approximation for each

combination of climate spread and residual demand clusters.

Next, we describe how we determine the marginal value for additional units and

how we update the value function approximations. For the update of the value

function approximations, we propose two methods, which turn out to be impor-

tant for our algorithm. The first method can be seen as some sort of hierarchical

updating: during the first iterations, we do not only update the value function ap-

proximations of the states we visit, but also those of neighboring climate spread

and residual demand clusters.

The second method we propose exploits some problem-specific knowledge: if we

compare two value function approximations for the same climate spread cluster,

but a different residual demand cluster, we know that the value function approx-

imation representing the smaller residual demand must be smaller than or equal

to the one representing the greater demand. If an update of a value function ap-

proximation violates this relationship, we also update the value function approx-

imations where the violations occur.

Besides these two updating methods, we also propose an problem-adjusted ver-

sion of the ǫ-greedy exploration. We conclude this section with an overview of the

algorithm we use.

4.2.1 General Idea

The SDP formulation of the power generation expansion problem suffers from the

curse of dimensionality. The state space gets too large, and we have to use several

simplifications. The huge state space leads to two different problems, which might

be avoided using ADP: First, due to memory restrictions, we cannot save all states

in a look-up table. Value function approximations used in ADP can significantly

reduce the memory requirements.

Second, the determination of the contribution margins for all states can be com-

putationally intractable. Applying an ADP algorithm, we do not iterate over the

whole state space. Consequently, we do not need to determine the contribution

margins for all states.

In this subsection, we motivate our choice of a piecewise-linear concave value

function approximation. We start with a simplified deterministic example, before

we consider stochastic fuel and carbon prices and the influence of other new units.
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Figure 4.2: Contribution margin depending on the number of new units

4.2.1.1 Deterministic Fuel Prices

Let us start with a simplified example to illustrate how ADP can be used to model

the power generation expansion problem. Assume that fuel and carbon prices are

known with certainty. Obviously, the profit of the considered operator depends

on the number of new units.

Figure 4.2 illustrates this relationship. It shows an example for the contribution

margins of new CCGT units and new coal units during one year as a function of

the number of new units. If there are only a few new units, the (total) contribution

margin increases, if an additional unit is added. However, if there are more than

ten CCGT units or nine coal units, an additional unit decreases the contribution

margin in this example.

If we add an additional new unit to the existing units, then the contribution mar-

gin for this additional new unit is equal to or less than the contribution margin of

a new unit without this additional unit. Let us illustrate this effect by comparing

two scenarios: in scenario Sn, we have n new units (of the same type, e.g., CCGT

units), while in scenario Sn+1, we add an additional unit.

The contribution of a new unit is equal to the product of the amount of generated

electricity and the difference between the electricity price and the variable costs of

the unit. Let us consider how these three factors change when an additional unit

is added:

• The variable costs of a unit are independent of the number of new units.

Hence, the variable costs do not change.

• The amount of electricity that the additional new unit produces must be

equal to or lower than the amount of electricity produced by a new unit in

scenario Sn. The reason is that the unit commitment is determined by cost
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minimization. As the variable costs of the additional new unit are the same

as the variable costs of the other new units, the electricity production of the

additional new unit cannot be greater than the electricity production of a

new unit in scenario Sn if the two scenarios differ only in the number of new

units.3

• The electricity price is set by the most expensive unit producing electricity.

The only difference between scenario Sn and Sn+1 is the additional new unit.

If electricity demand is lower than the cumulated capacity of all units that

have lower variable costs than the considered new units, the electricity price

remains the same. Otherwise, the new unit replaces the electricity produc-

tion of a more expensive unit. Hence, the electricity price in scenario Sn+1 is

lower than or equal to the one in scenario Sn.

So far we have only considered the contribution margin of the additional new

unit. However, an additional new unit has also an impact on the contribution

margins of the existing units, as it might result in a lower electricity production

per new unit and a lower electricity price.

Let us consider instead of the contribution margin of the additional new unit the

cumulated contribution margin of all new units. If we add an additional new

unit, the variable costs remain the same. The cumulated electricity production

of all new units either increases or it remains constant. The electricity price will

either be the same or decrease.

The opposed influence of a new unit on the cumulated electricity production and

the electricity price leads to the curves depicted in Figure 4.2. For the first ad-

ditional unit, the increase in electricity production outweighs the decrease of the

electricity price, and the cumulated contribution margin increases. If more units

are added, the effect of the decreasing electricity price prevails. For the example

shown in Figure 4.2, the contribution margins are a concave function of the num-

ber of new units. Hence, we might use a piecewise-linear concave function to

approximate the contribution margins depending on the number of new units.

However, we have no guarantee that the contribution margins are a concave func-

tion of the number of new units. A counter-example can be easily constructed, as

we see in the following:
3We assume here that units with the same variable costs (and the same technical restrictions)

produce the same amount of electricity during each hour. This might not be the case if a unit with
variable costs c is the marginal unit, i.e., the remaining unsatisfied electricity demand is lower than
the capacity offered by all units with variable costs c. In such a case, we assume that the remaining
unsatisfied demand is evenly distributed amongst all units with variable costs c.
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Example. Let the capacity of a new unit be 1,000 MW and the variable costs 20 e/MWh.

Assume that the electricity price is 100 e/MWh if we add one new unit, 75 e/MWh if we

add two new units, and 70 e/MWh in case of three new units. Assume further that the

new units produce at their maximum capacity in all three cases.

The resulting contribution margins per hour are 80,000 e in case of one unit, 110,000 e

if two units are added, and 150,000 e if three units are added. The resulting function is

non-concave.

Despite this counter-example, tests based on our LDC electricity market model

using the existing merit–order curve indicate that the contribution margins of

additional units—considered over a whole year—can be approximated relatively

well with a piecewise-linear concave function. Even if the value function is non-

concave, the ADP approach based on piecewise-linear value function approxima-

tions might work following Powell [Pow07, p. 353]: They [linear value function

approximations] can also work well in settings where the value function increases or de-

creases monotonically, even if the value function is neither convex nor concave, nor even

continuous.

4.2.1.2 Stochastic Fuel and Carbon Prices

So far we made the simplifying assumption that fuel and carbon prices are known

with certainty. Obviously, this is not the case. As fuel and carbon prices have an

important influence on the contribution margins, we must consider fuel and car-

bon price uncertainty. There is a functional relationship between fuel and carbon

prices and the contribution margins. However, this relationship is non-linear and

difficult to capture by function approximations.

Hence, we do not approximate the influence of stochastic fuel and carbon prices

with a function approximation. Instead, we use the indexed piecewise-linear func-

tion approximation approach for our problem. Thereby, we define different fuel

and carbon price scenarios. For each of these scenarios, we use a piecewise-linear

value function approximation to estimate the value of CCGT units and coal units.

The question remains how to define these fuel and carbon price scenarios. Similar

to the normal SDP approach, there is a tradeoff between accuracy and running

time for the number of considered scenarios. The more scenarios we consider, the

more value functions must be approximated.

Based on the same reasoning as the one used for the ISDP model, we use the

climate spread instead of fuel and carbon prices to represent the fuel and carbon
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price scenarios. We define several climate spread scenarios, where each of these

climate spread scenarios represents an interval of climate spreads. For each of the

climate spread scenarios, we use a piecewise-linear value function approximation

to estimate the value of new units.

4.2.1.3 Dependence on Other Units

Another implicit assumption we have made so far is that the contribution margins

of the different types of new units are independent of each other. This assumption

is implicitly made, as the approximated values for the different attributes (in our

case the number of new units of the different types) are summed up.

In reality, the contribution margins of CCGT units are not independent of the num-

ber of coal units (and vice versa). Additional units of a different technology have

a similar impact on the contribution margins as units of the same type: they can

change the electricity production of the considered units as well as the electricity

price. As a consequence, we cannot neglect this influence.

To handle this problem, we add an extra attribute for each considered type of new

unit to our states: the residual electricity demand. We define the residual electricity

demand as the electricity demand less the available capacity of all units except the

capacity of new units of the considered type. For example, the residual electric-

ity demand for new coal units is equal to the electricity demand minus the total

available capacity of all units except the capacity of new coal units built by the

considered operator. For the determination of the residual electricity demand, we

take the maximum annual demand.

As for the climate spread scenarios, we define different intervals for the resid-

ual electricity demand scenarios. For each of these scenarios, we use a separate

piecewise-linear value function approximation for the number of new units of

each type.

4.2.1.4 Overview

Figure 4.3 illustrates the ideas presented so far in this subsection. It shows the

contribution margins as a function of the number of new units for different cli-

mate spread and residual demand clusters. With our ADP algorithm, we try to

approximate each of these contribution margins with a piecewise-linear concave

function approximation.

There is one relationship between the different value functions that we are going

to exploit during the updates of the value function approximations. Consider the
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Figure 4.3: Contribution margins as a function of the number of new units for
CCGT units (red) and coal units (green). On the x-axis, the number of new units is
depicted, on the y-axis the cumulated contribution margin. In each row, a different
climate spread is used, each column represents another residual demand scenario.

different contribution margins in the same row. For each row, the climate spread

cluster is the same, only the residual demand cluster differs. The residual demand

decreases from the left to the right. With a decreasing residual demand, also the

contribution margins decrease. As we use the same fuel prices for the figures

depicted in the same row, the costs of electricity production of the new units re-

main constant. A decreasing residual demand results in a constant or decreasing

electricity production and a constant or decreasing electricity price. Hence, the

contribution margins of the new units are either constant or they decrease. We

describe in Subsection 4.2.4.2 how we exploit this relationship.

4.2.2 State Representation

In the previous part of this section, we outlined the general idea how ADP can be

applied to our problem. We presented an approach based on indexed, piecewise-

linear value function approximations. However, we have been a bit vague about

the state representation and how the value of a state is approximated. Before we
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start describing our state representation, we would like to stress that an adequate

modeling of the considered problem is extremely important and—to the author’s

experience—more difficult than in normal DP.

In the following, we first describe a straightforward state representation based

on the ideas presented in the previous part of this section. Unfortunately, this

representation suffers from a problem that is not obvious at first sight: it cannot

capture the option value of postponing an investment. For that reason, we present

an alternative state representation that is able to consider this option value. In the

last part of this subsection, we describe how investments of competitors can be

considered.

4.2.2.1 Extensive State Representation

A straightforward implementation of the ideas presented before would represent

a state by the number of new units of each type during each year and the current

fuel prices. Assuming that we model the coal price, the gas price and the carbon

price as stochastic processes, a state would have the following representation:

xt =




xCCGT
t

...

xCCGT
T

xCoal
t
...

xCoal
T

cCoal
t

cGas
t

cCO2
t




,

where xCCGT
t denotes the number of CCGT units in year t and xCoal

t the number of

coal units in year t.

Based on this state representation, we can use a piecewise-linear value function

approximation for each type of unit and each considered year depending on the

climate spread and residual demand cluster. Assume that the information about

the current climate spread cluster and the residual demand cluster for unit type

u in year t′ is represented by φut′ (xt), then we use the following value function
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Figure 4.4: Simple example to demonstrate the problem with the extensive state
representation.

approximation for state xt:

Ṽt(xt) =
T

∑
t′=t

(
Ṽt,CCGTt′

(
xCCGT

t′ | φCCGTt′ (xt)
)
+ Ṽt,Coalt′

(
xCoal

t′ | φCoalt′ (xt)
))

.

(4.6)

Thereby, each Ṽt,ut′ (·) on the right hand side of equation (4.6) is a piecewise-linear

value function approximation. To determine the value of a state, we simply sum

up the value of all attributes representing the number of new units.

However, the presented representation suffers from one substantial drawback: it

is not able to capture the option value of delaying an investment. Instead, an

investment is carried out, as soon as it gets a positive net present value. Let us

visualize this problem with a simple example.

Example. Assume that we have the possibility to invest in one single unit. The construc-

tion time of the unit is one year, and the unit costs 600 million e. To simplify matters,

we assume that there is no fuel price uncertainty. The returns of this unit are 0 e in the

first year (this could be due to an overcapacity in the market or due to an unfavorable fuel

price), 500 million e in the second and third year. We assume a discount rate of 10%.

Figure 4.4 visualizes this simple example.

The optimal solution is obvious. We invest after the first period, this yields a net present

value of 244 million e.

Now consider what happens if we apply an ADP algorithm based on the outlined state

representation and value function approximation. The marginal values for having an

additional unit is 0 e, 413 millione and 376 millione for the years one to three. Starting

in the initial state in year 0, we might either invest or not. As the investment costs of

600 million e are lower than the marginal value of a unit in the following years (789

million e), the investment is carried out. This result corresponds to the optimal solution

of a traditional net present value calculation applied in year 0. The problem is that the

value of being in state 0 in year one is underestimated.
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4.2.2.2 Compact State Representation

Let us now consider an alternative state representation, which is similar to the

representation chosen for the SDP model. Instead of saving the number of active

units for each year of the optimization horizon, we might just save the number of

units that are already active plus those that are under construction at the moment:

xt =




xCCGT
t

...

xCCGT
t+tConstr,CCGT

xCoal
t
...

xCoal
t+tConstr,Coal

cCoal
t

cGas
t

cCO2
t




,

Thereby, tConstr,CCGT and tConstr,Coal denote the construction time for new CCGT

and new coal units, respectively.

While the state representation looks similar to the representation presented be-

fore, the value function approximation works different. At first glance, the value

function approximation seems to be almost the same as before:

Ṽt(xt) =
t+tConstr,CCGT

∑
t′=t

Ṽt,CCGTt′
(

xCCGT
t′ | φCCGTt′ (xt)

)

+
t+tConstr,Coal

∑
t′=t

Ṽt,Coalt′
(

xCoal
t′ | φCoalt′ (xt)

)
.

As before, the approximations for Ṽt(xt′) with t′ < (t + tConstr) are piecewise-

linear value functions approximating the contribution margin in the correspond-

ing year depending on the number of new units.

The difference to the value function approximation used before is the approxima-

tion used for Ṽt,CCGTt′
(

xCCGT
t′ | φCCGTt′ (xt)

)
with t′ = t + tConstr,CCGT, and the one

used for Ṽt,Coalt̂

(
xCoal

t̂
| φCoalt̂(xt)

)
, where t̂ = t + tConstr,Coal. As we do not explic-

itly consider the number of new units until the end of the optimization horizon,

these value functions are used to approximate the value of having the correspond-

ing number of units from year t + tConstr until T. This value does not necessarily
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correspond to the cumulated contribution margin for the years from t + tConstr

until T. We will demonstrate this in Subsection 4.2.3, where we discuss how the

slopes of the value function approximations are calculated. Then, we also show

that this compact representation avoids the problem of the non-consideration of

the option value to postpone an investment, which we encountered with the ex-

tensive representation.

4.2.2.3 Investments of Competitors

If we model investments of competitors, we have to add additional attributes

to a state counting the number of new units built by competitors and those un-

der construction. For the compact state representation, we add the attributes

xCCGT,Ext
t , . . . , xCCGT,Ext

t+tConstr,CCGT, xCoal,Ext
t , . . . , xCoal,Ext

t+tConstr,Coal.

While the representation of the new units built by competitors corresponds to the

one of the units of the considered operator, the way they are used to approximate

the value of a state is different. For each of the attributes representing the number

of units built by the considered operator, we use a piecewise-linear value function

to determine the value of these attributes. New units built by competitors decrease

the value of the units built by the considered operator as they tend to reduce the

electricity production of other units and to decrease electricity prices.

We account for this effect with the residual demand clusters. The construction of

new units by competitors reduces the residual demand for the units of the con-

sidered operator. Hence, if competitors build new units, we use a value function

approximation for the number of own units that is smaller or equal to the one

used if no external investments are carried out.

4.2.2.4 Climate Spread and Residual Demand Clusters

During the presentation of the state representations we focused so far on the at-

tributes used for the piecewise-linear value function approximations. We have

not specified how we define the climate spread and the residual demand clusters,

which we just denoted with φut′ (xt).

Climate Spread Clusters

Let us start with the climate spread clusters. For each year, we define a fixed num-

ber of climate spread clusters. Each climate spread cluster covers a predefined

interval of climate spreads. These intervals may change from year to year.
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There are two different approaches how these intervals can be determined. We

might either chose intervals of the same size, or we might select the intervals such

that the probability for each interval is equal. Using intervals of equal size ensures

that intervals do not get too large (if enough intervals are chosen). Therefore, the

approximation quality of the value function approximations tends to be similar

for all intervals.

The second approach results in intervals of different sizes. On the one hand, the in-

tervals around the most probable climate spread scenarios are the smallest. Hence,

we can expect the best approximation quality for these intervals. On the other

hand, intervals representing less probable climate spread scenarios can get rela-

tively large, and may result in a poor approximation quality. As we think that a

good approximation of the most probable scenarios is more important, we opt for

the latter approach.

