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Abstract 

Separation of particles or droplets from gaseous flows can be performed by wave separators, which 

use the inertia of the droplets to separate them from the main flow. Over half a century of research 

has been done into the separation efficiency of these separators. In the last decade the use of 

Computational Fluid Dynamics (CFD) has increasingly become the preferred investigative method, 

since it is regarded as cheaper and quicker than experiments. Being popular before, the use of 

analytical methods, has become more scarce. 

 

This study focuses on analytical methods for the prediction of vane separator efficiency and aims to 

enhance such methods with the implementation of additional physical phenomena. An existing 

equation based upon diminishing droplet concentration, was modified by introducing the effect of 

straight channel parts on the separation efficiency of the vane separator. Different orientations of 

the vane separator in the gravity field, as well as in the velocity field, were included in the analytical 

model. Non-orthogonal velocity fields constitute simultaneously a positive and a negative impact on 

separation efficiency, caused by an increasing effective path length and an increasing effective 

channel width, respectively. The net result of these effects depends mainly on the total bend angle of 

the vane separator. It was shown that the gravitational contributions to the separation efficiency 

inside the bends cancel and only the straight channel sections effectively contribute to droplet 

separation. These contributions increase with droplet size and decrease with gas velocity and the 

optimum does not necessarily correspond to orthogonal flow conditions. For vane separators with 

high performance at low Stokes numbers, gravitational effects can be neglected. The orientation in 

the gravity field becomes significant under conditions of poor separation, e.g. at low velocities in 

wide flow channels. 

 

Non-uniform velocity profiles are accounted for through a simplified model representing a low-

velocity region near the outer wall. This allows for the computation of a limit escape diameter, below 

which droplets would not be separated. Identifying the corresponding modified terminal radial 

droplet velocity, the separation efficiency is adjusted. The result reflects the near-zero efficiency for 

droplet sizes below the escape diameter, as well as an increased efficiency for larger droplets, due to 

the higher gas velocity on the inside of the bend under incompressible conditions. An adjustment of 

the droplet concentration near the outer wall is suggested, to account for the non-uniform droplet 

distribution after a bend. The resulting modification of the separation efficiency is equivalent to a 

decrease of the effective wall length, dependent on a remixing factor and the Reynolds number. 

 

Relevant physical phenomena, not represented explicitly in the analytical model, and their 

significance for the separation of droplets are discussed. These phenomena include liquid film flow, 

re-entrainment mechanisms and pressure drop. The expected carry-over of liquid film into 

subsequent vane separator stages is quantified by identifying the theoretical limits of liquid film 

thickness and gravitational drainage, in combination with the film flow angle. By setting these limits 

equal, a method of computing the average film height emerges, alternative to computing the Nusselt 

film height. The impact of liquid film carry-over on the overall vane separator efficiency is visualized 

and compared to a theoretical result with perforated wall sections, which significantly improves film 

drainage. A discussion of different re-entrainment mechanisms shows the disadvantage of sharp 
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inner corners with regard to film detachment. A large range of theoretical critical film and gas 

velocities from different authors are discussed. Experimental critical gas velocities of 5 - 8 m/s are 

reported most often, for water droplets immersed in air flow through vane separators channels. 

 

The analytical model presented in this paper is benchmarked against several numerical, as well as 

experimental results from existing literature. The model is in very reasonable agreement with most 

sources. It is shown that straight type vane separators are represented well by the model and that 

accounting for non-uniform velocity profiles can lead to better predictions. Results from the 

analytical model are also compared with experiments performed by the Institute of Fluid Mechanics 

(LSTM) of the Friedrich-Alexander University in Erlangen, on a vane separator of simplified geometry, 

manufactured for this purpose. The experimental separation efficiencies, computed from the 

measured liquid mass balances, are significantly below the model predictions, which are arbitrarily 

close to unity. This difference is attributed to re-entrainment by film detachment from the edge of 

the last stage of the vane separator. After adjustment for re-entrainment effects, through the 

application of a cut-off filter to the outlet droplet size spectra, the experimental and theoretical 

outlet Sauter mean diameters show very good agreement. An analysis of the pressure drop reveals 

that the model by Wilkinson [70] represents the data well, although his proposed regime change for 

higher Reynolds numbers derogates the comparison. No dependence of pressure drop on liquid mass 

fraction is detected. 

 

Based on the conclusions from previously discussed relevant geometrical aspects, a novel vane 

separator design is introduced, which incorporates features expected to improve efficiency. An 

engineering method for quantifying the geometrical parameters of the novel design is introduced, by 

means of a specific example in the form of the application of vane separators in a Moisture Separator 

& Reheater. Numerical computations on the resulting geometry performed by Siemens AG Corporate 

Research & Technology in Moscow reveal an increased separation efficiency at low gas velocities, as 

compared to the analytical model, thought to be related to the increased gas velocities caused by the 

variable channel width. For gas velocities beyond 4 m/s the numerical and analytical models are in 

good agreement. Experimental results from the novel vane separator geometry are compared with 

results from the simplified geometry. The separation efficiencies based on the recorded liquid mass 

flow balances are very similar for both geometries, although, based on an analysis of the outlet 

droplet size spectra, the novel design performs better. It is concluded that re-entrainment effects 

cloud the performance of the novel design and that the perforations in the wall sections are not very 

effective. Pressure drop measurements performed on both geometries show that the pressure drop 

for the novel design is higher by a factor of almost two, but remains below 300 Pa for gas velocities 

up to 8 m/s. A numerical investigation performed by Steinmüller GmbH, comparing the novel design 

with a commercial vane separator featuring pick-off hooks, reveals that the separation efficiency 

increases with the gas velocity for the novel design, while it is almost constant for the commercial 

design. The separation efficiencies cross at about 4 m/s, signalizing the advantages of the novel vane 

separator design in the intended operating regime at higher gas velocities. 
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Kurzfassung 

Partikel oder Tropfen können, durch Ausnutzung deren Trägheit mittels eines Wellenabscheiders, 

von einer gasförmigen Hauptströmung getrennt werden. Nach Abscheidungsgraden der 

Wellenabscheider wird bereits seit über einem halben Jahrhundert geforscht, wobei der Einsatz von 

rechnerischen Methoden (CFD) als bevorzugte Mittel im letzten Jahrzehnt vermehrt angewandt 

werden, da diese im Gegensatz zu Experimenten als eine schnellere und kostengünstigere Variante 

angesehen werden. Obwohl vorher weitverbreitet, sind analytische Ansätze deshalb immer seltener 

vorzufinden. 

 

Diese Arbeit konzentriert sich auf analytische Ansätze zur Berechnung des Wirkungsgrades und 

beabsichtigt diese unter Berücksichtigung zusätzlicher physikalischer Phänomenen zu erweitern. Eine 

bereits bekannte, auf abnehmender Tröpfchenkonzentration basierende Formel, wurde mit dem 

Einfluss von geraden Kanalsegmenten auf den Abscheidungsgrad ergänzt. Unterschiedliche 

Ausrichtungen der Wellenabscheider, mit Bezug auf die Schwerkraft und auf die Gasgeschwindigkeit, 

wurden in ein analytisches Modell eingearbeitet. Ein schiefwinkliger Geschwindigkeitsvektor erzeugt 

sowohl einen positiven als einen negativen Effekt auf den Abscheidungsgrad, verursacht von einer 

Verlängerung der effektiven Weglänge beziehungsweise einer Verbreitung der effektiven 

Kanalbreite, wobei das Nettoergebnis der beiden Effekte hauptsächlich vom Umlenkwinkel abhängt. 

Es wurde gezeigt, dass die Beiträge der Schwerkraft am Abscheidungsgrad innerhalb der Krümmer 

sich aufheben und nur die Beiträge innerhalb der geraden Kanalsegmente zum Abscheidungsgrad 

beitragen. Der Effekt nimmt mit steigendem Tropfendurchmesser zu, wobei das Optimum nicht 

unbedingt mit geradewinkligen Strömungsverhältnisse zusammenfällt. In Wellenabscheidern mit 

hohen Abscheidungsgraden bei niedrigen Stokeszahlen kann die Schwerkraft vernachlässigt werden, 

aber bei niedrigen Abscheidungsgraden, z.B. bei niedriger Geschwindigkeit in breiten Kanälen, ist der 

Beitrag signifikant. 

 

Ein Modell wird ermittelt in welchen ungleichmäßigen Geschwindigkeitsprofilen vereinfacht mit 

einem niedrig-Geschwindigkeitsbereich an der äußeren Wand abgebildet werden, was die 

Berechnung eines limitierenden Tropfendurchmesser, unterhalb dessen keine Tropfen abgeschieden 

werden können, erlaubt. Mit der einhergehenden Anpassung der Fallgeschwindigkeit der Tropfen 

werden sowohl die sehr geringen Abscheidungsgrade für Tropfendurchmesser über den 

limitierenden Tropfendurchmesser als auch die, wegen der (unter Inkompressibilität) höheren 

Gasgeschwindigkeit am inneren Wand, höhere Abscheidungsgräde für Tropfendurchmesser oberhalb 

der limitierenden Tropfendurchmesser, reproduziert. Die ungleichmäßige Tropfenverteilung 

stromabwärts eines Krümmers wird mittels einer Modifizierung der Tropfenverteilung nahe der 

äußeren Wand berücksichtigt. Die daraus resultierende Anpassung des Abscheidungsgrades gleicht 

eine Reduzierung der effektiven Weglänge, abhängig vom Mischungsfaktor und der Reynoldszahl. 

 

Nicht explizit in dem Modell enthaltene relevante physikalischen Phänomene, wie flüssige 

Filmströmung, dem Mitreißen von Tropfen in die Hauptströmung und Druckverlust, und deren 

Signifikanz für den Abscheidegrad werden diskutiert. Die theoretische Limits der Filmhöhe und 

gravitative Entwässerung werden in Zusammenhang mit dem Strömungswinkel untersucht, wodurch 

die Übertragung eines flüssigen Films in nachfolgenden Abscheiderstufen quantifiziert werden kann. 
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Alternativ zur Nusselt Filmhöhe, erlaubt eine Gleichstellung dieser Limits die Errechnung der 

durchschnittlichen Filmhöhe. Der Einfluss der Filmübertragung auf den Abscheidegrad wird 

visualisiert und das Ergebnis mit dem theoretischen Ergebnis unter Berücksichtigung von 

Wandperforationen verglichen, was die Entwässerung wesentlich verbessert. Der Nachteil schärferer 

innerer Krümmer mit Bezug auf Lösung der flüssigen Schichtströmung wird diskutiert. Obwohl 

theoretische Werte für kritische Film- und Gasgeschwindigkeit von unterschiedlichen Autoren sich 

sehr unterscheiden, werden in Experimenten mit Wassertropfen in Luftströmung durch 

Wellenabscheiderkanäle, Werte von 5 - 8 m/s ermittelt. 

 

Ein Benchmark des in dieser Arbeit dargestellten analytischen Modells mit unterschiedlichen, 

numerischen sowie experimentellen Werten aus der Literatur, zeigt mit den meisten Quellen eine 

gute Übereinstimmung. Es wurde gezeigt, dass gerade Wellenabscheider gut vom Modell abgebildet 

werden und dass die Berücksichtigung ungleichmäßiger Geschwindigkeitsprofile bessere 

Abschätzungen herbeiführen kann. Modellergebnisse werden zusätzlich durch Experimente mit 

einem für dieses Ziel gefertigten Wellenabscheider in vereinfachter Form verglichen. Die 

Experimente wurden vom Lehrstuhl für Strömungmechanik (LSTM) der Friedrich-Alexander 

Universität in Erlangen durchgeführt. Die mittels der Massenbilanz ermittelten experimentellen 

Abscheidegrade zeigten sich wesentlich unter den Modellprognosen, welche beliebig nahe bei 100% 

sind. Dieser Unterschied wurde der Filmlösung vom Rand der letzten Abscheiderstufe zugeschrieben. 

Nach Justierung für diese Filmlösung, durch Anwendung eines Filters auf Tropfengrößenverteilung 

am Austritt, stimmen die experimentellen und theoretischen Sauter Durchmesser am Austritt sehr 

gut überein. Eine Untersuchung des Druckverlustes zeigt, dass das Modell von Wilkinson [70] die 

experimentellen Werte gut reproduzieren kann, obwohl die von ihm vorgeschlagene 

Modellanpassung für den Bereich höherer Reynoldszahlen der Übereinstimmung nicht zu gute 

kommt. Es wurde keine Abhängigkeit des Druckverlustes vom flüssigen Massenanteil gefunden. 

 

Basierend auf den Schlussfolgerungen aus den vorher diskutierten relevanten geometrischen 

Aspekten, wird eine neue Auslegung für Wellenabscheider introduziert, welche Merkmale die den 

Abscheidegrad verbessern sollten einbezieht. Mittels des Einsatzes von einem Wellenabscheider in 

einem Wasserabscheider/Zwischenüberhitzer als spezifisches Beispiel, wird eine 

Auslegungsmethodik zur Quantifizierung der geometrischen Parameter der neuen Auslegung 

dargestellt. Die resultierende Geometrie wurde von der Siemens AG Corporate Research & 

Technology in Moskou durchgerechnet. Die Ergebnisse zeigen, im Vergleich zum analytischen Modell, 

einen erhöhten Abscheidegrad bei niedriger Gasgeschwindigkeit, was der erhöhten 

Gasgeschwindigkeit durch die variable Kanalbreite zugeschrieben wird. Für Gasgeschwindigkeiten 

über 4 m/s stimmen numerisches und analytisches Modell gut überein. Ein Vergleich der 

experimentellen Ergebnisse für die neue Auslegung mit dem für die vereinfachte Geometrie zeigt 

sehr vergleichbare Werte basierend auf der Massenbilanz, aber in der Analyse der 

Tropfengrößenverteilungen am Austritt schneidet die neue Auslegung jedoch besser ab. Hieraus wird 

festgestellt, dass das Mitreißen von Flüssigkeit aus der Film den eigentlich besseren Abscheidegrad 

der neuen Auslegung verhüllt und die Wandperforationen nicht sehr effektiv sind. 

Druckverlustmessungen an beiden Geometrieen ermitteln einen Druckverlust der neuen Auslegung, 

der im Vergleich zur vereinfachten Form fast um das zweifache höher ist, sich aber immer noch 

unterhalb von 300 Pa für Gasgeschwindigkeiten bis 8 m/s befindet. In einer numerischen 

Untersuchung vergleicht die Steinmüller GmbH die neue Auslegung mit einer mit Abfangrinnen 
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ausgestatteten kommerziellen Auslegung, und berichtet für die neue Auslegung eine Verbesserung 

des Abscheidegrades mit der Gasgeschwindigkeit, im Gegensatz zu nahezu konstanten Werte für den 

kommerziellen Wellenabscheider. Die Abscheidegrade der beiden Geometrieen schneiden sich bei 

etwa 4 m/s, was die Vorteile der neuen Auslegung im anvisierten Betrieb bei höheren 

Gasgeschwindigkeiten hervorhebt. 
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1 Introduction 

Vane separators are a specific type of separator widely used in industry, inter alia in the mining 

industry, the oil & gas industry, the chemical industry and in power generation. Their function is to 

separate solid particles or liquid droplets from gaseous flows and their application ranges from the 

elimination of dust or harmful substances (e.g. to protect equipment from erosion or corrosion), the 

separation of pollutants (e.g. to meet emission restrictions), and the recovery of valuable substances 

(e.g. in chemical processes), to drying steam or other saturated gases by separating the condensed 

matter (e.g. in power plants). Their use can be environmental or economical, with the goal of 

purification, separation and/or protection. Vane separators derive their name from their corrugated 

plates, installed in parallel to create curved flow channels. As the gas propagates through these 

curved channels, the droplets' inertia in combination with centrifugal forces directs the droplets' 

trajectories towards the channel wall, where they coalesce and form a liquid film, which is then 

extracted from the main gas flow. In case of separation of particles, pockets and channels are 

necessary for the transportation of the separated particles. In power plants, vane separators are 

used to mechanically dry the process steam in order to protect the equipment from erosion as well 

as increase thermodynamic efficiency. In most cases the larger droplets (40-200 µm) have already 

been separated from the flow by coarse separators; the vane separators are often classified as fine 

separators and are used for the separation of droplets down to a few micrometer in size. 

 

The efficiency of vane separators depends on several physical parameters, including the size of the 

particles or droplets, the densities and viscosities of the different media and the flow velocity. In 

general, the separation efficiency of vane separators increases with gas velocity and droplet size, but 

decreases with pressure (in single component mixtures, because the ratio of liquid-to-gas density 

decreases) and viscosity (because the drag increases). Re-entrainment of droplets from the liquid 

film and turbulent effects also play a major role, especially at higher gas velocities. Apart from the 

physical properties of the flow medium, the efficiency of vane separators is also largely dependent 

on geometrical factors, i.e. on its design. Secondary boundary conditions also play an important role: 

for instance the physical space available for installation of the equipment, the corrosivity of the 

substances and hence the material selection, the relevance of pressure loss in the process, the 

importance of maintenance and accessibility, the production costs, and/or exposure to very high or 

very low temperatures. Until the 1960s, the application of different types of separators was largely 

based on experience and empirical data, most of which were gathered by manufacturers who 

protected their know-how. Most theoretical work until that time was centered around particle 

separation from gases [53, p. 1107]. Early authors researching the physical background of droplet 

separation, producing valuable experimental data as well as physical and empirical relations to 

describe separation efficiency, include Regehr [53], Brauer [7]1 and Bürkholz [10]. 

                                                             
1
 Refer to Kall [29, p. 15]. 
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1.1 Industrial relevance of vane separators in power plants 

1.1.1 Moisture content 

About 90% of the world’s electricity is generated through the use of steam engines in a Rankine cycle 

[69], in which saturated steam enters the turbine and a mixture of vapor and droplets exits the 

turbine. Steam expansion in low pressure (LP) turbines is so rapid that under-cooling below the 

saturation line occurs, often exhibiting exit moisture contents of several percent. Condensation 

effects significantly reduce the efficiency of steam turbines, mainly due to the following reasons: 

 

 condensation limits steam expansion, causing reduced velocities through the turbine stages 

and thus reducing the driving force of the turbine, 

 the inertia of the droplets cause a mechanical impact on the turbine blades which reduce the 

rotational momentum of the rotor, 

 droplets on the surface of the blades increase friction, turbulence and pressure loss across 

the stages, and 

 droplets released from the blades are entrained back into the steam flow at lower velocities, 

thus reducing the kinetic energy of the steam flow. 

 

In addition to a reduction of thermal efficiency, droplet impingement causes liquid-impact-induced-

erosion on the turbine blades and thus severely shortens their lifetime. For high and intermediate 

pressure turbines, this is an issue mainly because of the elevated steam temperatures; for low 

pressure turbines, mainly because of the high steam velocities. Especially on the last stage blades of 

low pressure steam turbines, where the moisture content as well as steam and blade velocities are 

largest, provisions must be made to minimize erosion. Preventive measures include condensate 

drainage on casings and/or hollow blades, blade heating, increasing the axial distance between rotor 

and stator blades, use of erosion resistant blade materials, blade edge hardening, applying protective 

layers and using protective shields on leading blade edges. Erosion-corrosion is also a common cause 

of failure for other components in steam power plants, e.g. for piping and valves, especially at 

locations of high turbulence. Reduction of moisture content is thus not only relevant to steam 

turbines, but to the entire steam cycle. Measures to reduce moisture content in saturated steam 

should be applied as far upstream as possible; ideally shortly downstream of the source of droplet 

generation. 

 

The most straightforward way to eliminate moisture content in steam is by superheating. In modified 

Rankine cycles with reheating loops, condensation takes place at the heat sink only, thus largely 

exempting the turbine from the effects described above. Furthermore, since the Carnot efficiency 

increases with the average temperature of heat input (at equal temperature of heat output), the 

process of superheating steam increases the thermodynamic efficiency of the cycle. In conventional 

nuclear power plants, however, the thermodynamic properties of the main steam and thus the 

possibility of superheating are limited by some important characteristics of the power plant itself, 

which is why, as far as fossil power plants are concerned, mechanical separation of moisture is most 

relevant in these types of plants. The main causes of these limitations in nuclear power plants are the 

following: 
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1. The coolant is evaporated through pool boiling (the heat source is submerged); 

 

in Boiling Water Reactors (BWRs) the cooling water is evaporated directly by the energy released 

from the reactor fuel pins and in Pressurized Water Reactors (PWRs) by the heat transferred from 

the primary coolant. In both cases the heat source is (almost entirely) submerged and superheating 

does not occur on a significant scale. The saturated steam rises up and is mechanically dried by 

separators installed in the upper part of the Reactor Pressure Vessel (RPV) or steam generator. As a 

result, the steam admitted to the high pressure turbine is always in a saturated state. 

 

2. The primary heat source is not easily accessible; 

 

In most fossil power plants the heat source is the exhaust gas produced by a combustion process 

(e.g. natural gas, diesel, coal, biomass or waste combustion). The Heat Recovery Steam Generator 

(HRSG), in which the heat from the exhaust gas is transferred to the coolant, is a large piece of 

equipment at near ambient pressure. It can accommodate much heat exchanger piping and its walls 

are easily penetrable. Reactor Pressure Vessels and nuclear steam generators have to withstand very 

high pressures and their designs are at the limit of the technical possibilities in terms of forging and 

wall thickness. Reintroducing steam into these vessels for the purpose of superheating is both 

technically and commercially not feasible. The practical consequence is that in nuclear power plants 

superheating must be done by cannibalizing steam from higher pressure parts of the steam cycle. 

1.1.2 Application in nuclear power plants 

By far the most common type of (commercial) nuclear power plant is the PWR, in which steam drying 

is applied at several stages of the water steam cycle. The steam generator usually contains moisture 

separators in its upper head to supply the high pressure (HP) turbine with high quality steam. The 

first reheating stages were implemented in the 1970's to increase the thermo-dynamic efficiency. 

Also during this time, the importance of external (to the turbine) separation of droplets was 

discussed and the physical background of droplet separation was under investigation (e.g. [21], [29]). 

As a result, the reheating stages were fitted with their own moisture separators, thus becoming 

Moisture Separator & Reheaters (MSRs). The loss of mass flow through mechanical separation of 

droplets is compensated by the fact that evaporation of moisture content in the HP steam turbine 

exhaust steam either requires the sacrifice of additional valuable high pressure steam, which reduces 

the thermal power output of the HP steam turbine, or causes a lower temperature output of the 

MSR, which reduces the power output of the low pressure (LP) steam turbines. But the main reason 

for the application of mechanical separation of droplets, as preferred to evaporation, is that it helps 

protect the downstream components (most notably the reheating pipe bundles) from the erosion-

corrosion effects described in the previous section. Replacement of reheating pipe bundles can 

significantly be reduced by installing (or retrofitting) moisture separators. 

 

Mechanical separation of droplets also takes place in wet cooling towers, in which the condensate 

from the condenser is released into a stream of ambient air. In the case of natural convection cooling 

towers, the temperature increase of the air causes an upward air flow through which the condensate 

is effectively cooled as it falls downward and is collected at the bottom. Droplets below a certain size, 

however, will be carried upward by the air, which reduces the chimney effect of the cooling tower 
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and increases the need for make-up cooling water. The latter disadvantage can be very important in 

arid areas2. For these reasons, air dryers (often in the form of vane separators) are usually installed at 

a location directly above the condensate spray lines. 

1.2 Vane separator types 

The channels of a vane separator, through which the gaseous medium swerves from left to right, 

thereby alternately accelerating the immersed droplets towards one wall or the other, can be of a 

zigzag form, with very sharp corners, or of a sinusoidal shape with rounded bends. Most vane 

separators contain some type of pocket for the collection of the separated moisture. The evolution 

of vane separators has been towards inventing ever more efficient ways to collect the droplets and 

pick off the liquid film building on the vanes, while minimizing pressure loss. This has led to many 

different types of vane separators, featuring single or multiple pockets per stage, perforated walls 

and shielded drainage channels. 

 

Basic types of vane separators have been investigated by Bürkholz [10] (Fig. 1.1). With the exception 

of type R, which incorporates roughened wall sections that promote separation by inducing a 

turbulent boundary layer, all depicted vane separators have some type of hook or pick-off channel. 

types N, P and Q can be characterized as wavy type vane separators, type O is a zig-zag or straight 

type vane separator and types R and S are intermediate forms. Types N, R, T, U and V can be 

characterized as single stage vane separators, although in types N, R and V there are effectively 

several sections contributing to the separation of droplets. 

 

Fig. 1.1 Schematic views of different types of vane separators
3
 

 

                                                             
2
 In very arid areas with almost no acces to water, dry cooling towers with a closed cooling water cycle will be 

the main choice. 
3
 Reprinted from [10, p. 101]. Copyright Wiley-VCH Verlag GmbH&Co. KGaA. Reproduced with permission. 



 1.3 VANE SEPARATOR EFFICIENCY 

5 
 

A more detailed vane separator geometry is discussed by Kall [29], according to whom the relevant 

geometrical parameters that characterize a wavy type vane separator include the channel width, the 

bend angle, the wavelength, the inner and outer radii of curvature, and the channel offset. The latter 

is defined by the lateral distance between subsequent inner bends, which should be positive, so that 

an 'optical' pathway through the separator channel does not exist. This would allow an easy passage 

for heavy droplets, referred to by Kall [29, p. 44] as Durchschlagen, which will henceforth be 

translated as strike through. 

 

Kolev [34, p. 357] lists several industrial vane separators that exhibit more complex geometries. Most 

of these vane separators can be classified as either wavy or straight type vane separators and many 

also feature some type of pick-off hook, in some cases combined with a drainage channel. 

1.3 Vane separator efficiency 

1.3.1 Definitions 

In a practical sense, the vane separator efficiency is defined by the droplet mass flow at the exit of a 

vane separator, divided by the inlet droplet mass flow. This definition incorporates all phenomena 

affecting droplet mass inside the vane separator, including possible phase transitions (evaporation or 

condensation) and re-entrainment effects, and it is applied when discussing experimental results. For 

theoretical purposes other definitions are applied. Phase transitions are almost always neglected (as 

will be done throughout this paper) and, with some exceptions (as will be discussed in the following 

chapters), CFD models usually do not account for re-entrainment of droplets. Theoretical vane 

separator efficiencies are often defined by the mass of droplets hitting the walls, divided by the inlet 

droplet mass flow. According to this definition, droplet re-entrainment is non-existent, liquid 

drainage is irrelevant, and all that matters is the droplet movement inside the vane separator 

channel. This is driven mainly by drag and centrifugal forces. As will become clear, the main physical 

parameters influencing the droplet separation efficiency, are the droplet diameter dD , the droplet 

density d , the (homogeneous) gas velocity gv  and the dynamic gas viscosity g . The most 

important geometrical parameters are the channel width R  and the bend angle  . All but the 

bend angle are incorporated in the dimensionless Stokes number St , which results from a balance of 

drag and centrifugal forces: 

 
2

St
18

dd g

g R

Dv

 
   (1.1) 

The Stokes number will be derived at the end of this chapter, but first the basic physics is explained 

as it applies to cyclone separators. Although droplet separation in wave separators is often attributed 

to the inertia of the droplets, in the case of wavy-type separators, the description of centrifugal 

forces acting on the droplets is perfectly equivalent. Under the assumption that the droplet 

distribution remains spatially uniform, vane separator separation theory emerges from the same 

basic equations. 
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1.3.2 An introduction to cyclone separation efficiency 

A simple model to compute the separation efficiency of cyclone separators4 is constructed, to serve 

as an introductory starting point for the analysis of the vane separator efficiency in the next section. 

A cylindrical cyclone separator is considered of length H  and radius outR , with a cylindrical solid 

inner body of radius inR  and attached to it a swirler in the form of a propeller (Fig. 1.2). 

 

Fig. 1.2 Schematic model of a cyclone separator 

If a uniformly distributed droplet volume fraction d  is assumed in the flow, moving with an axial 

velocity of dw  into the cyclone, then the moisture mass flow entering in axial direction into the 

control volume 2 2( ) / 2out inR R d dz    equals 

   2 2 / 2d d d d out inm w R R d        (1.2) 

in which   and z  are the radial and axial coordinates respectively. The moisture mass flow 

deposited on the wall section outR d dz  of the control volume equals 

  d d d d outdm u R d dz      (1.3) 

in which du  is the radial droplet velocity. The separation efficiency is defined as the ratio of the 

separated moisture mass flow and the moisture inlet mass flow, leading to 

 
 2 2

2
lnd d out

d
d d out in

dm u R
d m dz

m w R R
  


  (1.4) 

                                                             
4
 The cyclone separation model presented here, and many similar ones, can be found in a number of 

publications, partly dating back several decennia. The model presented here is a close representation of the 

one introduced by Kolev [34, pp. 363-366]. 
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To obtain the radial droplet velocity du , the simplified radial momentum equation for 

incompressible fluids is employed. The conservation of momentum is given by 

 v vv p g
t

  
 

        
 

  (1.5) 

For industrial-sized cyclone separators the flow velocities are usually very high and thus centrifugal 

forces are much larger than gravitational and pressure gradient forces. Therefore, the pressure 

gradient, as well as the gravitational influences, are neglected. Assuming perfectly laminar flow and 

considering Stokes drag only5 (i.e. the ratio of liquid and gas viscosity is very large and the droplets, 

being very small and having constant density, can be approximated by rigid spheres), the two-

dimensional radial momentum equation reduces to 

  
2

0
2

d d dd
d gd g d g d g

du v A
M c u u u u

dt r


 
     

 
  (1.6) 

in which dM  is the mass of the droplet, dA  is the area of the frontal projection of the droplet and 

d
gdc  is the drag coefficient. In addition, the following assumptions are made: 

 

 there is a no-slip condition in the circumferential direction ( d gv v ), 

 the droplets reach their terminal radial velocity before they hit the cyclone wall ( 0ddu

dt
 ), 

 the radial velocity component of the gas can be neglected ( 0gu  ). 