Residual Demand Clusters

As for the climate spread clusters, we define for every year of the optimization

horizon a fixed number of residual demand clusters. These intervals may also

change from year to year.

Though, there is one important difference between the climate spread clusters and

the residual demand clusters. When we approximate the value of a state, we use

the same climate spread cluster for all value function approximations, but we may

use different residual demand clusters.

We use the current climate spread cluster also for future years, because we do

not know how climate spreads will evolve. The residual demand clusters in our

model are only influenced by the number of new units.4 Due to the construction

time of new units, the residual demand clusters are fixed for all attributes ex-

cept those representing the number of new units until the end of the optimization

horizon. Hence, the residual demand clusters are at least partly fixed. Thereby,

the residual demand clusters may be different for each attribute.

Example. Let us illustrate with a simple example how the climate spread clusters and the

residual demand clusters are used. Let the maximum electricity demand be 15,000 MW.

Assume that there are coal units with a capacity of 8,000 MW and CCGT units with a

capacity of 5,000 MW (and no other units).

4If we considered also demand uncertainty, this uncertainty would influence the residual de-
mand cluster. But also in this case, we propose to stick to the approach we present here.
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Assume further that we use two residual demand clusters for CCGT units and coal units.

The first residual demand cluster for CCGT units (rdcCCGT
1 ) covers all residual demand

values that are greater than or equal to zero, while the second one (rdcCCGT
2 ) covers all

residual demand values that are negative. The residual demand clusters for coal units are

defined accordingly.

Assume that we use two different climate spread clusters, and that the current climate

spread lies in climate spread cluster one (csc1). Let the capacity of a new unit be 1,000 MW.

To simplify matters, we assume that a new unit has a construction time of one year. We

use the compact state representation in this example.

We are currently in year t, and we want to estimate the value of the following state char-

acterized by two CCGT units in year t, five in year t+1 and one coal unit in year t and

two coal units in year t+1. Then, we use the following value function approximations:5

Ṽ




2

5

1

2




= Ṽt,CCGTt
(2 | csc1,t, rdcCCGT

1,t ) + Ṽt,CCGTt+1(5 | csc1,t, rdcCCGT
1,t+1 )

+Ṽt,Coalt(1 | csc1,t, rdcCoal
1,t ) + Ṽt,Coalt+1

(2 | csc1,t, rdcCoal
2,t+1).

Note that we use the same climate spread cluster for all four piecewise-linear value func-

tion approximations. The residual demand clusters differ. In year t, the residual demand

for CCGT units is equal to 1,000 (remember that we subtract the capacity of the new coal

units in year t). This corresponds to the first residual demand cluster. In year t+1, the

residual demand is 0. Hence, the residual demand cluster remains the same. For coal

units, the residual demand cluster changes. In year t, we have a residual demand of 0 cor-

responding to residual demand cluster 1. In the next year, the residual demand (-3,000)

lies in residual demand cluster 2.

4.2.3 Marginal Value Calculation

To update the piecewise-linear value function approximations, we have to de-

termine the marginal values for the different attributes. In this subsection, we

demonstrate how we calculate these marginal values for the compact state repre-

sentation.

5For the sake of simplicity, we drop the fuel prices in the state representation and depict only
the attributes representing the number of new units on the left hand side of the equation.
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Thereby, we can distinguish three cases, which we first describe, before we pro-

vide two examples to illustrate the marginal value calculation.

• Attributes approximating the value of electricity production in the current year t:

For these attributes, the determination of the marginal value is straightfor-

ward. We first use our fundamental electricity market model to determine

the contribution margins for the current state. To determine the marginal

value of an additional unit, we run the electricity market model again with

the same parameters, except for the additional unit of the considered type.

The difference between the two results is used to update the slope of the

corresponding value function approximation.

Formally written, we determine the marginal value of attribute xu′
t , v̂t,u′t

as

v̂t,u′t
= Rt




xu′
t + 1

xu
t

cCoal
t

cGas
t

cCO2
t



− Rt




xu′
t

xu
t

cCoal
t

cGas
t

cCO2
t




.

Thereby, Rt(·) denotes the total reward for the new units depending on the

current year and the current fuel prices. This value is calculated by our fun-

damental electricity market model.

• Attributes approximating the value of electricity production in future years, where

the number of units cannot be changed any more: This are the years t′ where

t < t′ < t + tConstr with tConstr,u denoting the construction time for units of

technology u. While the number of units is fixed for these years, the climate

spread may change.

When we are in year t, we do not yet know how fuel prices evolve. To update

these marginal values, we wait until we are in year t′, and use the discounted

marginal values of the corresponding attributes observed in year t′:

v̂t,u′
t′
= βt′−t · v̂t′,u′

t′
.

• Attributes approximating the cumulated value of electricity production for units of

technology u for the period from t′ until T, with t′ = t + tConstr,u: The deter-

mination of the marginal value for these attributes differs from the marginal
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value calculation of other attributes. The reason is the following: If we apply

the approach described before, we would implicitly assume that the number

of units for the considered period (from t′ to T) is fixed. However, this is not

the case.

Remember that we are updating the value function approximation of a post-

decision state in year t. As we are considering a post-decision state, the

decision for stage t has already been made. Consequently, the number of

new units is fixed until year t + tConstr,u = t′. With the decision in year t + 1,

we can change the number of units for all years after t′.

The marginal value of an additional unit in year t′ can be decomposed into

two parts: the observed discounted marginal value in year t′ and the differ-

ence in the discounted expected value for new units from year t′ + 1 until T

of the succeeding optimal post-decision states in year t + 1.

The discounted marginal value of an additional unit in year t′ is βt′−t · v̂t′,u′
t′
.

The difference in the discounted expected value for new units from year

t′ + 1 until T of the succeeding optimal post-decision states is a bit more

difficult to get. Let xa
t be the post-decision state for which we want to update

the value function approximation, and x a
t be a state equal to xa

t , except for

the attribute u′t′ , where x a
t has one extra unit.

We now simulate one outcome of the stochastic fuel prices, and determine

the resulting pre-decision states in year t+ 1 for both states. We denote these

states with xt+1 and xt+1. Next, we determine the optimal decision for both

pre-decision states, i.e., we solve line 5 of Algorithm 5 (page 189).

Let the optimal decisions be a∗t+1 and a ∗t+1, and the post-decision states that

are reached when we apply these optimal decisions xa
t+1 and x a

t+1, respec-

tively. At first glance, it might be straightforward to to use the difference

between the expected values of these two states to update the value func-

tion approximation.

However, we use a slightly different approach, for the following reason: xa
t+1

and x a
t+1 differ only in the attributes representing the number of units of

the considered type u′ in year t′ and those representing the number of new

units of any type u from t′ + 1 until T. If we took the difference between

the expected values of these two states, we would use the expected value

of having an additional unit in year t′. However, we do not want to use
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the expected value, but the observed value. For that purpose, we use the

observation v̂t′,u′
t′
.

To consider the difference in the expected value of the units from year t′ + 1

until T, we just calculate the difference between the expected value of these

attributes. The marginal value used to update the value function approxi-

mation is

v̂t,u′
t′
= βt′−t · v̂t′,u′

t′
+

β ·
(

∑
u

(
Ṽt+1,ut′+1

(x u
t′+1)− Ṽt+1,ut′+1

(xu
t′+1)

)
−
(
c(a ∗t+1)− c(a∗t+1)

))
.

(4.7)

Thereby, c(a ∗t+1) and c(a∗t+1) denote the costs for the decisions a ∗t+1 and a∗t+1,

respectively.

Let us now illustrate the determination of the marginal values based on two exam-

ples. The first one illustrates the case of t′ < t + tConstr, while the second example

focuses on the case t′ = t + tConstr.

Example. An investor may invest in (several) CCGT units. Let the construction time

of these units be two years. Assume that there are two different climate spread clusters,

which we denote with csct,0 and csct,1. For the ease of simplicity, we assume a linear value

function approximation. As there is only one type of new units, we do not have to consider

different residual demand clusters.

The contribution margin per unit is equal to 0 if fuel prices lie within csct,0, and 100 if

fuel prices are within csct,1. Assume that we are in year t and fuel prices lie in climate

spread cluster csct,1. Consequently, the marginal value of an additional unit in year t is

equal to 100.

The marginal value of an additional unit in t + 1 depends on the fuel price development.

To update this value, we simulate the fuel prices for t+ 1. If these fuel prices are in climate

spread cluster csct+1,0, we use 0 for the update, otherwise we use 100.

Assume that the transition probabilities from csct,1 to csct+1,0 and to csct+1,1 are 0.5 each.

Then, the value function approximation of Ṽt,CCGTt+1(x
a,CCGT
t+1 | csct,1) will converge to

50. We drop the update of Ṽt,CCGTt+2(x
a,CCGT
t+2 | csct,1) here, as this update mechanism is

illustrated by the next example.

Example. Let us come back to the example on page 210 used to demonstrate the inability

of the extensive state representation to capture the option value of postponing an invest-

ment.
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t 0 1 2 3

Ṽt,ut(1) 0 0 413 376
Ṽt,ut+1(1) 545 789 376 0

Table 4.1: Value function approximations (after convergence) for having one unit.

Let us consider how the compact state representation can be used in this example. As we

assume a construction time of one year, a state consists of two attributes: the number of

units active in year t, and those active from year t + 1 until the end of the optimization

horizon. Table 4.1 shows the resulting value function approximations (after convergence

of the algorithm) for having one unit. The first row represents the value of having one unit

in the current year, the second row shows the cumulated value of having one unit from the

next year until the end of the optimization horizon.

The values in the first row year correspond to the contribution margins for the electricity

production in the corresponding year. Let us demonstrate based on year 0 how the values

of the second row are calculated. We assume that the value function approximations of the

succeeding years have already converged to the values shown in Table 4.1.

Let the current state be xa
0 = (0, 0)T. To determine the marginal value of an additional

unit for the years 1 to 3, we use the state x a
0 = (0, 1)T.

To determine the succeeding pre-decision states, we would normally simulate the fuel

prices for the next year now. But as we disregard fuel price uncertainty in this example, we

can skip this step. The succeeding pre-decision states are x1 = (0, 0)T and x1 = (1, 1)T.

We now determine the optimal decision for both states. As we allow only one new unit, the

only decision in state x1 is to build no additional new units. The succeeding post-decision

state is x a
1 = (1, 1)T.

The optimal decision for state x1 is to invest. The expected value of the post-decision

state xa
1 = (0, 1)T minus the costs for investing is 244 million e (789 million e − 545

million e), which is greater than the expected value for not investing (0 e).

Now, we have all values we need to determine the marginal value for an additional unit

following equation (4.7). In this example, the observed value for an additional unit in

year one, v̂1,u′1
is 0 e. The number of new units in the years two to three is one for both

xa
1 and x a

1 . The expected value for these units is 789 million e. The only difference are the

costs of the optimal decisions, which are 0 e for a ∗1 and 545 million e for a∗1 . Hence, the

marginal value used to update the value function approximation in year zero is:

v̂0,u1 = 0 + (789− 789)− (0− 545) = 545 [million e ].
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As the values used in the example are already discounted values, we have dropped the

discount factor in equation (4.7).

When we decide whether to invest or not in year 0, then the investment is postponed, as

the investment costs (600 million e) are higher than the expected value of a unit (545

million e).

4.2.4 Value Function Approximation Updates

The marginal values, which are determined as described in the previous sub-

section, are used to update the piecewise-linear value function approximations.

Thereby, we use a separate approximation for each attribute representing the num-

ber of new units depending on the climate spread cluster and the residual demand

cluster. The introduction of different climate spread and residual demand clusters

allows for a better approximation of the value function, but it also increases the

number of value functions approximations, which must be updated. To improve

the speed of convergence, we introduce two methods, which we describe in the

following.

The first method is based on the idea that it can be beneficial to update not only

the value function approximations of the visited state during the first iterations,

but also those with similar climate spread clusters and similar residual demand

clusters. The second approach exploits some problem-specific knowledge con-

cerning value function approximations with the same climate spread but different

residual demand clusters. If all parameters but the residual demand cluster are

the same, then the value function approximation for a greater residual demand is

in general greater than or equal to the one with a smaller residual demand cluster.

4.2.4.1 Initial Updates of Neighboring Value Function Approximations

One design choice of an ADP algorithm is the initialization of the value function

approximations. It is desirable to choose the initial values close to the real values.

However, this is difficult because we have no knowledge about these real values

at the beginning of the algorithm. As a consequence, we have to start with more or

less arbitrarily chosen initial values, and hope that the approximation converges

quickly to the real values.

The problem is that the more value function approximations we have, the longer it

takes until these functions converge, as we update only a subset of these functions

during each iteration. It may take a while, until each function is at least updated
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Algorithm 7 Selection of neighboring value function approximations

1: if i < imax then
2: drel

i = (1− i/imax) · drel,max

3: dcsc
i = ceil

(
(ncsc − 1) · drel

i

)

4: cscmin
i = max

(
0, csc(i)− dcsc

i

)

5: cscmax
i = min

(
ncsc − 1, csc(i) + dcsc

i

)

6: for j = cscmin
i to cscmax

i do

7: dcsc,rel
ij = |(cscj − csc(i)|/(ncsc − 1)

8: drdc
ij = ceil((nrdc − 1) ·max(0, drel

i − dcsc,rel
ij )

9: rdcmin
ij = max

(
0, rdc(i)− drdc

i

)

10: rdcmax
ij = min

(
nrdc− 1, rdc(i) + drdc

ij

)

11: for k = rdcmin
ij to rdcmax

ij do

12: Ṽi
t−1,ut′

(xa,u,i
t−1 |cscj, rdck)← UV(Ṽi−1

t−1,ut′
, xu,i

t−1, v̂i
t,u′t

)

13: end for
14: end for
15: else
16: Ṽi

t−1,ut′
(xa,u,i

t−1 |csc(i), rdc(i)) ← UV(Ṽi−1
t−1,ut′

, xu,i
t−1, v̂i

t,ut′
)

17: end if

once. Hence, the algorithm works for several iterations with value function ap-

proximations that are still equal to the initial approximations.

While we have no knowledge about the real value function when we start the al-

gorithm, we iteratively gather new information during each iteration. When we

get some information about a value function approximation Ṽt,ut′
(

xu
t′ | csca, rdca

)

of climate spread cluster csca and residual demand cluster rdca, we can assume

that value function approximations of the neighboring climate spread cluster cscb

or the neighboring residual demand cluster rdcb will be similar. At least, we can

assume that Ṽt,ut′
(

xu
t′ | csca, rdca

)
is a better approximation of Ṽt,ut′

(
xu

t′ | cscb, rdca

)

than the initial values.

Based on this idea, we update also neighboring value function approximations of

the current climate spread and residual demand cluster during the first iterations.

To select the neighboring value function approximations, we use Algorithm 7.

For this algorithm, we assume that the climate spread clusters as well as the resid-

ual demand clusters are sorted and numbered from 0 to ncsc − 1 and nrdc − 1,

respectively. Thereby, ncsc and nrdc denote the number of climate spread clusters

and the number of residual demand clusters, respectively. We denote the current

iteration of the Monte Carlo value policy iteration with i, and the climate spread
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Figure 4.5: Update of neighboring value function approximations.

cluster and the residual demand cluster of the considered value function approx-

imation with csc(i) and rdc(i), respectively. We assume that we update the value

function approximation for attribute ut′ (e.g., if we use attribute coal1, we update

the value function approximation for new coal units in the next year).

Before we can apply the algorithm, we need to specify two values: the number

of iterations imax during which the neighboring value function approximations

are updated, and the maximum relative distance drel,max to the current climate

spread and residual demand cluster. For example, if we use drel,max = 0.5, and

the current climate spread cluster is the one in the middle, we update the value

function approximations of all other climate spread clusters (but the same residual

demand clusters) during the first iterations.

The algorithm updates neighboring value function approximations as depicted

in Figure 4.5. All value function approximations inside (or at the boundary) of

the cropped square around the current value function approximation (marked

with an x) are updated. With an increasing number of iterations, the square gets

smaller, until i = imax. Then, we do not update neighboring value function ap-

proximations any longer.

4.2.4.2 Update of Other Residual Demand Clusters

The second method we use to speed up convergence is based on the relationship

of different value function approximations. Let us consider two scenarios that

differ only in the residual demand. Then, we can assume that the contribution

margin of new units is at least the same for the scenario with the higher residual

demand compared to the other scenario.6 In the scenario with the higher residual

demand, the electricity production of the considered units is at least as high as in

6This holds as long as the only variable influencing the residual demand is the number of
new units of the competing technology. If the demand is also uncertain, or if investments by
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the other scenario. The same holds for electricity prices. This knowledge can be

exploited when we update the value function approximations.

Let us assume that the residual demand clusters are sorted and rdc0 is the residual

demand cluster with the smallest residual demand. Then, the following relation

must hold:

Ṽt,ut′ (x
u
t′ | csci,t, rdcu

0,t′) ≤ Ṽt,ut′ (x
u
t′ | csci,t, rdcu

1,t′) ≤ . . .

≤ Ṽt,ut′ (x
u
t′ | csci,t, rdcu

nrdc−1,t′). (4.8)

Every time we update a value function approximation, we check whether rela-

tion (4.8) still holds. If inequalities (4.8) are violated, we keep the value function

approximation of the residual demand cluster that is updated at the moment, and

adjust the other value function approximations that violate inequalities (4.8).

Assume that an update of the value function approximation belonging to the

residual demand cluster 0 results in values that are greater than those of the corre-

sponding value function approximation belonging to residual demand cluster 1.

Then, we update the value function approximation belonging to residual demand

cluster 1 as follows:

Ṽt,ut′ (x
u
t′ | csci,t, rdcu

1,t′) = max
(
Ṽt,ut′ (x

u
t′ | csci,t, rdcu

1,t′), Ṽt,ut′ (x
u
t′ | csci,t, rdcu

0,t′)
)

,

∀xu
t′ = 0, . . . , nu. (4.9)

Thereby, nu denotes the maximum number of new units of technology u. Note

that such an update may violate the concavity of Ṽt,ut′ (x
u
t′ | csci,t, rdcu

1,t′). If that is

the case, we use the convex hull of the function.

Example. Assume we have Ṽt ut′ (1 | csci,t, rdcu
0,t′) = 100, Ṽt,uu

t′
(1 | csci,t, rdcu

1,t′) =

110. After an update, Ṽt,ut′ (1 | csci,t, rdcu
0,t′) increases to 115. Then, we set Ṽt,ut′ (1 |

csci,t, rdcu
1,t′) = 115.

4.2.5 Modified ǫ-Greedy Exploration

Another problem specific adaption we apply is related to the form of exploration.

The normal ǫ-greedy exploration uses the same probability for each decision if an

exploration step is taken. For our problem, this is suboptimal. The reason is that

competitors are considered, this cannot be guaranteed any longer. Nevertheless, the contribution
margin still tends to be higher for the case with a higher residual demand.
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Figure 4.6: Probabilities for different states if ǫ-greedy exploration with ǫ = 1 is
applied.

we allow only the construction of new units, but not the shut-down of new units.

If we use the same probabilities for each decision, states with many new units are

more often visited than states with few new units.

Consider the example depicted in Figure 4.6. Each circle represents a state. The

numbers in the circles indicate the number of new units, while the numbers below

the states correspond to the occurrence probability of that state, if each decision of

a state has the same probability. It can be seen that such an approach favors the

exploration of states with many units.

As the objective of an exploration method is to explore different parts of the state

space, we propose the following alternative, to which we refer as modified ǫ-

greedy exploration. The difference between the modified ǫ-greedy exploration

and normal ǫ-greedy exploration is the choice of the probability of each decision

if an exploration step is done. Instead of uniform probabilities, we calculate a

weight for every decision. This weight is based on the succeeding state that is

reached when the decision is applied.

Let Nn(xt,i) be the number of time the i-th state at stage t has been visited in

iteration n. Then, we iteratively define the weights Wn(xt,i) starting at the last

stage as

Wn(xt,i) = Nn(xt,i) +

∑
xt+1,i′∈S(xt,i)

Wn(xt+1,i′)

|S(xt,i)|
,

where S(xt,i) denotes the set of successors that can be reached from state xt,i. To

simplify matters, we do not consider the climate spread cluster, i.e., we assume

that we stay in the same climate spread cluster. These weights are an indicator

how often the corresponding state and its possible successors have already been

visited. The higher the weight is, the lower should be the probability to select a

decision that leads to this state. Based on these weights, we define the probability
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to select decision at,i leading to state xt+1,i as:

P(at,i|xt,i) =
Wn,max(xt+1 ∈ S(xt,i))−Wn(xt+1,i)

∑
xt+1,i′∈S(xt,i)

(Wn,max(xt+1 ∈ S(xt,i))−Wn(xt+1,i′))
.

Thereby, Wn,max(xt+1 ∈ S(xt,i)) denotes the maximum value of Wn of one of the

successors of state xt,i.

4.2.6 Algorithm

In Subsection 4.1.4, we have briefly presented different algorithms to solve ADP

problems. We use the Monte Carlo value policy iteration described on page 201 to

solve our problem. In this subsection, we are going to discuss the different parts

of the algorithm.

4.2.6.1 Determination of Climate Spread and Residual Demand Cluster

Before we start with the Monte Carlo Value Value Policy Iteration, we have to

define the climate spread clusters and the residual demand clusters.

The approach we use to determine the climate spread clusters is similar to the

one used to determine the initial climate spread scenarios for our ISDP model.

We define the climate spread clusters such that they have (approximately) equal

probabilities.

For this purpose, we simulate a fixed number of fuel price paths, e.g., 50,000. For

each of the simulated fuel prices, we determine the corresponding climate spread.

Then, we choose the bounds of the climate spread clusters for every year such that

each cluster comprises the same amount of climate spread scenarios. The number

of climate spread clusters may increase with time to account for increasing fuel

price uncertainty. Similarly, we may use a different number of climate spread

clusters depending on the stochastic process chosen to simulate fuel prices.

The residual electricity demand for new coal units and new CCGT units depends

on two factors: electricity demand and electricity supply. In our model we assume

that electricity demand is known with certainty. Electricity supply can be divided

into a fixed and a variable part. The fixed part are the existing units, the variable

part are the new units that may be build. Hence, it is sufficient to concentrate on

the new units for the determination of the residual demand clusters.
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We choose the residual demand clusters the following way: Let nrdc be the num-

ber of residual demand clusters, and pmax
ucomp the maximum capacity of new units

of the competing technology (e.g., if we determine the residual demand clusters

for CCGT units, pmax
ucomp is the maximum cumulated capacity of new coal units).

Then, we select the bounds of the residual demand clusters such that the i-th clus-

ter covers the interval (of new capacity of the competing technology) of [(i − 1) ·
pmax

ucomp/nrdc, i · pmax
ucomp/nrdc).7

Note that such a division of the residual demand cluster is only reasonable, if

the maximum number of allowed new units is chosen such that this maximum

number of new units might (at least almost) be build under some circumstances.

For example, if we allow up to 20 new coal units, but due to excess capacities in

the market, we never build more than 5 units, then it would be better to use non-

equidistant intervals. The problem is that we do not know a priori how many

units are built by the optimal solution.

It may be more straightforward to refer to the residual demand clusters as compet-

ing new capacity clusters given the way we determine these clusters. However, a

possible extension to our model is the introduction of electricity demand uncer-

tainty. In that case, one has to consider the demand uncertainty in the definition

of the residual demand clusters. Hence, we use the name residual demand cluster,

as it incorporates this idea.

4.2.6.2 Initialization

The influence of the initial values for the value function approximation depends

on the degree of exploration used when a decision is chosen. The initialization

of the value function is crucial, if an algorithm purely based on exploitation is

used, i.e., the algorithm always selects the decision that is optimal based on the

current value function approximations. For algorithms with a relative high degree

of exploration during the first iterations, the initial values are less important.

In general, it is difficult to guess the right values for the value function approxima-

tions. Hence, we might chose the initial values such that they either underestimate

or overestimate the real value. We tested both approaches, but the performance

of the algorithm is similar in both cases. As the simplest method is to start with

value function approximations of 0, we use this approach.

7To be exact, the given intervals are correct for intervals 1 to nrdc − 1. The nrdc-th interval is
[(nrdc− 1) · pmax

ucomp /nrdc, pmax
ucomp ].
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4.2.6.3 Policy Iteration

The outer loop of the Monte Carlo value policy iteration consists of the policy

iteration. During each policy iteration, we keep the value function approximations

used to select the decisions within the value iterations constant.

Instead of using a fixed number of policy iterations as written in Algorithm 6, we

might also use another stopping criterion. For example, we might run the algo-

rithm until the expected value of the optimal policy does only change marginally

during several iterations.

For our tests, we use a fixed number of iterations. Based on numerical test, we

choose the number of iterations such that the algorithm converges. The number

of iterations required for this convergence depends on the chosen stepsize rule

and the degree of exploration.

4.2.6.4 Value Iteration

The main part of the algorithm is the value iteration used to evaluate the value of

the fixed policy. Therefore, we discuss the value iteration in detail in the following.

We start with the initial (pre-decision) state x0 and select a decision a0. While the

approach described in Algorithm 6 (line 7) is purely based on exploitation (also

referred to as greedy approach), we use an approach combining exploitation and ex-

ploration like the (modified) ǫ-greedy exploration or the Boltzmann exploration.

Let us briefly demonstrate the selection of the decision based on the greedy ap-

proach, which choses the decision that maximizes the expected profits. These

profits are composed of two parts: the immediate reward for being in the accord-

ing pre-decision state less the costs of the decision, and the expected value for the

resulting post-decision state.

The immediate reward for being in state xt is determined by our LDC electricity

market model with scarcity mark-ups. Note that we can skip this step for the

initial states, where no new units are operable (due to the construction time).

The expected reward for being in the according post-decision state is calculated

based on the fixed piecewise-linear value function approximations of the current

policy. Before we can calculate the expected value of the post-decision state, we

have to determine the current climate spread cluster and—for each attribute rep-

resenting the number of new units—the residual demand cluster.

If we consider investments of competitors (we can use the approach described in

Section 3.3 to determine these external investments), we model these investments
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directly after the decision of the considered operator, before the next post-decision

state is reached. The reason for this choice is that we assume that external invest-

ments depend on the decisions of the considered operator.

The selected decision is then used to determine the succeeding post-decision state

xa
0. Next, we sample the coal price, the gas price and the carbon price for year one.

These prices are required for the selection of the next pre-decision state x1.

As we use a double-pass procedure to update the value function, we continue

stepping forward in time before making the value function updates. Once we

reach the final stage, we step backwards and make the value function updates.

Thereby we proceed as described in Subsection 4.2.3.

After the updates are performed, we go back to the initial state and start the next

value iteration. The difference between this iteration and the previous one are

only the sampled fuel prices. The value function approximation used to deter-

mine the optimal decision is still the same, as we use the (fixed) value function

approximations of the current policy iteration. After we have done a predefined

number of value iterations, we update the fixed value function approximations of

the policy iteration, increase the policy iteration counter and start the next value

iteration with the updated value function approximations.

4.3 Evaluation

Concerning the evaluation of the results of the ADP algorithm, we face the same

problems that we have encountered during the evaluation of the solution of our

ISDP approach: we do not know the optimal solution. Hence, it is difficult to eval-

uate the quality of a solution. Consequently, we use the same approach we have

used for the evaluation of the solution quality of the ISDP model: we compare the

solution of the ADP model with the solutions of other approaches.

In the following, we first describe the data and the parameters we use for the

tests. Next, we evaluate the influence of different design parameters. Thereby,

we focus on the problem specific approaches we have introduced: the updates

of value function approximations of neighboring residual demand and climate

spread clusters, and the exploration method. Afterwards, we compare the solu-

tion of the ADP model with those of a deterministic model and those of the ISDP

model.
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4.3.1 Test Data

The following comparisons are based on the Monte Carlo value policy iteration.

We use 2,000 policy iterations with 50 value iterations each. To update the value

function approximations, we use a double-pass procedure. We apply the search-

then-converge stepsize rule with the parameters α0 = 1, a = 10, b = 1, 000 and

β = 0.8. We start with initial value function approximations of zero. We use the

modified ǫ-greedy exploration with c = 0.8 to balance the degree of exploration

and exploitation. The chosen values have been obtained by numerical tests.

Unless otherwise stated, we consider an optimization horizon of 20 years and

allow investments in up to eight CCGT units and eight coal units. The contribu-

tion margins for new units are determined by the LDC electricity market model

with scarcity mark-ups. We perform tests with fuel prices simulated as corre-

lated GBMs, and others with the logs of fuel prices modeled as correlated trended

mean-reversion processes. We consider ten climate spread clusters and nine resid-

ual demand clusters with a separate value function approximation for each of

these clusters. This choice leads to 90 separate value function approximations per

year for each attribute representing the number of new units.

The quality of the final solution is evaluated based on 10,000 fuel price simula-

tions. For these 10,000 fuel price simulations, we use the same stochastic process

as the one used for the optimization. However, we initialize the random number

generator with a different random seed.

To get an idea how the solution quality evolves during the runtime of the algo-

rithm, we evaluate the solution of every policy iteration based on 1,000 fuel price

simulations. While this number of simulations may be too small for an exact eval-

uation of the solution, tests have shown that 1,000 simulation runs are a good

tradeoff between accuracy and running time.

4.3.2 Influence of Parameter Choices

The performance of an ADP algorithm depends on many different design deci-

sions. Important design decisions are the choice of the state representation, the

value function approximation, the stepsizes used for the updates of the value

function approximations, and the ratio between exploration and exploitation. In

addition, the exploitation of problem specific knowledge can significantly speed

up an algorithm.
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Often, the choice of one of these design parameters has an impact on the influ-

ence of another parameter. For example, the degree of exploration influences how

quickly stepsizes may decrease. The evaluation of each of these parameters de-

pending on the choice of the other parameters would be beyond the scope of this

thesis.

In this subsection, we focus on the influence of the exploitation of problem specific

knowledge. Thereby, we evaluate the influence of the problem specific methods

we have introduced: the initial updates of neighboring value function approxi-

mations, the updates of the value function approximations with the same climate

spread cluster but a different residual demand cluster, and the modified ǫ-greedy

exploration.

4.3.2.1 Updates of Neighboring Value Function Approximations

Let us start with the evaluation of the two problem specific update mechanisms.

Figure 4.7 shows the solution quality depending on the (policy) iteration for an

ADP problem using three different update mechanisms. The first approach, de-

noted with No extra updates, updates only the value function approximations of the

visited states. The second approach, denoted with RDC updates, updates addition-

ally value function approximations with the same climate spread cluster but a dif-

ferent residual demand cluster as described in Section 4.2.4.2. The third approach

(RDC + neighboring upd. ) updates during the first iterations also value func-

tion approximations of neighboring climate spread and residual demand clusters

(see Section 4.2.4.1). For this purpose, we use the values of imax = 2, 000 and

drel,max = 0.5. With these values, neighboring value function approximations are

updated during the first 40 policy iterations. For comparison purposes, we also

perform a test with an algorithm consisting of only residual demand cluster. This

approach is denoted with 1 RDC and does only update the value function approx-

imations of the visited states.

It is striking that the approach updating only the visited states does not work

well. During the first 1,000 iterations, the evaluated value of the solution is even

negative. During the first iterations, the behavior of this algorithm is similar to a

random search. The reason is the following: As we update only the value function

approximations of the residual demand clusters and climate spread clusters of the

states we visit, many value function approximations remain at their initial values

during the first iterations. If the solution we choose during an iteration results

in losses, the value function approximations are updated with negative values.
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Hence, during the next iteration, the algorithm tends to select another solution

with states belonging to residual demand clusters that have not yet been updated.

With an increasing number of iterations, the algorithm updates more and more

value function approximations and is able to make better decisions.

The problem is that the algorithm makes suboptimal decisions during many iter-

ations, and uses the resulting suboptimal solutions to update the value function

approximations. There are two issues with this: First, we may get stuck in a sub-

optimal solution as we use wrong value function approximations to make our

decisions. Second, even if this is not the case, the stepsize used to update the

value function approximation may have decreased too fast to correct wrong value

function approximations.

There are different possibilities to avoid this problem. The simplest one is to use

only one residual demand cluster. The alternative is to stick with the nine residual

demand clusters, and to update the value function approximations of the neigh-

boring residual demand clusters and climate spread clusters. As it can be seen in

Figure 4.7, each of these three approaches works significantly better. All in all, the

RDC + neighboring upd. approach works best. Compared to the other approaches,

it finds a better solution, and it needs less time to find a good solution. It is a bit

surprising to see that the approach with one residual demand cluster performs

better than the RDC updates approach with nine residual demand clusters.

4.3.2.2 Exploration Method

Another important design decision is the choice of the exploration method. Fig-

ure 4.8 shows the results for three different methods: ǫ-greedy exploration, modi-

fied ǫ-greedy exploration and Boltzmann exploration. For both ǫ-greedy methods,

we calculate the probability for an exploration step as 0.8/
√

Nn(xt) with Nn(xt)

denoting the number of times state xt has been visited up to iteration n. The

temperature used for the Boltzmann exploration is determined following equa-

tion (4.4). Only the first 100 iterations are depicted, as the solution quality changes

only slightly afterwards.