 

These assumptions reduce equation (1.6) to a balance of centrifugal and drag force: 

 

23 2
2

6 8

gd dd
d gd g d

vD D
c u

r


     (1.7) 

The drag coefficient for Stokes flow is defined as 

 
24 gd

gd
g d d

c
D u




   (1.8) 

The radial droplet velocity at the wall is then given by the following equation: 

 
2

21

18

gd
d d

g out

v
u D

R




   (1.9) 

                                                             
5
 For sufficiently small droplets in laminar flow with small velocities, the Reynolds number is below unity. The 

drag coefficient and the validity of the Stokes regime is discussed further in section 3.1.1. 
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Inserting equation (1.9) into equation (1.4) and integrating over the height of the cyclone separator 

leads to the following equation for the liquid mass flow: 

 
 

2 2

, , 2 2
exp

18

d g d
d out d in

d g out in

v D
m m H

w R R





 
    

  (1.10) 

Dividing the separated liquid mass flow by the inlet liquid mass flow gives an expression for the 

separation efficiency   of the cyclone separator: 

 
   

2 2 2 2

2 2 2 2
1 exp 1 exp

18 18

d g d d g d

d g out in d g out in

v D v D
H H

w R R w R R

 


 

   
               

 (1.11) 

1.3.3 A cyclone separation model applied to vane separators 

A wave separator functions similar to a small cyclone in the sense that separation of droplets onto 

the vane surfaces is governed by centrifugal and drag forces. Analogous to the previous section, the 

vane separator is modeled as a series of consecutive two-dimensional circular bends (also referred to 

as stages), each of which acts as a small cyclone. Because the velocities in vane separators are much 

smaller as compared to cyclone separators, the gravitational force may not be negligible, but by 

assuming a vertical orientation of the vanes its impact vanishes6. The third dimension represents the 

height of the vanes. Each channel of a vane separator, enclosed by two vane plates, is defined by an 

inner radius inR , an outer radius outR , a channel width R , a total stage angle  , a height H  and 

the number of stages n  (Fig. 1.3). 

 

Fig. 1.3 Schematic view of a vane separator channel 

 

The mass flow entering the control volume 2 2( ) / 2out inR R d dz    (from the side in Fig. 1.3) is 

then given by 

 d d d d Rm v dz     (1.12) 

                                                             
6
 The gravitational influence on vane separator efficiency will be discussed in section 3.2. 
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in which dv  is the droplet velocity into the control volume. The moisture mass flow deposited on the 

wall section outR d dz  equals 

 d d d d outdm u R d dz      (1.13) 

This now leads to 

 ln d out
d

d R

u R
d m d

v



    (1.14) 

Inserting equation (1.9) for the terminal radial velocity and assuming a no slip condition for the 

droplets in the direction of flow along the channel ( d gv v ) results in 

 
2

ln St
18

d g d
d

g R

v D
d m d d


 

 
      (1.15) 

from which the relevance of the Stokes number has become clear. Analogous to equation (1.11), but 

integrating over the total angular path n  of the wave separator7, in which   is the total bend 

angle and n  is the number of stages, this leads to the following expression for the separation 

efficiency of the vane separator: 

  
2

1 exp 1 exp St
18

d g d

g R

v D
n n


  

 

 
       

 
  (1.16) 

This result was already reported by Jackson & Calvert [26], although in their case n  is defined as the 

number of 360° turns (refer to chapter 2.1). The analysis represented here equals the one by Kolev 

[34, pp. 375-376], arriving at the identical result. 

1.3.4 Droplet relaxation time constant 

Equations for droplet separation efficiency are often simplified by inserting the droplet relaxation 

time constant gd , which scales with the inertia of the droplet and the viscosity of the surrounding 

flow, thus representing a measure of how quickly the droplet adjusts itself to the surrounding flow8. 

For Stokes flow, equation (1.8) is valid and the droplet relaxation time constant is given by 

 
2

18
d d

gd
g

D



    (1.17) 

                                                             
7
 By performing this integration it is implicitly assumed that, analogous to the cyclone separator, the droplets 

always travel with the terminal radial velocity near the wall and that the entire wall is effective in the 

separation of the droplets. This corresponds to the limit of droplets without inertia in an infinitesimally narrow 

channel. Non-uniformity of droplet distributions will be discussed further in later sections. 
8
 See for instance Galletti et al. [17] or James et al. [27] for different forms of droplet relaxation time constants. 
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This is the definition of the droplet relaxation time constant that will be used throughout this paper, 

unless explicitly stated otherwise. The Stokes number can now also be written as the product of the 

gas velocity and the droplet relaxation time constant under Stokes conditions, divided by the channel 

width R : 

 
2

St
18 R R

g d d g gd

g

v D v 

  


    (1.18) 

The droplet separation efficiency of vane separators can thus alternatively be written as 

  1 exp St 1 exp
gd g

R

v
n n


  



 
       

 
  (1.19) 
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2 State of the art 

Before the 1990s, the number of publications on vane separators and specifically on their separating 

performance could be called meager, especially as compared to their extensive industrial application 

[10, p. 103]. But since then, many numerical and experimental studies dealing with the separation 

efficiency of vane separators have been published. Amongst other authors, Verlaan [64], James et al. 

[27] and Galletti et al. [17] have performed experiments or used existing data to validate their 

numerical models. These were based on a simplified equation of motion for the droplets in a gas 

velocity field in which gravity, lift forces, virtual mass forces, droplet deformation and droplet-droplet 

interaction was neglected and only one-way-coupling was considered. Much attention was paid to 

the modeling of turbulence, driven by the fact that models without turbulence often under-predict 

the separation efficiency, especially for small droplet sizes [17]. 

2.1 Analytical approaches 

Regehr [53, p. 1108] considers the maximum radial migration distance of droplets as they traverse a 

vane separator bend, represented by the droplet entering the bend at a radius ,0dR  and just 

reaching the outer wall at outR  as it exits the bend. He defines the separation efficiency   of a vane 

separator bend as the ratio of this maximum radial droplet migration distance ( ,0out dR R ) and the 

channel width R : 

 
,0 ,0out d out d

out in R

R R R R

R R




 
 


  (2.1) 

This representation is sensible when considering a uniform spatial distribution of identical droplets at 

the inlet. All droplets beyond the initial radius ,0dR  become separated and none within (Fig. 2.1). 

 

Fig. 2.1 Droplet path through a bend with inner radius inR , outer radius outR  

and initial droplet starting radius ,0dR  

Other analytical approaches were supported early on by the formulation of the earlier discussed 

Stokes number. Jackson & Calvert [26], for instance, analyze the separation efficiency of packed bed 

separators. Assuming uniform flow they provide a very simple expression for the separation 

efficiency: 

 nK    (2.2) 
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in which n  is the number of 360° turns the droplet experiences and the inertial impaction parameter 

K  is a dimensionless ratio between the droplet's inertial force and the force resisting motion (e.g. 

drag). By assuming a continuous mixing of droplets throughout the flow path, as well as a 

homogeneous circumferential gas velocity gV , the authors arrive at a differential equation for the 

number of droplets per flow volume C , as a function of the flow angle   around an obstacle. 

Solving this equation and equating it to the initial number concentration 0C  leads them to 

 
 

0

exp term out

g R

C u R

C V

 



 
  

 
  (2.3) 

Balancing drag and inertial forces and solving for the droplet terminal radial velocity termu  leads to 

the following expression for the separation efficiency: 

  1 exp nK      (2.4) 

in which 

 
2

St
18

g

R

dd

g

v
K

D 


 
    (2.5) 

Although the objects of investigation were packed bed separators, this equation shows much 

resemblance to the droplet separation efficiency of vane separators as defined in the last chapter 

(equation (1.16)). 

 

Calvert et al. [11] provide a theoretical relation for the separation efficiency of zigzag baffles, which 

are arranged as n  stages of simple straight wall sections of length L , at a lateral spacing s  and at an 

angle   with respect to the gas flow direction (Fig. 2.2). 

 

Fig. 2.2 Packed bed separator as parametrized by Calvert et al. [11] 
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Based on inertial mechanisms, the separation efficiency for a terminal droplet velocity termv  (not 

further defined) and a homogeneous gas velocity gV  is9: 

 1 exp
tan

term

g

v nL

V s






 
   

 
  (2.6) 

Bürkholz [9] investigates wired mesh eliminators and derives from a dimensional analysis what he 

calls the separation parameter A , which is a function of droplet density d , gas density g , 

dynamic gas viscosity g , pressure loss p , impact body width D  (given by the wired mesh 

thickness) and droplet diameter dD : 

 

  1 3 4 3 2 3 2 3 2

2 31 32
1 3 2 3

2

1

4

9 9
St Re Eu

2 18 2

A d g g d

d g d g g

g g g g

p D D

v D v D p

D v
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 

  

   

    
     

    

  (2.7) 

in which Re  and Eu  are the Reynolds and Euler number respectively. For effective use of the 

separation parameter, Bürkholz [9] also assumes an effective impact body width D , which in the 

case of vane separators equals *
RD a  with * 0.13a  . Given that for vane separators RD   

in equation (2.7), the separation efficiency is given as a function of a single parameter x : 

    2 * 4 31 exp 1 ,           0.003 Ax x x a        (2.8) 

Equation (2.8) considers droplet impingement on baffle-type vane separators. Bürkholz [10] later 

investigated vane separators of several different types. The equation by Regehr [53] is refined by 

defining the radial droplet migration distance as the product of the time of passage dt  through the 

bend and the terminal radial droplet velocity termu  under Stokes conditions [10, p. 104]10: 

 ,0

2 2

18

d g g
out d term d

d

g g g

v R
R R u t

D

R v

 


     (2.9) 

in which gR  is the radius of curvature of the gas flow. By dividing this equation by the channel width, 

Bürkholz [10] arrives at a separation efficiency for a single stage vane separator, defined by the 

Stokes number, multiplied with the bend angle  : 

 

2

St
18

d g

g R

dv D
  

 
    (2.10) 

                                                             
9
 The erroneous minus sign outside the brackets in the original relation by Calvert et al. [11] is corrected here. 

10
 The square of the droplet velocity was omitted by Bürkholz, although his subsequent analysis is correct. A 

correction is made here for this printing error. 
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The same result is reported by Leber [40, p. 65], specifically for a 90° deflection. Bürkholz [10] 

subsequently adjusts both the Stokes number and the channel width, to account for flow effects 

behind the bend and a consequent narrowing of the effective channel width, which accelerates the 

flow. This adjustment contains an empirical function of channel width and gas velocity and is 

represented by 2 3Re . An empirical parameter 2C  is included, to fit the data with experimental 

data, which ultimately leads to the following equation for the separation efficiency of a single stage: 

 2 3 2 3
2 2

2

Re St Re
18

dd g
e

g R

Dv
C C


    

 
     (2.11) 

in which 2 3
2St Ree C   is the effective separation parameter. The value adopted by Bürkholz [10, 

p. 108] for the empirical parameter 2C  is 0.00311. In comparison with equation (2.7), the Euler 

number, and with it a representation of the pressure drop, has apparently been dropped. To arrive at 

separation efficiencies for multiple stage vane separators with n  number of stages, the following 

equation is used [10, p. 113]: 

  1 1
n

      (2.12) 

in which the separation parameter   can be represented by the Stokes number or by the effective 

separation parameter e . The term   can also be represented by an experimental value for the 

separation efficiency for a certain number of stages, in order to arrive at separation efficiencies for 

larger numbers of stages of the same shape. A uniform initial droplet distribution is considered, 

which is inaccurate for consecutive bends, depending on how much the droplet distribution is 

skewed towards one side after the first bend, thus increasing the radial distance of the bulk of the 

droplets to the effective inertial wall. This sub-optimal remixing of droplets deteriorates the 

separation efficiency in subsequent stages. Verlaan [64, p. 56] (citing Gardner [18]) accounts for this 

effect by including an additional power m  in equation (2.12): 

  1 1
mn

      (2.13) 

The magnitude of the power m  usually lies between 0.5 for bad remixing and 1 for perfect remixing 

(as in the case of [10]). 

 

Wilkinson [70] also applies a mixing factor to account for the uneven droplet distribution upstream of 

the first bend, but uses it to adjust the separation efficiency of each bend directly. Differentiating 

between the first bend and consecutive bends, he arrives at the following relation: 

   
1

1 1 St 1 St
n

mf  


      (2.14) 
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 This number is given without reference to his previous work. It is interesting that it coincides with the number 

included in the parameter x  in equation (2.8). 
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The form of the mixing factor mf  is based on the transverse droplet migration distance y  across the 

channel, for which the r.m.s. turbulent transverse gas velocity is the driving force. Assuming Stokes 

drag and a constant transverse gas velocity 4Lpb g Rc cV  , in which c  is an empirical constant, 

22pb b g gc p V   is the pressure loss coefficient in the mitre bend, gV  is the homogenous 

circumferential gas velocity, R  is the channel width and L  is the length of the mitre bend, the 

transverse droplet migration distance equals 18Stpby Lc c . Assuming complete mixing for 

Ry  , leading to 1mf  , and assuming no mixing for 0y  , leading to 0mf  , the following 

mathematical relation for the mixing factor is proposed: 

 
 

1 exp 1 exp
18St

pb
m

R pb R

c cy
f L

L y c c L 

  
           

  (2.15) 

The empirical pressure drop coefficient pbc  is given by Wilkinson [70] as 

 
22.3

0.0649
Re

pbc  
  
 

  (2.16) 

with 

 Re
g g R

g

V 


   (2.17) 

Based on experimental data, the empirical constant c  is suggested to be 0.257 [70, p. 269]. 

 

Verlaan [64, p. 56] also bases the separation efficiency on the ratio of radial droplet displacement 

and effective channel width, a similar approach to Bürkholz [10]. In his case the effective channel 

width is derived by a simple trigonometric adjustment defined by the bend angle. He arrives at the 

following separation efficiency, in which also the virtual mass force is accounted for: 

 
 

 

2

2

2

18 cos

d g dg

g R

Dv  


  


   (2.18) 

The virtual mass force (as well as the pressure force) becomes significant below droplet-to-gas 

density ratios of 100 only [64, p. 53]12. Rewriting equation (2.18) in terms of the droplet diameter, he 

arrives at an expression for the droplet diameter 100
dD  at which the separation efficiency reaches 

unity: 

 

 

 
0

2

10
cos

d
g R

d g g

D
v

  

  



  (2.19) 
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 Forces on droplets are elaborated in chapter 3.1.1. 
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Based on numerical results for the influence of certain physical and geometrical parameters, Verlaan 

[64, p. 59] then revises this equation to reach the following relation: 

 
 

2

3

100 g R

d

d

g g

KD
v

 

  



  (2.20) 

in which K  is an empirical parameter. Most notably the influence of channel width and bend angle 

have been strongly increased. It is noted that a formulation of 100
dD  is possible because of the non-

exponential form of equation (2.18). Separation efficiencies of the form of equation (2.8) display 

asymptotic behavior at unity, thus arriving at an infinite droplet diameter for 100% separation 

efficiency. Being linear functions of the gas velocity and quadratic functions of the droplet size, 

equations (2.10) and (2.18) quickly result in values for the separation efficiency that are much greater 

than unity. A clear advantage of exponential equations for the separation efficiency is that they do 

not show this unphysical behavior. 

 

Kolev [34] investigates separation efficiencies of cyclones and extends this analysis to the separation 

efficiency of vane separators. His analysis has been discussed in detail in chapters 1.3.2 and 1.3.3. 

2.2 CFD approaches 

Much research on vane separators deals with numerical models for the evaluation of droplet 

separation efficiency. Often, existing CFD codes like Fluent [2], CFX [1] or Phoenics [12] are used. 

Galletti et al. [17] provide an overview of numerical models used by different authors, many of which 

make use of some form of the droplet time relaxation constant. It is applied to a solution of the two-

dimensional momentum equation, which represents the basic equation for droplet motion in the 

numerical code which tracks the droplet paths. The droplets are usually uniformly distributed across 

the vane separator channel entrance and are removed from the flow as soon as they cross the 

boundary of the wall. This method was for instance used by Verlaan [67]. A similar approach was 

used by Wang & James [64], including the pressure force and the virtual mass force in the 

description of droplet motion. 

 

Some form of turbulence is often added to the model. Two different turbulence models (as available 

in the CFD package employed by these authors) are discussed and compared by Wang & James [67]. 

These are the STD k   model and the low Reynolds k-ε model, the first of which uses wall 

functions where the latter is capable of resolving flows near solid boundaries [67, p. 981]. Wang & 

James [68] and James et al. [27] use a basic eddy interaction model, which applies a three-

dimensional randomly oriented offset to the gas velocity, based on the eddy length and time scales. 

The velocity fluctuations, the eddy interaction time and the eddy length scale can be updated only 

after the eddy interaction time has elapsed, or updated each time a control volume boundary has 

been traversed, i.e. when the mean velocity is updated. These models are referred to as Constant 

Eddy Interaction Model (Const EIM) and Varied Eddy Interaction Model (Varied EIM), respectively [68, 

p. 693]. The applied random number is in both cases updated only after the eddy interaction time 

has elapsed. This seemingly insignificant detail can produce very different results, as shown by these 

authors. The Varied EIM is employed by James et al. [27]. 
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2.3 Parametric and empirical approaches 

Kall [29, pp. 23-25] describes the outlet wetness of a vane separator as a function dependent on 16 

variables. A dimensional analysis reduces this to thirteen characteristic coefficients, in terms of which 

he describes all relevant physical parameters in dimensionless form (i.e. Reynolds number, Weber 

number, Froude number, inlet wetness, outlet wetness, separation efficiency, density ratio, viscosity 

ratio and six ratios of length). Apart from also noting the relation reported by Regehr [53] (equation 

(2.1)), Kall [29] does not report a physical formulation for the separation efficiency based on his 

dimensional analysis. 

 

Zamora & Kaiser [72] spend much effort on fitting numerical data. Without further physical 

background, they propose the following equation for the separation efficiency: 

 
0

1

1 exp iP P





 

  
 

  (2.21) 

in which  2
d gi d gvP D L   is called the inertial parameter13 and 0P  and   are adjustment 

functions of the form  expa b  . L  is the geometrical length of the vane separator (not 

accounting for deflections) and the empirical constants a  and b  are defined for different aspect 

ratios R L . The removal geometric parameter   is defined as 

 
2

1

n
w

i
i

L

L




 
   

 
   (2.22) 

in which wL  is the wetted length, i.e. the total length of all wall sections. The sum over i  produces 

the total angle of all n  deflections (stages). Zamora & Kaiser [72] reach near perfect fits of their 

numerical data, which can be attributed to the arbitrary choice of equation (2.21) as well as the 

extensive use of empirical constants. 

 

Zhao et al. [73] use results from a CFD model to investigate the correlation between separation 

efficiency and five geometrical parameters and operating conditions. The CFD model is validated 

against experimental results reported by Lang et al. [38] for a single stage separator. In what they 

term response surface methodology, the authors employ statistical software to fit response surfaces, 

defined by the response of the separation efficiency to changes in two different dependent 

parameters. A function including linear, quadratic and cross terms of the dependent parameters is 

applied for the fitting. The resulting regression coefficients provide insight into which terms cause 

significant responses. Zhao et al. [73] arrive at the following function for the separation efficiency: 

                                                             
13

 According to Zamora & Kaiser [72, p. 1234] the inertial parameter equals the Stokes number multiplied by a 

factor 18. The Stokes number, however, considers the channel width R , whereas these authors make use of 

the total vane separator length L . Compare also the inertial impaction parameter by [26] discussed earlier in 

this chapter. 
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 (2.23) 

in which 1H  is the length of the identical in- and outlet sections and 2H  the distance between the 

in- and outlet sections (which is a measure for the length of the bend). Unfortunately, the absence in 

the analysis, of the response of the separation efficiency to the droplet diameter14, prevents a 

general application of equation (2.23). 

2.4 Motivation and structure of the thesis 

As discussed in chapter 1.1, the separation efficiency of vane separators is of major importance for 

the preservation of downstream equipment. Poor design of vane separators can lead to poor 

separation efficiencies, which can cause serious damage and constitutes a bad investment. 

Malfunctioning vane separators can significantly accelerate the erosion of piping, valves, reheater 

tubes and/or turbine blades. In addition, vane separator behavior during large liquid loading 

transients can be relevant for the integrity of some components and even for the safety of the plant. 

For instance, certain accident scenarios cause a sudden pressure drop in parts of the system 

connected to condensate tanks. This can lead to sudden evaporation in the condensate tank, which 

can push large amounts of water-steam mixture back into the steam system and can cause major 

damages and prolonged outages.  This phenomenon is known as condensate back-flashing. If the 

two-phase mixture passes through moisture separators, it is relevant to know their (dys)functional 

behavior during such extreme conditions. This is a factor that is often neglected. 

 

Vane separators are available for many applications, and it is important to know which aspects are 

significant for them to function correctly, to be able to optimize the design for the specific boundary 

conditions, and to reliably predict the separation efficiency for different operational loads and failure 

conditions. Being able to do this analytically minimizes the need for CFD analyses to validation 

purposes only, leading to a reduction of development time and costs. Furthermore, it allows for a 

basic analysis of vane separator behavior during conditions that are difficult and/or expensive to 

reproduce in experiments. Another major advantage of a reliable analytical solution for separation 

efficiency is that it allows for direct implementation in nuclear CFD codes used for the dynamic 

analysis of larger parts of the steam cycle (1D or 3D, porous media or boundary fitted code), without 

impairing calculation speed. Especially CFD codes with modular capabilities, encompassing physically 

large, possibly coupled systems15, such as those used for the analysis of the entire primary cycle of a 

PWR or the entire water-steam cycle of a BWR, cannot afford to handle all the physical and 

geometrical details contained in these systems. Vane separators are often not contained in these 

codes as a building block. An analytical representation of the separation efficiency of vane 

separators, based on relevant geometrical input parameters and dependent on the relevant physical 

parameters supplied by the code for each timestep, represents an easy, straightforward and valuable 

addition to the analysis. 

 

                                                             
14

 In all cases a constant droplet diameter of 50 µm was considered. 
15

 Examples of such codes are TRACE and RELAP5, developed by the United States Nuclear Regulatory 

Committee (NRC), ATHLET, developed by the Gesellschaft für Anlagen- und Reaktorsicherheit (GRS), and 

Skythia, developed by Kolev ( [31]- [34]). 
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These first two chapters have already shown that an important factor that influences the separation 

efficiency is the specific geometry of the flow channel. Separation efficiencies have been reported 

accounting for several relevant geometrical parameters, e.g. bend angle, channel width and number 

of stages, often used for a comparison with experimental data. Some authors investigate and 

compare different geometries ( [49], [10, pp. 105-109]), but are often not very systematic in their 

comparison or specific about their results. For instance, Verlaan [64] lists the correlation between 

several geometrical parameters and the separation efficiency, but only reports a positive, negative or 

no net effect: he does not quantify his results. A more extensive analysis is given by Kolev [34, p. 

376], who introduces a dimensionless 'vane number', as well as a 'vane geometry number', of which 

the separation efficiency is an exponential function. Nonetheless, the specific impact of geometrical 

parameters on separation efficiency has, to the opinion of this author, not sufficiently been explored. 

 

This paper intends to identify the most significant geometrical parameters of a vane separator and 

analytically quantify their impact on separation efficiency, by relaxing traditional assumptions and 

introducing additional aspects to the analytical model for separation efficiency. These aspects include 

the integration of the straight channel parts between bends, the non-uniformity of the droplet 

distribution and of the velocity field, the effect of gravity and the effect of non-orthogonal flow 

conditions. Additional circumstantial effects influencing vane separator efficiency are discussed. The 

resulting analytical model is compared with empirical data from existing literature, as well as with 

novel experimental data provided by the Institute of Fluid Mechanics (LSTM) of the Friedrich-

Alexander University in Erlangen-Nuremberg. Based on the experimentally validated analytical 

approach and incorporating relevant findings from the foregoing discussions in this paper, an 

exemplary industrial application is worked out, arriving at a novel vane separator design. This novel 

design was also experimentally tested by the Institute of Fluid Mechanics (LSTM) of the Friedrich-

Alexander University in Erlangen-Nuremberg. The resulting data is compared to the simplified design 

in order to determine the effectiveness of the novel design features. 
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3 An analytical model for vane separator 

efficiency 

3.1 Droplet flow path analysis and vane separator geometry 

If an analytical model for the evaluation of vane separator efficiencies is to arrive at realistic results 

for broader application ranges, additional factors influencing the droplet flow path must be 

accounted for. In this section, forces on droplets are discussed in general, after which a simple 

Lagrangian particle tracking method is introduced to be applied as a straight-forward method for 

investigating droplet paths through the vane separator channel. 

3.1.1 Forces on droplets 

Maxey & Riley [44] derive an equation of motion for small rigid spheres in a non-uniform flow field, 

which, applied to spherical droplets, after some rearrangement, assumes the following form: 
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 (3.1) 

In this equation, gdv  is the undisturbed gas velocity defined at the centre of the droplet, dr  is the 

droplet radius, d dt  is the time derivative of the gas velocity (following the moving droplet) and 

D Dt  is the time derivative using the undisturbed gas velocity as the convective velocity (such that 

gdDv Dt  is the acceleration of the gas as observed at the instantaneous center of the droplet [44, 

p. 883]). The terms on the right-hand side of equation (3.1) represent the effects of gravity (or 

buoyancy), virtual mass, Stokes drag and history, respectively [45, p. 1212]. The lift force is not 

accounted for in equation (3.1), because according to Maxey & Riley (citing Bretherton [8]) there is 

no such force in the Stokes regime [44, p. 884]. McLaughlin [45, p. 1212] accounts for the lift force by 

adding an additional term to the right side of equation (3.1), which in this context takes the form of 

    
1

4.845
g g

d glift
d g

dv
F v v

r dy



 
    (3.2) 

These terms represent the basic specific forces on (rigid spherical) droplets. The history term (the last 

term in equation (3.1)) in fact represents the Basset force, if the gas flow is considered spatially 

uniform. This force accounts for the temporal viscous boundary layer effects caused by acceleration 

of the droplets. It can be significant at high acceleration rates of bodies through fluids, but is often 

neglected for practical reasons. It will be neglected here, because liquid fluid flows are not 

considered. The drag force, virtual mass force and lift force will be discussed here. In chapter 3.2, a 

more detailed analysis is devoted to the impact of gravity. 
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3.1.1.1 Virtual mass force 

The second term in equation (3.1) is connected with the virtual mass of the droplet. For relatively 

small droplets and low Reynolds numbers the so-called Faxén correction term [15] drops out, which 

then leaves 

 
1

2

gd d
g

dv dv

dt dt


 
 

 
  (3.3) 

The factor of ½ in this equation is called the virtual mass coefficient and will here be written as vm
gd ac . 

Accounting for the virtual mass (in radial direction only) in equation (1.6) leads to 

  
3 3 2 2

2 0
6 6 8
d d d d dvm d

d gd g d gd g d

D du D v D
c c u

dt r


          (3.4) 

Because the virtual mass force is related to the droplet's acceleration, the terminal radial droplet 

velocity is not influenced by it. Therefore, virtual mass is not included in the analysis for the 

separation efficiency. The added inertia of the droplets can, however, be relevant for droplet path 

calculations. Zaichik [71]16 proposes to include the virtual mass coefficient in the droplet relaxation 

time constant as follows: 

    2
  / 18vm

c d d gd g d gc D         (3.5) 

A value of 1 2   is common for the virtual mass coefficient, although different relations for it exist. 

These depend on droplet shape, deformity or volume fraction. The virtual mass drag coefficient a
vm
gdc  

along the principal axis a  of a droplet with a shape defined by the three principal axes a , b  and c  is 

given by [6, p. 730] 
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where 
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For a spherical droplet a b c   and thus 1 2vm vm
a b

vm
g d cd g gdc c c   . Droplets of small diameters 

are of interest in this paper and because they are approximated by rigid spherical bodies (as 

discussed in chapter 1.3.2), the value of ½ will be taken for the virtual mass coefficient when droplet 

paths are described. 

                                                             
16

 As cited in Kolev [34, p. 386]. 
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3.1.1.2 Drag force 

The third term in equation (3.1) represents Stokes drag. Eliminating the Faxén correction term and 

multiplying with the volume of a sphere, one arrives at the Stokes drag force: 

  6 d gdd gr v v     (3.8) 

Equating this force with the centrifugal force in radial coordinates led to the droplet relaxation time 

constant in the form of equation (1.17).  A more general form of the droplet relaxation time constant 

was already introduced in equation (3.5): 

    2 / 18vm
gd d gd g d gc D         (3.9) 

The parameter   in equation (3.9) accounts for different droplet flow regimes and is given as 
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in which 

 Re /gd g d g d gV V D     (3.11) 

is the droplet Reynolds number. The first regime in equation (3.10) corresponds to the assumptions 

made in the previous section and is equivalent to taking the Stokes drag coefficient (equation (1.8)) 

until its value is down to unity: 
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The second regime was originally proposed by Schiller & Naumann [59] and the third regime simply 

states the commonly known constant drag coefficient of 0.44, valid for the Newton regime: 

   0.11Re /24 Re 0.6 ,   Re 100044d
gd dgd g gdc     (3.13) 

For no-slip conditions, the relative velocity between droplet and continuum is given by the terminal 

radial droplet velocity. The particle Reynolds number in equation (3.11) is in this case given by 
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The parameter   as defined by equation (3.10) is not continuous, consequently an analysis of the 

separation efficiency should be based on physical parameters that ensure validity within a certain 
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regime, because transgression into other regimes would cause discontinuous jumps in the results. To 

avoid these discontinuities and allow continuous analyses across flow regimes, the following 

transition regimes are proposed: 
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The transition functions 1,2F  are given by 
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in which 1 24L  , 2 1000L   and 1,2  are the selected bandwidths for the transition regime. 