It can be seen that Boltzmann exploration does not work well in our problem. This

is a general observation we have made considering different test instances. The

problem might be due to a bad combination of the exploration method and the

stepsizes. As we have tested different stepsizes, the problem seems to be related

to the form of exploration.
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Figure 4.7: Solution quality for differ-
ent update mechanisms.
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Figure 4.8: Solution quality for differ-
ent exploration methods.

During the first iterations, the modified ǫ-greedy exploration performs better than

the normal ǫ-greedy exploration. This is due to our problem structure. As we

allow only the construction of new units, but not the shut-down, the normal ǫ-

greedy exploration results in higher probabilities for states with many new units

compared to states with few new units during the last years of the optimization

period. The modified ǫ-greedy exploration accounts for this fact and allows a

more uniform exploration of the state space.

For the depicted problem, the advantage of this approach lies in a faster con-

vergence. After approximately 20 iterations, both methods perform similarly.

However, we have also seen test instances where the final solution of the nor-

mal ǫ-greedy exploration is slightly worse than the one found with the modified

ǫ-greedy exploration. A possible explanation for such a behavior is a too fast de-

crease of the stepsizes used to update the value function approximations. Note

that a longer optimization horizon tends to aggravate the problems of normal ǫ-

greedy exploration. This is because the longer the optimization horizon, the more

biased is the probability to explore the states at later stages.

4.3.3 Comparison with Alternative Approaches

In this subsection we compare the solutions of the ADP model with those of a de-

terministic approach based on expected fuel prices and the solutions of our ISDP

model. For this purpose, we perform tests with different stochastic processes. We

first show the results of these tests, before we discuss the differences between the

ISDP approach and the ADP approach in general.
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Figure 4.9: Solution quality for different degrees of uncertainty.

4.3.3.1 Results

Figure 4.9 shows the solution quality for one of these test instances with fuel prices

simulated as correlated GBMs. We use different standard deviations to evaluate

the influence of uncertainty.8 The optimization horizon for this test is 24 years.

The higher the degree of uncertainty, the greater the advantage of a stochastic ap-

proach compared to a deterministic one. The solution of the ADP model performs

slightly better than the one of the ISDP model for all three standard deviations

shown in Figure 4.9. We have observed similar results for other tests performed

with logs of fuel prices modeled as correlated trended mean-reverting processes.

We depict the results of the test with fuel prices modeled as correlated GBMs, as

the differences in the results are more noticeable as for the tests where the corre-

lated mean-reversion process has been used.

The reason for the better performance of the ADP model is its ability to consider

annual decisions. Hence, the considered solution space is greater, and—as the

solution space of the ISDP model is a proper subset of the solution space of the

ADP model—the optimal solution of the ADP model must be at least as good as

the optimal solution of the ISDP model.9

In case of deterministic fuel prices, the ISDP model cannot reach the optimal solu-

tion due to its inability to consider annual investments. In the tests we have per-

formed, the ADP model finds the optimal solution. However, it must be stressed

8The standard deviations are the same as the one used for the comparison of the ISDP and the
deterministic model on page 173. As we have changed some other parameters (e.g., the optimiza-
tion horizon), the results are not the same.

9We have no guarantee to find the optimal solution. If the quality of the solution of the ADP
model is worse than the one of the ISDP model, then we know that the solution of the ADP algo-
rithm is suboptimal. However, if it is the other way around like the results shown in Figure 4.9,
we cannot deduce that the solution of the ISDP model is suboptimal within the model.
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Figure 4.10: Average amount of new capacity built by the solutions deterministic
approach (first column), the ISDP model (second column) and the ADP model
(third column)

that even in the deterministic case, we have no guarantee that the solution of the

ADP model is optimal. For example, if we use the ADP algorithm without updat-

ing the value function approximations of other residual demand clusters in the

deterministic case, the best solution the algorithm finds results in profits of 1.022

billion e. This is over 15% below the value of the optimal solution, which is 1.214

billion e.

Figure 4.10 shows the average amount of newly installed capacity of CCGT units

and coal units for the three different approaches. While the optimal deterministic

solution builds only some coal units, the ADP model and the ISDP model start

earlier with the construction of new units and prefer CCGT units. The solutions

of the ADP and the ISDP model are similar. The possibility of annual invest-

ments results in a more uniformly distributed construction of new units of the

ADP model. Depending on the realized fuel prices, the construction of new units

is already started at the beginning of the second year (2011), while the ISDP model

starts with the construction of new units in 2014. On average, the total amount of

newly constructed capacity is slightly higher with the ADP model. The difference

is mainly due to a higher number of CCGT units.

4.3.3.2 General Comparison with ISDP

The results presented in the first part of this subsection show that the ADP ap-

proach delivers better solutions for the considered problems as the ISDP approach.
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One may conclude that the ADP method is superior to the ISDP method. How-

ever, we do not think that the results allow such a conclusion. Both approaches

have their own strengths and weaknesses, which are discussed in the following.

The main advantage of the ADP model is its efficiency. The compact represen-

tation of the value function approximation allows us to consider annual invest-

ments. Furthermore, we do not need to save a transition matrix for the stochastic

fuel prices. For these reasons, the ADP model scales much better than the ISDP

model.

As an update of the value function approximation of a visited state does not only

apply to this state, but also to other states, the ADP approach finds good solutions

relatively fast.

However, there are many drawbacks of the ADP approach. The performance of

the ADP model depends strongly on the appropriate choice of the design param-

eters. Unfortunately, this choice is very problem specific. The consequences of a

bad choice can be seen in Figure 4.7 and Figure 4.8: the algorithm delivers very

bad results. Note that the possible wrong choices of design parameters are not

restricted to these two examples. Also the choice of a inappropriate stepsize rule,

or just the wrong choice of a parameter of the selected stepsize rule, can lead to

similar problems.

A further difficulty is to detect such problems. As we do not know the optimal

solution, we need additional results to which we can compare the quality of our

solution. It is obvious that the algorithm denoted with No extra updates in Fig-

ure 4.7 does not work as its solutions have a negative value. However, if we

consider only the Boltzmann exploration in Figure 4.8, then we do not know that

the optimal solution is at least 50% better than the one found by the algorithm.

Another drawback of the ADP approach is the assumption of independence of

the different attributes for which a function approximation is used. As we have

discussed, the profit of new CCGT units is not independent of the number of new

coal units. For this reason, we have introduced different residual demand clusters

with separate value function approximations for each cluster. The introduction of

different residual demand clusters has helped us to improve the solution quality

of the algorithm. In the meantime, the different residual demand clusters make the

algorithm more complicated. If the normal updating mechanism is not adapted,

the algorithm does not work as it could be seen in Figure 4.7.

Our tests have shown that we can use an ADP model to solve the power gener-

ation expansion problem with two investment alternatives (CCGT units and coal
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units). However, it is difficult to integrate either new units of another technology

or units of the same technology with different technological constraints (e.g., a

different efficiency) into the ADP model.

Assume that we want to consider investments in two different types of coal units

and in new CCGT units. Let coal units of type A be more efficient than coal units

of type B, and let both of them have lower variable costs (for the current fuel

prices) than CCGT units. Consider the value function approximations for coal

units B. For the same residual demand cluster, we may get completely different

value function approximations. The problem is that we can be in the same residual

demand cluster for coal units of type B, when either x of the cheaper coal units

of type A or x of the more expensive CCGT units have been build. In the first

case, electricity production of units of type B as well as electricity prices tend to

be lower than in the second case. The reason is that the position in the merit-order

curve of units of type B is different in both cases (as well as the merit-order curve

itself).10

Compared to the ADP approach, the ISDP approach is less sensitive to suboptimal

parameter choices. While there are also some design decisions influencing the

performance of the ISDP model (e.g., the splitting criterion), a suboptimal decision

has in general less impact than similar choices of the ADP algorithm. For example,

if we choose a too low number of splits per iteration in our ISDP model, it takes

longer until the algorithm converges. If we choose a stepsize that decreases too

fast, this may result in a significantly worse final solution of the ADP model.

Another advantage of the ISDP model is that it is not based on assumptions like

the independence of the profits of different types of new units. As a consequence,

the ISDP model can consider investments in similar units.

The main disadvantage of the ISDP model is that it does not scale well. To be able

to solve the model, we need to introduce several simplifications. One of these

simplifications is the temporal aggregation. As a consequence, new units can only

be build every four years. Despite the application of temporal aggregation and the

introduction of the adaptive grid method, we are restricted to low dimensional

problems.

10Note that it is not sufficient to define the residual demand cluster such that we subtract only
the capacity that can produce cheaper than the considered unit from electricity demand. The
reason is that the new units of the more expensive technology—in the given example the CCGT
units—also influence the electricity price.
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4.4 Summary

The main disadvantage of the ISDP model proposed in the previous chapter is its

inability to handle annual decisions. In this chapter, we have presented an alter-

native method based on ADP to solve the power generation expansion problem.

This problem formulation allows annual investment decisions. To the best of the

author’s knowledge, this is the first time that ADP is used to solve the power

generation expansion problem.

In the first part of this chapter, we have given an introduction to ADP. We pointed

out to the differences and similarities between ADP and SDP. As in SDP, there is

a tradeoff in ADP between the immediate reward of a decision and the expected

future reward for the succeeding state based on the chosen decision. While SDP

solves this problem based on the exact expected value of the succeeding state,

ADP uses an approximation of the expected value.

The advantage of using an approximated value is that it does not require a com-

plete enumeration of the state space. The introduction of the post-decision vari-

able, which splits the states into pre-decision states and post-decision states, al-

lows us to replace the standard Bellman equation (4.2), which contains a stochastic

part (the succeeding states depending on the outcome of the stochastic parameter),

with the deterministic optimization problem (4.3). The expectation of the value of

the succeeding states of the original Bellman equation is thereby captured by the

value function approximation of the post-decision state.

Another important difference between SDP and ADP is the way value functions

are saved. In general, SDP saves the value of each state in a lookup-table. For

higher dimensional problems, this becomes computational intractable. While ADP

may also use a lookup-table approach, one of its main advantages is that it allows

more compact forms of value function approximations. Often, the value of a state

can be described as a function depending on some of the attributes of a state. We

have presented two commonly used approaches: linear value function approx-

imations and piecewise-linear value function approximations. In addition, we

presented the indexed (piecewise) linear approximation approach, a combination

of the lookup-table and a function approximation approach. This approach can be

used to approximate the value of states where the value of some attributes can be

approximated by a function, but the value of other important attributes cannot be

captured by a function approximation.
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The simplifications introduced by ADP allow it to tackle high-dimensional prob-

lems that cannot be solved by SDP. However, these simplifications also have their

drawbacks. In general, there is no guarantee that the optimal solution is found.

Furthermore, an appropriate choice for the parameters of the algorithm, e.g., the

stepsizes used to update the value function approximation or the exploration

strategy, is very problem specific. A bad choice of one of these parameters can

result in an algorithm that does not work at all.

In the second section of this chapter, we have shown how ADP can be used to

model the power generation expansion problem. Based on the observation that

the marginal value of an additional power plant is in general diminishing, we

use piecewise-linear concave value function approximations for each type of new

units. However, the value of a new unit depends also on other factors. These fac-

tors are especially the fuel and carbon prices, electricity demand and the power

generation fleet in the market. To consider these factors, we use the indexed

piecewise-linear value function approximation approach. We define different cli-

mate spread and residual demand clusters. The climate spread clusters are used

to capture the influence of different fuel and carbon prices, while the residual de-

mand clusters indicate by how much electricity demand exceeds electricity sup-

ply. For each combination of climate spread and residual demand cluster, we use

a separate piecewise-linear value function approximation to estimate the value of

new units.

The introduction of these climate spread and residual demand clusters allows us

to consider additional information, but it also complicates the update process of

the value function approximations. To speed up the convergence of the algorithm,

we have introduced two problem-specific techniques: updates of neighboring

value function approximations during the first iterations of the algorithm, and

updates of value function approximations with the same climate spread cluster,

but a different residual demand cluster.

The first approach is motivated by the idea that neighboring value function ap-

proximations, i.e., value function approximations with similar climate spread and

residual demand clusters, are in general also similar. At least during the first it-

erations, the value function approximations of neighboring value functions are in

most cases a better approximation of the real values than the initial values.

The second approach that we introduced to speed up convergence exploits some

problem specific knowledge: if we consider two value function approximations

that belong to the same climate spread cluster, but a different residual demand
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cluster, then the value function approximation belonging to the residual demand

cluster with the higher residual demand is in general greater than or equal to the

other value function approximation. If an update of a value function approxima-

tion violates this relationship, we use the updated value function approximation

to update the value function approximations that violate this relationship.

In the third part of this chapter, we evaluated the quality of the solutions of our

ADP algorithm. First, we tested the influence of different parameter choices of the

algorithm. It turned out that the two problem specific approaches to update the

value function approximations are crucial for the performance of the algorithm.

Without these two methods, an algorithm with only one residual demand clus-

ter performed better than an algorithm with multiple residual demand clusters.

Applying both proposed update mechanisms, the algorithm with the additional

residual demand clusters outclasses the approach with only one residual demand

cluster.

Second, we tested the influence of the exploration method. Thereby, the modified

ǫ-greedy method, a problem adjusted version of the ǫ-greedy method, performed

slightly better than the standard ǫ-greedy approach. In contrast, the solutions

obtained by Boltzmann exploration were of significantly lower quality. The tests

we made have shown that a bad choice of a single parameter can result in an

algorithm that does not work.

In the second part of the evaluation section, we compared the solutions of our

ADP approach with those of a deterministic optimization based on expected fuel

prices and with the solutions of our ISDP model. Both of our approaches perform

better than the deterministic approach. The higher the uncertainty, the greater is

the advantage of a stochastic approach. Compared to the ISDP model, the solu-

tion of the ADP model was slightly better. This can be explained by the ability

of the ADP model to consider annual investments. As a consequence, the ADP

model was able to find the optimal solution of a deterministic problem, whereby

the ISDP model could not get this solution due to its restriction of allowing new

investments only every four years.

While these results indicate that the ADP approach is superior to the ISDP ap-

proach, we do not think that this conclusion can be made. The ADP approach

is an interesting new method to model the power generation expansion problem

that can perform better than a standard SDP or our ISDP approach. However, the

choice of the algorithm parameters is very problem specific, and a wrong choice

of a parameter can result in an algorithm that performs very badly. Compared to
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the ADP approach, the ISDP method is less sensitive to the parameter choices.

In addition, the ADP approach is based on several assumptions that make an ex-

tension of the method difficult. For example, it is assumed that the value of the

different types of new units is independent of each other. As is this not the case,

we have introduced the different residual demand clusters. The problem is that

these residual demand clusters are not suited to consider an additional invest-

ment alternative in our ADP model. Especially because of the high sensitivity of

the ADP model concerning the parameter choices, we use the ISDP model for the

case studies in the next chapter.





Chapter 5

Case Studies

In this chapter, we use our ISDP investment model to perform different case stud-

ies. The starting point for our analysis is a base scenario with fuel prices and

carbon prices modeled as trended mean-reverting processes. We consider two

investment alternatives: CCGT units and coal units. To obtain the contribution

margins for the new units, we use our LDC model with adjustments.

In the first section of this chapter, we describe in detail the data we use for the case

studies. In the following sections, we compare the solution of the base case with

the solutions of alternative scenarios. With these alternative scenarios, we pursue

different objectives. These objectives are to identify the influence of the stochastic

process, the influence of other model-specific parameters like the discount rate,

and the influence of political decisions like the nuclear phase-out on investment

decisions.

In the second section, we examine the influence of the stochastic process and its

parameters used to model fuel and carbon prices. As we have discussed in Sec-

tion 1.4.2, there is no consensus in literature which process is pertinent. Two pop-

ular choices are the mean-reverting process and the GBM. As an alternative to our

base scenario, we use a GBM for the simulation of fuel and carbon prices. To get

an idea of the robustness of the solution of the base case, we also evaluate this

solution with fuel and carbon prices simulated as GBM. These results are then

compared with the evaluated profits of the best solution obtained using a GBM

for the optimization. In our comparison, the optimal solution1 of the base case

performs only slightly worse than the one of the GBM.

1When we talk about the optimal solution in this chapter, we refer to the optimal solution of
the approximated problem. This solution does not necessarily correspond to the optimal solution
of the original problem.
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Besides the stochastic process itself, also the parameters used for the process play

an important role. Therefore, we examine how the optimal solution changes if

different standard deviations or different drifts are used for the simulation of fuel

and carbon prices. Especially the drifts used for the simulation have an important

impact on new investments. The higher the drifts of fuel and carbon prices, the

more profitable become new units.

In the third section of this chapter, we test the influence of other model param-

eters. We compare the solutions obtained using different discount rates and dif-

ferent depreciation methods. It is shown that a higher discount rate has a similar

impact as an accelerated depreciation method: investments in new units become

less profitable.

Besides the discount rate and the depreciation method, the method used to model

investments by competitors has an important impact on the investment decisions

of the considered operator. Our comparisons show that if investments by com-

petitors are disregarded, the number of new units built by the considered investor

decreases.

The investment in new units has also an influence on the profitability of the exist-

ing units. For that reason, the existing portfolio of an operator must be considered

when investments in new units are optimized. We compare the investments of a

new entrant in the market with those of existing generation companies. The new

entrant in the market has the highest incentives to invest, the operator with the

greatest portfolio has the lowest incentives.

In the forth section of this chapter we consider questions that are subject to po-

litical decisions. We start with an analysis of the consequences of a delayed or

scrapped nuclear-phase out in Germany on investment decisions. It is shown that

the longer existing nuclear units are allowed to operate, the lower are the incen-

tives to invest new units.

Besides the nuclear phase-out, another issue with an important impact on invest-

ment decisions is the emission allowance allocation scheme. At the moment, emis-

sion allowances are allocated for free based on a fuel-specific benchmark. Alter-

native allocation schemes are a fuel-independent benchmark, or a full auctioning

of emission allowances. Our analysis shows that the current scheme is the only

one where coal units are preferred to CCGT units.

In the fifth section of this chapter, we examine another highly discussed question:

the profitability of CCS units. In the before mentioned case studies we only al-

low investments in coal and CCGT units. With rising carbon prices, coal units get



5.1. INPUT DATA 243

unprofitable. A possible solution to this problem is the development of the CCS

technology. As the introduction of the CCS technology introduces additional costs

and reduces the efficiency of CCS units, it is uncertain whether this technology

will become competitive. The competitiveness of CCS units depends mainly on

future carbon prices. Due to the difficulties of simulating carbon prices appropri-

ately, we use our LP-based fundamental electricity market model to examine this

question, as it allows the determination of carbon prices based on fundamentals.

In the considered case, CCS units are the preferred choice on average.

5.1 Input Data

In this section, we describe the input data that we use for our base scenario. The

optimization horizon for this scenario is 24 years. Basically, we use the same data

that we already used for the evaluation of the different fundamental electricity

market models. This data was described in Section 2.4.1. As the focus on the

evaluation of the fundamental electricity market models was on past periods, we

did not need to specify assumptions for future years. In the following, we focus

on the description of this future data.

We first describe our assumptions about future electricity demand, before we

specify our assumptions about the development of electricity supply. Next, we

present the two investment alternatives, before we conclude this section with a

description of the stochastic process and its parameters used to model fuel and

carbon prices.

5.1.1 Electricity Demand

Recent studies in the electricity sector describe different scenarios for the develop-

ment of electricity demand. There are scenarios assuming a rising demand (e.g.,

ATK [ATK09], the 2%-scenario in EWI and Prognos [EP07]), others expect a con-

stant demand (e.g., the constant scenario in DENA [DEN08]), while other scenar-

ios are based on a decreasing demand (e.g., CONSENTEC et al. [CON+08], the

other scenarios in [EP07]). For our case studies, we assume a constant demand.

5.1.2 Electricity Supply

Basis for the case studies is our power plant database described in Section 2.4.1.

Besides existing power plants, we also consider power plants under construction,
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Figure 5.1: Development of available capacity.

2010 2015 2020 2030 2040 2050

Offshore wind 0.4 3.6 10.0 23.0 32.8 37.0
Onshore wind 25.3 27.2 28.1 29.8 32.5 34.0

Table 5.1: Expected installed wind power capacity in GW. Source: Nitsch [Nit08].2

or power plants that are planned and have a high probability that they are real-

ized. Concerning the nuclear phase-out, we assume that the new government is

going to extend the operational life of nuclear units by ten years.

An overview of the available capacity of conventional power plants is given in

Figure 5.1. We assume that the operational life of CCGT units and oil units is

40 years, those of coal and lignite units 45 years, and the one of gas turbine units

50 years [DEN08]. To determine the investments of competitors within the opti-

mization horizon, we use the investment module based on the shortage of supply

described in Section 3.3.1.

The expected amount of installed wind power capacity is shown in Table 5.1. To

obtain the hourly wind production, we use the hourly time series for on-shore

and off-shore wind described in Section 2.4.1, adjusted by the corresponding in-

stalled capacity. For run-of-river plants, pumped storage and hydro reservoirs,

we assume that the available capacity remains constant.

2For the years 2030 and 2040, only the sum of the installed wind power capacity is given in
tabular form. The breakdown to onshore/offshore has been derived from a figure. Therefore,
minor imprecisions are possible for these years.
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Coal unit CCGT unit

Investment costs (million e) 1,000 500
Capacity (MW) 1,000 1,000
Efficiency 0.46 0.60
Planning & construction time (years) 4 4
Annual fixed costs (e/MW) 20,000 15,000
Economic useful life (years) 25 20

Table 5.2: Input data used for the investment model. Sources: DEWI et al.
[DEW+05], own assumptions.

5.1.3 Investment Alternatives

Except for the case study analyzing the profitability of CCS units in Section 5.5,

we consider two investment alternatives: CCGT units and coal units. We allow

the construction of up to ten new units of each type. The parameters of these units

are given in Table 5.2. The other technical parameters are assumed to be the same

as the ones of units of the corresponding technology described in Section 2.4.1.

We use a straight-line depreciation to calculate the part of the investment costs

that is assigned to the years of operation within the considered optimization hori-

zon. We select the straight-line depreciation, as this is the method used by the big

four generation companies in their annual reports [EnB08; EON08; RWE08; Vat08].

Besides the depreciation method, we need to specify the economical useful life of

new units. EnBW and Vattenfall apply an economic useful life between 15 and 50

years for power stations, RWE assumes 15 to 20 years of useful life. E.ON uses an

economic useful life of 10 to 65 years for technical equipment, plants and machin-

ery.

For our case studies, we assume an economic useful life of 20 years for CCGT

units, and 25 years for coal units. The longer useful life of coal units is in line with

current literature (see, e.g., Konstantin [Kon08], OECD and IEA [OI05]).

To discount future cash-flows, we use an interest rate of 7%. This value is in

the interval used by other publications (e.g., 5% are used in [OI05], 7% by We-

ber [Web05], and 7.5% in [Kon08]).

5.1.4 Fuel and Carbon Prices

Concerning the fuel and carbon price development, forecasts are even more di-

verging than those for electricity demand. We gave an overview of different car-
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(a) Gas price forecasts
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(b) Coal price forecasts

Figure 5.2: Fuel price forecasts of recent studies in Germany.

bon price forecasts in Table 1.2 on page 21. Those forecasts predict rising carbon

prices. In 2020, carbon prices between 30e/t and 40e/t are expected. However, it

should be stated that there are also other opinions. Without specifying exact fore-

casts, ATK [ATK09] assumes that under current conditions, lower carbon prices

are realistic for longer periods.

Following a survey amongst market participants (Point Carbon [Poi09]), about

29% expect carbon prices in 2020 between 35 e/t and 50 e/t. About 21% predict

prices between 25 e/t and 35 e/t, about 10% assume that prices will be higher

than 50 e/t, while the rest of the market participants expects prices lower than

25 e/t. For our model, we assume carbon prices of 15 e/t for 2010. For the fol-

lowing years, we assume an annual increase by 7%, resulting in expected carbon

prices of 29,50 e/t in 2020. We have chosen these relatively low prices, as our

model is based on real prices.

In 2020, phase III of the EU ETS ends. For the years afterwards, the legal frame-

work for emissions trading is not yet fixed. Given the ambitious objective of re-

ducing the emissions by 80–95% in 2050 compared to 1990 [BMU09], we assume

that carbon prices continue to increase by 7% per year.

Figure 5.2 depicts gas and coal price forecasts of four recent studies. The prices are

real prices with base year 2005. Nitsch [Nit07] and WestLB and PIK [WP09] use

three different price scenarios each (low, middle, high), EWI and Prognos [EP07]

and Öko-Institut et al. [ÖI+08] use one scenario. In addition to these scenarios,

we depicted four alternative scenarios. These four scenarios are based on average

EEX spot prices for January to October 2009 used as a base price and different

constant annual growth rates. These annual growth rates are estimated from his-
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Initial Average annual StDev Mean
price price change [%] reversion rate

Gas 18 e/MWh 1.4 0.15 0.14
Coal 9 e/MWh 1.0 0.1 0.14
CO2 15 e/t 7.0 0.2 0.14

Table 5.3: Values used for the fuel and carbon price simulation.

torical data. To obtain the annual growth rates, we took the average annual import

prices [Des09a] and deflated them by the consumer price index [Des09c]. Based on

different periods, we determined average annual growth rates, which were used

to derive the curves denoted with Average in Figure 5.2.3

Depending on the considered period, annual growth rates vary significantly. An-

nual growth rates for the period between 2000–2009 are much higher than the ones

expected by the considered surveys. For gas prices, the growth rate of the years

1980–2009 corresponds best to the expected values of the surveys. For coal prices,

the growth rate of the period from 1970 to 2009 comes closest to the expectations.

A consequence of the current economic crises can be seen in Figure 5.2: the ex-

pected fuel prices for 2010 obtained by our calculations based on the fuel prices

of 2009 are—especially for the gas price—significantly below the forecasts of the

studies. As we assume that fuel prices will return to a higher level when the

economy recovers, we use higher prices as basis for the calculation of the mean-

reverting level for our simulations.

For the case studies in this chapter, we simulate the logs of fuel and carbon prices

as a trended mean-reversion process. Such a process is used for fuel prices for

example by Pindyck [Pin99], for carbon prices by Spangardt and Meyer [SM05].

An important parameter of a mean-reverting process is the rate of mean-reversion.

Pindyck states that the rate of mean-reversion is slow, but he does not give exact

numbers. For oil prices, he estimates a half-life of the mean-reverting process of

about five years. Based on the half-life h, we can determine the rate of mean-

reversion as ln(2)/h = 0.14. For our case studies, we use this value. Table 5.3

summarizes the values we use for the fuel and carbon price simulations.

As discussed in Section 1.4.3, modeling the long-term development of carbon

prices is difficult. For that reason, many long-term electricity market models either

neglect carbon price uncertainty or use some predefined scenarios. While there is

3Data for the year 2009 is based on the period from January to September 2009.
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Gas Coal CO2

Gas 1 0.55 0.5
Coal 1 -0.5
CO2 1

Table 5.4: Correlations between logs of price changes.
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(b) Carbon price simulations.

Figure 5.3: Example for 20 fuel price and carbon price simulations.

no evidence that carbon prices are mean-reverting, we think that modeling car-

bon prices as mean-reversion process captures the uncertainty related to the price

development better than deterministic prices or a few different scenarios.

We assume that the random increments of the different mean-reversion processes

are correlated. For this purpose, we use the correlation values specified in Ta-

ble 5.4. It should be noted that these are the correlations of the logs of price

changes, and not the correlations between the prices itself.

Figure 5.3 shows an exemplary outcome of 20 fuel price and carbon price simu-

lations with the described settings. It can be seen that the uncertainty about fu-

ture gas and carbon prices is higher than the uncertainty about future coal prices.

While all three price processes follow a mean-reversion process, the low mean-

reversion rate allows remarkable deviations from the expected mean.

5.2 Influence of the Stochastic Process

In Section 1.4.2, we discussed the difficulties related to fuel price modeling. Basi-

cally, there are two issues: the stochastic process used for the simulation, and the

parameters of the chosen process. For both points, there is no consensus about the
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right choice. In the following, we first compare the solutions based on fuel prices

simulated as a trended mean-reverting process with those based on a GBM. Next,

we examine the impact of wrong choices concerning the parameters used for the

fuel and carbon price simulation.

5.2.1 Alternative Stochastic Process

Two popular choices for the stochastic process used to model fuel prices are the

correlated GBM and a (trended) correlated mean-reverting process. For the base

scenario in this chapter, we have chosen a trended mean-reverting process. In this

subsection, we examine the influence of a possibly wrong choice of the stochastic

process.

For this purpose, we compare solutions obtained with the trended mean-reverting

process of our base scenario with the solutions of two alternatives: a correlated

GBM, and a trended mean-reverting process with mean-reversion rates of 0.7. For

both alternatives, we use the same expected prices, standard deviations and cor-

relations for the fuel price simulation.

Besides a comparison of the solutions, we also analyze how the solution of the

base case performs, if the evaluation is performed using a different stochastic pro-

cess for the price simulations. To get an idea of the consequences of an inaccurate

choice of the stochastic process, we compare the evaluated value of the base case

under the alternative stochastic process with the evaluated value of the best so-

lution obtained when the corresponding stochastic process is also used for the

optimization.

Comparing the optimal solutions of the different stochastic processes delivers a

result that may be surprising at first glance. On average, more new units are

built when a GBM is used compared to both mean-reverting processes. The least

amount of new capacity is added when we use mean-reversion rates of 0.7. Fig-

ure 5.4(a) visualizes these results.

It is remarkable that the incentives for investments in new units are low: the first

new units are built in 2022. Almost exclusively new CCGT units are built. These

results are in line with results reported by WestLB and PIK [WP09], but may seem

a bit surprising given the current discussion whether CCGT units are a profitable

investment alternative to coal units. As we will see later in this chapter, the low

degree of investments and the preference of CCGT units are caused by the as-

sumption of a delayed nuclear phase-out and the full auctioning of emission al-

lowances.
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(a) Average amount of new capacity.
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Figure 5.4: (a) Average amount of new capacity for different scenarios. (b) Value
of the optimal solution of the base case evaluated using different stochastic pro-
cesses. The right bars are the values of the best solution found using the corre-
sponding stochastic process.

If a GBM is used instead of a mean-reverting process, more units are built and

units are built earlier. The reason for the higher average amount of new capac-

ity and the earlier construction of this capacity of the solution based on a GBM is

the following: Under the expected fuel prices, investments are relatively unattrac-

tive. However, if fuel prices develop such that one technology gets more attractive

compared to the other (in our scenarios the more attractive technology are almost

always CCGT units, i.e., coal prices rise stronger than gas prices), investments in

one of the two technologies may become profitable. If a mean-reverting process

is used to simulate fuel prices, this profitability may only be a temporary one as

prices revert to the expected prices. When fuel prices are assumed to follow a

GBM, this is not the case. Hence, it can be expected that the profitability for the

corresponding technology persists. The same fact explains why a higher mean-

reversion rate reduces the amount of new units on average.

Figure 5.4(b) shows the average discounted value of the best solution of the base

case evaluated with the different stochastic processes. For a better comparison,

the figure also shows the average discounted value of the best solution obtained

when the corresponding stochastic process is used during the optimization. Two

conclusions can be drawn from the data depicted in this figure. First, the higher

the uncertainty is (i.e., the lower the mean-reversion rates are), the higher are the

expected profits. However, not only the expected profits increase with uncertainty,

but also the risk. The standard deviation of the evaluated returns is over ten times

higher for the GBM compared to the mean-reverting process with mean-reversion
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(a) Different drifts.
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(b) Different standard deviations.

Figure 5.5: Average amount of new capacity for different scenarios.

rates of 0.7. Secondly, the best solution of the base case performs relatively well

if another fuel price process is used for the evaluation. Compared to the best

solution of the GBM, the base case solution is about 6.5% worse. In case of the

mean-reverting process with higher mean-reversion rate, the difference is below

2%.

5.2.2 Alternative Parameters

Besides the choice of the stochastic process used for the fuel and carbon price

modeling, the parameters chosen for this process play an important role. For the

trended mean-reverting process, there are three important parameters: the mean-

reversion rate (which we analyzed in the previous subsection), the drift of the

process and the standard deviation. In this subsection, we examine the impact of

the drifts and the standard deviations.

Let us start with the drifts. We consider four different scenarios: the base sce-

nario, a scenario with higher drifts, a scenario with lower drifts, and a scenario

where only the drift of carbon prices is reduced. The base scenario has an ex-

pected annual increase of gas prices of 1.4%, an increase of coal prices of 1.0%,

and an increase of carbon prices of 7.0%. For the scenario with the higher drifts,

we assume that the drifts of all three processes are increased by 50%, while for the

scenario with lower drifts, all drifts are reduced by 50%. In the last scenario, only

the drift of carbon prices is reduced by 50%.