Transition regimes for 1 2 10    are depicted in Fig. 3.1. 

 

Fig. 3.1 Transition functions (red) for   

The droplet Reynolds number increases with the density of the gas, the droplet diameter and the 

droplet velocity relative to the flow. Considering water-steam applications, unless high pressures and 

large droplet sizes are present (also leading to large relative droplet velocities), the Stokes regime will 

normally be valid. Furthermore, for droplet Reynolds numbers greater than 24, the separation 

efficiency is often arbitrarily close to unity, with the exception of very poorly designed vane 

separators (e.g. with an extremely large channel width) and applications at very high pressures (for 

which d g   is no longer valid). The last two regimes of equation (3.10) are thus less relevant 

for the vane separator applications discussed here and equation (1.17) is a valid representation of 

the droplet relaxation time constant for the cases presented in this paper. 
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3.1.1.3 Lift force 

The lift force is in principle the same force responsible for aerodynamic lift of planes, with the 

difference that the pressure gradient over the droplet is generated by the velocity gradient present 

in the flow field itself, instead of by the specific form of the wing generating an asymmetric flow field. 

The lift force is significant for droplets experiencing large velocity gradients on scales comparable to 

their diameter, e.g. due to the vicinity of a wall (Fig. 3.2). 

 

Fig. 3.2 Lift force acting on a droplet 

Saffman ( [56], [57]) derived for negligible particle rotation, low particle Reynolds numbers and small 

gradients of the gas velocity field the following lift force coefficient: 

  2 1
6.46 signl

g g
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dv dv
F r v v

dy dy




 
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  (3.17) 

The velocity difference d gv v  is defined at the droplet center, the coordinate y  is perpendicular 

to the gas velocity (as depicted in Fig. 3.2) and   is the kinematic viscosity. The inclusion of the sign 

of the gas velocity gradient ensures that if the gas velocity (at the droplet's center) exceeds the 

droplet velocity, the lift force will be directed in the direction of the gradient of the gas velocity 

(depicted with black arrows in Fig. 3.2). If the droplet velocity exceeds the gas velocity, it will be 

directed in the opposite direction (depicted with red arrows). 

 

Alternatively, equation (3.17) can be written in the form proposed by Jøsang [28, p. 16]: 

 1.61 Reg dg d sheali rftF D v v    (3.18) 

in which 
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   (3.19) 
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is the shear Reynolds number. As described by Legendre & Magnaudet [41, p. 82], the Saffman 

equation is valid for small rigid spheres in linear shear flows in the limits of small Reynolds numbers 

and large shear. According to Wang et al. [66, p. 751] the  Reynolds number should be smaller than 

unity and in addition, the slip Reynolds number defined by  Re d gslip d gv v D    should be 

smaller than the square root of the shear Reynolds number defined above. These authors also state 

that the Saffman equation is invalid in the vicinity of walls or other solid boundaries [66, p. 749]. 

Notwithstanding this statement, for the present work it is relevant to note that in the vicinity of a 

wall, the lift force will in general be directed towards the wall [66, p. 760]. This is related to the 

inertia of the droplets travelling from a high to a low velocity in the flow field, which results in a 

higher droplet velocity than the net gas velocity along its boundary (red arrows in Fig. 3.2). This 

increases the deposition rate for small droplets, causing the dependence of the deposition rate on 

the droplet relaxation time to increase when including the lift force in the analysis ( [30], [66]). This 

effect is most pronounced for normalized droplet relaxation time constants of 

 2 2 21 18 10d d fr g gD u      , in which g  is the kinematic gas viscosity and fru  is the 

friction velocity [30, p. 441]. The Saffman relation of the lift force was also simulated by Jøsang, who 

found no significant impact on droplet trajectories [28, p. 17]. This corresponds to the earlier 

statement by Maxey & Riley [44, p. 884]. 

3.1.1.4 Additional forces 

3.1.1.4.1 Pressure force 

The pressure force results from a pressure gradient across the surface of a body. It drives the global 

gas flow from high to low pressure, but the droplets under consideration are too small to experience 

a net pressure gradient. For the purpose of describing droplet paths the pressure force on the 

droplets can be neglected. 

3.1.1.4.2 Magnus force 

The magnus force is derived from rotating bodies. Its perhaps most commonly known effect is the 

curved path of a baseball or soccerball. The Magnus force is given by Rubinow & Keller ( [55] as 

follows17: 
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  (3.20) 

in which LRC  is the lift coefficient due to rotation and r  is the relative spin of the droplet with 

respect to the fluid, which has spin d . It can be shown that the Magnus effect, or rotational lift 

force, is at least an order of magnitude smaller than the shear lift force [30, p. 436]. It can therefore 

also be neglected for the purposes of this paper. 

                                                             
17

 As cited in Jøsang [28, p. 17]. 
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3.1.1.4.3 Electro-magnetic forces 

The application of electro-static forces for the separation of particles from gas flows is not 

uncommon. In gas power plants electro-static precipitators are used to electrically charge dust 

particles in the exhaust flow for subsequent filtration. Furthermore, possible electrical charges on 

particles can affect deposition mechanisms of the particle on the wall [45, p. 1213]. For water-steam 

applications, however, electro-magnetic forces are considered irrelevant for droplet paths and 

deposition rates. 

3.1.2 Lagrangian particle tracking 

Particle tracking methods can be used to evaluate droplet separation efficiency of vane separators, 

usually defined by the number of droplets that hit the wall, weighted with their size (if more than 

one droplet size was present in the initial distribution). Such methods were used for these purposes 

by for instance Wang & James [67], James et al. [27] and Verlaan [64]. In addition, particle tracking 

methods can be applied for a qualitative assessment of the droplet paths and thus provide valuable 

insights into the working mechanisms of vane separators. For this purpose, a simple Lagrangian 

particle tracking code was written, the basic equations of which are introduced in the following 

paragraphs. 

3.1.2.1 Isotropic turbulence 

A k    model for turbulence is introduced, in which the specific turbulent kinetic energy k  is 

defined by 

  2 2 21
' ' '

2
g g gk u v w     (3.21) 

The velocity fluctuations, denoted by the accent, are defined as the difference between actual and 

average velocity: 
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  (3.22) 

For isotropic turbulence18 ' ' ' 'c c cu v w V   , leading to 

 23 2
' '

2 3
k V V k     (3.23) 

                                                             
18

 Due to the large dimensional asymmetry for channel flow (one dimension being clearly bounded by the vane 

separator walls), it is likely that the turbulence is not completely isotropic. Because the purpose of the model 

is to provide a qualitative investigative method, the possible effects of anisotropic turbulence are nevertheless 

neglected. 
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After a mathematical analysis of the dissipation of turbulent kinetic energy  , which is a function of 

the kinematic viscosity   and of average velocity fluctuations, Taylor [62] eventually found, for the 

isotropic dissipation of micro-turbulent kinetic energy: 

 
2

2

'
15

e

V
    (3.24) 

Micro-turbulence deals with the very small-scale eddies, which play a small part in diffusion of kinetic 

energy, but are the principal agents for the dissipation of turbulent kinetic energy [62, p. 430]. The 

characteristic length e  is described as a measure of the diameter of the smallest eddies, which do 

not break down further, but dissipate their energy into heat [62, p. 437]. It is defined as the ratio of 

the correlation of the velocities at two points along the y -axis and the square of their distance y , in 

the limit of neighboring points in space: 
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  (3.25) 

From equation (3.23), if the micro-scale kinematic viscosity is defined as the product of the 

characteristic molecular velocity 'V  and the mean free path length e , an expression for e  

emerges that is called the Taylor micro-scale of turbulence [33, p. 52]: 

 
3

2
e

k
   (3.26) 

For large scale eddies equation (3.24) is written as [33, p. 52] 
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V
C     (3.27) 

C  is an empirical constant in the order of unity, from which, in comparison with equation (3.24), it is 

clear that large scale eddies are dissipated less than micro-scale eddies. Estimating the turbulent 

viscosity t  by its micro-scale counterpart [33, p. 52] and inserting it, along with equation (3.23), 

into equation (3.27), results in an expression for the large eddy length scale: 
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  (3.28) 

Representative for the eddy lifetime e  is the time it takes a molecule to cross the eddie: 
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Commonly used values for the empirical constants are 0.201C   and 0.164C   [27], although 

Zamora & Kaiser [72] reach better results with 0.15C 
19. To evaluate the turbulent kinetic 

energy, its net generated production per unit mass and time tP  can be set equal to its irreversible 

dissipation   [33, p. 90]: 
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  (3.30) 

Inserting the Blasius law for the friction factor ( 1 40.079 Refr  ) leads to a final expression for 

the turbulent kinetic energy: 

 
2 1 6Rekk C V    (3.31) 

Chandesris et al. [13] suggest for the constant kC  a value of 0.0306 for flow in channels. These 

authors suggest for the eddy length scale the following equation: 

  lim1 2e h frD y     (3.32) 

in which limy  is a measure for the thickness of the boundary layer. For channel flow lim 8y   is 

suggested. 

3.1.2.2 Governing equations for the flow 

In analogy to equation (1.6), making the same assumptions as in section 1.3.2 (Stokes flow with no 

slip in angular direction), the simplified two-dimensional radial momentum equations read 
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  (3.34) 

For constant velocity of the continuum, the solution to this system of equations is provided by Crowe 

& Pratt [14]: 

        2
d, exp 1 expd g g ini gd gd gd du u u u v r                (3.35) 

       d, exp 1 expd g g ini gd gd gd d dv v v v v u r               (3.36) 
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 The work of Zamora & Kaiser [72] is discussed in chapter 5.2. 



3 AN ANALYTICAL MODEL FOR VANE SEPARATOR EFFICIENCY 

30 
 

For droplet motion in straight channel parts20, the simplified two-dimensional momentum equations 

reduce to 

    d, expd g g ini gdu u u u         (3.37) 

    d, expd g g ini gdv v v v         (3.38) 

For known k , the velocity fluctuations are determined as follows: 

 ' 2 ,    ' 2 ,    ' 2u v wu kn v kn w kn        (3.39) 

in which in  are random numbers between -1 and 1, for which 
, ,

1i
i u v w

n


 . When the traversed 

path exceeds the eddy length scale given by equation (3.32) or the elapsed time since the 

introduction of the last turbulent eddy exceeds the eddy lifetime given by equation (3.29), new 

velocity fluctuations are introduced for the particular droplet only. Droplets that encounter the 

channel wall are separated from the flow. 

3.1.3 Results for a wavy vane separator with straight channel sections 

It has thus far implicitly been assumed that the droplet distribution is uniform everywhere in the 

channel and the droplet separation rate is determined by the initial droplet volume fraction only. The 

droplet distribution in each but the first stage is, however, significantly skewed toward the outer 

bend of the previous stage. In other words, at the inlet of the stage, the droplet distribution is 

skewed toward the inner bend. The more turbulence is introduced into the channel (e.g. by pick-off 

hooks), the less significant this effect is expected to be. But for laminar flow through smooth 

channels at relatively low velocities, it is very likely that the stage separation efficiency is significantly 

impaired by the previous stage. For this reason, newer generations of vane separator geometries 

featured increased distances between the bends to produce a more effective geometry for 

separating droplets, an example of which is displayed in Fig. 3.3. 

 

Fig. 3.3 Schematic view of a straight-type vane separator 

The purpose of the straight sections is two-fold: 

 

1. The relaxation of the flow in the straight sections helps to redistribute the droplets more 

uniformly as they enter the next bend. 

                                                             
20

 Straight channel sections will be discussed in the next section. 
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2. The straight sections effectively take part in the droplet separation process, because the 

droplets leave the bend maintaining their terminal radial velocity and their inertia will 

continue to drive them towards the wall of the straight section, at least until their radial 

velocity has reduced to zero21. 

 

The latter can be visualized nicely with the use of the previously described particle tracking model, 

the result of which is depicted in Fig. 3.422. The droplet paths continue to advance towards the outer 

wall, even after the droplets have passed from the curvilinear into the cartesian coordinate system, 

i.e. from the bend into the straight channel section. The straight sections of the channel path thus 

contribute to the overall separation efficiency of the channel. 

 

Fig. 3.4 Droplet paths through a straight-type vane separator channel with 

rounded bends 

3.1.4 Separation efficiency in straight channel sections 

In chapter 1.3.3, the separation efficiency of each bend of the vane separator was computed  by 

regarding each of these regions as a small cyclone separator. This analysis will be extended by 

including straight sections of the channel, in which a relaxation of the flow takes place. Assuming, as 

before, that the droplets move with the constant velocity of the continuum without slip, the time 

  it takes a droplet to reach a position s  along the wall of the straight part, as measured from the 

exit of the preceding curved section, equals 

 gs v    (3.40) 

According to equation (3.37), if the radial gas velocity is neglected ( 0gu  ), the radial velocity of the 

droplets in the straight section of the channel, as a function of the traversed length s , is given by 

    , expd d ini gd gu s u s v     (3.41) 

                                                             
21

 The term radial velocity is used here, although the straight sections are not described by curvilinear, but by 

cartesian coordinates. The radial velocity by definition transforms into a velocity vector perpendicular to the 

plane of the wall. As the straight section ends, the coordinate system reverts back into curvilinear. For clarity: 

this velocity will continuously be referred to as radial velocity, even where the velocity in straight sections is 

concerned. 
22

 In the given example, the velocity fluctuations are relatively small, which is why hardly any redistribution of 

droplets takes place in the straight channel section. Furthermore, all depicted droplets have the same diameter, 

thus the paths do not cross. 
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Because the droplets reaching the wall and being separated in the straight section are already near 

to the outer wall as they leave the bend, the initial radial velocity of the droplets as they leave the 

bend can be approximated by the terminal radial velocity near the outer wall23: 
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This leads to the following expression for the radial velocity of the droplets in the straight sections: 
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The droplet mass flow deposited on the straight wall section dsdz  is then given by 

    
2

exp
gd g

gd g
o

d d
t

d d d
u

d

v
s s vdm u dsdz dsd

R
z


       


    (3.44) 

Dividing equation (3.44) by the incoming mass flow leads to 
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Integrating equation (3.45) over the length L  of the straight section then leads to the following 

separation efficiency S  for the straight sections of the vane separator: 
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  (3.46) 

The separation efficiency C  in the curved sections of a vane separator is an exponential function of 

the Stokes number; the separation efficiency S  in the straight sections of a vane separator, is an 

exponential function of the square of the Stokes number and an additional term that scales 

exponentially with the inverse of the Stokes number24. The ratio of separation efficiencies S C   as 

a function of the Stokes number (        21-exp -St 1 exp 1 St 1-exp -St  ) is plotted in 

Fig. 3.5, showing that with increasing Stokes number, the separation efficiency in the straight 

sections increases relative to that in the curved sections. The sharp decrease of S C   for small 

Stokes numbers is due to the double impact of decreasing terminal radial droplet velocity and faster 

                                                             
23

 The validity of this approximation is worked out in Appendix A.I. 
24

 The characteristic length in the Stokes number is either represented by R , outR  or L  . These normally have 

the same order of magnitude. For simplicity, the bend angle n  is approximated by unity. This has no 

qualitative influences on the argument. 
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droplet relaxation in the straight sections. For roughly equal values of the characteristic lengths ( R , 

outR  and L ), the separation efficiency in straight sections reaches 50% of the separation efficiency 

in curved sections for a Stokes number of 0.5 and reaches nearly 100% of this value for Stokes 

numbers larger than 5. 

 

Fig. 3.5 The separation efficiency in a straight section, relative to that in a 

curved sections, as a function of the Stokes number 

3.2 Gravitational influence on separation efficiency 

For many applications of vane separators a vertical orientation is desirable, mainly for reasons of 

limiting the re-entrainment from the liquid film flow on the walls. In practice, this is not always 

attainable; for example in large horizontally arranged cylindrical pressure vessels, with a bottom-to-

top or top-to-bottom cross-flow of saturated steam (Fig. 3.6). When vane separators are installed in 

such vessels, there is often not enough space to allow for a vertical orientation. In this section, the 

assumption of a vertically oriented installation is discarded and its gravitational influence on the 

separation efficiency is investigated. 

Quintessence 

With increasing Stokes numbers, the separation efficiency in straight sections increases 

relative to the separation efficiency in curved sections, but, for similar characteristic 

lengths, never exceeds it. For Stokes numbers beyond 0.5, straight sections can play a 

significant role in the droplet separation characteristics of vane separators. 
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Fig. 3.6 Schematic view of a horizontal pressure vessel with a reheater tube 

bundle and a non-vertical arrangement of vane separators 

3.2.1 Gravitational influence in curved vane separator sections 

To determine the influence of gravitational acceleration in the radial direction, the terminal radial 

velocity du  of the particles must be re-evaluated. The assumption remains that all droplets have a 

radial velocity component in the local flow direction equal to the gas velocity: d gv v .  The radial 

velocity is computed from the simplified radial momentum equation (1.6), which now includes the 

radial component of gravity rg  : 
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Making the same assumptions as in section 1.3.2 (droplets are approximated by rigid spheres, 

droplets hit the wall with radial terminal velocity, the gas velocity has no radial component and 

Stokes flow is valid), equation (3.47) reduces to 
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Solving this equation for du  gives 
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To evaluate the gravity component in equation (3.49), the orientation of the gravity vector in the 

vane separator coordinate system, must be formulated. A cartesian coordinate system is defined, in 
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which the z –axis aligns with the vanes (perpendicular to the u v  plane), the y –axis aligns with 

the central line of the vanes around which the vanes swirl (i.e. the macroscopic direction of flow 

from vane separator inlet to outlet) and the x –axis is perpendicular to both (it aligns with u  or u  

in the middle of each bend) (Fig. 3.7). 

 

Fig. 3.7 Cartesian coordinate system depicted with arbitrary gravity vector, 

with top view (upper right) and side view (bottom right) 

The gravity vector is defined by two angles: the angle   describes the angle of the gravity vector 

with the u v  plane and the angle   describes the angle of the gravity vector component in the 

u v  plane with the x -axis (Fig. 3.7). To avoid any ambiguity with vane separator orientation, the 

following definitions shall apply: 

 

 the y -axis aligns with the macroscopic direction of flow, 

 the x -axis lies in the u v  plane and is positive where   is smallest25, and 

   defines the angle with the positive x -axis and runs from positive x  towards positive y 26. 

 

The angle   describes the variable angle between the velocity vector u  and the x -axis, for which 

the following is valid27: 

 
2 2,              bend at positive -coordinate

2 2,    bend at negative -coordinate

x

x

  

    

  
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  (3.50) 

                                                             
25

 This implies that the z -axis can be upward or downward. For 2   the choice of positive x -direction is 

arbitrary. 
26

 This directly implies 2 2     . 
27

 Note that the positive direction of the angle   is defined in the same direction as the angle  , with 0   

aligning with the x -axis. To avoid unnecessary complexity, the following analysis will be defined for 

forward integration of   for both positive and negative x -coordinates. This does not affect the result. 
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Since u  changes its direction with respect to the cartesian coordinate system, the gravity component 

rg  , which aligns with u , is a function of  . It can be written as 

  cos cr osg g       (3.51) 

Inserting equations (3.49) and (3.51) into equation (1.14) gives the following expression: 
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Integrating this equation between the limits 2 2      leads to 
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in which the following relation has been used: 

      sin 2 sin 2 2cos sin 2           (3.54) 

Equation (3.53) is solved for the droplet mass flow. Following the definition of the separation 

efficiency results in a separation efficiency   for bends with positive x -coordinates: 
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Alternatively, carrying out the integration of equation (3.52) between the limits 

2 2       leads to a separation efficiency   for bends with negative x -

coordinates: 
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in which the following relation has been used: 

      sin sin 2cos s2 i2 n 2             (3.57) 

In general, the separation efficiency for curved sections C  can thus be written as 
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The -sign defines the orientation of the curves28. In the limits 0g   or 2    equation 

(3.58) reduces to equation (1.16). In the limit 2    equation (3.58) also reduces to equation 

(1.16), because in this case the contributions of the gravity vector for 2 0     and 

0 2    cancel29. 

3.2.2 Gravitational influence in straight vane separator sections 

The radial momentum equation in straight channel sections, accounting for gravity, reads 

 d3 2
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Keeping with equation (3.51), the gravitational component is defined as30 
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d

cos cos 2
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u
gg       (3.60) 

for straight sections that run from positive to negative x -coordinates and from negative to positive 

x -coordinates, respectively. Inserting equation (3.60) into equation (3.59) gives 
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Equation (3.61) can be solved by making use of a Laplace transformation: 
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This leads to the following equation for the radial droplet velocity: 
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28

 The convention throughout this chapter shall be that the upper part of any   or -signs is valid for bends 

with positive x -coordinates, whereas the lower part is valid for bends with negative x -coordinates. 
29

 This statement is also valid for the regions 2       and 2      . 

30
 The gravitational component was written in the last section as rg  . The notation here is used because there 

is no radial coordinate in the straight section. 
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The initial radial droplet velocity ,d iniu  is given by equation (3.49), while inserting equations (3.60) 

for the term rg  . Inserting also gs v   leads to 
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Rewriting equation (3.45) to account for the modified droplet velocity gives 
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Integrating from 0s L   and solving for the efficiency leads to the following relation for the 

separating efficiency in straight sections S : 
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In the limits 0g   or 2  , equation (3.66) reduces to equation (3.46). 

3.2.3 Grade efficiency under the influence of gravity 

The separation efficiency in curved sections, under the influence of gravity, was given by equation 

(3.58) and can be written in short as 
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The coefficient C  represents the contribution of the centrifugal force and the coefficient G  the 

contribution of gravity: 
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A similar simplification can be done for the general efficiency in straight sections: 

 1 S H
S e     (3.70) 
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The coefficient S  represents the contribution of the droplet's initial radial velocity and the 

coefficients H  and H  the contributions of gravity for straight sections from positive to negative 

x -coordinates and from negative to positive x -coordinates, respectively: 
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It is recognized that in the limits 0G   and 0H  , equations (3.67) and (3.70) reduce to their 

'gravitationless' counterparts (1.16) and (3.46). The grade efficiency of a vane separator with n   

stages can no longer be written according to equation (3.121): it differs for even and uneven 

numbers of stages and for different orientations of the inlet (toward or away from the half-plane of 

the gravity vector, i.e. toward positive or negative x ). This leads to four different equations for the 

grade efficiency. For a vane separator with an even number of stages, the gravitational contributions 

from the inlet and outlet sections cancel31 and the grade efficiency can be written as 
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The gravitational contribution from the bends (including inlet and outlet sections) has thus fully 

vanished. The gravitational contributions in the straight sections remains, but still depends on the 

orientation of the inlet. For a vane separator with an uneven number of stages, the gravitational 

contributions of the inlet and outlet sections add up to equal a full bend32 and the grade efficiency 

can be written as 
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 (3.74) 

It follows that in this case, the gravitational contribution from the curved sections always cancels; 

independent of the number of stages or the orientation of the vane separator. The three different 

grade efficiencies are listed in Table 1. The first two exponentials of each equation are always the 

same and represent the separation efficiency without the influence of gravity (according to equation 

(3.121)). The last exponential(s) represent(s) the influence of gravity on the grade efficiency. 

                                                             
31

 Inlet and outlet sections of equal size are considered (refer to chapter 3.6.4.1). For proof of this statement the 

reader is referred to Appendix A.II. 
32

 See previous footnote. In addition, it is assumed that the inlet and outlet sections each equal one half of a full 

bend. 
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Table 1 Vane separator grade efficiencies under the influence of gravity 

Number of stages Orientation Efficiency 

Uneven -       1 1 1 21 C n S n H H n
d e e e          

Even inlet towards positive x         1 1 2 2 11 C n S n H n H n
d e e e e          

 inlet towards negative x         1 1 2 2 11 C n S n H n H n
d e e e e          

 

A quantitative analysis of the significance of different geometrical and physical parameters, with 

regard to the influence of gravity on the separation efficiency, is performed in appendix A.III. The 

main conclusions are: 

 

1. The relative impact of gravity increases for 0  . 

2. The relative impact of gravity increases for 90   . 

3. The relative impact of gravity increases for 0   . 

4. The relative impact of gravity decreases for n  . 

5. The relative impact of gravity decreases for gv  . 

6. The relative impact of gravity decreases for dD  . 

7. The three different configurations in Table 1 show significantly different results. 

 

The first two points imply that gravity is most significant for purely horizontal vane separator 

orientations. The next two points signify that for increasing efficiency of the curved sections, the 

relative contribution from gravity decreases. Points 5 and 6 signify the same for an increasing 

centrifugal force, which usually corresponds to increasing Stokes numbers. 

3.3 Non-orthogonal gas flow 

Vane separators are designed to perform under conditions of orthogonal gas flow; where the gas 

velocity vector is perpendicular to the inlet surface. For most applications this is a realistic 

assumption. There are situations, however, where the gas flow does not enter the vane separator 

modules under optimum conditions. Typically, this is the case when vane separator modules are 

installed inside large vessels, for example inside a Moisture Separator and Reheater (MSR) (Fig. 3.8). 

In the depicted MSR, steam with a certain moisture content enters the bottom head of the MSR, in 

which a cyclone separation stage is installed. After a 90° deflection, the steam enters the cylindrical 

mid-section of the vessel, where the decreasing cross-sectional area gradually forces the steam 

through the second separation stage (the vane separator modules) toward the outlet. Locally, 

Quintessence 

The contribution from gravity to the separation efficiency can be significant under 

circumstances with low Stokes numbers and where centrifugal forces are small. The spatial 

orientation of a vane separator can thus be of interest when relatively poor separation 

efficiencies are to be expected:  e.g. for small droplets in slow-moving media, passing few 

stages of small bend angles. 
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especially near the bottom and top sections of the vessel, the steam does not propagate through the 

vane separator modules in a perpendicular angle. This is visualized by the CFD flow analysis in the 

right part of Fig. 3.8, from which it is clear that the gas velocity vectors are tilted upward with respect 

to the vane separator modules. The impact on separation efficiency of non-orthogonal gas flow is 

investigated in the following sections. 

 

Fig. 3.8 Schematic view of steam flow through a MSR (left) and gas velocity 

vectors through a MSR (right)
33

 

3.3.1 Non-orthogonal flow in curved vane separator sections 

Because rotation of the gas velocity vector is confined by the parallel vanes to two dimensions, 

variations of the direction of flow will be treated in the plane parallel to the vanes only (Fig. 3.9).  A 

re-orientation of the gas velocity vector will be equivalently evaluated through an altered description 

of the geometry itself, by determination of the effective radii and straight sections, as experienced by 

a droplet moving with an upward or downward angle v  with respect to the horizontal plane. The 

plane of travel of the droplet shall remain perpendicular to the vanes themselves. The height H  of 

the vane separator is assumed infinite. 

                                                             
33

 Courtesy of Siemens AG. 
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Fig. 3.9 Schematic view of a non-orthogonal gas velocity vector, with top view 

(upper right) and side view (bottom right) 

The effective curvature of the skewed bend, in the plane of travel, is no longer circular, but 

represents an ellipsoidal cut of the vane (Fig. 3.10). The effective radius R , the effective angle v  of 

the gas velocity in the plane of travel and the effective traversed angle   are all affected by this 

rotational transformation. The analytical model should thus be written in terms of R  and  . 

 

Fig. 3.10 Ellipsoidal cut of a spherical vane (above left), side view along the 

plane of travel (top right), top view perpendicular to the vane (middle 

right) and perpendicular to the plane of travel (below left and right) 

The assumptions from section 1.3.2 (Stokes flow, no slip, etc.) shall remain valid. It is assumed that 

the product of effective tangential gas velocity gv  and effective channel width R  is constant34: 

 
,

constantg R
L

v


    (3.75) 

                                                             
34

 This assumption is equivalent to conservation of mass in the tilted system, for incompressible flow. 



 3.3 NON-ORTHOGONAL GAS FLOW 

43 
 

 

The ratio of deposited and entering mass flow for tilted flow equals 
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in which all parameters are functions of  . In analogy to equation (1.9), the radial droplet velocity at 

the wall is given by the following equation: 
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Inserting equation (3.77) into equation (3.76) leads to 
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Following the mathematical formulation of an ellipsoid, the effective radius can be written as 
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which leads to 
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Carrying out the integration from 
2 2

   


 
   and employing equation (3.75) leads to the 

separation efficiency of the bend, for non-orthogonal flow at an angle v : 
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in which the effective total bend angle   is defined by 
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The function  vF   represents the influence of the effective channel width on the separation 

efficiency. In the limit 0v  , equation (3.81) reduces to equation (1.16) (for a single stage). The 

first part of  vF   decreases with v  and can be interpreted as the derogation of the separation 

efficiency, caused by the increasing effective channel width. The second part increases with v  and 

can be interpreted as the improvement of the separation efficiency, due to the increasing integration 

length (in terms of the effective bend angle  ). In Fig. 3.11, the value of  vF    is plotted as a 

function of v , allowing for a direct comparison with equation (1.16). Thus, if the gas velocity vector 

is tilted by an angle 40v   , for a bend angle of 50    the tilting has effectively increased the 

bend angle with a factor 1.2. For 109   , the separation flow initially increases when the velocity 

plane is tilted, while the positive contribution from the increasing effective channel length is larger 

than the negative contribution from the increasing effective channel width. For 109    the 

opposite is true35. A second-order effect is present, related to the different signs of the derivatives 

with respect to v , of the first and second term of  vF  . 