Figure 5.5(a) shows the average newly installed capacity for these four scenarios.

If all drifts are simultaneously changed, then the higher the drifts, the more units

are built. Investments are more attractive, because electricity prices tend to rise
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Figure 5.6: Value of the optimal solution of the base case evaluated using different
parameters for the stochastic process. The right bars are the values of the best
solution found using the corresponding parameters also during the optimization.

more than the variable costs of new units. The reason for this behavior is that

electricity prices are often set by less efficient units, for which the costs rise more

than the costs of new units. If only the carbon price drift is reduced, coal units get

slightly more competitive compared to the other scenarios. While in this scenario,

the lowest amount of new CCGT units is built, CCGT units are still the preferred

choice on average.

Figure 5.5(b) depicts the results for different scenarios concerning the standard

deviations used for the simulation of the fuel prices and the carbon prices. For the

low scenario, we use only half of the standard deviations of the base scenario. For

the high scenario, we increase the standard deviations by 50%. It can be seen that

the higher the standard deviations, the more units are built. The reason for this

behavior is that higher standard deviations lead to more extreme price differences.

During times of extreme price differences, huge profits can be obtained by the

cheaper technology. Even the unfavorable technology may profit from the high

prices. The explanation is the same as the one for the higher degree of investments

when higher drifts are used: if electricity prices are set by units of the unfavorable

technolgy, electricity prices rise more than the costs of the new units.

Figure 5.6 illustrates how the best solution of the base case performs if other values

for the standard deviations or the drifts are used for the price simulation during

the evaluation. It can be seen that the drifts of the fuel and carbon prices have a

significant impact on the profitability of new investments. A higher drift increases

the profitability of new investments in our examples. While the best solution of

the base case performs satisfactorily if drifts are higher than assumed, it results in

negative evaluated values if drifts are lower. In the base case, the first new units



5.3. INFLUENCE OF OTHER MODEL-SPECIFIC PARAMETERS 253

are built in 2022. If drifts are lower, almost no new units are built before 2030. The

losses obtained with the solution of the base case evaluated with lower drifts are

due to a too early construction of new units. However, it can be assumed that the

performance of the base case solution is in reality not as bad as the results shown

in Figure 5.6: The construction of new units is not started before 2018. It seems

plausible that if drifts deviate strongly from the expected drifts, then this should

be realized until 2018. A re-optimization with updated values will then deliver a

better solution.

Compared to the drifts, the standard deviations used for the simulation of the fuel

and carbon prices play a less important role. Changing the standard deviations

has a similar, less distinct effect as changing the mean-reversion rates: It increases

the uncertainty, and with it the evaluated value of the best solution as well as the

risk. For the considered examples, the best solution of the base case performs only

slightly more than 1% worse than the best solution found when the corresponding

alternative standard deviations are used for the optimization.

5.3 Influence of Other Model-Specific Parameters

Besides the process used for the fuel and carbon price simulation, there are several

other parameters that have an impact on the results of our model. These parame-

ters are the discount rate, the depreciation method, the method used to determine

investments of competitors, and the consideration of an existing portfolio. In this

section, we analyze the influence of these parameters.

5.3.1 Depreciation Method and Discount Rate

Two parameters that can be used to consider different degrees of risk aversion are

the discount rate and the depreciation method. A higher discount rate requires a

faster amortization or higher returns for an investment to be carried out. Hence, a

risk averse investor may choose a higher discount rate than a risk-neutral investor.

A similar effect can be achieved with the selection of depreciation method. A

straight-line depreciation assumes that new units realize constant profits during

their useful life. Accelerated depreciation methods are based on the idea that

the depreciation is higher during the first years of operation. In our model, an

accelerated depreciation method leads to similar results as a higher discount rate.

This can be seen in Figure 5.7.
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Figure 5.7: Influence of the discount
rate and the depreciation method.
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Figure 5.8: Influence of the method
used to determine investments by com-
petitors.

In this figure, the solution based on a straight-line depreciation and a discount

rate of 5%, 7% and 10% are compared with the results of a sum-of-years’ digits

method with a discount rate of 7%. The lower the discount rate, the earlier are

new units built. If the sum-of-years’ digits method is applied, fewer units are

built than with a straight-line depreciation. Under different conditions compared

to the base scenario, e.g., different fuel prices, the choice of a higher discount rate

or an accelerated depreciation method may also change the relative profitability

of CCGT units compared to coal units. Thereby, a higher discount rate or an ac-

celerated depreciation method favours less capital intensive technologies, in our

case CCGT units.

5.3.2 External Investments

In our model, we optimize the investments of a single operator. As the profitabil-

ity of new units depends on the existing power generation fleet, we have to con-

sider the decisions of other generation companies. In Section 3.3, we presented

two methods how investments of competitors can be considered in our model.

The impact of these methods is examined in this subsection.

Figure 5.8 shows the results for different methods incorporating external invest-

ments. The method based on the shortage of supply is denoted with Missing cap.,

the method considering the expected profitability with Profit. A combination of

both methods is denoted with Profit + missing cap.. Besides these three scenarios,

we also investigate the case when no external investments are considered (de-

noted as No ext. investments). For the investments based on the expected prof-
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itability, we use threshold values of 15 e/MWh (CDSThreshold) and 10 e/MWh

(CSSThreshold). The price effect of a new unit (pUnit) is assumed to be 2 e/MWh.

The results depicted in Figure 5.8 show that the external investments based on

the expected profitability of new units have only little impact. The reason is that

for the determination of the expected profit, we only use past data. This myopic

approach does not consider that old units are decommitted in the future and need

to be replaced. Without the decommitment of old units, new units are rarely prof-

itable in our test cases.

Comparing the results of the method based on the shortage of supply with the

method disregarding investments by competitors, the importance of the consider-

ation of other investments can be seen. Disregarding investments of competitors

results in a significantly lower degree of investments. By limiting the amount of

available capacity, operators can earn the VoLL, which is (with 2,000 e/MWh in

our model) much higher than the prices obtained when demand can be satisfied.

5.3.3 Consideration of an Existing Portfolio

The construction of new units influences electricity prices and the electricity pro-

duction of other units. Hence, it also changes the contribution margin of other

units. As a consequence, an investment model should take into account the exist-

ing portfolio of the considered operator.

In this subsection, we compare the optimal solution of a new entrant to the mar-

ket, with those of an operator with an existing portfolio. For this comparison,

we choose exemplarily two operators, EnBW and RWE. When we model exter-

nal investments with the investment module based on the shortage of supply,

then the optimal decisions are very similar in all three cases. The reason is the

following: Under most fuel price scenarios, the new capacity added by the opti-

mal decision—even for a new entrant in the market—is lower than the capacity

required to satisfy the peak load. Hence, independent of the decision of the con-

sidered operator, additional capacity is built. The total amount of new capacity is

almost independent of the decision of the considered operator. In such a case, the

investment decisions are independent of the existing portfolio, because external

investments are triggered if the considered operator does not invest. Note that

this independence is only given in this special case.

To highlight the importance of the existing portfolio, we also consider an extreme

scenario: no external investments. In this case, the optimal decision depends

strongly on the existing portfolio. Figure 5.9 depicts the optimal solution of a new
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Figure 5.9: Average new capacity if no external investments are considered.

entrant in the market, EnBW and RWE. In all cases, only CCGT units are built.

The higher the existing capacity of the considered operator, the lower the number

of new units that are built on average. The reason for this behavior is that the con-

struction of new units leads to a lower electricity price. Note that in this example,

the ignorance of external investments results in a shortage of supply such that the

VoLL sets the electricity price during several hours each year.

5.4 Influence of Political Decisions

Despite the deregulation of the electricity sector, the profitability of new invest-

ments is still strongly influenced by political decisions. In Germany, there are two

important political decisions at the moment: the nuclear phase-out and the emis-

sion allowance allocation scheme. Both issues are not finally decided, therefore

we analyze the impact of different possible scenarios. We start with the nuclear

phase-out, and consider afterwards the emission allowance allocation scheme.

5.4.1 The Nuclear Phase-Out

A controversial debate exists in Germany about the nuclear phase-out. While the

majority of the population is in favor of the nuclear phase-out [Gre09], the new

government plans to delay or scrap the phase-out [CF09]. A detailed analysis of

all the implications of the nuclear phase-out on the electricity market is beyond

the scope of this thesis, therefore, we focus on the effect on investment decisions.

For this purpose, we compare the optimal investment decisions of a new entrant

into the market under three different scenarios. The first scenario is based on

the assumption that the nuclear phase-out is realized as planned. The second
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scenario assumes an extension of the allowed time of operation of ten years for

every nuclear plant. In the third scenario, the time of operation of nuclear plants

is not restricted.

Figure 5.10 shows the average amount of new capacity built by the considered

investor for these three scenarios. The optimal solution consists in all three cases

mainly of new CCGT units. Only in case of a normal nuclear phase-out, a greater

amount of coal units is built. However, these coal units are only built because a

great amount of new capacity is required and the number of new units of each

type is restricted to ten in these case studies.

The planned nuclear phase-out reduces the available capacity in the next years.

This missing capacity makes investments in new units more attractive. If the nu-

clear phase-out is postponed or scrapped, then the construction of new units is

also postponed. In the public debate it is often argued that the profiteers of a

delayed or scrapped nuclear phase-out are the generation companies. However,

this is only partly true. Only those generation companies with nuclear units ben-

efit from a modification of the nuclear phase-out. New entrants into the market

are losers: While the expected discounted value of the optimal solution with the

normal nuclear phase-out is 1, 334 million euro, a delayed phase-out results in

expected profits of 788 million euro. If the nuclear phase-out is scrapped, the ex-

pected profits drop to 413 million euro.

5.4.2 The Emission Allowance Allocation Scheme

During the phase I and phase II of the EU ETS, new units have received the emis-

sion allowances for free. The amount of free emissions a new plant receives cur-

rently in Germany depends on the fuel of the plant. The best available technol-

ogy with the same fuel is used as benchmark. This benchmark is for CCGT units

365 g CO2/kWh, for coal units 750 g CO2/kWh. The amount of free emission al-

lowances is based on this benchmark and an assumed number of 7,500 full load

hours.

The different benchmarks for CCGT units and coal units are criticized by envi-

ronmental organizations (e.g., BUND [BUN06]). Instead of a fuel-specific bench-

mark, a fuel-independent benchmark, or—even better—an auctioning of the emis-

sion allowances is claimed. Even Statkraft, a generation company, supports these

claims [Sta06].

During phase II of the ETS, the EU prescribed that at least 90% of the emission

allowances are allocated free of charge. For phase III, which starts in 2013, the
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Figure 5.10: Incluence of the nuclear
phase-out.
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Figure 5.11: Influence of the emission
allowance allocation scheme.

EU states that auctioning should [...] be the basic principle for allocation, as it is the

simplest, and generally considered to be the most economically efficient, system (Directive

2009/29/EC amending Directive 2003/87/EC4).

In the following, three different emission allowance allocation schemes are com-

pared: the current system based on a fuel-specific benchmark, an alternative sys-

tem using the same benchmark for CCGT and coal units and a full auctioning

of emission allowances. We refer to the alternative system with only one bench-

mark as fuel-independent benchmark. For the alternative system, we use the value

of 557.5 g CO2/kWh as benchmark, corresponding to the average of the current

benchmarks.

Figure 5.11 depicts the average amount of newly installed capacity under these

three allocation schemes. Two different effects can be observed in this figure. First,

a free allocation of emission allowances increases the incentive to invest in new

units. If emission allowances are fully auctioned, only 2,400 MW of new capacity

are built on average until 2022. If emission allowances are allocated for free, the

construction of new units starts earlier, and more new units are built. Comparing

the two schemes with free allocation of emission allowances, it can be seen that the

scheme with a fuel-independent benchmark yields immediate investments. The

fuel-specific benchmark attracts new investments four years later. The reason is

that CCGT units are less capital intensive. Less capital intensive units exhibit a

lower risk, and are therefore built earlier than more capital intensive units.

The second remarkable result is that the current allocation scheme is the only one

in which coal units are preferred to CCGT units. Based on the current scheme,

4http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:140:0063:0087:EN:PDF,
accessed on December 02, 2009.
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9,200 MW of new capacity provided by coal units and 1,200 MW of new capac-

ity provided by CCGT units is built on average up to 2018. Under both alterna-

tive allocation schemes, coal units are almost exclusively built when the maximal

number of CCGT units is reached.

5.5 Evaluation of the Profitability of CCS Units

The CCS technology might play an important role to reach global climate goals

and reduce CO2 emissions. Today, only a pilot capture project exists in Germany,

Vattenfall’s Schwarze Pumpe. Nevertheless, it is assumed that the CCS technol-

ogy gains in importance in the future. However, there are still some open ques-

tions. Besides technological questions, an open issue is the question of the com-

petitiveness of CCS units.

On the one hand, the reduced emission of CO2 results in savings compared to

non-CCS units. On the other hand, the capture process reduces the efficiency of

the CCS plant. In addition, the CCS equipment causes additional costs. The prof-

itability of CCS units depends greatly on future carbon prices. McKinsey [McK08]

assumes that a carbon price between 30–48e per tonne CO2 is required for CCS

units to be competitive. Many forecasts are within this region. However, as we

have discussed in Section 1.4.3, carbon price forecasts are subject to significant

uncertainty.

We outlined in Section 2.3.5 how carbon prices can be determined within a funda-

mental electricity market model based on an LP formulation. In this section, we

apply our LP-based fundamental electricity market model to examine the prof-

itability of coal-fired CCS units.

The advantage of a carbon price determination based on an electricity market

model is that it explicitly considers the interdependence of fundamental factors

like fuel prices and the existing power generation fleet (and hence the demand

of emission allowances). Compared to other carbon price forecasts, this approach

has two shortcomings: First, the carbon price determination of different years is

completely independent, it does not consider the possibility of banking. Secondly,

as we model only the German electricity market, we consider only a part of the

emission allowances market. To account for these shortcomings, we use the aver-

age of the price determined by our model and the predicted price. In addition, we

add a price cap corresponding to twice of the predicted price.
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Investment costs (million e) 1,500
Capacity (MW) 1,000
Efficiency 0.37
Carbon capture rate 0.9
Planning & construction time (years) 4
Annual fixed costs (e/MW) 25,000
Economic useful life (years) 25

Table 5.5: Parameters of the CCS units used for the case study. Sources: McKin-
sey [McK08], own assumptions.

To be able to determine the carbon price with our model, we need to specify the

amount of allowed emissions per year. This amount is so far only fixed until 2012.

The EU formulates in Directive 2009/29/EC amending Directive 2003/87/EC the

planned general framework for the post 2012 EU ETS. Following this directive, we

assume that for the years after 2012 the amount of allowed emissions is linearly

reduced every year by 1.74% of the average emissions in phase II of the EU ETS.

Table 5.5 depicts the parameters of the CCS unit used for the case study. Compared

to non-CCS units, it is assumed that investment costs are increased by 50%, while

efficiency is reduced by 9%. Furthermore, it is assumed that 90% of the emitted

CO2 can be captured [McK08]. Concerning the construction time and the economic

useful life, we use the same values as for non-CCS coal units, while we assume

that annual fixed costs are increased to 25,000 e/MW. Due to the significantly

longer running times of the LP-based electricitiy market model compared to the

LDC model, we use an optimization horizon of 20 years. We allow a maximum of

eight new units of each type (CCGT, coal, coal-fired CCS). We use the weighted,

deterministic LP model for the optimization of the electricity production. We opt

for the deterministic model to reduce the running times.

Figure 5.12(a) depicts the average amount of new capacity. Similar to the case

studies carried out before, non-CCS coal units are not competitive compared to

the alternatives. While the choice of the technology depends on the fuel price

development, it can be seen that on average CCS units are the preferred choice.

Compared to the case studies based on the LDC electricity market model, fewer

new units are built.

A reason for this behavior can be seen by looking at Figure 5.12(b). This figure

shows the average carbon prices based on the simulation used for the case studies

in the previous sections of this chapter, and the average carbon price observed

when the optimal solution of the LP model is applied. Up to the year 2022, we
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Figure 5.12: Average results of the case study evaluating the profitability of CCS
units.

do not have separate values for the solution of the LP model. To save time, we

do not run the LP-based electricity market model if no new units are built, as the

contribution margins for a new entrant to the market are zero in this case. As a

consequence, we do only determine the carbon price with our LP model if new

units are built. In Figure 5.12(b), this is the case from 2022 until 2029. Except for

the year 2029, the average prices obtained with the LP model are below average

simulated prices. As we have discussed before, a higher price level increases the

profitability of new units. Due to the lower price level, fewer units are built in this

case study.

Two interesting effects concerning the price determination with a fundamental

model can be noticed in Figure 5.12(b). First, carbon prices rise every year after

2022 except for the year 2026. The increase of the prices is caused by a reduction

of the available amount of allowed emissions. The decrease of the carbon price

in 2026 is due to the construction of new units. On average, three new units are

added in 2026. These efficient new units replace older less efficient units, and

hence decrease the amount of required emission allowances. Note that this effect

reduces the incentives for the investment in new units: compared to the LDC

model with simulated carbon prices, the construction of new units in the LP model

has a greater impact on electricity prices, as it also decreases carbon prices.

The second remarkable thing is the extreme price increase in 2029. In 2029, the

amount of allowed emissions is not sufficient for the production of the requested

electricity. As a consequence, the constraint restricting the amount of emissions

results in unsatisfied electricity demand. During times of unsatisfied demand, the

expensive VoLL sets the electricity price. As a consequence, the marginal value
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for additional emission allowances gets extremely high. Due to the price cap we

introduced, the carbon price is set to 108 e/t CO2, corresponding to the double of

the expected carbon price in 2029. However, if an additional CCS unit is added in

2029, average carbon prices drop to 71 e/t CO2. In reality, the construction of one

single unit does not have such huge effects on the carbon price.

One possibility to circumvent this effect would be to allow a transfer of unused

emission allowances from one year to the next. However, this would introduce a

path-dependence that is not compatible with our dynamic programming formu-

lation of the investment model. Despite this undesirable sensitive behavior of the

price determination, the results of the case study are interesting, as they indicate

that carbon prices will rise to a level making the CCS technology profitable.

5.6 Summary

In this chapter, we applied our ISDP investment model to different case studies.

We defined a base case and compared it to different alternative scenarios varying

some parameters of the model. In the base scenario, we used a trended mean-

reverting process for the fuel and carbon price simulation. We assumed that emis-

sion allowances are fully auctioned, and that the operational life of nuclear units

is extended by ten years. The considered investment alternatives were coal units

and CCGT units. In the base scenario, we optimized the power plant investments

for a new entrant to the market. The optimization horizon was 24 years. To deter-

mine the contribution margin of new units, we used our LDC electricity market

model.

In the base scenario, investment incentives are low. The construction of new

units is not started before 2018. Almost only CCGT units are built. Similar re-

sults, namely a low degree of investments and uncompetitive coal units, have

been recently reported by WestLB and PIK [WP09]. These results raise the ques-

tion whether the current market design offers sufficient incentives for new invest-

ments, an issue controversially discussed in literature (see, e.g., Oren [Ore05] and

Joskow [Jos08]).

One of the main issues related to power plant investments is the fuel and carbon

price uncertainty. While the methods proposed in this thesis allow to consider

many different fuel and carbon price scenarios, the results still depend on the cho-

sen stochastic process and its parameters used for the simulation. As there is no

consensus neither about the pertinent process nor about the exact parameters, we
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have compared the base scenario with scenarios using a different stochastic pro-

cess or different parameters for the trended mean-reverting process. Thereby, we

examined two questions: First, we studied how the best solution changes depend-

ing on the chosen stochastic process and its parameters. Secondly, we analyzed

how the solution of the base case performs, if a different stochastic process or

different parameters are used for the evaluation. The latter test gives us an idea

about the consequences of an inaccurate choice of the stochastic process.

Besides the mean-reversion process, the GBM is a popular choice for modeling

fuel prices. For this reason, we compared the solutions of the trended mean-

reversion process used in the base case with the solutions obtained with a GBM.

In addition, we also used a trended mean-reversion process with higher rates of

mean-reversion. Due to the mean-reverting property, the long term uncertainty of

a mean-reverting process is smaller than the one of the GBM.

The results of our comparison may be surprising at first sight: the higher the un-

certainty, the more new units are built. In the same time, the construction of new

units is started earlier. The reason for these results is the following: the expected

fuel prices offer only low incentives for investments in new units. However, if

coal prices or carbon prices rise stronger than expected, then new CCGT units be-

come profitable. If fuel prices follow a GBM or a mean-reverting process with a

low rate of mean-reversion, it can be assumed that these favorable fuel prices per-

sist at least for some years. This period may be long enough to make new CCGT

units profitable. If fuel prices follow a mean-reverting process with high mean-

reversion rates, then fuel prices return quickly to the unattractive expected price

level.

The higher the uncertainty, the higher is the expected value of the best solution

found by our model. In the same time, the standard deviation of the evaluated

returns does also increase. If the best solution of the base case is evaluated based

on the GBM or based on a mean-reversion process with a higher rate of mean-

reversion, it performs only slightly worse than the best solution found by an opti-

mization based on the alternative stochastic process. Hence, even if we chose the

wrong stochastic process, the solution we obtain is of good quality.

Besides the type of the stochastic process and the rate of mean-reversion, we also

tested the influence of the drift and the standard deviation used for the fuel and

carbon price simulation. Our tests showed that especially the drifts have an im-

portant impact on the solution. The higher the drift, the more profitable are new

units. As new units are in general more efficient than older units, fuel and carbon
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costs of new units increase below-average. If less efficient units set the electricity

price, the profit of the more efficient new units increases with rising fuel prices. As

a consequence, the higher the drifts, the more new units are built and the higher

are the expected profits. If we evaluate the solution of the base case with an al-

ternative mean-reverting process with drifts increased by 50%, then the solution

of the base case performs 8% worse than the one of the alternative. However, if

we use an alternative process with drifts reduced by 50%, i.e., the base scenario

overestimates the drifts of the fuel price processes, then the solution of the base

scenario produces losses on average. As future fuel prices are overestimated, the

profitability of new units is overestimated, and new units are built under unfa-

vorable conditions. However, as in both cases the construction of new units is not

started before 2018, it can be assumed that the wrong drifts are recognized and a

re-optimization with adjusted drifts delivers better results.

Other parameters influencing the investment decisions are the interest rate, the

depreciation method, the method used to determine external investments and the

existing portfolio of the considered operator. Lower interest rates and a straight-

line depreciation increase the incentives of investments compared to higher inter-

est rates or accelerated depreciation methods. The choice of these two parameters

can be used to consider the willingness to take risks of the considered investor.

If investments by competitors are disregarded, the amount of investments of the

considered operator decreases. The considered operator behaves like a monopo-

list: he builds fewer new units as the amount required to satisfy the demand. As

a consequence, a shortage of supply occurs during several hours a year, and the

electricity price is set by the VoLL. An existing portfolio also decreases investment

incentives, as the construction of new units reduces the contribution margins of

existing units.

Despite of the deregulation of the electricity market, political decisions still have

an important impact on the electricity market. Currently, there are two politi-

cal issues, which significantly influence the profitability of new investments: the

nuclear-phase out and the emission allowance allocation scheme. Concerning the

nuclear phase-out, we have examined three scenarios: a nuclear-phase out as it

was planned by the red-green government in 2002, an extension of the operational

life of nuclear units by ten years, and an unrestricted extension of the operational

life. Our tests have shown that the consequence of a delay or an annulment of the

nuclear phase-out are postponed or annulled investments. A delayed or scrapped

phase-out decreases the investment incentives for new entrants to the market, and
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hence it impedes a higher level of competition.

Following our tests, the emission allowance allocation scheme does not only in-

fluence the timing and the amount of new units, but also the preference for the

type of new units. Currently, three different options concerning the allocation

of emission allowances are discussed: a free allocation based on a fuel-specific

benchmark, a free allocation based on a fuel-independent benchmark, and a full

auctioning of emission allowances. A free allocation of emission allowances re-

sults in large windfall profits for the generation companies. Hence, investments

in new units are more profitable and significantly more units are built than in

the case where emission allowances must be bought. In our tests, the currently

applicable fuel-dependent benchmark is the only scheme in which coal units are

preferred to CCGT units.

In the last section of this chapter, we examined the profitability of coal-fired CCS

units. Due to the difficulties of simulating carbon prices, e.g., the lack of a long

history and a changing legal framework, we used the LP-based electricity mar-

ket model to determine future carbon prices based on fundamental data. As the

determination of carbon prices with the LP-model is based on several simplifica-

tions, e.g., the non-consideration of banking and the non-consideration of other

countries, we have used a weighted average of model prices and expected carbon

prices. While the resulting carbon prices were in most years below the expected

prices, they were high enough to make the CCS technology profitable. On aver-

age, coal-fired CCS units were the preferred choice. Depending on the fuel price

development, also new CCGT units were built, while non-CCS coal units were

never built. Due to the consideration of the German market only and the non-

consideration of banking, the construction of a single new unit can have a dispro-

portionately high influence on the carbon price in our model. Nevertheless, we

think that our results are interesting, as they indicate that CCS units will become

profitable.
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Conclusions

Electricity is the basis for almost all economic activities nowadays. A reliable and

cost-efficient supply of electricity is a decisive competitive factor for an economy.

To ensure an adequate supply, the investment decisions of electricity generation

companies are of great importance.

With the deregulation of the electricity market, the framework conditions for these

investment decisions changed significantly. While generation companies have al-

ways been exposed to cost risks related to uncertainty about future fuel prices, the

competition introduced by the deregulation has added two other forms of risk:

price risk and volume risk. These risks depend on multiple factors like fuel and

carbon price development, development of electricity demand and supply, and

political decisions. Due to the competition, generation companies are no longer

able to pass the whole risks to the consumers. Hence, the need for planning and

decision support tools that are able to consider these risks arises.

In Germany, a significant amount of new power plants is required in the next years

to replace old units, and—if the nuclear phase-out is not scrapped—to replace nu-

clear units. For most investment projects, two different options are discussed: coal

units and CCGT units. While the local population and environmental organiza-

tions prefer the more ecologically CCGT units, generation companies often opt

for the—in their opinion—more economically advantageous coal units. The main

argument against CCGT units is the high risk related to future gas prices.

The aim of this thesis was to provide a model for power plant valuation with a fo-

cus on an adequate representation of fuel and carbon price uncertainty. Thereby,

the interrelationship between fuel and carbon prices, electricity demand and sup-

ply on the one side and electricity prices and electricity production on the other

side should be considered.

267
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Summary

Basis for any method that is used to evaluate the profitability of power plants are

the expected contribution margins for the new units. These contribution margins

depend mainly on fuel and carbon prices, electricity prices and electricity produc-

tion. As these parameters are highly interdependent, we argue that a fundamental

electricity market model is the appropriate choice to determine the contribution

margins.

After a general introduction to electricity markets in Chapter 1, we have presented

several fundamental electricity market models with different levels of detail in

Chapter 2. The least detailed model is the model based on the LDC. Due to its fast

running times, it is best suited for a power plant valuation model that requires the

calculation of contribution margins for a huge amount of different scenarios. A

disadvantage of an LDC-based model is that it cannot consider technical restric-

tions of power plants. A consequence of this limitation is a lower standard devi-

ation of the model’s prices compared to the standard deviation of real electricity

prices. To get a better approximation of the real prices, we used two different

functions to adjust model prices: a mark-up function applied in times of scarcity,

and a function that preserves average prices, but increases high prices while it de-

creases low prices. This function aims to simulate the effect of start-up costs and

avoided start-up costs, respectively.

Compared to LDC models, fundamental electricity market models based on an

LP formulation allow a much more detailed description of the electricity mar-

ket. Due to this detailed description, running times get prohibitively high for a

usage in an investment model. To reduce the complexity of such models, differ-

ent simplifications, e.g., aggregation or the restriction to some typical days, are

commonly used. But even with these simplifications, the computational burden

is significantly higher than the one of an LDC model. Nevertheless, we exam-

ined such LP-based models, as they can also be used to determine carbon prices

based on fundamental data. A comparison between the prices of both models

and observed EEX spot-prices showed a good approximation of average electric-

ity prices. As the investment alternatives we consider, coal units and CCGT units,

are at least mid load units, we argue that a good approximation of average prices

is more important than an exact approximation of the standard deviation of the

prices. Hence, the LDC and LP models that we tested are suited to determine the

contribution margins of new units for an investment model.
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In a deregulated market, a power plant investment problem consists of different

decisions: besides the amount and the type of the new units, the timing of the

investments must be chosen. The option to postpone an investment can have a

significant value, especially if new information, e.g., about fuel or carbon prices,

becomes available in later years. The state of the art approach to tackle such prob-

lems is the real options approach. A common method to solve a real options prob-

lem is SDP.

In Chapter 3, we described how SDP can be used to optimize power plant invest-

ments taking into account fuel and carbon price uncertainty. We thereby took the

position of a single, decentralized decision maker. Compared to similar models as-

suming a centralized decision maker, this choice required us to add a module that

models investments of competitors. We opt for this more complicated perspec-

tive, as we do not believe that under current market conditions, both approaches

necessarily lead to the same solution.

The main issue with an SDP formulation of the power plant investment problem

is the “curse of dimensionality”, which limits the usage of SDP to low dimen-

sional problems. To be able to solve our power plant investment problem, several

simplifications need to be made. The application of temporal aggregation, a com-

mon technique in SDP, allows us to significantly reduce the state space. However,

it allows investment decisions only every four years,1 and it introduces another

problem: fuel prices now evolve stochastically within the period covered by a

state. As the contribution margins based on average fuel prices do not correspond

to the average contribution margins considering all fuel price scenarios associated

to a state, we select several representative fuel price scenarios for every year of a

state. The selection of these scenarios is done with the fast forward selection, a

method commonly applied in stochastic programming.

However, the simplified problem is still computationally intractable, if a wide

variety of fuel and carbon price scenarios should be considered. Motivated by

the fact that for the unit commitment decisions between coal and CCGT units

the cost difference between these units is decisive, we introduced another form

of aggregation. Instead of explicitly saving the coal price, the gas price and the

carbon price in our SDP model, we save the cost difference in form of the climate

spread.

1The four years correspond to the construction time of new units that we used in our tests. To
be exact, the proposed formulation allows the construction of new units every t′ years, where t′

corresponds to the maximum construction time of one of the considered investment alternatives.
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The state space of this aggregated problem is much smaller compared to the state

space of the original problem. Nevertheless, the size of the state space might still

be problematic, especially if an LP-based electricity market model is used to de-

termine the contribution margins for each state. Based on the idea that we do

not need an exact value function for all states, we use an adaptive grid method

to solve the problem. Thereby, we start with a coarse grid, consisting of a small

subset of the state space. We calculate the contribution margins only for the grid

points. The value of non-saved states, which may be reached during the optimiza-

tion, is approximated by an interpolation based on the value of the grid points.

For this reason, we refer to this model as interpolation-based stochastic dynamic

programming (ISDP) model.

During the optimization, the grid is iteratively refined by splitting some of its hy-

perrectangles. The selection of the hyperrectangles that are split is based on the

priority of each hyperrectangle determined by a splitting criterion. We presented

three kinds of splitting criteria: value function based criteria aiming to refine the

grid where the approximation error is the greatest, a policy based criterion, re-

fining the grid around the optimal solution of the approximated problem, and a

combination of the before mentioned approaches. It turned out that the combina-

tion of both approaches works best for our problem.

The application of the adaptive grid method allows us to consider a wide variety

of fuel and carbon price scenarios. Based on a Monte Carlo simulation of these

prices, we define an interval of climate spreads that should be covered by the

model, and choose the boundary points of the grid correspondingly. Compared

to similar models, the amount of considered fuel and carbon price scenarios of our

model is much greater.

We compared the quality of the solutions of our ISDP model with the quality of

the solutions of two alternatives: a deterministic approach based on expected fuel

prices, and a normal SDP model. The quality of the solutions of both stochastic

models is significantly better than the quality of the solution obtained by the de-

terministic model. The higher the uncertainty, the greater is the advantage of the

stochastic models. In order to compare the ISDP model with a normal SDP model,

we had to restrict the size of the considered test problems such that the SDP model

is still able to solve them. For these test problems, the performance of both mod-

els was similar concerning solution quality and running times. However, the ISDP

approach has two advantages compared to the normal SDP approach. First, it can

be used to solve larger problems. Second, the ISDP approach is also faster for
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smaller problems, if an LP-based fundamental electricity market model is used

instead of the LDC model.

Despite the advantages of the ISDP approach compared to to a normal SDP ap-

proach, the ISDP model still suffers from two limitations of the SDP approach:

first, it allows new decisions only every four years, and secondly, even though it

scales better than a normal SDP approach, it is still restricted to low dimensional

problems. For this reason, we examined an approach that promises to break the

curse of dimensionality: Approximate dynamic programming (ADP). Instead of

explicitly saving the value of each state, ADP approximates the value of a state

based on value function approximations depending only on some of a state’s at-

tributes. This approach has two advantages: first, the memory required to save the

value function approximations is significantly lower than the memory required to

save the value of all states in SDP. Secondly, it allows to approximate the value

of states that have never been visited during the optimization. Hence, a complete

enumeration of the state space can be avoided.