 

Fig. 3.11 Influence of non-orthogonal flow on droplet separation efficiency (for 

four stages) 

3.3.2 Non-orthogonal flow in straight vane separator sections 

The tilted velocity plane is not only at a vertical angle v  with the straight section, but also at a 

lateral angle 2 . The lateral angle, however, does not affect the effective length of the straight 

section, which is given by 

 cos vL L    (3.83) 

                                                             
35

 For 90 109    , the contribution to the separation efficiency is either positive or negative, depending on 

the value of v . 
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Applying equation (3.82) to equation (3.79) with 2  , the effective width R  of the straight 

section can be written as 

  2 21 tan sin 2R R v       (3.84) 

Analogous to equation (3.41), the radial droplet velocity in the straight part of the channel is given by 
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 (3.85) 

Inserting into equation (3.80) and integrating over the length L  of the straight section leads to the 

following equation for the separation efficiency S  of the straight sections of the vane separator: 
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  (3.86) 

In the limit 0v  , equation (3.86) reduces to equation (3.46). The numerator in equation (3.86) 

increases with v  and can be interpreted as the improvement of the separation efficiency due to the 

combined effects of increasing integration length and increasing droplet relaxation length (due to a 

smaller effective gas velocity). The denominator in equation (3.86) also increases with v  and can be 

interpreted as the derogation of the separation efficiency due to the combined effects of decreasing 

terminal radial droplet velocity at the bend exit and increasing effective channel width. Fig. 3.12 

depicts the normalized separation efficiency in the straight sections as a function of v , showing the 

significant deterioration of the separation efficiency in the straight sections for non-orthogonal flow. 
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Fig. 3.12 Influence of non-orthogonal flow on separation efficiency in straight 

vane separator sections 

The combined effect for bends and straight sections is depicted in Fig. 3.13. For this particular 

combination of input parameters36, the combined effect is initially positive for total bend angles of 

approximately 85   . For 75    it is positive for all v . Without the influence of gravity, the 

results are symmetrical around 0v  . 

 

Fig. 3.13 Influence of non-orthogonal flow on separation efficiency of an 

exemplary vane separator 

                                                             
36

 For both figures 20dD m , 5gv m s , 20g mg m s   , 1R cm  , 2outR cm , 6L cm  and 4n  . 

Quintessence 

An increasingly non-orthogonal flow angle, increases the effective path of the droplets, but 

also increases the effective channel width. The former has a positive and the latter has a 

negative effect on the separation efficiency. For decreasingly small bend angles, the net 

effect is increasingly positive, because for small bend angles the effective path increases 

more rapidly with increasing flow angle than the effective channel width. The maximum 

separation efficiency does not necessarily correspond with orthogonal flow conditions. 
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3.3.3 Gravitational influence for non-orthogonal flow 

3.3.3.1 Curved sections 

The influence of gravity for non-orthogonal flow is also investigated. The syntax for the angles of the 

gravitational vector, as defined by Fig. 3.7, remains valid, although the y -axis shall lie in the tilted 

velocity plane (i.e. at an angle v ), resulting in a z -axis perpendicular to this tilted plane. This 

rotational transformation of the velocity plane in a static geometry and gravitational field is depicted 

in Fig. 3.1437. 

 

Fig. 3.14 Cartesian coordinate system including the gravity vector, for a rotated 

vane separator geometry, with top view of the tilted plane (upper 

right) and tilted side view (bottom right) 

The droplet terminal radial velocity under the influence of gravity is 
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This leads to the following differential equation for the mass flow: 
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Exploiting the symmetry of the integration around 2    , it can be shown that equation 

(3.88) reduces to 
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37

 The angle   is defined as in section 3.3.2, which is different from the analysis in Section 3.2. 
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For small angles of v , cos v  is close to unity in the vicinity of 2  . Using this approximation38 

to carry out the integration from 
2 2

   


 
   and employing cos cos cos cos    , 

results in the following equation for the separation efficiency: 
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  (3.90) 

This equation is consistent with the fact that, according to equation (3.55), the influence of gravity is 

fully described by its component along the x -axis. In the limit 0v  , equation (3.90) reduces to 

equation (3.58). The first term inside the brackets in equation (3.90) is identical to the function 

 vF   in equation (3.81). 

 

Fig. 3.15 Impact of gravity relative to  vF    

Fig. 3.15 shows the second term inside the brackets, relative to the first term, for different angles of 

 39. For vertically oriented vane separators ( 90   ), the impact of gravity is zero, independent of 

the flow angle. The influence of gravity is most pronounced for very large angles of v , but in all 

cases smaller than  vF  . The effect is not necessarily positive: for bends opposite the one 

depicted, the contribution is exactly negative. 

                                                             
38

 This will slightly underestimate the gravitational impact. 
39

 The input parameters are the same as in section 3.3.2, with the addition of 30   . The results are for a bend 

angle 80   . 
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3.3.3.2 Straight sections 

Using the results from equations (3.66) and (3.86), the separation efficiency in straight vane 

separator sections, for non-orthogonal flow under the influence of gravity, is 
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The effective angles of the bend and of the gravity vector are defined by the following equations: 
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In the limit 0v  , equation (3.91) reduces to equation (3.66). 

 

Fig. 3.16 Gravitational influence on vane separator efficiency for non-

orthogonal flow 

The ratio of the grade efficiencies, with40 and without the influence of gravity (i.e. as compared to 

Fig. 3.13), is depicted in Fig. 3.16, for both negative and positive angles of v . The depicted result is 

                                                             
40

 For input parameters see previous footnote. It is noted that the number of stages considered is four, thus 

eliminating the contradicting contributions of opposite bends and straight sections. The result for an uneven 

number of stages can be deduced from section 3.2. 
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for a gravitational angle of 90   , which represents a vertically oriented vane separator 

experiencing non-orthogonal gas flow at a certain angle v . Consistent with the results from section 

3.2, the influence of gravity is positive when the gravity and the gas velocity vector align (i.e. are in 

the same half-space). Therefore, the contribution of gravity is positive for negative angles of v  and 

negative for positive angles of v
41. It also increases with decreasing bend angles  , which is also 

consistent with the results from section 3.2 (compare with A. Fig. 4 in appendix A.III). The results for 

90    center around 0v  . For other values of   (i.e. for tilted vane separators), the 

influence of gravity is reduced and the graphs center around the value of v  that corresponds with 

0   (at which the gravity vector lies in the x - z -plane and aligns with the center of the ellipsoidal 

bend in the rotated coordinate system). An example is provided in Fig. 3.17, in which the dotted lines 

depict results for gravitational angles 70    and 30   . The point of gravitational indifference 

is moved to 12v   , which is exactly the value for which 0  . 

 

Fig. 3.17 Gravitational influence on separation efficiency for different 

gravitational angles 

Fig. 3.18 depicts the normalized individual contributions42 of each of the four vane separator 

sections: curved and straight sections on opposite sides (left and right). The influence of gravity on 

the curved sections is insignificant. The contributions from the straight sections are larger, but since 

the absolute separation efficiency in the straight sections is much smaller than in the curved sections, 

the overall effect is not as pronounced in Fig. 3.16. For very large angles of v , the length of the 

straight sections tends towards infinity and their contributions (positive as well as negative) become 

excessively large. Such extreme angles of gas flow are not relevant to practical purposes. 

                                                             
41

 Positive angles of v  were defined to represent upward gas flow. 
42

 The results are for a bend angle of 50    and are normalized with the equivalent sectional efficiency 

without gravity. 
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Fig. 3.18 Individual contributions of each section to the separation efficiency 

3.4 Non-uniform velocity field 

3.4.1 Velocity profiles 

The gas velocity profile has been assumed flat and uniform throughout the vane separator channel, 

although it is zero at the channel wall and a steep velocity gradient is to be expected in the near-wall 

region. Velocity profiles inside a vane separator channel were measured by Kall [29], who found 

relatively small near-wall regions throughout the channel. Near the inlet the velocity profile was very 

flat, while halfway through a bend they were clearly skewed towards the inside of the bend, reaching 

almost a factor of 2 between inner and outer velocities [29, pp. 48-53]. Gillandt et al. [20] also 

recorded velocity profiles that were skewed towards the inner bend (Fig. 3.19 bottom left). Due to 

the influence of the previous bend, even the velocity profile before the bend is skewed toward the 

inner side. The normalized velocity profiles are independent of the Reynolds number. The 

computations by Wang & James [67] show that a large region exists at the outer wall of the bend for 

which near-zero velocities are computed (Fig. 3.19 bottom right). Depending on the specific model 

resolving the near-wall regions, even reverse flow is possible, reflecting large scale eddy behavior in 

the channel. 

Quintessence 

The impact of gravity on the separation efficiency is influenced by the orientation of the gas 

flow with respect to the vane separator, as well as by the spatial orientation of the vane 

separator itself. The optimum separation efficiency under non-orthogonal flow conditions 

thus depends on the spatial orientation of the vane separator with respect to gravity. 



3 AN ANALYTICAL MODEL FOR VANE SEPARATOR EFFICIENCY 

52 
 

  

 
Fig. 3.19 Simulated velocity profile (above left) and measured velocity profiles 

(bottom left) at two cross-sections in a zig-zag vane separator channel 

(above right: "Ebene 1" and "Ebene 2")
43

. Computed velocity profiles 

at cross-section 2 (bottom right)
44

. 

Jøsang [28, pp. 50-52] recorded velocity profiles at different axial positions in a vane separator 

channel with pick off hooks. Even at a relatively low inlet velocity of 2.4 m/s, negative velocities were 

recorded shortly behind each pick-off hook. A little further downstream the velocities were all 

positive, but still significantly skewed toward the outer wall of the bend (i.e. the inner wall of 

potential consecutive bends). 
 

Droplet motion can be expected to be significantly influenced by such large disruptions of the 

velocity field, as discussed for the aforementioned examples. Specifically, the radial (outward) 

motion of droplets is affected by the tangential gas velocity profile across the width of the channel, 

which has a direct impact on droplet separation. 

3.4.2 Significance to separation efficiency 

Only the inertia of the droplets allows them to cross any near-wall regions with near-zero velocities 

and reach the channel wall. In order to estimate the impact of non-uniform velocity profiles on the 

droplet separation efficiency, a simplified version of the velocity profile depicted in Fig. 3.19 is 

assumed (Fig. 3.20). The homogeneous gas velocity is given by gV  and a boundary region with zero 

gas velocity is specified between 'y  and R . Assuming a constant mass flow through the channel 

                                                             
43

 Reprinted from [20, pp. 317-318], with kind permission from Springer Science and Business Media. 
44

 Reprinted from [67, p. 981]. Copyright (1998), with permission from Elsevier. 
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leads to a maximum gas velocity outside the wall boundary region of ' 'g g Rv V y . The depicted 

velocity profile is assumed valid throughout the bend (for all  ). 

 

Fig. 3.20 Simplified theoretical velocity profile through a channel cross-section 

Assuming the droplets continue on a circular path inside the bend, the droplet radial and tangential 

velocity in the wall boundary region are given by (refer to equation (3.37)) 

  , expd d ini gdu u       (3.95) 

  'expd g gdv v       (3.96) 

The initial radial droplet velocity is defined as the terminal radial droplet velocity at the border of the 

wall boundary region, while assuming the maximum gas velocity 'gv  (refer to equation (1.9)): 

 
 

2

,
' '

R ggd
d ini

in

u
R y y

V 




  

 
  (3.97) 

in which gV  is the homogeneous gas velocity. Integrating across the wall boundary region, it can be 

shown that, under these conditions, the time uT  it takes a droplet to cross the wall boundary region 

is given by 
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This directly implies that a limiting droplet size exists, defined by the limit uT  , below which no 

droplet will ever reach the channel wall. Employing equations (1.17) and (3.97), this droplet escape 

diameter is given by 
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The time to cross the wall boundary region is limited by the time vT  it takes the droplet to reach the 

end of the bend, which is given by 
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Equating equations (3.98) and (3.100) leads to a limiting droplet diameter  escD  , below which 

droplets cannot cross the wall boundary region before reaching the end of the bend: 
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Both droplet escape diameters tend to zero for vanishing wall boundary regions, as well as for wall 

boundary regions reaching channel width (Fig. 3.21 on the left). The latter limit can be explained by 

the maximum gas velocity 'gv  tending to infinity for increasingly large wall boundary regions. In this 

specific example,  escD   is larger than  escD  , meaning that all droplets large enough to cross 

the wall boundary region, require a path shorter than   to do so (independent of the size of the wall 

boundary region). A comparison of equations (3.98) and (3.100) reveals that for decreasing values of 

inR  and  ,  escD   may become larger than  escD  , implying that the relevant droplet escape 

diameter for the particular bend would be given by  escD  . For the case at hand, the wall 

boundary region most difficult to cross equals approximately 30% of the channel width, which only 

droplets larger than 18 µm would be able to cross. 

 

Fig. 3.21 Escape diameters (left) and relative terminal radial droplet velocity 

(right) for an example for water droplets in air flow at atmospheric 

pressure, with a channel width of 1 cm, outer radius 2 cm, bend angle 

80° and air velocity 5 m/s 
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region. Accounting for this increased tangential velocity as well as its relaxation inside the wall 

boundary region, the terminal radial droplet velocity at the outer wall, is given by 
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  (3.102) 

For the given example (with ' 0.9Ry   ), the terminal radial droplet velocity, relative to that for a 

uniform velocity profile, is given in Fig. 3.21 on the right. It is zero for droplet diameters below 16 

µm, corresponding to the escape diameter for ' 0.9Ry    (Fig. 3.21 on the left). Beyond a 

diameter of 23 µm the terminal radial droplet velocity for non-uniform velocity profiles exceeds that 

in a uniform velocity profile, increasing to a factor of 1.3 for droplets of 40 µm. Accounting for the 

modified terminal radial droplet velocity, the separation efficiency of a single bend in a non-uniform 

velocity profile is 
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  (3.103) 

Adjusting for the modified initial droplet radial velocity with which the droplets leave the bend (given 

by equation (3.97)45), leads to the following separation efficiency in the straight section: 
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  (3.104) 

For ' Ry   these equations reduce to equations (1.16) and (3.46) respectively. The implications of a 

non-uniform velocity profile for the efficiency of a vane separator is visualized by Fig. 3.22, which 

depicts the separation efficiency of a single stage46. Below 16 µm no droplets are separated, 

corresponding to the escape diameter for ' 0.9Ry    in Fig. 3.21. Beyond 23 µm the modified 

grade efficiency exceeds that of a uniform velocity profile. 

                                                             
45

 This implies that the droplets leave the bend outside of the wall boundary region. The relaxation of the 

terminal radial droplet velocity inside the wall boundary region is neglected. 
46

 The single stage includes one bend and one straight section. Other parameters are as described in this section. 

In addition to a decrease in separation efficiency for small droplet diameters, due to the escape 

diameter, an increase in separation efficiency can be expected for larger droplet diameters, due to an 

increasing terminal radial droplet velocity, related to the larger velocity outside the wall boundary 
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Fig. 3.22 Impact of the velocity profile on the droplet separation efficiency of a 

single stage 

3.5 Non-uniform droplet distribution and remixing 

The initial radial position of each droplet as it enters a bend, depends on its radial migration 

distance(s) in the previous bend(s). If the terminal radial droplet velocity is no longer estimated to be 

at the outer wall (  d du u r ), the radial migration distance r  of a droplet through an entire 

stage (bend and straight section), starting at an initial radius 0r , can be approximated by 
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This is a decreasing function in 0r , meaning the radial droplet migration is largest for 0 inr R , or 

equivalently 0y   for a distance 0 iny r R   from the channel wall. A droplet that is not 

separated, starting at a distance y , either reaches a position 'y y  in the consecutive bend (solid 

line in Fig. 3.23) or a position 'y y  (dashed line in Fig. 3.23). Because r  decreases with 0r , the 

radial droplet migration distance in the consecutive bend, will in the first case be larger than before 

Quintessence 

An extreme simplification of non-uniform velocity profiles allows for an analysis of the 

droplet escape diameter, which defines the minimum droplet size required to cross the wall 

boundary region. It also allows for a modification of the terminal radial droplet velocity. In 

the presence of non-uniform velocity profiles, the droplet separation efficiency is expected 

to steeply drop to zero for droplet sizes below the droplet escape diameter. For droplet 

sizes a certain margin above the droplet escape diameter, it may be larger compared to 

uniform velocity profiles. 
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(leading to ''y y ) and in the latter it is smaller (leading to ''y y ). This implies that droplet paths 

have a tendency toward the centerline of the channel and, if no remixing of the droplet distribution 

would occur and only uniform velocity profiles are considered, the droplet separation efficiency 

would theoretically drop to zero after the first bend. The droplet migration distance is therefore not 

a helpful tool when analyzing the impact of non-uniform droplet distributions on droplet separation 

efficiency. 

 

Fig. 3.23 Droplet migration through consecutive bends 

Remixing can also be analyzed by correcting the droplet volume fraction at the outer wall for the 

non-uniform droplet distribution. An exponential growth of the droplet volume fraction  
out

d R
   

along the outer wall, as a function of the bend angle  , tending toward its homogeneous value d , 

can be described by the following mathematical relation proposed here: 
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The parameter 1  represents the relative reduction of the droplet volume fraction at the bend inlet, 

as a result of the centrifugal force in the previous bend, for which it is suggested to use Wilkinson's 

[70] remixing factor mf  (refer to chapter 2.1): 
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The parameter 2  represents the rate with which the droplet volume fraction near the outer wall 

reaches its normal value, for which it is suggested to use an exponential function of the Reynolds 

number: 

 2 RemK    (3.108) 

Employing equation (3.106) and integrating over the bend angle, the separation efficiency in each 

consecutive bend is given by 
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This leads to a total grade efficiency for the vane separator (not including inlet and outlet sections) of 
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The impact of a non-uniform droplet distribution, in the form of equation (3.110), is visualized in Fig. 

3.24 for 0.1K   and 0.5m  . For small droplet diameters, the remixing factor is close to unity and 

the impact is small. For increasing droplet diameters, the remixing factor decreases rapidly towards 

zero, but the function defined by equation (3.106) limits the remixing effect to a small part of the 

bend, reducing the 'effective' bend angle by no more than 16%. The same figure also depicts the 

separation efficiency for uniform and non-uniform droplet distributions, as defined by Wilkinson [70] 

(equation (2.14)). Only data in the applicable range of Stokes numbers is depicted ( 0.1 St 0.66  ). 

The curves for uniform distributions ( 1mf  ) lie close together, but for non-uniform distributions 

they differ significantly, because the remixing factor by Wilkinson [70] is not limited by the exponent 

in equation (3.110). 

 

Fig. 3.24 Impact of non-uniformity of droplet distribution on separation 

efficiency, for a vane separator with channel width 15 mm, outer 

radius 25 mm, bend angle 80°, straight section 20 mm and 7 stages, at 

a gas velocity of 4 m/s 

 

Quintessence 

It is possible to represent the non-uniformity of the droplet distribution after the first bend 

by a compensation of the droplet volume fraction along the outer wall of the bend, 

accounting for the magnitude of non-uniformity and the rate of remixing. Mathematically, 

the effective bend angle is decreased by a factor dependent on Wilkinson's [70] remixing 

factor and the Reynolds number. 
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3.6 Droplet size distributions and grade efficiency 

3.6.1 Characterization of droplet size distributions 

The grade efficiency is very dependent on the actual droplet size and therefore the total separation 

efficiency is very dependent on the actual droplet size distribution. In all practical cases the droplets 

entering the vane separator will be of different sizes, depending on the application. Droplet size 

spectra produced by commercially available nozzles are often denoted by the manufacturer with a 

certain mean diameter. Generally used are the arithmetic mean diameter 10d , the surface mean 

diameter 20d  and the volumetric mean diameter 30d . These are defined as functions of the droplet 

diameter dD  and the droplet mass distribution function  df D  [4]: 
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For discrete spectra, this can also be written as 
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in which ,D if  is the mass fraction of the droplet size group i  and maxi  is the amount of droplet size 

groups specified.  In order to minimize discretization errors, the group average diameters ,
y
d iD  

should be computed according to their respective power p  or q  as follows: 
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in which ,y p q  and max, min,i i iD D D    is the width of the droplet size group i  with lower 

boundary min,iD  and upper boundary max,iD . The most commonly used form of equation (3.111) for 

efficiency studies is the Sauter mean diameter 32d . It represents the diameter of a sphere having the 

same volume-to-surface ratio as the particle of interest [58]. In the case of droplet spectra, it can be 

defined as the diameter of spherical mono-dispersed droplets having the same volume and area as 

the poly-dispersed droplet spectrum under investigation [4]. The use of the Sauter mean diameter 

for efficiency studies is very appropriate, because it captures both the cubic dependence of the 

centrifugal force on the diameter (assuming that all droplets have the same density) and the square 

dependence of the drag force.  
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3.6.2 Droplet size distributions in power plants 

In most pressurized water reactors, either one or two separation stages are installed47. In the first 

case it concerns either a vane separator or some other type of demister, receiving a large range of 

droplet sizes, including many relatively large droplets (up to 200 µm). In the second case, the first 

separation stage will be a coarse separator in the form of a cyclone separator and the second 

separation stage is usually a vane separator, receiving a much smaller droplet size distribution. Few 

measurements of droplet spectra in (nuclear) power plants have been performed and they are 

therefore not well known48. The moisture mass content at different locations in the steam cycle is 

usually computed from energy balances after measurements of temperature, pressure and mass 

flows and rarely measured directly. The actual droplet spectra at crucial locations in the steam cycle 

can be estimated from the little available measurement data. One such dataset was produced by 

KraftWerkUnion (KWU), as reported by Kolev [34, p. 361], who extrapolates the measurement data 

using the following Boltzmann distribution model: 
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where 1 70.408a   , 2 92.947a  , ,0 10.987μmdD  , 32.661μmD   and 
,i

,

1

d d

d i
d D D

m
m 

  is 

the cumulative mass fraction of all droplets below a diameter ,d iD . A more commonly used relation 

for droplet size distributions is the Rosin-Rammler distribution [54] defined by49 

   1 expv D D


     (3.115) 

in which v  is the cumulative mass fraction of all droplets below a diameter D  and D  and   are a 

size and a distribution parameter respectively. The experimental data, the Boltzmann model and the 

Rosin-Rammler model ( 60µmD   and 1.2  ) are depicted in Fig. 3.25. Both models represent 

the data well, although the Rosin-Rammler model crosses the origin and displays a more natural 

approach towards unity. 

                                                             
47

 This applies to the steam generator as well as to the Moisture Separator & Reheater (MSR). 
48

 Certain methods for moisture measurement exist, e.g. with the use of radio-active or chemical tracers from 

which the amount of moisture can be deduced, but measurement data is not abundant. Although, the reliability 

of these methods is limited, their application appears to become more frequent. 
49

 As cited by Mugele & Evans [48, p. 1319]. 
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Fig. 3.25 Droplet size distribution at the exit of an HP turbine; KWU 

experiments (black) and as modeled using a Boltzmann (red) [34, p. 

361] or a Rosin-Rammler distribution (blue) 

Using equation (3.115) to describe the droplet mass distribution and employing equation (3.113) to 

derive the group average diameters, twenty droplet size groups are defined, with which a 

representative discrete droplet size distribution is constructed (Table 2). 

Table 2 Representative droplet distribution for PWRs, based on KWU 

measurements reported by Kolev [34, p. 361] 

Group Average 
diameter 

Mass 
fraction 

Cum. mass 
fraction 

µm µm % % 

0-4 2.52 3.80 3.80 

4-6 5.07 2.31 6.11 

6-8 7.05 2.41 8.53 

8-10 9.04 2.47 10.99 

10-15 12.66 5.01 16.00 

15-20 17.62 7.47 23.48 

20-25 22.59 4.85 28.32 

25-30 27.58 6.97 35.29 

30-35 32.56 4.41 39.70 

35-40 37.56 6.22 45.92 

40-45 42.55 3.88 49.80 

45-50 47.54 5.42 55.22 

50-60 55.15 7.99 63.21 

60-70 65.13 6.76 69.98 

70-80 75.11 5.67 75.64 

80-90 85.10 4.70 80.34 

90-100 95.09 3.87 84.21 

100-150 126.64 10.82 95.04 

150-200 176.18 2.58 97.62 

>200 250 2.38 100.00 
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3.6.3 Evaluation of total separation efficiency from grade efficiencies 

The efficiency of demisters can be given in terms of the critical (cut-off) diameter. It represents the 

theoretical smallest droplet diameter that can still be separated by the demister. The separation 

efficiency of all larger droplets is assumed unity; below this diameter it is assumed to be zero. 

Because this assumption does not fit theoretical models with non-zero separation efficiency for all 

droplet sizes, and is too simplistic to fit the experimental evidence, cut-size diameters are also 

reported. These represent the bounding diameter for a certain separation efficiency, e.g. 50d  is the 

cut-size diameter above which 50% of the droplet mass is separated50. For example, in his description 

of cyclone theory, Bürkholz [10, p. 78] describes an imaginary cylinder of a certain radius ir , inside a 

conventional cyclone separator with tangential inlet. This imaginary cylinder separates the purely 

rotational flow on the inside of this cylinder (for which constantdv r  ), from the flow governed by 

the conservation of angular momentum on the outside (for which constantdv r  ). He 

consequently concludes that the radial droplet velocity is largest at the radius ir . After equating 

centrifugal and frictional forces at the radius ir , with  iu r  for the inward radial velocity of the gas 

and  iv r  for the tangential velocity, he arrives at a limiting droplet diameter of 
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This definition of the limiting droplet diameter is in fact equal to equation (1.9). In this case, equation 

(3.116) implies is that droplets with a smaller diameter than 50d  will not make it across this 

imaginary border at ir  and will not be separated. 

 

Fig. 3.26 Cyclone separation efficiency for an ideal and a real cyclone 

separator
51

 

                                                             
50

 The syntax of the cut-size diameter is the same as for the mean droplet diameter described before. The same 

syntax is also used to describe a droplet size distribution for which 50% of the droplet volume is below and 

50% is above the diameter 50d  (e.g. [64, p. 62]), which can lead to confusion. 
51

 Reprinted from [10, p. 79]. Copyright Wiley-VCH Verlag GmbH&Co. KGaA. Reproduced with permission. 
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Bürkholz [10] visualizes the interpretation of the limiting droplet diameter in Fig. 3.26, which 

incorporates both the notion of  a cut-off diameter (for the ideal cyclone separator) as well as the 

notion of a cut-size diameter 50d  (for the real cyclone separator). This approach is only applicable to 

cyclone separators with inward rotating gas flows52 and even for those its value is limited. Additional 

difficulties for the determination of the actual separation efficiency are; knowing where ir  is located; 

knowing the actual radial droplet velocity  iu r ; and knowing how much to 'tilt' the graph displayed 

in Fig. 3.26 to represent a 'real' cyclone separator. Instead of a critical or a cut-size diameter, 

sometimes the Sauter mean diameter is used, not only to describe the droplet distribution, but to 

evaluate the overall separation efficiency as well. 

 

Mean or cut-size diameters will not be used in this paper to evaluate the overall separation 

efficiency; it will be computed directly from the grade efficiencies. This is only possible if the grade 

efficiencies are not correlated to the actual droplet size distribution.  The correlation of droplet size 

distribution and grade efficiency was investigated for cyclone separators by Ontko [50], by 

performing an experimental regression analysis on two batches of test particles with different 

particle size distributions. According to Hoekstra [22, p. 17] no relation was found between grade 

efficiency and particle size distribution, but in fact, the data was inconclusive and circumstantial 

evidence suggests the contrary [50, p. 100]. Cyclone separators can be designed to withstand large 

droplet mass fractions while maintaining reasonable separation efficiencies for droplets that are not 

too small. Vane separators are designed for smaller droplet spectra and for large liquid mass 

fractions the overall separation efficiency is seriously diminished. This is mainly caused by the 

instability of the growing liquid film on the vane walls, which greatly increases liquid re-entrainment, 

enhanced by the inability to drain the separated liquid flow from the flow channel53. In the regime of 

small liquid mass fractions and low Reynolds numbers, droplet coalescence and droplet break up are 

insignificant with relevance to the initial droplet size distribution54. This strengthens the assumption 

that droplet size distribution and grade efficiency are uncorrelated in vane separators. The overall 

separation efficiency  , given a certain droplet mass distribution  df D , is then defined as 

    
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in which 3
,d iD

  is the grade efficiency computed for the group volume averaged diameter 3
,d iD  

(defined by equation (3.113)) with mass fraction ,D if . The sum is over all specified droplet size 

groups. The total separation efficiency shall mean in a theoretical context the weighted sum of all 

grade efficiencies, as prescribed by equation (3.117). In an experimental context, the total separation 

efficiency is determined directly by the ratio of measured separated and inlet mass flows. 

                                                             
52

 Bürkholz [10] defines  iu r  as the volumetric flow rate divided by the outer area i ir h  of the imaginary 

cylinder. For vane separators, the radial gas velocity gu  was fully neglected in section 1.3.2.  
53

 More on this topic will be discussed in chapter 4.1. 
54

 Refer to chapter 4.1.4.1. 
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3.6.4 Total grade efficiency 

The total efficiency of the vane separator can be calculated from the separate stage efficiencies in 

the following way ( [52], [10]): 

  
1

1 1
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D s

s

 


     (3.118) 

in which s  is the separation efficiency for each stage and D  is the separation efficiency of the 

entire vane separator, for a given droplet diameter D  (grade efficiency). This equation is slightly 

altered to account for the contributions of both bends and straight sections: 

    
1

1 1 1
n n

D C S  


      (3.119) 

3.6.4.1 Inlet and outlet sections 

It is noted that equation (3.119) assumes each vane separator to start and end with full and identical 

bends, in between which straight sections of equal length are located. For practical reasons, vane 

separators usually start and end with one half of a full bend. From equation (1.16) it is clear that the 

separation efficiency 1 2  of one half of a full bend is given by 

 1 2 1 1 C      (3.120) 

This result was already noted by Ushiki [63, p. 293]. Not counting the inlet and outlet sections as 

stages, and assuming they are directly connected to a full bend (i.e. there are no additional straight 

sections to be accounted for), leads to the following modification of the original equation (3.119): 
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This modification is noteworthy when carrying out comparisons with empirical data. In many sources 

in literature, the inlet and outlet sections are not counted as stages, but they definitely contribute to 

the separation efficiency of the vane separator. This convention will be followed in this paper as well, 

but it should be noted that whenever the number of stages n  is mentioned, the inlet and outlet 

sections account for the contribution of an additional full bend, leading to an effective number of 

curved sections of 1n  . If the inlet and outlet sections resemble straight sections rather than half 

bends, equation (3.121) reads 

    1 1 1
n n

D C S        (3.122) 
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4 Film flow, re-entrainment and pressure drop 

Not all phenomena relevant to droplet paths and the separation efficiency of vane separators in 

general, are captured by the analytical model described in the previous chapter. Because the impact 

of certain phenomena on the performance of vane separators can be significant, their elaboration is 

imperative for a decent analysis of experimental results. The most relevant phenomena are related 

to liquid film flow, re-entrainment and pressure drop. 

4.1 Film separation, carry-over and re-entrainment 

In the analytical model described in the previous chapter, all droplets hitting the vane separator wall 

are considered separated from the flow. Droplets that were previously separated from the flow can, 

however, get re-entrained into the gas flow. Several mechanisms can be responsible for re-

entrainment: 

 

 At sufficiently high gas velocity and liquid film thickness, the waves forming on the liquid film 

surface become unstable and droplets are separated from the wave crests into the gas flow. 

This is often referred to as the over-entrained regime. 

 At high liquid loading factors, the amount of droplets deposited on the wall may cause the 

liquid film to exceed a certain limiting equilibrium thickness and become unstable. This is 

often referred to as the under-entrained regime. 

 At sharp convex corners in the vane separator geometry, centrifugal forces can surmount the 

surface tension, causing the liquid film to separate from the wall entirely. This is referred to 

as liquid film detachment. 

 At high gas velocities in relatively high vertically oriented vane separators, the gravitational 

down-flow of the liquid film may not suffice to drain the film before it reaches the next or 

even the ultimate separation stage. Re-entrainment then occurs after the vane separator, as 

the liquid film literally flows into thin air. The transportation of liquid film into the next stage 

is referred to as carry-over. 

 In general, insufficient drainage of the liquid film can cause a rising water level at the bottom 

of the vane separator. At high liquid loading in relatively narrow channels, the liquid film can 

reach across the channel and block the gas flow. This is often referred to as flooding. 

 

Liquid film flow and re-entrainment effects are relevant for the functionality and efficiency of the 

vane separator design. Its analysis is helpful for selecting the correct design and the amount of vane 

separators55 for the physical conditions at hand. 

4.1.1 Liquid film formation 

A good vane separator is designed to avoid, or at least minimize re-entrainment effects caused by 

the mechanisms listed in the previous section. In order to estimate such effects, the formation of the 

                                                             
55

 Assuming a certain optimum channel width for each vane separator, the total frontal area for the flow is 

defined by the total amount of vane separators installed. For a given mass flow, the amount of vane separators 

defines the gas velocity through each of the channels. 
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liquid film on the walls is investigated. Azzopardi & Sanaullah [3] studied liquid film wave formation 

as well as film separation in a vane separator. They performed measurements of liquid film 

thicknesses upon a vertical plate, under the influence of a transverse gas flow. Comparing their 

results with a Nusselt flow profile without transverse gas flow56, it appeared that the liquid film 

thickness increases with liquid flow rate, but is almost insensitive to the gas flow rate [3, p. 3559]. 

This led to the assumption that the horizontal shear force and the gravitational body force are 

uncorrelated [3, p. 3561]. Using this result, James et al. [27] provide an analysis of a falling liquid film 

under transverse gas flow. They consider a simple vertically oriented plate along which a liquid film 

propagates in two directions (see Fig. 4.1). The flow in the z -direction it is driven by gravity only and 

in the x -direction it is driven by the superficial force from the gas flow only. 

 

Fig. 4.1 Schematic diagram of a flat surface with local coordinates
57

 

The two-dimensional mass conservation of the liquid film is given by 
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in which fh  is the film thickness (height), dG  the droplet deposition flux (independent of z ), f  

the density of the liquid film and u  and w  denote the height-averaged velocities in x - and z -

direction. James et al. [27] assumed a linear velocity profile for   , zu x  and a Nusselt profile for 

 , zw x 58, arriving at the following governing equations for the liquid film motion: 
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56

 Details of the Nusselt flow profile will follow later in this section. 
57

 Reprinted from [27, p. 473]. Copyright (2005), with permission from Elsevier. 
58

 The Nusselt profile describes the flow along a vertical wall of a viscous condensing fluid, driven by gravity 

only. In this case, the film growth is not driven by thermal (condensation), but by mechanical mass transfer 

(droplet separation). 
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in which f  is the dynamic viscosity and yx  is the interfacial shear stress on the liquid film surface 

in the x -direction. Inserting this into equation (4.1) leads to 
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Neglecting gravity, the authors reach the following solution for the thickness ngh  at the end of a wall 

section with length W : 
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where dG  is the average droplet flux over the wall length W . The actual film thickness at the upper 

right hand corner of the plate will, under the influence of gravity, be less than equation (4.5) 

prescribes, due to the downward motion of the liquid film. James et al. [27] continue to show that, 

for sufficiently large z , the film thickness will reach a limiting value equal to  ngh W 59. This limiting 

value exists, because it represents the equilibrium value at which the gravitational force is balanced 

by the interfacial shear stress. The distance at which this equilibrium height is reached, decreasing 

with increasing gas velocity. 

 

James et al. [27] compute the results from equation (4.5) with the use of CFD. By evaluating the 

interfacial shear stress analytically, the limiting liquid film height can be given an analytical 

interpretation. The interfacial shear stress is given by 
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Inserting equation (4.2) and solving for  yx x  leads to60 
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 (4.7) 

Defining the variable  d
f gf g f gq c h u  , equation (4.7) can be written as 
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59

 The section under investigation had a width of 23mm and a height of 130mm. From their model, the liquid 

film height at the end of the section ( x W ) appears to have reached its maximum at the bottom ( z L ), for 

gas velocities at or above 8 m/s [27]. 
60

 The quadratic formula is applied. The negative square root is chosen to ensure the physical limit 
0

lim 2 0
gu

u


 . 
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 F q  is a decreasing function of q , for which  
0

lim 1
q

F q


  and  lim 0
q

F q


 . The first limit 

involves large liquid film velocities and liquid film heights, representing an increasingly linear liquid 

film velocity profile, for which  , 2gu x z u . The second limit involves increasingly small liquid 

film velocities and liquid film heights, for which  , 0u x z  . For large q ,  F q  varies only slowly 

with q  (Fig. 4.2). 

 

Fig. 4.2 The function F(q) that defines the ratio of gas and film velocities 

Fig. 4.2 implies that for small liquid film heights ( 1q  )61, g f gu u u   and equation (4.6) 

reduces to 
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Equation (4.9) is a common equation for the interfacial shear stress, following the assumption 

gu u  for all gas velocities. The function  F q  relates the validity of this assumption to the 

physical conditions of the system expressed by the parameter q . 

 

Verlaan [64, p. 69] used the interfacial Fanning friction coefficient if  given by Wallis [65]62, with 

twice the channel width minus the film thickness (  2h R fD h  ) for the hydraulic diameter: 
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 For example: in a water film of 1 mm thickness in air flow of 5 m/s at atmospheric conditions ( 9.4q  ), the 

film surface velocity is below 5% of the air velocity. 
62

 It is noted that Wallis [65] was investigating stratified and annular flow in a pipe and not film flow on plates. 

The interfacial Fanning friction factor was defined as a function of the film thickness relative to the pipe 

diameter: fh D . The supposed equivalence of the pipe diameter and the hydraulic diameter of non-

cylindrical geometries in this formula has, to the knowledge of this author, not explicitly been established. 

However, for relatively thin liquid films at low and mid-range Reynolds numbers, the interfacial friction 

factor does not deviate much from the gas-wall friction factor and equation (4.10) is a good approximation 

(refer also to Fore et al. [16]). 
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Assuming a no slip condition, the average droplet flux dG  can be written in terms of the separation 

efficiency s  of the stage s  in question: 

 
,d g R d s sd s

d

um
G

HW W

   
    (4.11) 

in which H  represents the total height of the vane separator and ,d s  represents the droplet 

volume fraction at the inlet of stage s . Considering film flow along a straight section of a vane 

separator (where most deposition occurs), the analysis for a flat plate described above is valid. 

Equations (4.9) and (4.11) are inserted into equation (4.5), leading to an alternative formulation of 

the limiting liquid film height at the end of the stage, in terms of vane separator specific parameters: 
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  (4.12) 

It is noted that equation (4.12) implicitly accounts for the stage width W , through the integration 

length included in the stage separation efficiency s . The liquid film height decreases with increasing 

gas velocities, due to the influence of the shear stress. This contradicts the statement made by 

Azzopardi & Sanaullah [3] that the liquid film height appeared insensitive to the gas velocity, but it 

concurs with James et al. [27, p. 475] who note the same (Table 3). 

Table 3 Limiting liquid film height (by numerical simulation) at various gas 

velocities for droplet distributions A and B with average droplet 

diameters of 25 µm and 40 µm respectively 

Bulk gas speed (m/s) Liquid film height for inlet droplet size distribution ( µm ) 

 Distribution A Distribution B 

2.96 246 352 
4.14 248 307 
8.00 194 230 

 

Fig. 4.3 depicts liquid film heights computed with the model from James et al. [27] 63, with the 

application of the interfacial Fanning friction coefficient (resulting in equation (4.12)). The result is 

compared to the data reported by Azzopardi & Sanaullah [3, p. 3560]. The blue line depicts the result 

for the Nusselt model without shear gas flow, i.e. for the following solution of equation (4.4): 

    
1

2 33f f d fh H HG g    (4.13) 
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 For the applied parameters refer to Azzopardi & Sanaullah [3]. The gas velocity is 13.3 m/s. 
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Fig. 4.3 Liquid film thickness as a function of liquid Reynolds number 

The liquid film height predicted by equation (4.12) is twice as high as the measured value and as the 

shearless Nusselt model. The model by James et al. [27] suggests that the vertical plate used by 

Azzopardi & Sanaullah [3] is high enough for the liquid film to reach its limiting value. Furthermore, 

Fig. 4.4 shows that a possible underestimation of the average film thickness by Azzopardi & 

Sanaullah [3], due to a still growing liquid film along the width of the plate, is highly unlikely. 

 

Fig. 4.4 Liquid film thickness measured along the width of a vertical plate for 

Re 39500g   and Re 1600l 
64

 

This implies that the liquid film height computed from equation (4.5) should correspond more closely 

to the experimental results reported by Azzopardi & Sanaullah [3]. One possible reason for the 

discrepancy could be an under-estimation of the interfacial shear stress. Fig. 4.4 shows that the film 

surface was quite rough and Verlaan [64, p. 70] reported that waves on the liquid film caused a 

higher gas/liquid interaction (as opposed to smooth film flow). Kowalski [37] suggests two different 

relations for the interfacial shear stress: 

 0.520.96Rei Gf    (4.14) 

  
0.255 0.3 0.837.5 10 1 Re Rei g g lf 
      (4.15) 
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 Reprinted from [3, p. 3560]. Copyright (2005), with permission from Elsevier. 
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These equations are valid for smooth and wavy stratified flow, respectively65. Although the transition 

regime defined by the same author suggests smooth film flow for the conditions of the experiment in 

Fig. 4.3, in view of the film roughness displayed by Fig. 4.4, it is relevant that equation (4.15) gives 

higher interfacial friction factors than equation (4.14). However, to reach the film thickness predicted 

by the Nusselt profile would require an interfacial friction factor of approximately 5 times the 

interfacial Fanning friction factor, which is unlikely to be the case. 

 

The Nusselt profile defined by equation (4.13) apparently gives decent approximations of liquid film 

heights under transverse gas flows, corresponding to the recommendation by Kolev [32, p. 363]. This 

equation will therefore be applied for the purpose of estimating liquid film height at vane separator 

walls. The interfacial Fanning friction factor, as defined by equation (4.10), is applied for the 

computation of interfacial shear stress and liquid film velocity. 

4.1.2 Liquid film carry-over 

Vane separators depend on some form of gravitational drainage of the liquid film. In vertically 

oriented vane separators, the liquid film that is formed on the vane walls will flow downward at a 

certain angle, until it reaches some type of collector at the bottom of the stage. The flow angle with 

which the liquid film moves along the vane walls is relevant for the drainage characteristics of the 

vane separator. Pick-off hooks of some type are a safe way to ensure drainage of the separated liquid 

within the same stage, but they increase pressure drop and perform poorly at higher flow velocities 

(refer to chapter 4.2.2). Perforations are also used to provide means to transport the liquid film into 

parallel drainage channels, that are separated from the main flow. These measures do not prevent 

carry-over of the liquid film into subsequent stages. The physical limits of carry-over under different 

conditions are investigated in the following sections. 

4.1.2.1 Limiting drainage 

The ratio of the height-averaged velocities  ,u x z  and  ,w x z  defines the film flow angle 

 ,x z  with the horizontal axis, of the two-dimensional path along the wall, which a control 

volume in the liquid film will follow, under the influence of gravity66: 
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Assuming the width of the wall is sufficient for the liquid film to be approximated by the Nusselt 

profile, equation (4.13) is inserted into equation (4.16), leading to an expression for the film flow 

angle in terms of the height z  of the vane wall (as measured from the top): 
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 The latter equation is valid for 22600 Re 430600g   and 8800 Re 47800l  . 
66

 The control volume describes the path a separated droplet would take, while submerged in the liquid film. It 

represents the angle with which the bulk of the liquid is expected to flow and does not necessarily correspond 

to the film flow angle, visible when observing the superficial flow of the liquid film (refer to [3, p. 3559]). 
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Equation (4.17) is a decreasing function of z , corresponding to the fact that the liquid film height 

increases with z  and the film flow angle increases with the liquid film height, due to the increasing 

influence of gravity. For a vane wall with height H , the maximum flow angle H  thus exists at the 

bottom of the vane. Since  tan ,x z  scales with  ,fh x z , the liquid film will start on a horizontal 

path and gradually move downward (Fig. 4.5). 

 

Fig. 4.5 Limiting angle for downward liquid film flow
67

 

When an imaginary line is drawn from the bottom right corner of the plate upward with angle H , it 

represents a virtual border which can only be crossed by the liquid film from the left, but never from 

above. This implies that a limiting vertical distance Z  exists, which no droplet, after being immersed 

into the liquid film, will travel beyond before reaching the edge of the plate at W . This vertical limit 

is given by 
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  (4.18) 

For small values of H , the height is greater than this vertical limit ( H Z ) and the largest part of 

the separated droplets will not reach the bottom of the stage before they have reached its end68. 
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 Reproduced from [27, p. 473]. Copyright (2005), with permission from Elsevier. 
68

 Because the film has an initial downward velocity of zero, part of the liquid film below this limit will also 

reach the right end of the stage. This fraction of droplets is neglected. 
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Making the approximation that the droplet deposition rate is uniformly constant, at maximum a 

portion 2Z H  of the droplets can be drained down the bottom of the vane, within the same stage 

as they were separated.  The result is that part of the liquid film will be carried over to the next 

separation stage. The lower limit of deposited mass flow, that cannot be gravitationally drained 

down the bottom of the stage, is in this case described by 1 2Z H . For larger values of H , for 

which H Z , this limit is described by 
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1 2 ,                                     
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  (4.19) 

4.1.2.2 Limiting carry-over mass flow 

The existence of a limiting liquid film height implies a limiting horizontal liquid film mass flow. 

According to equation (4.7), the liquid film velocity  ,Wfu z  at the edge of the wall is given by 
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  (4.20) 

in which the dimensionless parameter C  is given by 
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The dimensionless parameter C  is related to the ability of the gas flow to induce a certain velocity in 

the film and will be referred to as the liquid film susceptibility coefficient. If the Nusselt liquid film 

height is employed, equation (4.20) is a slowly increasing function of z . A conservative 

approximation of the maximum (height-averaged) liquid film velocity along the edge of the wall is 

thus given by    ,W ,Wf fu z u H . The maximum liquid film mass flow that can propagate to the 

next stage, is then given by 
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Employing equation (4.11), the ratio of propagating liquid film mass flow over deposited mass flow is 

given by 
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Equation (4.23) represents the upper limit of deposited mass flow that can be carried over to the 

subsequent stage. 
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4.1.2.3 Expected carry-over 

The drainage and carry-over limits, defined by equations (4.19) and (4.23) respectively, are depicted 

as a function of the gas velocity in Fig. 4.669. This figure also shows the film flow angle H  (blue), 

prescribed by equation (4.17). At very low gas velocities, the liquid film flows straight downward and 

the transverse liquid film velocity is zero, leading to limits of 0% (0% of the separated liquid can be 

carried over to the next stage and 0% can not be gravitationally drained). At increasing gas velocity, 

the transverse liquid film velocity increases at constant liquid film height (the applied shearless 

Nusselt liquid film height is independent of gas velocity). At just below 5 m/s the transverse liquid 

film velocity has reached a value at which all deposited liquid can potentially be carried over to the 

next stage. As the film flow angle decreases with the gas velocity, the amount of deposited film that 

will not reach the bottom significantly increases. At 10 m/s about 90% of the deposited droplets can 

no longer be drained gravitationally and will be carried over to the next stage. This large value is a 

direct consequence of the relatively high and narrow plate (height x width = 130 x 23 mm). With no 

droplet re-entrainment considered, the actual amount of liquid being carried over to the next stage is 

expected to lie within these limits. With droplet re-entrainment considered, the effective amount of 

liquid building the film is reduced and its height will be smaller. This leads to a significant decrease of 

the carry-over limit (red line), to a reduction of the film flow angle (blue line) and thus to a slight 

increase of the drainage limit (green line). Droplet entrainment thus reduces the range in which the 

actual carry-over is expected to lie. 

 

Fig. 4.6 Carry-over (red) and drainage limits (green) and film flow angle 

(blue) as a function of gas velocity 

At around 4.5 m/s the film flow angle is such that the limiting vertical distance equals the height of 

the vane separator wall: Z H . This point is schematically illustrated in Fig. 4.7. Beyond this film 

flow angle, the amount of liquid film that can no longer be gravitationally drained (the area of the 

wall above the dotted line in Fig. 4.7) increases much slower than below this film flow angle, leading 

to the decreasing growth rate of the drainage limit in Fig. 4.6. 
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 Physical and geometrical parameters are taken from James et al. [27]: water droplets in air at atmospheric 

pressure, an effective channel width of 10 mm, a channel height of 130 mm, a wall length of 23 mm and a 

constant liquid mass flow (for all gas velocities) of 0.01 kg/s. The same parameters are applied in the 

following sections as well. 
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Fig. 4.7 Transition from Z<H to Z>H
70

 

If the liquid film height is no longer given by the shearless Nusselt profile (equation (4.13)), it can be 

used to equate the carry-over and drainage limits (as given by equations (4.19) and (4.23)). The 

resulting liquid film height can be interpreted as the average liquid film height at the end of the wall 

section, needed to carry over the liquid that cannot be drained gravitationally. The result is depicted 

in Fig. 4.8. The film flow angle and the drainage limit are affected only slightly; the carry-over limit 

coincides with the drainage limit. The resulting liquid film height71 is depicted in Fig. 4.8 on the right, 

along with the constant liquid film height from the shearless Nusselt profile. The variable liquid film 

height lies about 100 µm below the shearless Nusselt value. Below 4.5 m/s (for which Z H ), the 

liquid film is relatively constant, because here both limits are nearly linear in fh  (compare equations 

(4.16), (4.18) and (4.23)). Beyond this gas velocity, the liquid film height decreases, because here the 

drainage limit increases more slowly, thus reducing the necessity for a sustaining liquid film height. 

 

Fig. 4.8 Equalized carry-over and drainage limits and consequent flow angle 

(left) and corresponding liquid film height (right) 

Adding all carried-over liquid from the previous stage to the droplet deposition in the next stage (not 

considering the height or the flow angle at which it enters), the amount of liquid film present in each 

stage can be deduced as well as the part of it that is drained. The result is depicted in Fig. 4.9, for a 

gas velocity of 5 m/s and a separation efficiency of 90%. As in Fig. 4.8, carry-over and drainage limits 

have been set equal to arrive at the depicted liquid film height. In the first stage, 90% of the droplets 
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 Reproduced from [27, p. 473]. Copyright (2005), with permission from Elsevier. 
71

 Because there is no straightforward solution for the liquid film height from the equation of carry-over and 

drainage limits, the result has been reached numerically. 
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are deposited, but only 37% (of the inlet droplet mass) is being gravitationally drained. After the 

fourth stage, the droplet mass no longer contributes to the liquid mass deposition, but the liquid film 

being carried over from the last stages is with 23% still significant. Not accounting for carry-over, the 

total droplet separation efficiency after the fourth stage would be 99.99%. Even after seven stages, 

3.9% of the initial liquid mass is being carried over and can be expected to become entrained in the 

air flow, corresponding to an effective separation efficiency of 96.1%. The liquid film height 

decreases from 410 µm in the first to 157 µm in the last stage. This result is conservative, because 

the liquid film carried over from the previous stages has been treated equivalent to a droplet 

deposition uniformly distributed over the stage wall area. In reality, most of the liquid film mass will 

have flowed down a significant distance as it enters the next stage, leading to a larger part of the 

carried over liquid film to be drained gravitationally in the subsequent stage(s) than is accounted for. 

 

Fig. 4.9 Carry-over and drainage (green and red columns) and liquid film 

height (black line) through several stages of a vane separator for a gas 

velocity of 5 m/s 

4.1.2.4 Perforated wave plates 

Vane separators can be equipped with perforated walls in order to enhance the liquid drainage by 

separating the film from the air flow into separate drainage channels. Kolev [34, p. 369] assumes re-

entrainment from the liquid film to occur at non-perforated wall sections only and decreases the 

Quintessence 

Considering the limiting liquid film height, transverse velocity and flow angle, upper limits 

can be defined for the percentages of liquid film that can be gravitationally drained and that 

can potentially be carried over by the liquid film. Not regarding droplet re-entrainment, the 

actual amount of carry-over is expected to lie within these limits. By equating these limits, 

a liquid film height can be deduced, that lies below the shearless Nusselt film height and 

represents the average liquid film height for carry-over of the liquid film. This allows for an 

analysis of the liquid film mass being carried over through the consecutive stages of a 

vane separator. 
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entrainment accordingly. One can also consider a reduction of the liquid film height by the amount of 

liquid drained from the flow channel by the perforations. Adjusting the droplet deposition rate by 

introducing the dimensionless film growth rate 1f perf dG G G  , which accounts for the 

perforation drainage, leads to the following shearless Nusselt profile for the liquid film height: 
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Accounting for drainage through the perforations, of the part of the film which cannot be drained 

gravitationally (down the bottom of the wall), leads to the following adjustment of the drainage 

limits: 

 
 

   2

1 2 ,                                     

1 2 ,        

f

f

G Z H Z H

G Z Z H Z H Z H

 

   
  (4.25) 

Assuming half of the deposited droplet mass to be drained through perforations ( fG  = 50%), leads 

to an adjustment of the expected carry-over according to Fig. 4.10 (compare with Fig. 4.6). 

 

Fig. 4.10 Carry-over (red) and drainage limits (green), and film flow angle 

(blue), accounting for 50% perforation drainage 

The impact of perforated plates on the liquid carry-over through the consecutive stages ( fG  = 50%) 

is depicted in Fig. 4.11. Contrary to Fig. 4.9, the total drainage is close to 100% after the fifth stage 

and the liquid film height is reduced to 43 µm in the last stage. 
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Fig. 4.11 Carry-over and drainage through several stages of a vane separator 

with 50% perforated plates 

4.1.3 Film detachment 

Film detachment from convex corners is an important mechanism for entrainment in vane 

separators, leading to potentially large amounts of re-entrained liquid. Because most of the 

deposition occurs shortly before each convex bend, the potential for wave crest formation before 

the bend is small, while the liquid film height reaches its maximum as it flows around the corner. Fig. 

4.12 depicts the deposition rate reported by James et al. [27, p. 473], showing the droplet deposition 

rate as a function of the position x  along the width of the specific vane. In this geometry, no 

deposition at all occurs in the first one third of the vane width and most of it occurs on the very edge. 

 

Fig. 4.12 Investigated separator geometry (left) and droplet deposition along the 

width of the straight wall sections of the wave-plate (right)
72
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 Reprinted from [27, p. 473]. Copyright (2005), with permission from Elsevier. 

Quintessence 

Additional drainage channels, separated from the main air flow, but connected to the liquid 

film through perforations in the channel walls, can lead to a significant reduction of liquid 

film carry-over, as compared to non-perforated channels walls. 
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Azzopardi & Sanaullah [3] model re-entrainment by modifying the model by Owen & Ryley [51] for 

thin film flow around sharp corners, by decoupling gravity and interfacial shear. Balancing centrifugal 

and surface tension forces, they arrive at the following relation for which the compression force 

becomes negative, defining film separation from the inner wall [3, p. 3562]73: 
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in which   is the surface tension, R  is the inner radius of the bend and fh  is the film thickness. 

According to James et al. [27, p. 475], this model over-predicts the critical film thickness found in 

experiments and the discrepancy increases with bend radius R . A different model for the critical film 

thickness by Llory et al. [43], based on the displacement of the film surface as it flows around a 

corner, leads to a better agreement with the experimental values (Fig. 4.13) [27, p. 476]. The analysis 

by Llory et al. [43] does not lead to a simple equation for the critical film thickness, which is a direct 

advantage of the model by Azzopardi & Sanaullah [3]. 

 

Fig. 4.13 Critical film thicknesses predicted by different authors as compared to 

experimental values
74

 

Equation (4.26) can also be interpreted in terms of the critical gas velocity at which a liquid film will 

separate as it flows around a convex corner. Employing equations (4.9) and (4.10), the following 

relation for the critical gas velocity cu  can be obtained: 
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  (4.27) 

Applying the shearless Nusselt profile for the liquid film height and an inner bend radius of 1 cm, this 

leads to a critical gas velocity for liquid film separation of 6.7 m/s75, although the local gas velocity 

                                                             
73

 Azzopardi & Sanaullah [3] missed a power of 2 on their mean transverse velocity. This error has been 

corrected here. 
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 Reprinted from [27, p. 476]. Copyright (2005), with permission from Elsevier. 
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 For the physical and geometrical parameters refer to James et al. [27] (see also footnote 69). 
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across a sharp convex corner can significantly exceed the average gas velocity. This is visualized 

nicely by James et al. [27] (Fig. 4.14), who summarize that a high speed jet detaches from each 

convex corner, creating a region of very slow moving medium immediately behind it. In addition to 

promoting film detachment from the convex corners, extreme sharpness can cause recirculation 

zones behind each bend. 

 

Fig. 4.14 Velocity field (in m/s) throuhg a vane separator channel
76

 

4.1.4 Droplet re-entrainment 

4.1.4.1 Droplet generation mechanisms 

Droplet generation mechanisms can be divided in four distinct classes: droplet-droplet interaction, 

droplet break-up, splashing of impinging droplets and re-entrainment of droplets from a liquid film77. 

Droplet-droplet interaction can cause both coalescence and fragmentation of droplets in the 

channel, but requires a certain minimum liquid volume fraction for the droplets to interact. For fine 

droplet separators, even for those operating in high pressure steam systems, droplet volume 

fractions seldom exceed 0.1%, from which is is safe to conclude that droplet-droplet interaction does 

not play a significant role in vane separators [28, p. 97]. Due to the small size of the droplets and the 

relatively low velocities in the vane separator channel, the same can be said for droplet break-up [28, 

p. 99]. Because the threshold for splashing of impinging droplets predicted by most models is too 

high for normal vane separator flow conditions, this mechanism also cannot account for the 

generation of new droplets inside the channel [28, pp. 105-106]. Re-entrainment from the liquid film 

thus appears to be the main mechanism for droplet generation. 

4.1.4.2 Film stability 

Droplet re-entrainment, as occurring from wavy liquid film flow on flat surfaces, can be instigated in 

several ways. Different mechanisms for droplet re-entrainment are handsomely illustrated by Ishii & 

Grolmes [25, p. 312] (Fig. 4.15). If and when the different mechanisms occur, depends on factors 

mainly related to the turbulence of the liquid film and the consequent roughness of its surface. In Fig. 