In Chapter 4, we examined how the power plant investment problem can be

formulated and solved using ADP. We proposed to approximate the value of a

state based on piecewise-linear value function approximations that depend on the

number of new units already built and the number of new units under construc-

tion. To account for different fuel price scenarios and the amount of electricity

demand that is not covered by competing units, we introduced the climate spread

and the residual demand clusters. For each of these clusters, we use separate value

function approximations.

A comparison of the solutions of the ADP model with those of the ISDP model

showed for our test cases a slightly better solution quality of the ADP model. This

is not surprising, as the ADP model allows annual investment decisions. In test

cases with deterministic fuel prices, the ADP model was able to find the optimal

solution.

Despite these good results, the ADP approach has several drawbacks. First, it

requires a lot of parameter tunning. The wrong choice of a single parameter can

result in an algorithm that does not work. Secondly, the approach cannot be used

to consider an additional investment alternative. The reason is the requirement of

independence of the attributes used for the value function approximations. For

the considered problem, we could circumvent this problem with the introduction

of the residual demand clusters. However, this method cannot be extended to

more than two investment alternatives.
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In Chapter 5, we applied our ISDP model to several case studies. Based on the

assumption of an extension of the useful life of nuclear units by ten years, and a

full auctioning of emission allowances, the case study showed that incentives for

investments in new units are low. No new units are built before 2022. In most

cases, CCGT units are preferred to coal units.

We used the base scenario to analyze the impact of different parameters on the

solution of our model. We first examined the influence of different parameter

choices concerning the stochastic process used for the fuel and carbon price sim-

ulation. It turned out that the higher the uncertainty and the higher the fuel and

carbon price level, the more profitable are the investments in new units. This

counterintuitive result is caused by the way electricity prices are set. If the price

setting unit is less efficient than the new units, its costs rise more than those of the

new units of the same technology. Hence, also electricity prices rise more than the

costs of these new units.

Furthermore, we showed that the optimal decision depends on the portfolio of

an investor. A generation company with an existing portfolio has less incentives

to invest than a new entrant to the market—except when the company with the

existing portfolio knows that if it does not invest, a competitor will invest. More-

over, our tests demonstrated that the non-consideration of competitors results in

a lower degree of investments and in delayed investments.

We also studied the impact of political decisions on investments. A delay or an

annulment of the nuclear phase-out significantly reduces the incentives to invest

in new units. Besides the nuclear phase-out, we compared different emission al-

lowance allocation schemes: a free allocation based on the current fuel-specific

benchmark, a free allocation based on a fuel-independent benchmark and a full

auctioning of the emissions. The only scheme under which coal units are pre-

ferred to CCGT units is the fuel-specific benchmark. The windfall profits obtained

through the free allocation of emission allowances are an important incentive to

invest in new units.

Finally, we evaluated the profitability of coal units with the carbon capture and

storage (CCS) technology. The profitability of these units depends mainly on fu-

ture carbon prices. To be able to determine carbon prices based on fundamentals,

we used our LP-based electricity market model for this case study. Even though

carbon prices tended to be slightly lower than expected, coal-fired CCS units were

in most cases the preferred choice in this case study.
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Main Contributions of this Thesis

The main contribution of this thesis is the development of methods allowing to

combine fundamental electricity market models and SDP while considering a

wide range of different fuel and carbon price scenarios. Compared to other ap-

proaches combining fundamental electricity market models and SDP, our meth-

ods allow for a more detailed representation of fuel and carbon price uncertainty.

To the best of the author’s knowledge, the ISDP approach using an adaptive grid

method as well as the ADP approach have been applied for the first time to the

power generation expansion problem.

The most important advantage of the ISDP approach is the reduction of the state

space. Compared to a normal SDP approach, significantly less states need to

be considered. This yields two benefits: First, memory requirements are lower.

Hence, greater problems, modeling other aspects in more detail, can be solved.

For example, the consideration of external investments—a further difference of

our model to similar models in literature—was only possible in our ISDP model,

but not in the standard SDP model that we used for the comparison of both ap-

proaches. Secondly, due to the reduced state space, less calculations of contribu-

tion margins for new units are required. This is especially important when an LP

or an MILP model is used to determine the contribution margins. For our case

study evaluating the profitability of CCS units, the running time was, despite a

parallel implementation using eight cores, about a week. With our ISDP model,

the contribution margins of about 14,000 states have been calculated. A normal

SDP model based on the same fuel price intervals, would have consisted of about

475,000 states, and hence, it would have required a significantly longer running

time.

A further method we have introduced to reduce the complexity of the problem is

the aggregation of coal, gas and carbon prices to the climate spread. While this

aggregation also significantly reduces the state space, the solutions based on this

representation are only slightly worse than those based on an explicit representa-

tion of all three prices. However, it must be stressed that this technique is problem

specific, as we defined the climate spread as the cost difference between coal and

CCGT units. Hence, this approach will probably not work if other investment

alternatives, e.g., lignite units, are additionally considered.

The more detailed representation of the electricity market is used, the greater is

the advantage of the methods we proposed compared to normal SDP approaches.

While this thesis focused on the comparison between coal and CCGT units, at least
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the adaptive grid method used by the ISDP model can also be applied to consider

other investment alternatives, e.g., large offshore wind parks.

Concerning the ADP formulation of the power plant investment model, the first

contribution of this thesis is the modeling of the problem. Compared to a normal

SDP approach, the choice of the problem representation is more difficult in ADP.

We have used an example to illustrate the effects of an inappropriate representa-

tion: in this case, the model was not able to capture the value of postponing an

investment. We have introduced several problem-specific techniques to improve

the algorithm that we use to solve the ADP problem. It turned out that these tech-

niques, the initial update of neighboring value function approximations and the

update of value function approximations with the same residual demand cluster,

are very important for the performance of the algorithm.

Concerning the LP-based fundamental electricity market model used to determine

the contribution margins of new units, we addressed several problems caused by

the simplification of the model, which are disregarded in other models. We pro-

posed an alternative formulation of the minimum up-time and minimum down-

time constraints, which also holds when units are aggregated to unit groups.

Moreover, this formulation is more efficient than the one commonly used. In ad-

dition, we discussed several problems related to fundamental electricity market

models based on typical days, and proposed alternative formulations that take

these problems into account. Especially for an (approximately) realistic storage

operation, it is important to consider the proposed adjustments.

Applicability and Limitations

The models described in this thesis were developed from the point of view of an

electricity generation company. The aim was to provide a model that can be used

as a decision-support tool for long-term power plant investment planning under

fuel and carbon price uncertainty. As the profits of the units of the considered

operator depend, amongst others, on the decisions of competitors, we included a

module determining the investments of competitors. Depending on the parame-

ters used for this module, more or less aggressive competitors can be simulated.

Even though our model is formulated from the point of view of a single company,

it might also be interesting for regulatory authorities and politicians to test the

impact of different legal conditions. For example, the effect of different emission

allowance allocation schemes can be tested, as we have done it in one of the case

studies.
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As the power generation expansion problem is a very complex problem, there are

a wide variety of different approaches, focusing on different aspects of the prob-

lem. As such, each of these approaches has its own strengths and weaknesses. For

example, even though we included an investment module modeling investments

of competitors, game-theoretic approaches are better suited to model the strategic

behavior of different generation companies.

The focus of our model was on a strategic level. Our model disregards several soft

factors, which also influence investment decisions. For example, we do not con-

sider a possible reservation against gas fired units due to the fear to be dependent

on Russia. We neither consider the resistance of environmental organizations and

parts of the population against coal units, even though this resistance stopped

several planned coal units recently (e.g., the planned coal units in Ensdorf and

Emden (FAZ [FAZ09])).

In summary, we believe that due to the ability to consider a wide variety of differ-

ent fuel and carbon price scenarios, our model is well suited for long term invest-

ment planning. However, to incorporate other aspects of the problem, it should

be used in conjunction with models focusing on these aspects.

Directions for Future Research

The focus of this thesis was on an adequate representation of fuel and carbon price

uncertainty. Other kinds of uncertainty, e.g., uncertainty about the legal frame-

work or uncertainty about future electricity demand, have been disregarded or

have only been addressed with a comparison of different scenarios. Our ISDP

model can be easily extended to consider at least some of these uncertainties ex-

plicitly. The consideration of an additional kind of uncertainty would just require

the introduction of an additional state attribute. For example, one may model

electricity demand depending on the past electricity prices: high electricity prices

may decrease electricity demand, while lower prices stimulate the demand.

As we took the perspective of a single operator in the market, we had to consider

the decisions of competitors. For this purpose, we described two relatively simple

approaches how these decisions can be modeled. Future research may concentrate

on an integration of game-theoretic approaches into the investment model.

The combination of an LP-based electricity market model with the ISDP invest-

ment model allowed us to determine carbon price based on fundamentals. As

we have discussed, this method is based on several simplifications. First, we only

considered a part of the market. This restriction can be circumvented by modeling
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the whole European electricity market. Secondly, our approach does not consider

banking of emission allowances. A possibility would be to add another attribute

to a state in the investment model. This attribute could be used to count the sur-

plus or shortage of emission allowances, which can be added or deduced from the

amount of allowed emissions in the subsequent years.

Another possible direction for future research lies in the objective function used

for the investment problem. The models presented in this thesis maximize the

expected value of the investment decisions. One may extend this approach by

considering also the risk related to the decisions. A possibility would be to inte-

grate risk measures like the value at risk or the conditional value at risk. It would

also be possible to extend the problem formulation to a multi-objective optimiza-

tion problem, using the maximization of the expected profits as one objective, and

the minimization of the associated risks as another objective.
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Abbreviations

ACVD Average Corner Value Difference

ADP Approximate Dynamic Programming

AE Approximation Error

CAES Compressed Air Energy Storage

CCGT Combined Cycle Gas Turbine

CCS Carbon Capture and Storage

CDS Clean Dark Spread

CSS Clean Spark Spread

DCF Discounted Cash Flow

DP Dynamic Programming

ECX European Climate Exchange

EEX European Energy Exchange

EU ETS European Union Emission Trading System

EUA European Union Allowance

GBM Geometric Brownian Motion

ISDP Interpolation-based Stochastic Dynamic Programming

LCEP Levelized Costs of Electricity Production

LDC Load–Duration Curve
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LP Linear Programming

MAE Mean Average Error

MILP Mixed-Integer Linear Programming

NAP National Allocation Plan

NPV Net Present Value

PIOS Probability Interpolated Optimal Solution

RMSE Root Mean Squared Error

RSI Residual Supply Index

SDC Supply–Demand Curve

SDP Stochastic Dynamic Programming

TSO Transmission System Operator

VNL Value Non-Linearity

VoLL Value of Lost Load

WACVD Weighted Average Corner Value Difference

WAE Weighted Approximation Error

WVNL Weighted Value Non-Linearity
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Notation used for the Fundamental Electricity Market Model

Sets and Indices

n ∈ N Nodes

t ∈ T Timesteps

u ∈ U Units

u ∈ UFastStart Fast starting units (Units that are able to start fast-enough

to provide minute reserves if they are turned off.)

u ∈ UStorage Electricity storages

Variables

F Fuel consumption [MWh]

FC Fuel consumption costs [e]

OC Operating and maintenance costs [e]

P Electricity production [MWh]

POnline Capacity online [MW]

PRes− Negative reserves [MW]

PResNonSpin+ Positive non-spinning reserves [MW]

PResSpin+ Positive spinning reserves [MW]

PShutDown Capacity shut-down [MW]

PStartUp Capacity started [MW]

SC Start-up costs [e]

TC Total costs [e]

V Storage content [MWh]

W Electricity used for storage charging [MWh]
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Parameters

α Fuel consumption parameter [MWhfuel/MWelec] for being

online

β Fuel consumption parameter [MWhfuel/MWhelec] for pro-

ducing electricity

η Storage efficiency [%]

γ Operating and maintenance costs [e/MWh]

κ CO2 emissions [t/MWh]

πn Occurrence probability of n

ψn′→n Transition probability from n′ to n

ρ Availability factor

θ Additional fuel usage for start-ups [MWfuel/MWelec]

cabrasion Abrasion costs [e/MW]

cCO2 Carbon costs [e/t]

cFuel
f (u)

Fuel costs depending on fuel f used by unit u [e/MWh]

dRes− Negative reserve demand [MW]

dResNonSpin+ Positive non-spinning reserve demand [MW]

dResSpin+ Positive spinning reserve demand [MW]

d Duration of a timestep [h]

emmax Maximum allowed CO2 emissions [t]

ft Frequency of timestep t

l Load [MW]

mt Number of times the representative day to which t belongs

is repeated

pmax Maximum electricity production [MW]
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pmin
u Minimum (relative) electricity production.

tMinDown Minimum downtime

tMinUp Minimum operation time

tPerDay Timesteps per day

vmax Maximum storage content [MWh]

wmax Maximum storage charging [MW]
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Notation used for the ISDP Investment Model

Indices

f ∈ F Fuels for which stochastic prices are used in the model, e.g.,

coal or gas

s ∈ {0, 1, . . . , N − 1} Stage

t ∈ {0, 1, . . . , T− 1} Year

u ∈ U Types of new units that can be built, e.g., CCGT unit or coal

unit

Variables and parameters

β Discount factor

a ∈ Γ(x) Action (depending on state x)

cInvest(a) Investment costs depending on action a

F(x, a) Payoff function depending on state x and action a

P(xs+1 | xs, as) Conditional probability of state xs+1 under current state xs

and action as

R(x) Reward for being in state x

T(x, a) Transition function from state x taking action a

t1
s First year of stage s

Ts Number of years per stage

V(x) Value function for state x

Ṽ(x) Approximated value function for (the non-saved) state x

xs ∈ Xs State at stage s

x f Vector of attributes of a state characterizing the fuel price

scenarios
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xu Vector of attributes of a state containing the number of new

units built by the considered operator (xuOwn
) and those

built by competitors (xuExt
) for each type of unit

xuExt
Vector of attributes of a state containing the number of new

units built by competitors

xuOwn
Vector containing the attributes of a state counting the num-

ber of new units built by the considered operator

XNonSaved
s Set of non-saved states at stage s

X Saved
s Set of saved states at stage s

Variables and parameters related to the determination of the contribution margins

CFuel
t (x) Set of all fuel price scenarios associated to state x in year t

CFuel,NonRep
t (x) Set of non-representative fuel prices in year t for state x

CFuel,Rep
t (x) Set of representative fuel prices in year t for state x

P(cFuel | x, t) Probability of fuel price scenario cFuel for state x and year t

RProd(xu, cFuel, t) Contribution margin depending on units xu, fuel prices cFuel

and year t

R̃Prod(xu, cFuel, t) Approximated contribution margin depending on units xu,

fuel prices cFuel and year t
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Notation used for the ADP Investment Model

αn Stepsize used for the value function update in iteration n

β Discount factor

π Policy specifying an action for each state

φut′ (xt) Residual demand cluster and climate spread cluster for units

of type u in year t′ depending on state xt

at ∈ Γ(xt) Decision in year t depending on state xt

c(at) (Investment) costs of decision at

c
f
t Price of fuel (or carbon) f in year t

csct Climate spread cluster in year t

F(xt, at) Payoff function depending on state xt and decision at

Rt(xt) Reward for being in state xt in year t

rdcu
t Residual demand cluster for units of type u in year t

tConstr
u Construction time of units of type u

Tw(xa
t , wt+1) Transition function from post-decision state xa

t to the suc-

ceeding pre-decision state depending on realization wt+1

of the stochastic process

Ta(xt, at) Transition function from pre-decision state xt to the suc-

ceeding post-decision state when decision at is applied

v̂t,ut′ Marginal value of an additional unit of type u in year t′,
where t is the current year

Ṽt(xa
t ) Value function approximation of post-decision state xa

t

Ṽt,ut′
(

xu
t′ | φut′ (xt)

)
Piecewise-linear value function approximation of the num-

ber of new units of type u in year t′ depending on the cli-

mate spread and residual demand clusters of the current

state xt. Thereby, t denotes the current year. If t′ = t +

tConstr, then this value corresponds to expected value until
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the end of the optimization horizon, otherwise only to the

value in t′.

Ṽm
t−1 ← UV(Ṽm−1

t−1 , xm
t−1, v̂m

t ) Update of value function Ṽm
t−1 at iteration m and year

t− 1 depending on the value function approximation dur-

ing the previous iteration Ṽm−1
t−1 , the state xa,m

t−1, and the ob-

served value v̂m
t

wt Realization of the stochastic process in year t

xt Pre-decision state in year t

xa
t Post-decision state in year t

xu
t Number of new units of type u in year t
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