4.15 on the right, the authors show that below a certain liquid film Reynolds number, no re-

entrainment is expected to occur, independent of gas velocity. For very large liquid film Reynolds 

numbers, the critical gas velocity is expected to be constant. 
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 Reprinted from [27, p. 470]. Copyright (2005), with permission from Elsevier. 
77

 A nice visualization of droplet generation mechanisms is provided by Jøsang [28, p. 97]. 
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Fig. 4.15 Mechanisms for droplet re-entrainment (left) and logarithmic 

relationship between critical gas velocity and liquid film Reynolds 

number (right)
78

 

Miles [47, p. 606] concludes that in order for a film, bounded below by a fixed wall and above by a 

free surface, having a linear velocity profile, to be stable (i.e. not to have enough energy to produce 

wave crests), it is sufficient that either a certain film Reynolds number or a certain film Weber 

number is not exceeded: 

 Re 203
f f f

f
f

u h


    (4.28) 

 
2

W e 3
f f f

f

u h


    (4.29) 

where fu  is the liquid film velocity at the film surface and   the surface tension. These limits are 

interpreted as the inception of re-entrainment in the over-entrained regime. 

 

Nakao et al. [49, p. 428] apply a modified version of the Weber number and report a limiting value of 

1.5 for the stability of a falling film: 

 
 

2

We 1.5
g g f f

f

u u h




    (4.30) 

According to Swanborn [61, p. 73] roll waves (type 1) are associated with thick liquid films and occur 

at Re 4 200ff f f fu h   , in which the liquid film velocity fu  is defined as the superficial 

liquid film velocity. Wave undercutting (type 2) is associated with high gas velocities and thin films 

and, independent of the direction of the gravity vector, occurs at Re 200f  . 
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 Reprinted from [25, p. 312]. Copyright (1975) M. Ishii and M.A. Grolmes. Permission granted. 
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Ishii & Grolmes [25, p. 315] report that for Re 4 160ff f f fu h    (horizontal or vertical 

upflow) or Re 2f   (downflow), the critical Weber number for the inception of roll wave re-

entrainment is 17, provided the gas velocity is sufficiently high. Below these limits, assuming a 

similarity with the process for break-up of falling droplets, these authors report the following 

inception point for re-entrainment by wave undercutting: 

 
1.5 0.75

Re

g f g
g

f f ff g f

u
u

u h

  

   
     (4.31) 

Ishii & Grolmes [25, p. 316] also report a minimum film Reynolds number, below which no re-

entrainment can occur, because the wall boundary layer is larger than the liquid film thickness: 
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From this equation it follows that for air-water systems at atmospheric pressure the minimum liquid 

film Reynolds number is 56. Therefore, according to these authors wave undercutting is not a 

phenomenon to be expected for vertical down flow of air-water systems at atmospheric pressure. 

The same is valid for water-steam systems at any pressure. 

 

Wallis [65, p. 317] claims that, as long as viscous forces can be ignored, which corresponds to a 

certain minimum liquid film height, the critical gas velocity is given by the equation 
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f g g
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Verlaan [64, p. 72] reports a gas velocity for the transition from stable to unstable waves that is 

dependent on gravity and is valid for horizontal flow: 

 
2 f

g
g

g
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
   (4.34) 

He also reports a minimum Reynolds number below which no entrainment is possible, irrespective of 

the gas velocity: 

 

3 4 3 2

minRe 38.7
f g

g f

 

 

   
    

   
  (4.35) 

which for an air-water system leads to a minimum Reynolds number of 14.7 [64, p. 72]. 
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The relation between the inception of re-entrainment and its rate of increase is illustrated by Ishii & 

Grolmes [25, p. 309] (Fig. 4.16). The rate of increase of entrainment is slow when the gas velocity for 

the inception of entrainment is only slightly exceeded, but there exists a certain gas velocity at which 

the rate of increase of re-entrainment suddenly increases and becomes linear with the gas velocity. 

 

Fig. 4.16 The onset of entrainment
79

 

From the equations listed above, critical superficial velocities can be deduced, at which the inception 

of re-entrainment is expected to occur (Table 4)80. These limits suggest that beyond these gas 

velocities, wave crests will form and a certain amount of droplets may be re-entrained. Considering 

that the listed liquid film heights correspond to the maximum film thickness under the given 

conditions, the table contains conservative values. 

Table 4 Critical superficial film and gas velocities for water-air systems 

according to relations by different authors 

Author(s) Flow direction Relation Critical superficial 
velocity (m/s) 

   film gas 

Miles [47] horizontal Re 203f    0.20  

 horizontal We 3f    0.34  

Nakao et al. [49] down We 1.5f    13.6281 

Swanborn [61] all Re 200f    0.10  

Ishii & Grolmes [25] down minRe f   0.0279  

Wallis [65] horizontal gu    30.61 

Verlaan [64] horizontal gu    6.72 
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 Reprinted from [25, p. 309]. Copyright (1975) M. Ishii and M.A. Grolmes. Permission granted. 
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 For the physical and geometrical parameters refer to James et al. [27] (see also footnote 69). 
81

 The film velocity has been neglected. 
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4.1.5 Experimental critical gas velocities 

In the context of experimental data, the critical gas velocity is usually a more general limit for the 

onset of re-entrainment, comprising all mechanisms of re-entrainment. The velocity beyond which 

re-entrainment becomes significant, is an important aspect for the application of vane separators. 

The influence of the critical gas velocity on the separation efficiency of vane separators is 

schematically depicted by Verlaan [64, p. 30] (Fig. 4.17). 

 

Fig. 4.17 Schematic representation of critical gas velocity
82

 

Verlaan [64, pp. 62-63] reports experimental separation efficiencies for different homogeneous gas 

velocities and ascertains that the increase in separation efficiency becomes ever smaller with 

increasing gas velocity (Fig. 4.18). He concludes that for the investigated vane separator, at about 6 

m/s a maximum separation efficiency is reached which cannot be increased further. 

  

Fig. 4.18 Separation efficiency as a function of droplet size for homogeneous gas 

velocities of 4 m/s (squares), 6 m/s (stars) and 8 m/s (diamonds)
83
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 Reprinted from [64, p. 30]. Copyright (1991) C.C.J. Verlaan. Permission granted. 
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 Reprinted from [64, p. 63]. Copyright (1991) C.C.J. Verlaan. Permission granted. 
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The data in Fig. 4.18 is taken from vane separator type a in Fig. 4.19. Fig. 4.19 also depicts two other 

vane separator types, which show a sharp decrease in separation efficiency beyond gas velocities of 

10 m/s and 8 m/s respectively. Decreasing channel widths and increasing bend angles appear to have 

a strong negative effect on the critical gas velocity. 

 

Fig. 4.19 Separation efficiency as a function of gas velocity for vane separator 

type a (squares), type b (stars) and type c (triangles)
84

 

Swanborn [61, pp. 120-121] lists minimum homogeneous gas velocities (Table 5) at which film 

instabilities could be observed, for flow through a vane separator geometry of the type Burgess 

Manning 62585. He also records values of 8 m/s, although at increased liquid loading the instabilities 

occur at much lower homogeneous gas velocities. 

Table 5 Film instabilities according to experiments by Swanborn [61, p. 121] 

Liquid loading 
(∙10-5 vol%) 

Homogeneous gas velocity (m/s) for 
which first film instabilities occured 

2 8 

5 8 

10 4 - 4,5 
 

Swanborn [61, p. 127+191] also discusses re-entrainment effects for three other vane separator 

geometries86, for which he plotted the experimental separation efficiency as a function of the 

superficial gas velocity. Although the interpolations between the measurement points appear to be a 

little arbitrary, a sharp decrease in measured separation efficiency was observed above a certain 

critical gas velocity. The critical gas velocity decreased with increasing liquid volume fraction87. 
 

Kall [29, pp. 80-81] reports separation efficiencies at different liquid loadings and air velocities, from 

which it can be deduced that at high liquid mass flows the separation efficiency decreases with air 

velocity. For instance, at a liquid mass flow of 25 kg/m²s the reported separation efficiency is close to 

unity at an air velocity of 7.5 m/s, but is down by 12% at 12.5 m/s. The data from Kall [29, pp. 80-81] 
                                                             
84

 Reprinted from [64, p. 80]. Copyright (1991) C.C.J. Verlaan. Permission granted. 
85

 A depiction of the specific vane separator model can be found in Swanborn [61, p. 125]. 
86

 The specific geometries are depicted in Swanborn [61, p. 125+191] and are referred to as Burgess Manning 

627, Euroform T271 and Prototype. 
87

 Refer to figures 6.31 and 8.12 in Swanborn [61, p. 127+191]. 
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suggests an inception of entrainment (for sufficiently high liquid mass flows) at a critical gas velocity 

of about 7 m/s. A similar result is reported by Sorokin et al. [60, p. 782]: for increasing liquid mass 

fractions the critical gas velocity decreases (Fig. 4.20). At an initial liquid loading of 10% the critical 

gas velocity is approximately 9 m/s. 

  

Fig. 4.20 Critical gas velocity as a function of liquid mass flow for 12 different 

vane separator types
88

 

The critical gas velocity found by Calvert et al. [11, p. 973] is between 6 m/s and 7 m/s (Fig. 4.21). 

These authors also report values recorded by Houghton & Radford [23] and Bell & Strauss [5]. From 

the first set of data a similar critical gas velocity could be approximated. From the latter data set a 

smaller value of approximately 4 m/s can be deduced for the critical gas velocity, although according 

to Bell & Strauss the separation efficiency was 76% at the maximum experimental velocity of 16 ft/s 

(ca. 4,9 m/s) and the entrainment velocity was at this point not yet reached [5, p. 968]. 

 

Fig. 4.21 Separation efficiency as a function of air velocity
89
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 Reprinted from [60, p. 782], with kind permission from Springer Science and Business Media. 
89

 Reprinted from [11, p. 973]. Copyright (1974) Taylor & Francis. Permission granted. 
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Leber [40, p. 122] defines the inception of re-entrainment by a flooding point, which contains the 

flow energy and the density and surface tension of the liquid: 

 2g
FL

f f

K v


 
   (4.36) 

 

Fig. 4.22 Vane separator types Lam01, Le02 and KL01, as tested by Leber [40]
90

 

The constant FLK  is representative for the influence of the particular vane separator geometry. For 

the vane separator geometries depicted in Fig. 4.22, Leber [40, p. 122] finds the experimental values 

for the flooding point constant and gas velocity listed in Table 6. The liquid volume fraction in the air-

water experiments was varied between 2∙10-6 and 2∙10-5, for which a dependence of the flooding 

point on the liquid volume fraction was not observed. This corresponds with the experiments by 

Swanborn [61], who only found an influence for volume fractions higher than 2∙10-5 (refer to Table 5). 

The results in Table 6 are not discussed by Leber [40], but they imply that the critical gas velocity 

decreases with increasing channel width (disagreeing with Verlaan [64]; refer to Fig. 4.19) and that 

smoothly curved channel walls have a positive effect on the critical gas velocity, as opposed to 

segmented walls. 

Table 6 Experimental values of flooding point constants and corresponding 

flooding velocities [40, p. 122] 

Geometry FLK  Gas velocity [m/s] 

Lam01 ( R =14 mm) 0.40 5.0 

Lam01 ( R =21 mm) 0.35 4.5 

Le02 ( R =15 mm) 0.80 7.0 

KL01 ( R =15 mm) 0.60 6.0 

 

Azzopardi & Sanaulla [3, p. 3560] investigated the disruption of a falling liquid film falling along a 

zigzag wave plate and recorded the conditions at which the disruption first occurred (Table 7). A clear 

trend between increasing liquid loading and decreasing critical gas velocity can again be discerned. 
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 Reprinted from [40, p. 120]. Permission granted. 
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Table 7 Conditions at inception of re-entrainment according to Azzopardi & 

Sanaulla [3, p. 3560] 

Liquid mass flow rate [kg/s] Film thickness [mm] Gas velocity [m/s] Weber number 

0.014 0.57 5.0 4.7 

0.012 0.54 5.6 5.9 

0.008 0.47 7.4 10.4 

0.0072 0.46 8.2 12.3 

 

The same authors provide a stability-map for the stripping of droplets from the internal surfaces of a 

horizontal vane separator, in terms of liquid and gas Reynolds numbers (Fig. 4.23). Increasing liquid 

and/or gas Reynolds number can thus precipitate re-entrainment. 

 

Fig. 4.23 Re-entrainment boundary for a horizontal vane separator
91
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 Reprinted from [3, p. 3560]. Copyright (2002), with permission from Elsevier. 

Quintessence 

Values of 5-8 m/s are regularly reported for critical air velocities in vane separator channel 

flow, beyond which the separation efficiency significantly drops. Reported critical air 

velocities decrease with increased liquid loading. 
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4.2 Pressure drop, pick-off hooks and drainage channels 

4.2.1 Pressure drop 

Pressure drop is an important aspect of vane separator performance, because it can affect the 

necessary pumping power to advance the flow or the thermal efficiency of power plants, thereby 

increasing electrical power demand or decreasing electrical power output. It is a relevant part of the 

vane separator design process, since most efficiency increasing measures have a negative impact on 

pressure drop. 

 

The total coefficient of friction   of a vane separator comprises the sum of the contributions of the 

straight sections of the channel (including in- and outlet), the curved sections and the half-angle 

curved sections at in- and outlet [34, p. 382]: 
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The Darcy friction factor fr  is given by 
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where 1 1Rem m hv D   is the Reynolds number for the steam-droplet mixture. The contributions 

of the curved sections to the total friction consist of a regular part 2b fr hR D   , which equals 

the friction of an equivalent straight section, and an additional local part loc , which is given by the 

following formula92: 

   ,1 Reloc f sim loc mk A      (4.39) 

The similarity friction factor ,sim loc  is equivalent to the friction factor b , but with fr  computed 

for 5Re 2 10m   . The coefficients fk  and A  depend on the angle of the curved section. The 

parameter fk  can be taken from tables provided by Idelchik [24], or, performing an exponential fit 

of the data, it can be calculated as 

  18.66488exp 2 23.38706 0.83656fk      (4.40) 

The parameter A  is given as 

 1600A     (4.41) 
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 Valid for Re 2000 . 
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Nakao et al. [49] investigated the influence of the bend angle on the pressure drop of a vane 

separator. The authors tested three two-stage vane separator geometries, of 60° (geometry b), 90° 

(geometry c) and 120° bend angle (geometry d), and compared them to a standard four-stage vane 

separator of 60° bend angle (geometry a)93. The geometry and the experimental results are given in 

Fig. 4.24. The reduction from four to two stages has only a minor effect on the pressure drop; only 

the pressure drop for geometry d differs significantly from the standard four-stage vane separator. 

Because the inlet channel width and the wavelength were kept constant, the effective channel width 

reduces with increasing bend angle (see footnote 93). This contributes to  the increased pressure 

loss, although this contribution is less pronounced in the presence of flow constrictions [10, p. 110]. 

The separation efficiency at 2 m/s was reported to increase with bend angle, being approximately 

equal for geometries a and c and lowest for geometry b. 

 

Fig. 4.24 Vane separator types investigated by Nakao et al. and their relative 

pressure drops
94

 

Galetti et al. [17] used the SST turbulence model to predict pressure drops of two different 

geometries: a single channel narrow vane separator a and a broader three channel vane separator b 

(Fig. 4.25). Both are equipped with pick-off hooks. A comparison of the results for geometry b with 

experiments provides confidence in the CFD model. The results for geometry a are several times 

higher than those for geometry b, reflecting both the influence of the narrower channel and of the 

size of the pick-off hooks, relative to the channel width. Experimental data from Ghetti [19]95 

confirms that geometry a has a better separation efficiency in all cases, for velocities between 2 m/s 

and 5 m/s. The influence of the number of channels, if any, cannot be determined from this analysis. 
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 Nakao et al. [49] use a definition of the bend angle contrary to the one applied in this and many other papers 

(see Fig. 4.24). The reference here and any other references to bend angles are in accordance with the 

definition in chapter 3. 
94

 Reprinted from [49, p. 430]. Copyright (1999) Taylor & Francis. Permission granted. 
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 As cited by Galetti et al. [17]. 
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Fig. 4.25 Vane separator geometries a and b (left) and their pressure drops as a 

function of gas velocity (right)
96

 

The CFD model applied by Zamora & Kaiser [72] showed quite remarkable results for the pressure 

loss coefficients as a function of Reynolds numbers, for different width-to-length ratios of different 

types of vane separator geometries (Fig. 4.26). The results for geometries a and b are more or less as 

expected, with higher coefficients for smaller width-to-length ratios. The results for geometries c and 

d can be called extraordinary, because, for high Reynolds numbers, the broader channels cause an 

increase of the pressure loss coefficient. The authors contributed this effect to the different flow 

patterns occurring in the channels. In general, for equal Reynolds numbers the pressure drop for the 

different geometries increased in the order a-b-c-d. The separation efficiency increased in the same 

order of geometries. 
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 Reprinted from [17, p. 5651]. Copyright (2008), with permission from Elsevier. 
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Fig. 4.26 Pressure loss coefficients as a function of the Reynolds number for 

different width-to-length ratios of vane separator types a-d (inlay)
97

 

Verlaan [64, p. 145] experimentally determined pressure loss coefficients for vane separator 

geometries with channel widths of 2 cm (c) and 1.5 cm (d) (Fig. 4.27). He reported pressure loss 

coefficients for geometry c and d of 3.5 and 6.1 respectively. In contrast to the results by Zamora & 

Kaiser [72], these numbers clearly reflect a significant negative impact of narrowing channel width on 

pressure drop. 

 

Fig. 4.27 Vane separator geometries of different channel width, as investigated 

by Verlaan [64]
98
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 Reprinted from [72, pp. 1234, 1240]. Copyright (2011), with permission from Elsevier. 
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 Reprinted from [64, p. 145]. Copyright (1991) C.C.J. Verlaan. Permission granted. 
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Ushiki et al. [63] investigated the relationship between pressure loss and the number of stages and 

the bend angle. They confirmed a proportional relationship between pressure loss and the number 

of stages 0.5n  , which accounts for the half bend of the inlet. The pressure loss coefficient was 

reported to increase by a factor of 2.3 for an increasing bend angle from 30° to 45°. 

 

Bürkholz [10, p. 111] showed that wall roughness increases pressure drop, but can have a positive 

impact on separation efficiency, especially for relatively small droplets. He associated this effect with 

turbulent eddies destroying the potentially thick wall boundary layer that would otherwise block 

(small) droplets from reaching the wall. Depending on the droplet size distribution and the required 

separation efficiency, ultra-smooth channel walls are therefore not always the optimum choice. 

 

Wilkinson [70] performed a series of pressure loss experiments on straight type vane separators. 

Anticipating n  full bends of angle  , inlet and outlet sections equaling half a bend each, and 1n   

straight sections, he suggests the following pressure loss coefficient for the vane separator: 
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The partial pressure loss coefficients pbc  and psc , for bends and straight sections respectively, that 

best represented experimental results, were given by 

 
  

20.9

22.3
0.0649 ,       Re 7760

Re

0.318 ,                             Re 7760

0.008325

log 10.7 Re

Re

w

pb w

w

ps

Rw

R
w

c

L
c

v







 



 
    

 





  (4.43) 

These expressions are valid for 30 120    , 51200 Re 10w  , 0.088 0.6RL    and 

5 9n  . According to these expressions, the partial pressure drop coefficients for bends and 

straight sections can be expected to increase linearly with bend angle and wall section length, 

respectively. Notwithstanding the Reynolds number, the latter coefficient is also inversely 

proportional to the channel width. For Re 7760w  , the pressure loss contributions from the bends 

appear to be independent of anything but the bend angle. From equation (4.42), not accounting for 

straight sections, the total pressure loss coefficient is proportional to 0.5n  , corresponding to the 

results reported by Ushiki et al. [63]. 

4.2.2 Pick-off hooks and drainage channels 

Several authors (e.g. [42]) have reported on the positive influence of pick-off hooks on the separation 

efficiency. These pick-off hooks increase efficiency at lower gas velocities and reduce re-entrainment 

at higher liquid loading. However, they increase pressure drop and increase complexity and costs of 
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manufacturing. Also, they can be counterproductive at higher velocities, when stagnation pressure 

builds up in the drainage channels. Pick-off hooks drain the separated liquid film from the wall and to 

prevent carry-over to the next stage. If this is their sole purpose, the pick-off hooks will be designed 

to be least invasive in order to minimize additional pressure loss. An extreme example is the vane 

separator depicted in Fig. 4.28 on the left, in which the drainage channels are practically without 

pick-off hooks. If, in addition, the pick-off hooks are meant to actively increase the primary 

separation efficiency, they can be designed to be more invasive, as is the case in Fig. 4.28 on the 

right. The more invasive pick-off hooks will have a dominant impact on the total pressure loss. 

 

Fig. 4.28 Vane separator channels with less invasive (Burgess Manning, left) 

and more invasive (Euroform, right) pick off hooks
99

 

Examples of more and less invasive drainage channels are also given by Kall [29, pp. 70-74]. The open 

hooks situated in the channel not only drain the liquid film, but capture a certain amount of droplets 

out of the gas stream, thus contributing to the primary separation efficiency. The velocity increase 

through the narrower channel created by the pick-off hook also contributes to the separation 

efficiency (see also Li et al. [42, p. 497]). As the gas velocity increases, stagnation pressure builds up 

inside the pick off hook, forcing the flow around it. In the more extreme example discussed by Kall 

[29, pp. 70-71], the turbulent eddy inside the pick-off hook is strong enough to sweep the incoming 

liquid film back into the gas flow. In a less invasive drainage design the pick-off hook does not 

penetrate the flow channel, but the upstream inner wall bends inward into the drainage volume, 

creating a small opening for the liquid film to escape through. Nonetheless, as the drainage channel 

fills with liquid, the turbulent eddy inside the drainage channel can still cause part of the separated 

liquid to be swept back into the flow100. Kall [29, pp. 72-73] also reports that these less invasive 

drainage channels are only effective in the presence of a certain minimum liquid film thickness. In 

the latter stages of the vane separator, where the liquid mass content is much smaller, the adhesive 

forces in the much thinner discontinuous liquid film tend to block the openings into the drainage 

channels, obscuring them for the remaining separated liquid. 
 

Li et al. [42] investigate the influence of pick-off hooks with two otherwise identical vane separators 

(Fig. 4.29). The pick-off hooks have a tremendous effect on the total pressure drop, being almost an 

order of magnitude higher than for the geometry a. Beyond 6 m/s the pressure drop starts to 
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 Reprinted from [40, p. 73]. Permission granted. 
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 Refer to Kall [29, pp. 71-72]. The specific geometry is depicted in 'Bild 25' [29, p. 72]. 
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increase for the hookless geometry a as well. The pick-off hooks increase separation efficiency, 

although the contribution clearly decreases above approximately 4.5 m/s, at which point the 

separation efficiency itself even decreases for geometry b. The decrease of separation efficiency, also 

seen at 7.5 m/s for geometry a, is by the authors contributed to re-entrainment effects. 

  

Fig. 4.29 Vane separators with and without hooks and pressure drop and 

separation efficiency for computations with hooks (solid), experiments 

with hooks (dotted), computations without hooks (dots and stripes) 

and experiments without hooks (stripes)
101

 

The increasing ineffectiveness of the pick-off hooks is visualized by the CFD results of the velocity 

vector field for geometry b, recorded at 5 m/s (Fig. 4.30). The pockets almost completely block the 

incoming flow, possibly forcing part of the liquid separated in the previous bend back into the flow, 

as reported by Kall [29] and discussed in chapter 4.1.5. 

 

Fig. 4.30 CFD results of velocity vector field recorded at 5 m/s
102

 

The examples discussed here, as well as the vane separator types displayed in chapter 1, typify that 

pick-off hooks and drainage channels come in many different shapes and forms. Their impact on the 

velocity profiles inside the channel differs largely, as does their impact on the total pressure drop, 
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 Reprinted from [42, p. 492]. Copyright (2007), with permission from Elsevier. 
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 Reprinted from [42, p. 496]. Copyright (2007), with permission from Elsevier. 
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both of which are dependent on Reynolds numbers. The same can be claimed for the effectiveness of 

the drainage and different possible re-entrainment phenomena related to the pick-off hooks and 

drainage channels. For these reasons, it is hard to quantify their impact on separation efficiency and 

pressure loss with the use of analytical or empirical formulas. From the discussion in this section and 

the work of Nakao et al. [49], Galetti et al. [17] and Zamora & Kaiser [72] in the previous section, one 

may in general assume the following: 

 

1. At small gas velocities, the more invasive the pick-off hooks, the more they contribute both 

to separation efficiency and pressure drop. The larger the contribution to the separation 

efficiency at small gas velocities, the larger the pressure loss. 

2. The contribution of pick-off hooks to the separation efficiency of smaller droplets decreases 

with increasing gas velocity, but their contribution to the pressure loss remains. 

 

Quintessence 

Pick-off hooks increase both the pressure drop of the vane separator and the separation 

efficiency of smaller droplets. At small gas velocities these effects are roughly 

proportionate; both increase with increasing invasiveness of the hooks. With increasing 

gas velocity the contribution to the separation efficiency vanishes, but the contribution to 

the pressure drop remains. 
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5 Model validation 

5.1 Experiments from literature 

5.1.1 Single stage vane separators 

5.1.1.1 Bends 

Bürkholz [10] performed experiments with droplets in air, for several types of vane separators. 

Among the tested vane separators are B4 and B6, which serve well for a comparison with a single 

bend vane separator (Fig. 5.1). The radius of the bend central axis is in both cases 120 mm and the 

plates are spaced 5 mm respectively 10 mm apart. 

 

Fig. 5.1 Singular bend separators B4 and B6
103

 

The measured separation efficiencies for these vane separators are depicted in Fig. 5.2, in which also 

the results predicted by Bürkholz [10] (equation (2.11)) and the results as predicted by the model 

discussed in this paper are depicted104. Both theoretical models predict higher-than-zero separation 

efficiencies for droplet diameters below 5 µm at lower gas velocities, although in the experiments it 

takes a gas velocity of 20 m/s to separate them. In general, the separation efficiency appears to be 

more dependent on the gas velocity than predicted by the model, leading to an under-prediction of 

the separation efficiency at high gas velocities. It is unclear how the irrigation of the separated water 

was performed during the experiments, but entrainment effects and a corresponding decrease of the 

separation efficiency above a certain gas velocity, appear to be absent. The current model shows an 

improvement as compared to the model by Bürkholz [10]. It does not grow beyond unity above a 

certain droplet diameter and gives reasonable to good results in the upper efficiency region. 
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 Reprinted from [10, p. 105]. Copyright Wiley-VCH Verlag GmbH&Co. KGaA. Reproduced with permission. 
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 Bürkholz [10] recorded results for gas velocities up to 60 m/s. These extremely high gas velocities are 

omitted, because they are far beyond the range of application of the vane separators discussed in this paper. 

B6 B4 
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Fig. 5.2 Experimental and analytical separation efficiencies for different gas 

velocities in vane separator types B4 (left) and B6 (right), as tested by 

Bürkholz [10] 

5.1.1.2 Straight sections 

Leber [40, p. 119] investigated several single stage vane separators, one of which is of specific 

interest to the analytical work on the straight parts of vane separators (Fig. 5.3). The effective 

channel width is 8.5 mm and the effective length of the straight section is 70 mm105. 

 

Fig. 5.3 Single stage straight vane separator
106

 

For a correct representation of the depicted geometry, equation (3.46) needs to be adjusted to 

account for the fact that the initial droplet velocity into the straight section is not defined by the 

centrifugal and drag forces in the bend, but by the inlet gas velocity vector. Assuming that the gas 

velocity inside the channel is uniform and defined by the continuity of mass under incompressible 

conditions, the radial droplet velocity is given by    , ,sin exp cosd g in cd g inu s v s v     . 

This leads to the following separation efficiency for this geometry: 
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 (6.1) 

The experimental separation efficiencies, measured by Leber [40] from 6 different gas velocities 

ranging from 0.5 - 5 m/s, are depicted in Fig. 5.4. The results from the analytical model are shown in 

the same figure. At low gas velocities the experimental data is under-predicted by the model. At 

velocities of 2 - 5 m/s the analytical model agrees well with the experimental data. 
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 Reprinted from [40, p. 120]. Permission granted. 
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Fig. 5.4 Experimental and analytical separation efficiencies for a single stage 

straight vane separator tested by Leber [40] 

5.1.2 Multiple stage vane separators 

5.1.2.1 Bends 

Phillips & Deakin [52] performed experiments on a wavy vane separator described as Pack A, 

consisting of eight stages107 with a channel width of 8 mm. The total bend angle is 66.2° and each 

bend is equipped with pick-off hooks. The experimental results by Phillips & Deakin [52] and the 

model predictions are depicted in Fig. 5.5. The separation efficiencies are partly under-predicted by 

the model, which is to be expected, because the pick-off hooks are not accounted for by the model. 

The pick-off hooks separate part of the droplets by acting as an inertial wall. This effect is most 

significant at low gas velocities (refer to chapter 4.2.2). As a result, the model prediction of the 

experimental values improves with increasing gas velocities. 

 

Fig. 5.5 Experimental and analytical separation efficiencies of the wavy vane 

separator Pack A tested by Phillips & Deakin [52] 
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 Only part of the geometry of Pack A is depicted by Philips & Deakin [52]. The number of stages, according to 

the definition in chapter 3.6.4, is deduced from the depicted and reported number of stages of vane separator 

pack B [52] (refer to the following section). 
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5.1.2.2 Straight sections 

Droplet separation efficiency in straight type vane separators is also well represented by the current 

model. The definition of each sharp corner as a bend with vanishing inner radius (Fig. 5.6 on the left), 

allows for a valid description of the relevant physics. 

 

Fig. 5.6 Schematic representation of a straight type vane separator according 

to the current model (left) and according to Wilkinson [70] (right
108

) 

Several authors, including Gillandt et al. [20], James et al. [27], Galletti et al. [17] and Verlaan [64], 

have reported recirculation zones with near zero flow velocities in the outer channel regions near 

these sharp corners (Fig. 5.7). Fine droplets passing by these regions are either captured and held or 

migrate on to be deposited on the nearby straight wall section. This appears to justify this 

geometrically simplified representation proposed here. Wilkinson [70] applied a very similar 

simplification, but instead of treating them separately, he integrated the straight sections into each 

bend by using a non-zero inner radius (Fig. 5.6 on the right). 

  

Fig. 5.7 Representation of circulation zones from visual inspections using 

smoke tracers (above left)
109

 and velocity vectors from numerical 

simulations (below left)
110

 and (right)
111
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 Reprinted from [17, p. 5644]. Copyright (2008), with permission from Elsevier. 
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Bürkholz [10] performed experiments with zigzag vane separators of the type depicted in Fig. 5.8, 

which are of the simplest form for straight type vane separators and consist of 3, 5, 9 or 13 stages 

(according to the definition in chapter 3.6.4). The channel width is 28 mm in all four geometries. 

 

Fig. 5.8 Straight type vane separators
112

 

Bürkholz [10, p. 113] describes the separation efficiency   of a vane separator with n  stages as a 

function of the single stage separation efficiency s  (as discussed in chapter 3.6.4): 

  1 1
n

s      (6.2) 

By fitting the single stage results and extrapolating with the use of equation (6.2), Bürkholz [10] 

achieves a very good agreement with experiments for larger numbers of stages. A decisive 

disadvantage of this procedure is that an initial set of data is needed to perform the extrapolation. 

The experiments for the straight type vane separators were performed at a gas velocity of 10.3 m/s. 

The experimental separation efficiencies and the current model results are depicted in Fig. 5.9. The 

results as predicted by Bürkholz [10] (by inserting equation (2.11) into equation (6.2)) are also shown. 

Due to the increased number of stages, droplets below a diameter of 5 µm can be separated. Each 

additional stage adds a smaller contribution to the separation efficiency. The separation efficiencies 

are in all cases under-predicted by the model. The results from the model by Bürkholz [10] are a little 

higher (refer also to Fig. 5.2), but, due to the even number of stages, the multiple stage results curve 

down after the single stage separation efficiency reaches values above unity. 

 

Fig. 5.9 Experimental and analytical separation efficiencies of straight type 

vane separators tested by Bürkholz [10] 
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Phillips & Deakin [52] performed experiments on a straight type vane separator described as Pack B, 

consisting of seven stages with a channel width of 9 mm. The total bend angle is 65° and each bend is 

equipped with a pick-off hook. The experimental results and the model results are depicted in Fig. 

5.10. The predicted values are in better agreement with the measurements, as compared with Fig. 

5.5, although a similar impact of pick-off hooks can be discerned. As in Fig. 5.5, the predictions 

improve with increasing gas velocity. 

 

Fig. 5.10 Experimental and analytical separation efficiencies of the straight type 

vane separator Pack B tested by Phillips & Deakin [52] 

The experimental data provided by Verlaan [64] was measured from a vane separator with a 

geometry resulting from cutting the corners of a pure zigzag vane separator (Fig. 5.11). The space 

that has thus become available is used to provide for drainage channels. The effective channel width 

is 17.3 mm, the number of channels does not affect the separation efficiency. 

 

Fig. 5.11 Straight type vane separator tested by Verlaan [64]
113

 

The experimental results reported by Verlaan [64] and the prediction by the model are given in Fig. 

5.12. Results for droplet diameters below 15 µm are not provided, thus only a small part of the entire 

separation curve is captured. Contrary to most previous results, the experimental data shows less 

dependence on the droplet diameter than the model predicts, although it is possible that the 

experimental separation efficiency would also show a steep decline for droplets below 15 µm. 
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 Reprinted from [64, p. 62]. Copyright (1991) C.C.J. Verlaan. Permission granted. 
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Fig. 5.12 Experimental and analytical separation efficiencies of a straight type 

vane separator tested by Verlaan [64] 

5.1.3 Discussion 

From the experiments presented before, some common points can be observed. Although the 

number of cases investigated is too small to make a strong statement, the assumption that straight 

type geometries without bends are represented well by the model, appears to be valid. In nearly all  

cases, the analytical model showed the best results for gas velocities at around 5 m/s, while under-

predicting separation efficiencies for lower gas velocities. This is expected to be related to the more 

significant impact of pick-off hooks for lower gas velocities. Due mainly to these pick-off hooks, many 

vane separator geometries are more complex than can be represented in the analytical model. The 

uncertainty incurred from such a simplification of the geometry is very difficult to quantify. 

 

The separation efficiency appears to be more strongly dependent on the droplet size than predicted 

by the model, which can partly be explained by assuming non-uniform velocity profiles. Referring to 

the discussion in chapter 3.4.2, the separation efficiency is expected to decrease more strongly 

below a certain escape diameter. Fig. 3.21 showed that even for very small wall boundary regions, 

the escape diameter can be significant. Looking at the results from Bürkholz [10] for the B4 and B6 

geometries, assuming a wall boundary region of 10 µm would in both cases lead to escape diameters 

of 6µm and 4 µm for gas velocities of 10 m/s and 20 m/s, respectively (Fig. 5.13). This assumption 

leads to a better representation of the separation efficiency for small droplets, at least for gas 

velocities below 20 m/s. 
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Fig. 5.13 Experimental (squares, Bürkholz [10]) and analytical separation 

efficiencies for different velocities assuming uniform (solid) and non-

uniform flow (dashed) in vane separator types B4 (left) and B6 (right) 

5.2 Comparison with CFD results 

The numerical work performed by Wang & James ( [67], [68]) was discussed in chapter 2.2; the 

governing flow equations for the droplet path are equivalent to the equations presented in chapter 

3.1.2.2. In both articles the experimental work reported by Phillips & Deakin [52] concerning the Pack 

A vane separator was used for comparison with the numerical models. Zamora & Kaiser [72] use the 

basic turbulence functions available in the applied CFD package, which constitutes a Constant EIM 

approach. They analyze the impact of the eddy lifetime on the separation efficiency, for the k-ε 

turbulence model (turbulent kinetic energy dissipation) as well as for the k   turbulence model 

(characteristic frequency of turbulence). The eddy lifetime is manipulated by changing the value for 

the empirical constant C  in equation (3.29). A commonly used value is 0.201C   [27, p. 471]; 

Zamora & Kaiser [72] compare the results for C =0.10, 0.15 and 0.20. They also include a 

comparison with the results from Wang & James ( [67], [68]). Fig. 5.14 displays the results from all 

three articles, as well as the experimental results from Phillips & Deakin [52], the results predicted by 

Bürkholz [10] (as presented by Wang & James [67]) and the analytical model presented here. The 

experimental data reported by Phillips & Deakin [52] has already been discussed in comparison with 

the analytical model in this chapter, where it was noted that the pick-off hooks resulted in higher 

separation efficiencies than to be expected from a hookless geometry. The numerical data presented 

in Fig. 5.14 reveals that the numerical models without turbulence, as well as the STD and Low Re  

k   models, severely under-predict the experimental data, for almost all droplet sizes up to a 

separation efficiency close to unity. These models are very sensitive to the droplet size, perceivable 

from the steep gradients of the corresponding curves. The Constant EIM results show very high 

separation efficiencies for all droplet sizes, presumably due to the long living eddies that sooner or 

later transport all small droplets to a wall. The Varied EIM results lie in between, due to the less 

effective transport of droplets by the eddies, because they are broken up each time a control volume 

boundary is traversed. The difference between the  Const EIM and the k   model with 0.20C   

is noteworthy, because apart from this parameter, the models are basically equal [72, p. 1236]. 

Zamora & Kaiser [72] reach the best results for 0.15C  . 
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Fig. 5.14 Experimental data from Phillips & Deakin [52] for vane separator 

Pack A (black squares), in comparison with analytical models from  

Bürkholz [10] and current work (black) and with numerical results 

from Wang & James ( [67], [68]) (green and red) and from Zamora & 

Kaiser [72] (blue) 

In conclusion, the impact of turbulence on separation efficiency appears over-predicted by these 

numerical models. The turbulent kinetic energy vanishes at the wall [72, p. 1236] and consequently 

the turbulent eddies die out near the wall regions. If the droplets are deposited on the wall, depends 

on the governing equations for the boundary layer, the applied droplet deposition and separation 

model and possibly on the resolution near the wall. Possible causes for the discrepancy with the 

experimental data is that the numerical models neither account for the minimum inertia required for 

the droplets to cross the laminar boundary layer, nor for re-entrainment effects through splashing 

from the wall or liquid film (rebounding). 
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Fig. 5.15 Straight type vane separators, as investigated by Li et al. [42]
114

 

Li et al. [42] investigated two types of very similar straight type vane separators: one with and one 

without pick-off hooks, both comprising eight stages115 (Fig. 5.15). Accounting for the plate thickness, 

the effective channel width is 16.5 mm. 

  

Fig. 5.16 Numerical and analytical separation efficiencies of the hookless vane 

separator tested by Li et al. [42] 

The numerical results by Li et al. [42] for the hookless geometry and those predicted by the model 

are depicted in Fig. 5.16. Due to the large number of stages, the model predicts separation 

efficiencies of unity above 30 µm; the curves from the numerical model are at surprisingly high 

droplet diameters. This discrepancy is partly attributed to droplet impingement effects on the vane 

separator walls, included by Li et al. [42] in their model, according to which larger droplets can break 

up into smaller droplets after a collision with the wall. This introduces a larger number of smaller 

droplets, which are more difficult to separate. The authors mention that break-up of liquid droplets 

by impingement on the liquid film is the most important mechanism for entrainment, as compared to 

break-up of droplets due to shear stress in the continuous phase and break-up of the liquid film due 

to interfacial shear stress. 
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 Reprinted from [42, p. 492]. Copyright (2007), with permission from Elsevier. 
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 According to the definition in chapter 3.6.4. 
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Fig. 5.17 Droplet paths through a straight type hookless vane separator as 

computed by Li et al. [42]
116

 

In addition, the experimental separation efficiencies appear to be much more dependent on the gas 

velocity than predicted by the model, for which the curves all coincide with the origin. The measured 

values appear to depict a cut-off droplet size, below which the separation efficiency sharply drops to 

zero. This phenomenon can be explained by the broad channel width, in relation to the rather blunt 

bend angles. It is good engineering practice to design vane separators in such a way that the bend 

angles and the stage lengths are large enough to ensure that no straight path through the vane 

separator is possible, in order to prevent large droplets to strike through the channel; something Kall 

[29, p. 44] already pointed out. Judging from Fig. 5.15, a straight path appears to be available to the 

droplets in the hookless vane separator, also clearly visible in the droplet paths computed by Li et al. 

[42] (Fig. 5.17). Droplets starting out in the middle of the entrance pass through almost without 

altering their direction117, a phenomenon that is not captured by the analytical model, in which an 

increasing number of stages will always lead to increasing separation efficiencies. Contrary to the 

analytical model, the efficiency in the first two stages is in Fig. 5.17 significantly higher than in 

subsequent stages, which contribute very little to droplet separation. The smaller the gas velocity is, 

the larger the droplets are that will strike through the vane separator. For comparison, even if only 

one effective stage is accounted for in the model and a wall boundary region of 10% of the channel 

width is assumed, the resulting efficiencies are still larger than the numerical results from Li et al. 

[42] (Fig. 5.18). 

 

Fig. 5.18 Experimental results (squares) for the hookless vane separator tested 

by Li et al. [42] and analytical results assuming a single stage with 

uniform (solid) and non-uniform flow (dashed) 
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 Reprinted from [42, p. 495]. Copyright (2007), with permission from Elsevier. 
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 The depicted result is for droplets of 30 µm at 5 m/s. The experimental separation efficiency for this diameter 

is approximately 40%, which does not appear to correspond well with the depicted droplet paths. The 

'secondary' and 'tertiairy' droplet paths are also visible, especially in stage two and three. These paths result 

from the applied model, which allows droplets to stick, rebound, splash or spread upon impact [42, p. 494]. 

Rebounding and splashing lead to subsequent droplet paths, the first of which is said to occur at low 

impingement energy, causing a reduction of the separation efficiency mainly at low gas velocities. 
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The results for the vane separator with pick-off hooks are depicted in Fig. 5.19. The numerical 

separation efficiencies are much higher than before, which can be attributed to a direct capture of 

droplets by the pick-off hooks, increased gas velocities around the pick-off hooks through the 

narrowed channels and additional capture of secondary droplets produced by splashing of large 

droplets in the vicinity of the pick-off hooks [42, p. 497]. The results produced by the analytical model 

are in much closer correspondence to this geometry, as compared to the hookless vane separator. 

 

Fig. 5.19 Numerical and analytical separation efficiencies of the vane separator 

with pick-off hooks tested by Li et al. [42] 

5.3 Experiments on a wavy vane separator 

5.3.1 Research goals 

The analytical approach to droplet separation in vane separators presents some boundaries as to the 

application of the relevant physical and geometrical parameters in the theory. Because they are 

expected to be very small, changes in the physical properties of the gas and/or the droplets along the 

channel, for instance due to pressure or temperature gradients, are not accounted for. Major 

changes in the equation of state can be expected only when phase changes occur, which is not 

relevant for air-water systems, but for saturated steam systems mass transfer between the phases 

cannot be ruled out. For isothermal flows of saturated steam experiencing a small negative pressure 

gradient, a small amount of droplet evaporation would take place, having a positive effect on the 

separation efficiency in terms of liquid mass, but also a negative impact on droplet separation due to 

the shifting of the droplet size spectrum towards smaller droplets. Such evaporation effects do not 

have a significant impact on the separation efficiency118. 

 

In addition, limits exists for the geometrical complexity of the vane separator that can be accounted 

for in the analytical model. A-symmetries of the vane geometry cannot be represented realistically 

and neither can additional structures, such as pick-off hooks. The unavoidable simplification of vane 

separator geometries introduces an unquantified impact on the results, making the comparison with 
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 Assuming instantaneous mass transfer and complete thermal equilibrium, the liquid enthalpy drop associated 

with a negative pressure gradient of 1 kPa at an absolute pressure of 10 bar, would evaporate about 0.1‰ of 

the droplet mass. 
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experiments more difficult. Experimental results using a vane separator geometry that is arbitrarily 

close to the assumed geometry of the analytical model are thus invaluable. The simplified test 

geometry provided for the experiments carried for the current research has a bend angle of 80°, an 

inner radius is 10 mm, a constant channel width of 11.45 mm, straight sections with a length of 17.6 

mm119 and is manufactured from 3 mm Makrolon® (Fig. 5.20). 

 

Fig. 5.20 Simplified vane separator test geometry 

In order to validate the results from the analytical model, the experimental results shall convey the 

influence of the homogeneous gas velocity on the separation efficiency. In addition, the influence of 

moisture content on the separation efficiency and the pressure drop at various flow rates are 

investigated. The experiments were performed by members of the Institute of Fluid Mechanics 

(LSTM) of the Friedrich-Alexander University in Erlangen, where a test facility was set up for this 

purpose. The following description of the test facility is based on information supplied by LSTM (with 

courtesy of Siemens AG), as partly published by Kolev et al. [35] and Koopman et al. [36]. 

5.3.2 Experimental setup 

5.3.2.1 Overview 

The test facility comprised an open-loop wind tunnel, with air as the flowing medium in which 

droplets of water were entrained (Fig. 5.21). The experiments were performed at ambient pressure, 

using a 15 kW radial fan to suction the necessary air flow, equipped with a frequency transformer to 

adjust its rotational speed. The air velocity was measured with a Prandtl tube in the 150 mm x 500 

mm inlet section of the spray chamber. Arrays of nozzles were installed to spray the droplets into the 

spray chamber, supplied with water from a 15 kW high pressure pump, for which the pressure was 

limited to 100 bar. After leaving the spray chamber, the air-droplet mixture entered a flow channel 

which provided optical access on both sides for the droplet size measurement instrumentation, 

consisting of a PDA system. At the end of the flow channel a vane separator module was installed, 

consisting of seven stages with a height of 500 mm. Behind the vane separator module a second set 

of windows provided optical access for droplet size measurements. The exiting flow was exhausted 

into the atmosphere. 
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 Efforts were made to reduce machining tolerances to a minimum. 
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Fig. 5.21 Experimental test facility at the Institute of Fluid Mechanics (LSTM) 

of the Friedrich-Alexander University in Erlangen
120

 

5.3.2.2 Flow channel and spray system 

A schematic view of the spray system, as an integrated part of the 2.5 m long stainless steel flow 

channel, is given in Fig. 5.22. Because not all droplets were carried off by the air flow and many 

droplets were deposited along the channel before entering the vane separator module, in addition to 

the collector at the bottom of the vane separator module (Fig. 5.22 on the right), water was also 

collected at a point slightly upstream of the vane separator module. In order not to distort the 

pressure measurements, the channel sections upstream and downstream of the vane separator 

module had the same cross-section. 

 

Fig. 5.22 Flow channel with integrated spray system (left)
121

 and collection of 

separated liquid mass from the vane separator module (right) 
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 Courtesy of Siemens AG. 
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 Courtesy of Siemens AG. 
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The spray chamber contained hollow cone spray nozzles installed on nozzle heads, which were 

mounted on several different pipes, each of which was connected to a shut-off valve. This allowed 

for serial switching of sets of nozzles. The distribution of nozzles is provided in Fig. 5.23, as well as an 

inside view of the spray chamber. The nozzle distribution was chosen in such a way that the desired 

droplet mass flows could approximately be attained by different combinations of valve settings. 

 

Fig. 5.23 Schematic view of spray nozzle distribution (left) and inside view of 

spray chamber (right)
122

 

Two types of nozzles were used: 96 nozzles with an opening diameter 0.5 mm and 48 nozzles with an 

opening diameter of 0.1 mm. The droplet size distributions for the measurement could be adjusted 

by installing the different nozzle types and by adjusting the water pressure. The desired liquid mass 

fraction was approximated by different settings of the shut-off valves. The distance of the nozzle 

heads from the center-line of the channel could also be adjusted, thereby altering the separation 

characteristics of the spray chamber itself and allowing for an optimum in terms of the amount of 

droplets being carried off by the air flow. 

5.3.2.3 Measurements and instrumentation 

The liquid mass balance during the measurements comprised the mass flow pumpm  supplied to the 

high pressure pump, the mass flow collm  collected from the bypass line and upstream of the vane 

separator, the mass flow VSm  collected from the vane separator, and the liquid mass flow exhaustm  

exhausted into the atmosphere. The liquid mass flow to the pump and from the combined bypass 

and upstream collection line were measured using coriolis meters. The liquid mass flow separated by 

the vane separator was not continuously measured, but collected in a basin and extracted by a pump 

after reaching a certain level. The experimental separation efficiency is defined as the cumulated 
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liquid mass flow separated by the vane separator during the measurement, divided by the cumulated 

liquid mass flow of the pump, after subtraction of the cumulated collected liquid mass flow: 

 
VS

pump coll

m dt

m dt m dt
 





 
  (6.3) 

The droplet mass fraction d  entering the vane separator is defined as the ratio of liquid and total 

mass flows reaching the vane separator: 

 
pump coll

d
pump coll air

m m

m m m





 
  (6.4) 

An overview of the relevant liquid mass flows is provided in Fig. 5.24, which also shows a typical 

liquid mass balance, as measured during the experiments. From the pie chart it is clear that only one 

fifth of the droplets in the spray chamber made it to the vane separator. 

 

Fig. 5.24 Schematic representation of the liquid mass balance and its typical 

experimental values
123

 

The air velocity was measured in dry air with the use of a Prandtl tube installed at the center of the 

inlet section to the spray chamber. Pressure was recorded near the entrance and the exit of the vane 

separator module by two pressure transducers and temperature was recorded upstream of the vane 

separator module. A plate heat exchanger was installed in the feedline of the high pressure pump to 

cool the water to below 40°C. The droplet sizes and velocities were measured with the use of a 

Phase-Doppler Anemometer (Fig. 5.25). Each measurement duration corresponded to a registration 

by the PDA system of 200,000 single droplets. 
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Fig. 5.25 The PDA system 

5.3.2.4 Uncertainty analysis 

The relative uncertainty in the measurement of the separation efficiency is driven by the relative 

uncertainty 0.1%m m   of the coriolis meters. Due to some ambiguity in the deactivating point 

of the drainage pump, there is an additional uncertainty in the collected and separated integrated 

mass flows of   1kgcollm dt   and   0.2kgVSm dt   respectively [35]. The relative 

uncertainty    of the experimental separation efficiency is thus given by 
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with 
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 (6.6) 

The use of two parallel pressure transducers with an uncertainty of 0.25%p p  , connected to 

the Prandtl tube, and an additional pressure transducer with an uncertainty of 22.5Pap    for 

the air density measurement, resulted in uncertainties in the air velocity and integrated air mass flow 

measurements according to Fig. 5.26. The jump in the data at 7 m/s is due to the switching from a 25 

Pa pressure transducer to a 250 Pa pressure transducer. 
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Fig. 5.26 Absolute measurement uncertainty in air velocity (left) and relative 

measurement uncertainty in integrated air mass flow (right) as a 

function of air velocity (at the spray chamber inlet)
124

 

The relative uncertainty in the measurement of the liquid mass fraction is 
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  (6.7) 

The reported absolute uncertainty in the measurement of the droplet diameter is 1 µmD   . 

Consequently, the relative uncertainty in the Sauter mean diameter is estimated as follows: 
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5.3.3 Results 

One set of experiments was performed with a constant liquid mass flow of around 5% at varying air 

velocity and one set with varying initial liquid mass flow at a constant air velocity of about 9.5 m/s. 

For each of the 18 combinations of air velocity and nozzle distribution, the droplet size distribution 

was measured once through the optical window before the vane separator and once after (not 

simultaneously). The measurement points are listed in Table 8. The effective air velocities are 

corrected for the blockage factor of the vanes and are thus representative for the velocity inside the 

flow channel of the vane separators. The achieved initial liquid mass fractions deviate slightly from 

the desired values, due to the discrete settings of the liquid mass flow nozzle valves. 
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Table 8 Measurement points achieved during the experiments 

Spray chamber air velocity [m/s] Effective air velocity [m/s] Liquid mass fraction [%] 

1.0 1.9 
3.73 

3.93 

2.0 3.8 4.65 

3.0 5.7 4.78 

4.0 7.6 5.7 

5.0 9.5 

5.66 

2.05 

3.37 

4.63 

4.87 

6.52 

8.75 

9.15 

6.0 

 

11.4 5.3 

7.0 13.3 5.42 

8.0 15.2 4.5 

9.0 17.1 5.05 

10.0 19.0 5.53 

 

5.3.3.1 Experimental separation efficiencies 

The measured droplet separation efficiencies are depicted in Fig. 5.27 for both datasets125. The 

graphs also show the Sauter mean diameters of the inlet droplet size distribution, which was not only 

affected by the nozzle opening diameter, the water pressure and the air velocity, but was also 

significantly dependent on the droplet separation characteristics of the spray chamber. The latter 

was influenced by the asymmetry of the nozzle distributions (with respect to the vertical center-

plane of the chamber) and the distance of the nozzles from the center-plane. For the measurements 

with varying air velocity the nozzle distributions were symmetric, but particularly the measurements 

with liquid mass fractions of 2.1% and 4.9% were performed with asymmetric nozzle distributions. 

The smaller Sauter mean diameters for these measurements are due to smaller amounts of large 

droplets (>100 µm) in the measured inlet droplet size distributions. It is very likely that an asymmetry 

of the nozzle distribution leads to uneven distributions of droplets into the air channel, causing it to 

be skewed towards one side of the channel as it reaches the PDA measurement volume. This would 

result in smaller inlet Sauter mean diameters measured at the channel center line, although the 

actual droplet size distribution into the vane separator and thus the separation efficiency remain 

unaffected126. 

                                                             
125

 The uncertainty in the air velocity is based on the uncertainty in the air velocity measurement at the spray 

chamber inlet. It does not account for the possible spread of air velocities through the different channels of the 

vane separator, e.g. due to turbulent effects upstream of the vane separator module. 
126

 The liquid mass fraction of 4.6% was produced with a symmetric nozzle distribution, but also had a 

comparatively small amount of large droplets in the inlet droplet size distribution. It remains unclear what 

could have caused this discrepancy. 
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Fig. 5.27 Measured droplet separation efficiencies (squares) and inlet Sauter 

mean diameters (stars) as a function of effective air velocity (left) and 

of liquid mass fraction (right) 

The experimentally observed values conflict with analytical predictions for the droplet separation 

efficiency, which, based on the inlet droplet size distributions, are in all cases very close to unity. This 

can be attributed to re-entrainment effects, supported by the observation in Fig. 5.27 that the 

separation efficiency reveals an increasing trend with effective air velocity, up to a value of about 11 

m/s, after which a sharp decrease can be discerned. The re-entrainment boundary reported by 

Azzopardi & Sanaullah [3] (Fig. 4.23), lies, for a liquid Reynolds number that is about 1150 for the 

current liquid mass fraction and geometrical parameters, at a gas Reynolds number of approximately 

6500. This corresponds to a gas velocity of about 9 m/s, which is roughly in agreement with Fig. 5.27. 

 

However, the correlation with the inlet Sauter mean diameter suggests that the inlet droplet size 

spectrum is the most significant parameter for the separation efficiency. The droplet separation 

efficiency as a function of liquid mass fraction in Fig. 5.27 reveals a similar correlation with the inlet 

Sauter mean diameter. If re-entrainment causes the deteriorated separation efficiency, it must be 

correlated to the inlet Sauter mean diameter as well. This correlation can be explained by the fact 

that larger droplets are separated earlier and create a thicker film on the vane walls, thus enlarging 

the migration distance to the end of the vane separator as well as increasing the downward velocity 

of the liquid film. This causes a larger portion of the separated liquid to be drained gravitationally, as 

compared to droplet size distributions with smaller Sauter mean diameters. 

5.3.3.2 Adjustment for re-entrainment effects 

The outlet droplet size distributions contained droplets typically below 40 µm, although many 

contained a very small number of droplets in the 40-60 µm range, or in the 80-100 µm range, without 

recording any droplets in between. Based on visual inspections, it appears that these droplet 

recordings are associated with liquid film breaking off from the last stage of the vane separator, 

releasing fractional droplets back into the air flow. In particular, streams of separated droplets were 

carried over from one stage to the next and reached the end of the last stage before being 

gravitationally drained down the bottom of the vane separator. The larger the air velocity, the higher 

the average point of release of such droplet streams, incidentally leading to a recording of a relatively 

large number of entrained droplets where the main point of release coincided with the 

measurement volume of the PDA system. In general only a small number of droplets are concerned, 

having no significant impact on the droplet size number distributions. But being very large droplets, 

the droplet size mass distributions are significantly affected, as exemplified by Fig. 5.28. 
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Fig. 5.28 Typical droplet number (black) and mass (red) distributions 

In order to enable a comparison of the grade efficiencies without re-entrainment effects, a cut-off 

filter was applied to the measurement data, eliminating droplet size recordings above 40 µm. The 

following results consider the application of this cut-off filter. The Sauter mean diameters as well as 

the typical size ranges of the inlet and outlet droplet size distributions after application of the cut-off 

filter are listed in Table 9. 

Table 9 Sauter mean diameter and range of inlet and outlet droplet size 

distributions computed from the PDA measurements 

 
Inlet Outlet 

DSauter (µm) Range (µm) DSauter (µm) Range (µm) 

var. gv  50 - 78 0 - 150 4.9 - 14.4 0 - 40 

var. d  50 - 84 0 - 150 5.0 - 6.7 0 - 18 

var. gv  43 - 69 0 - 150 3.2 - 7.5 0 - 25 

var. d  51 - 78 0 - 150 3.7 - 4.5 0 - 15 

 

5.3.3.3 Varying liquid mass fraction 

Fig. 5.29 depicts the droplet size distribution before and after the vane separator, for the experiment 

with 2% liquid mass fraction. The black line depicts the droplet size distribution as predicted from the 

model presented in this paper (equations (1.16), (3.46) and (3.121)). The relevant physical 

parameters are provided appendix A.IV. The measured and predicted droplet size distributions are 

enlarged in the inset. Above a droplet size of about 12 µm, virtually all droplets are separated, as 

predicted by the model. Between droplet sizes of approximately 2 and 8 µm, the cumulative droplet 

mass fraction is slightly under-predicted, apparently caused by a slight under-prediction of the 

separation efficiency at small droplet diameters127. 

                                                             
127

 It must be noted that, since cumulative droplet mass fractions are compared, instead of separation efficiencies, 

the comparison is valid only under the assumption that the measured droplet size distribution by the PDA 

system corresponds to the actual inlet droplet size distribution entering the vane separator: discrepancies 

would cause differences in cumulative droplet mass fractions, even if the separation efficiencies are equal, as 

will become clear in the following discussion. 
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Fig. 5.29 Cumulative droplet mass fraction before (blue) and after (red) the 

vane separator as compared to the model (black) for a liquid mass 

fraction of 2% 

The droplet size distributions from the remaining experiments for different liquid mass fractions are 

given in appendix A.V-a. These results show much similarity to Fig. 5.29: in all cases experiment and 

model agree very well, although, in general, the predicted cumulative mass fractions are slightly 

steeper, implying a slightly stronger dependence on droplet diameter than reflected in the 

measurements128. 

5.3.3.4 Varying air velocity 

The model predictions for the experiments with varying gas velocity do not agree as well with the 

measurements as those with varying liquid mass fraction, as exemplified by Fig. 5.30. It would appear 

that the separation efficiency is under-predicted at small droplet sizes, but it is more likely that the 

fraction of small droplets present in the inlet droplet size distribution is larger than measured by the 

PDA system, causing a visibly similar effect. This will be explained in more detail in the next section. 

 

Fig. 5.30 Cumulative droplet mass fraction before (blue) and after (red) the 

vane separator module as compared to the model (black) for an air 

velocity of 9.5 m/s 
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 See previous footnote. 
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The smallest droplet diameter beyond which all droplets are separated ( 100d ) is predicted 

accurately. The measured and predicted cumulated mass fractions for the experiments with varying 

gas velocity are presented in appendix A.V-b. All of these graphs display a similar trend as depicted in 

Fig. 5.30; an apparent under-prediction of the cumulative droplet mass fraction at small droplet sizes, 

but an accurate representation of 100d . 

5.3.4 Discussion 

Applying the theoretical grade efficiencies to the inlet droplet size distribution and renormalizing the 

results, theoretical outlet droplet mass fractions can be computed, from which theoretical Sauter 

mean diameters can be deduced. The model predictions for both sets of experiments are compared 

to the experimental Sauter mean diameters in Fig. 5.31. 

 

Fig. 5.31 Experimental Sauter mean diameters at the outlet for varying effective 

air velocities (solid squares) and varying liquid mass fraction (solid 

triangles) as compared to the model predictions (open symbols) 

 

The model corresponds well with the experimental values. As compared to the classical model 

without straight sections, the extended model predicts slightly higher separation efficiencies and 

thus slightly lower Sauter mean diameters at the vane separator outlet, in the order of magnitude of 

0.35 µm (not depicted). As expected, the experimental Sauter mean diameters for variable gas 

velocity and variable liquid mass fraction cross at 9.5 m/s and 5%. The model predictions for the 

experiments with variable gas velocity do not agree as well with the measurements as those for 

varying liquid mass fraction; the Sauter mean diameters are somewhat over-predicted. This is due to 

higher contents of very small droplets in the measured outlet droplet size distributions, as compared 

to the model predictions. The inlet droplet size distributions for both sets of measurements are 

depicted in Fig. 5.32, which shows a clear difference in the measured content of small droplets, as a 

result of the different nozzle distributions and nozzle types applied in the experiments. The model 

assumes no correlation between grade efficiencies and droplet size distributions, which is supported 

by the agreement of the experimental results at a gas velocity of 9.5 m/s and 5% liquid mass fraction, 

and also in literature is considered unlikely [22], however inconclusive [50] (refer to the discussion in 

chapter 3.6.3). 
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Fig. 5.32 Inlet droplet size distributions for measurements with variable mass 

fraction (red) and gas velocity (black) 

The good agreement between the cumulative outlet droplet mass fractions from measurement and 

model for the variable liquid mass fraction experiment, and the similarity of these with the data from 

the variable gas velocity experiment (Fig. 5.33), suggests the model discrepancy could be caused by 

non-uniform droplet distributions at the PDA measurement point for the variable gas velocity data 

set. An increased concentration of large droplets near the center of the channel would cause a shift 

of the perceived (measured) inlet droplet size distribution towards larger diameters. This could be 

related to droplet coalescence produced by the impinging sprays being centered more at the middle 

of the spray chamber, as compared to the asymmetrical nozzle distribution during the variable liquid 

mass fraction experiment (refer to section 5.3.3.1). The under-representation of small droplet 

fractions in the PDA measurements of the inlet droplet mass fractions is directly reflected in the 

predicted cumulative outlet droplet mass fractions in Fig. 5.30 and appendix A.V-b: based on the 

measured inlet values, lower mass fractions of small droplets are predicted at the outlet, as 

compared to the measured values at the outlet. 

 

Fig. 5.33 Measured (solid lines) and predicted (dashed lines) cumulative outlet 

droplet mass fractions for the measurements with 9.5 m/s and 5% 

liquid mass fraction, during the variable liquid mass fraction (black) 

and variable gas velocity (red) experiments 
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The contributions of the straight wall sections, according to the proposed extension of the analytical 

model, were for the geometries under investigation too small to isolate for a valid comparison of the 

overall droplet separation efficiency with experiments. The reason is that the vane separator 

geometry under investigation is quite efficient. According to the model, the contribution of the 

straight wall sections decreases rapidly with decreasing droplet diameter, thus for the relatively small 

outlet droplet distributions it was not very significant. These contributions become relevant when 

vane separators are of a less efficient design, e.g. when they are optimized for costs and/or space 

restrictions (comprising fewer number of stages and/or smaller bend angles). They are also relevant 

when specific grade efficiencies are concerned; for certain ranges of droplet diameters the difference 

in efficiency can be significant. In particular, the sensitivity of the droplet separation efficiency with 

respect to the droplet diameter is increased by the presence of straight wall sections. 

5.4 Pressure drop 

Experimental values for the pressure drop as a function of effective air velocity are depicted in Fig. 

5.34. The formula given by Wilkinson [70] (equation (4.42)) has been employed to produce 

theoretical pressure drop values. 

 

Fig. 5.34 Pressure drop as a function of effective air velocity (closed symbols) 

and as a function of mass fraction (open symbols). Solid and dashed 

lines represent predictions by the Wilkinson model. 

Quintessence 

The droplet separation experiments were influenced by re-entrainment from the last vane 

separator stage. After adjustment of the experimental data for re-entrainment effects the 

analytical model gives quite accurate predictions for the cumulative outlet droplet mass 

fractions. Non-uniform droplet distributions at the PDA measurement point seem to offset 

the model predictions in comparison with the measurements. For the tested geometries the 

contribution of the straight sections to the total separation efficiency is very small. 
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The pressure drop is very reasonably estimated by the formula for gas velocities up to 12 m/s. 

Wilkinson [70] reported a change in the pressure loss coefficient for the bends at a Reynolds number 

of 7760; from a decreasing function of the Reynolds number, to a Reynolds number independent 

function129. In this case, this regime change occurs at a gas velocity of approximately 10 m/s. It is 

interesting to note, that the low Reynolds number pressure drop formula gives better results for the 

experimental pressure drop beyond Reynolds numbers of 7760 (dashed line in Fig. 5.34). This 

suggests, that the dependence of the pressure drop coefficient on the Reynolds number is valid for 

higher Reynolds numbers than reported by Wilkinson [70]. Fig. 5.34 also depicts the pressure drop as 

a function of liquid mass fraction. No specific dependence of the pressure drop on the liquid mass 

fraction can be discerned. 
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 Refer to chapter 4.2.1. 
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6 Optimizing vane separator design 

6.1 Introduction 

Several authors have investigated and discussed design criteria for vane separators. For instance, Kall 

[29, pp. 43-47] discusses design criteria for a particular vane separator geometry, including an inner 

bend radius equal to the (constant) channel width to prevent film detachment, a minimum overlap of 

consecutive bends to prevent strike through of large droplets130, and a minimum vane profile 

thickness vt  to incorporate drainage. This resulted in specific values for the relative vane pitch 

v Rw  , the relative wavelength v R  , the relative length of the straight section RL   and the 

bend angle   (Fig. 6.1). Fixing these parameters, the author concluded that smaller channel widths 

create larger drainage volumes and thus increase effective gas velocity, decrease film thickness 

(because the liquid is divided over more channels), decrease total vane separator length (at a 

prescribed number of 7 stages), but increase manufacturing costs. Obeying a minimal sheet thickness 

of 1 mm, Kall [29, pp. 43-47] arrives at a channel width of 8 mm. 

 

Fig. 6.1 Geometric parameters with relevance to vane separator design, 

according to Kall [29] 

Wilkinson [70] investigated optimal vane separator designs with which a minimum of 50% separation 

efficiency could be achieved with minimum pressure drop. Target droplet sizes between 1-20 µm and 

vane separators with 3, 5, 7 and 9 stages were investigated and channel width, length of straight 

section, bend angle and gas velocity were varied. The relevant geometrical parameters are given in 

Fig. 6.2. Using one empirical equation for pressure drop and one for separation efficiency, 

optimization was performed by the generalized reduced gradient method [39]. Assuming constant 

bend angles, the optimal bend angle was in all cases approximately 66°. Channel width decreased 

and gas velocity increased with decreasing target droplet size, reaching impractically narrow 

channels for target droplet sizes below 5 µm. The vane pitch b  varied from 4.3 - 8.6 mm for different 

numbers of stages at a target droplet size of 5 µm, and increased to 34.5 mm for a target droplet size 

of 20 µm and 9 stages. The gas velocity varied between 2.1 - 4.2 m/s and decreased to 0.5 m/s, 

respectively. The variation in pressure loss between different numbers of stages was very small. 
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 Refer to chapter 1.2. 



6 OPTIMIZING VANE SEPARATOR DESIGN 

124 
 

 

Fig. 6.2 Geometric parameters relevant to vane separator design, according to 

Wilkinson [70]
131

 

Both authors quoted above both considered a particular basic geometry for which they tried to 

achieve the optimal geometrical parameters, given certain boundary conditions. Before optimal 

geometrical parameters are discussed, the next section summarizes from the previous chapters 

general aspects of vane separators that are expected to improve their performance. Taking these 

into consideration, as well as the applicable boundary conditions, a specific novel vane separator 

design will be introduced and tested experimentally, the results of which are discussed at the end of 

this chapter. 

6.2 Optimizing vane separator geometry 

6.2.1 General considerations 

The following factors all have a positive influence on the droplet separation efficiency, but a negative 

influence on the pressure drop: increasing the gas velocity, reducing the channel width, increasing 

the bend angle, increasing the length of the straight sections, increasing the number of stages and 

introducing pick-off hooks (for low gas velocities). Keeping this in mind, the following points are 

observed while optimizing the design: 

 

 Because high gas velocities promote high efficiencies, while enabling small cross-sectional 

areas and thus reducing costs, the general goal set forward is to achieve the prescribed 

separation efficiency at high gas velocities, without exceeding the prescribed pressure drop 

and/or the critical gas velocity. 

 Based on the discussion on pick-off hooks in chapter 4.2.2, their incorporation in the design 

will be avoided. 

 Some type of separated drainage, in addition to pure gravitational drainage, possibly through 

perforated plates, will be advantageous (as discussed in chapter 4.1.2.4). 

 Following the discussion in chapter 4.1.3, convex corners should be of a smooth shape, 

reducing re-entrainment by film detachment, and avoiding increased pressure drop due to 

additional turbulent effects (recirculation zones). 
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 Reprinted from [70, p. 266]. 
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 The straight sections should be just long enough for the droplet distribution to remix, 

without unnecessarily increasing total separator length and pressure drop. 

 The combination of bend angle and length of straight section should prevent large droplets 

from striking through. 

6.2.2 Optimizing the flow channel 

It was ascertained in chapters 3.1.3 and 3.4.1 that the droplets entering each consecutive bend, tend 

to concentrate along its inner wall. In order to shift the entire flow towards the outer wall and thus 

suppress the outer low velocity regions, an offset is created between outer and inner walls of the 

bend, leading to a variable channel width that becomes narrower when approaching each bend (Fig. 

6.3). 

 

Fig. 6.3 Variable channel width of novel vane separator geometry 

The offset between inner and outer walls naturally creates intermittent spaces between the 

corrugated plates, which can be utilized for drainage purposes, if a pathway for the liquid film to 

penetrate the wall and enter these volumes is provided. A straightforward manner to achieve this, is 

to apply perforations in the wall sections shortly downstream of each bend; where most of the inert 

droplets are separated. This is depicted in Fig. 6.4, in which the drainage channels are marked with T 

and the perforations with Q. 

 

Fig. 6.4 Drainage channels and perforated walls of novel vane separator 

design
132

 

The general design has thus been established. The specific geometrical parameters have not yet been 

quantified, because they vary with the specific application and boundary conditions. 
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 Reprinted from [46]. Courtesy of Siemens AG. 
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6.2.3 Boundary conditions 

Before discussing an optimal vane separator geometry, the design goals must be defined and 

prioritized, as well as the boundary conditions under which these must be achieved. For instance: 

total cross-sectional area and mass flow could be fixed, and separation efficiency would be 

maximized while not exceeding a certain maximum pressure drop. As a practical example, the 

application of vane separators in a Moisture Separator & Reheater133 shall be worked out, for which a 

vertical orientation in horizontal orthogonal flow is assumed, thus excluding non-orthogonal flow and 

gravitational effects. The following conditions shall be valid: 

 

1. Inlet steam mass flow, moisture content and pressure are prescribed. 

2. The total vane separator cross-section and thus the effective gas velocity can be manipulated 

within the limits allowed by the dimensions of the reheater tube bundles and the general 

design of the pressure vessel. Smaller cross-sections reduce costs, especially when they 

enable a reduction of the pressure vessel diameter and length. 

3. A certain maximum droplet mass fraction at the vane separator outlet, as well as a certain 

maximum pressure drop shall not be exceeded. Staying within these limits, costs and 

secondly separation efficiency are optimized. 

4. The vane separator inlet droplet size distribution can be manipulated by choosing a 

particular design of the coarse (cyclone) separator. 

5. A certain conservative margin is observed, mainly due to uncertainties in actual physical 

parameters. These include uncertainties in actual droplet size distributions, partial load and 

transient conditions, but also a macroscopically uneven velocity field (due to the large 

dimensions of the vessel), producing regions of higher and lower effective gas velocities. The 

amount of re-entrainment is also a factor of uncertainty. 

 

The following boundary conditions at the MSR inlet are defined for the subsequent design 

optimization: 

 

 the steam is saturated at a pressure of 12 bar 

 the inlet steam mass flow is 1300 kg/s 

 the initial liquid mass fraction is 8% 

 the droplet size distribution is given by Table 2 in chapter 3.6.2 

 

Furthermore, the outlet liquid mass fraction shall not exceed 0.5% and the pressure drop shall not 

exceed 500 Pa. 

6.2.4 Design optimization 

The formula provided by Kolev [34, p. 366] for the separation efficiency of cyclone separators can be 

used to estimate the inlet droplet size distribution for downstream vane separators. The relevant 

geometrical parameters of the cyclone separator are its length, its inner and outer diameters and its 

blade angle. A representative cyclone separator for the current application could be 4 m in length, 

with an inner diameter of 0.5 m, an outer diameter of 1 m and a blade angle of 45°. This cyclone 
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separator would be capable of separating nearly all droplets above 40 µm, leading, for the prescribed 

inlet droplet distribution, to a separation efficiency of 83.3%. The resulting downstream droplet mass 

distribution for the prescribed inlet droplet mass distribution is depicted in Fig. 6.5. The liquid mass 

fraction has at this point been reduced to 1.4%. In order to further reduce the liquid mass fraction to 

0.5%, the vane separator must perform well for droplets of 5 - 40 µm in diameter. 

 

Fig. 6.5 Theoretical droplet mass distribution downstream of a representative 

cyclone separator, based on the inlet distribution given in Table 2 

Given the geometry introduced in chapter 6.2.1, it remains to specify the geometrical parameters for 

this example. The relevant points discussed throughout this paper, that should be kept in mind when 

deciding on a final geometry, are summarized in Table 10. 

Table 10 Consequences of sub-optimal design of vane separator geometry 

 Too small Too large 

Channel width - pressure drop increases 
- number of channels 
(manufacturing costs) increases 

- insufficient efficiency for small droplet 
sizes 
- liquid film thickness (re-entrainment) 
increases 

Inner bend 
radius 

- liquid film detachment 
- recirculation zones 
- large pressure drop 

- total vane separator length increases 

Bend angle - total vane separator length 
increases 
- possibility of strike through of large 
droplets 

- pressure drop increases 
- channel pitch increases (parallel 
channels may require more space) 

Length of 
straight parts 

- possibility of strike through of large 
droplets 
- no remixing of droplet distribution 

- pressure drop increases 
- total vane separator length increases 

Number of 
stages 

- conservative margin is not 
observed 

- pressure drop increases 

 

Considering the narrow passages in the channel, the inlet width is chosen not too small at 11.5 mm. 

Following Kall [29], the inner radius of 10 mm is of similar dimension as the channel width. From 

chapter 4.1.5, the critical air velocity for re-entrainment is expected to lie at 5 - 8 m/s. Although not 
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tested for steam, according to equation (4.36), the critical velocity is higher for steam than for air, 

but decreases with pressure (while the gas-to-liquid density ratio decreases). Choosing a gas velocity 

of 6 m/s as the design basis is justifiable only when re-entrainment is countered by re-separation of 

re-entrained droplets through a sufficient number of stages. The absence of pick-off hooks allows for 

a conservative number of 7 stages, representing an adequate margin for re-entrainment, without an 

unreasonable increase in pressure drop. To ensure the required separation efficiency, the bend angle 

is chosen at 80° and a straight channel section of 17.6 mm should allow proper remixing of droplets, 

while preventing strike through of large droplets. The resulting geometry is listed in Table 11. 

Table 11 Geometrical parameters of novel design 

 

 

Given the cyclone separator introduced before, the theoretical separation efficiency of this vane 

separator for the resulting droplet mass distribution is 65.1%, leading to a combined efficiency of 

94.2% and a resulting steam quality of 99.5%. The inlet, intermediate and outlet droplet mass 

fractions in this example are shown in Fig. 6.6, which also depicts both separation efficiencies. The 

figure typifies the cyclone as the heavy duty separator, necessary to separate the bulk of the liquid, 

while the vane separator is imperative to reach the prescribed steam quality in the presence of small 

droplets. 

 

Fig. 6.6 Cumulative droplet mass fractions at cyclone inlet (red), vane 

separator inlet (blue) and outlet (green) with cyclone separation 

efficiency (red line) and vane separator efficiency (blue line) 

 

inner bend radius m 0.01 

channel width m 0.0115 

total vane angle deg 80 

length of straight parts between bends m 0.0176 

number of stages - 7 
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6.3 CFD results of the novel design 

6.3.1 Comparison with the analytical model 

The novel geometry was tested through numeric computation by Siemens AG Corporate Research & 

Technology in Moscow, using ANSYS CFX software. The numerical model included fully coupled flow 

and a Shear Stress Transport model for turbulence, with a low Re number approach near the walls. 

Water droplets of 10, 20, 30, 40, 50, 100, 200, 300, 400 and 500 µm were considered, each group 

representing 10% of the total droplet mass, which was never more than 1% of the total mass flow. To 

simulate the physical conditions inside an MSR, the flow medium was saturated steam at a pressure 

of 12 bar. No phase changes were allowed. Homogeneous steam velocities of 1 - 10 m/s were 

investigated. The result for 6 m/s is depicted in Fig. 6.7, which also lists the separation efficiency after 

each of the uneven stages. More than 90% of the droplet mass is separated in the first stage, after 

which the subsequent double stages separate an additional 4%, 2% and 1.4% respectively. Noting 

that re-entrainment is not considered in the model, this testifies to the conservative nature of adding 

the last couple of stages to the design. 

 

Fig. 6.7 Particle tracking in the novel geometry, at a homogeneous steam 

velocity of 6 m/s and a pressure of 12 bar
134

 

The numerical results for the separation efficiency for the investigated steam velocities are depicted 

in Fig. 6.8, which also shows the results obtained from the analytical model (equation (3.122)). 

Especially at lower velocities, the analytical model predicts lower efficiencies than the numerical 

model. It is likely that the variable channel width, causing increased effective gas velocity around the 

bends that are not accounted for in the analytical model, has a positive effect on separation 

efficiency, especially at low velocities. A further explanation could be that turbulent effects play a 

positive role in separating small droplets at lower velocities. At homogeneous velocities beyond 5 

m/s the results are in good agreement. Since the relevant input parameters for the analytical model 

do not differ for the novel design and the simplified geometry introduced in chapter 5.3.1; given the 

results of chapter 5.3, the analytical results can be considered representative for the simplified 
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geometry. The direct comparison with the numerical model thus suggests an improved separation 

efficiency for the novel design features introduced in this chapter. 

 

Fig. 6.8 Numerical results with ANSYS CFX (black) as compared to the 

current analytical work (red) for the novel geometry with saturated 

steam at 12 bar 

6.3.2 Comparison with a commercial geometry 

Steinmüller GmbH also investigated the novel design VS-2, using ANSYS CFX software, and compared 

the results to numerical computations on a Burgess Manning design, under the same physical 

conditions as those described above (Fig. 6.9). At low gas velocities, the pick-off hooks in the Burgess 

Manning design increase the separation efficiency in comparison to the smooth geometry of VS-2. As 

the velocity increases, the separation efficiency of VS-2 clearly increases, whereas that of the Burgess 

Manning geometry remains at around 95% for all depicted velocities. Since re-entrainment is not 

accounted for in the models, this is solely due to pressure stagnation in the pockets and turbulent 

eddies blocking their entrance. 

 

Fig. 6.9 Burges Mining vane separator design (above) and numerical results 

(below) for this geometry (black) as compared to the current novel 

design VS-2 (red) 
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From these results, the conclusion is drawn that VS-2 is most effective beyond gas velocities of ca. 4 

m/s. The main advantage of the novel design thus lies in its increased efficiency at higher gas 

velocities, which allows for a decreased number of vane separators to be installed. Recalling the 

difference in pressure drops between geometries with an without pick-off hooks (Fig. 4.29), the 

pressure drop of VS-2 at this higher operational velocity is expected to remain below that of 

geometries with pick-off hooks operating at lower gas velocities. 

6.4 Experimental results of the novel design 

6.4.1 Research goals and experimental setup 

For the novel design introduced in this chapter the same experiments were carried out as laid out in 

chapter 5.3. The goal of this investigation is to determine if the novel design is represented well by 

the analytical model described in this paper, as well as to ascertain if the performance has increased 

in direct comparison to its simplified counterpart, which was introduced in chapter 5.3135. The 

simplified model shall be referred to as VS-1 and the novel design as VS-2. The experimental setup is 

identical to the description in chapter 5.3.2 and the test geometry consists of 9 parallel channels of 

500 mm in height, manufactured from 3 mm Makrolon® (Fig. 6.10). Measurements were carried out 

with the same spray chamber velocities and the same approximate liquid mass fractions as for VS-1. 

The measurements points, including the effective air velocity through the channel and the achieved 

liquid mass fractions for VS-2, are listed in Table 12. The effective air velocities are smaller, because 

the blockage factor for VS-2 is smaller, providing space for 9 parallel channels instead of 7 for VS-1. 

 

Fig. 6.10 Schematic view of the optimized vane separator design (left)
136

 and the 

test module (right) 
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Table 12 Measurement points for the experiments with the novel design (VS-2) 

Spray chamber air velocity [m/s] Effective air velocity [m/s] Liquid mass fraction [%] 

1.0 1.5 

5.25 

4.88 

5.07 

5.57 

2.0 2.9 5.19 

3.0 4.4 5.80 

4.0 5.8 5.56 

5.0 7.3 

5.25 

2.09 

3.63 

4.68 

5.32 

6.71 

8.40 

8.75 

6.0 8.8 5.58 

7.0 10.2 5.36 

8.0 11.7 5.10 

9.0 13.1 5.09 

10.0 14.6 5.12 

 

6.4.2 Results 

The measured separation efficiencies for both geometries are depicted in Fig. 6.11. No significant 

differences can be discerned between the two geometries, although the decrease in separation 

efficiency for large effective air velocities (above ca. 12 m/s) appears to be less pronounced for VS-2. 

 

Fig. 6.11 Experimental efficiencies for VS-1 (triangles) and VS-2 (squares) for 

varying effective air velocity (closed symbols) and varying liquid mass 

fraction (open symbols) 
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This supposition is substantiated by Fig. 6.12, which depicts the correlation with the inlet Sauter 

mean diameter for VS-2. Compared to Fig. 5.27, the separation efficiency appears less affected by 

the decreasing inlet Sauter mean diameters at higher air velocities. The separation efficiency of VS-2 

displays a more constant trend as that of VS-1 and remains between 82% and 95% for all recorded air 

velocities above 1.5 m/s, including the measurements with varying liquid mass fractions. In chapter 

5.3.3.1 the correlation was attributed to the thicker liquid films that are associated with larger inlet 

Sauter mean diameters, and the resulting better gravitational drainage thereof. This implies that the 

drainage of the liquid film in VS-2 at high air velocities is less impaired by decreasing inlet Sauter 

mean diameters than in VS-1. 

 

Fig. 6.12 Measured droplet separation efficiencies (squares) and inlet Sauter 

mean diameters (stars) as a function of effective air velocity (left) and 

of liquid mass fraction (right) 

The re-entrainment from the last stage, as discussed in chapter 5.3.3.2, was also observed for VS-2. 

The following results thus concern values obtained after application of the same cut-off filter at 40 

µm. The measured inlet and outlet droplet distributions and the predicted outlet droplet 

distributions are depicted in Fig. 6.13, exemplary for the measurements at 2% liquid mass fraction 

and at an effective air velocity of 5.8 m/s. 

 

Fig. 6.13 Cumulative droplet mass fraction before (blue) and after (red) the 

vane separator as compared to the model (black), for the 

measurements at 2% liquid mass fraction (left) and at an effective air 

velocity of 5.83 m/s (right) 
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The model results for VS-1 were in good agreement with the measurements137, which implies that 

the model results in Fig. 6.13 can be considered representative for the performance of VS-1 under 

the same conditions. It follows from these figures that the experimental separation efficiency of VS-2 

exceeds that of VS-1. The same conclusion can be drawn from the corresponding figures for the 

other measurements of VS-2, which are provided in appendix A.VI. 

 

The outlet Sauter mean diameters for all recorded effective air velocities are depicted in Fig. 6.14. In 

accordance with Fig. 6.13, VS-2 appears to be capable of separating smaller droplets at equal 

(effective) air velocities: with increasing air velocity, the outlet Sauter mean diameters settle at about 

5 µm and 3 µm for VS-1 and VS-2 respectively. The outlet Sauter mean diameters for the recorded 

liquid mass fractions are depicted in the same figure on the right. No clear trend is discernible. The 

values for VS-2 are again lower than those for VS-1, even though they are recorded at lower effective 

air velocities. 

 

Fig. 6.14 Experimental Sauter mean diameters at the outlet of VS-1 (triangles) 

and VS-2 (squares) for varying effective air velocities (left) and 

varying liquid mass fractions (right) 

6.4.3 Discussion 

Based on the Sauter mean diameter of the filtered outlet droplet size spectra, vane separator VS-2 

consistently outperforms VS-1 throughout all measurements. The experimental separation 

efficiencies based on the measured liquid mass balances do not show a superior performance of VS-2 

and are in some cases even lower for VS-2 than for VS-1, as can be deduced from Fig. 6.11. If this 

phenomenon is to be attributed to re-entrainment, the drainage in VS-2 is apparently less effective 

than in VS-1, even though VS-2 is equipped with perforated wall sections. It is plausible that this is 

partly caused by the slightly sharper corners of VS-2, because the contribution to internal re-

entrainment, i.e. film detachment from the inner bend (as opposed to re-entrainment from the edge 

of the last stage), is expected to be larger for corners of smaller radii (compare Owen & Ryley [51] 

and the discussion in chapter 4.1.3). In addition, VS-2 has a higher separation efficiency than VS-1 

only in the range of very small droplets. These will generally be separated in later stages and 

therefore have a shorter migration distance along the wall until the end of the last stage, where they 

are likely to be re-entrained. Nonetheless, these points would be less relevant if the perforations 

were very effective, which does not appear to be the case. The size and shape of the perforations are 
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expected to play a role, as well as the wall thickness. Vertically elongated perforations likely help 

prevent the migration of liquid film across the perforated wall sections and thinner vane separator 

walls (e.g. 1 mm steel instead of 3 mm Makrolon®) might reduce capillary effects inside the borehole. 

6.4.4 Pressure drop 

Experimental values for the pressure drop as a function of effective air velocity are depicted in Fig. 

6.15, for both geometries. As expected, VS-2 displays a higher pressure drop, caused by the variable 

channel width in contrast with the constant channel width of VS-1. In addition, the slightly sharper 

corners and the macroscopic roughness of the straight wall sections of VS-2, due to the perforations, 

can be expected to contribute to the pressure drop. The pressure drop ratio between VS-2 and VS-1 

increases with air velocity, signifying a more than linear dependence. 

 

Fig. 6.15 Pressure drop as a function of effective air velocity (closed symbols) 

and as a function of liquid mass fraction (open symbols) for VS-1 

(triangles) and VS-2 (squares) 

Fig. 6.15 also depicts pressure drops for both geometries as a function of liquid mass fraction. Again, 

the values for VS-2 are higher than those for VS-1. No specific dependence of the pressure drop on 

the liquid mass fraction can be discerned. This was also reported by Galletti et al. [17] and is 

consistent with most equations for the pressure loss coefficient (including those from Wilkinson 

[70]), as long as the mixture density of the continuum is not significantly affected. Pressure drops in 

Quintessence 

The better performance of the novel vane separator design is clouded by re-entrainment 

effects. Adjusting for these effects the separation efficiency of the novel design is clearly 

higher at smaller droplet diameters, leading to smaller outlet Sauter mean diameters for all 

applied measurement conditions. Optimizing the wall perforations of the novel design is 

expected to reduce re-entrainment through more effective drainage. No correlation between 

separation efficiency and inlet liquid mass fraction can be discerned. 
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the range of a few 100 Pa at air velocities below 10 m/s are typical for vane separators (e.g. [64], 

[17]), with significantly higher pressure drops for vane separators with pick-off hooks (e.g. [42]). For 

effective air velocities up to 8 m/s, both geometries cause pressure drops below 300 Pa. Compared 

to the commonly accepted industrial standard of 400 Pa at nominal velocities, which is anywhere 

between 1 and 5 m/s depending on the type and amount of vane separators, both vane separator 

geometries perform well. 
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7 Conclusion 

The comparison of the analytical model introduced in this paper with experiments, showed that, 

although not perfect, it is a very useful tool in predicting droplet separation efficiencies of vane 

separators of many shapes and sizes. Furthermore, numerical results gained from CFD, often with 

additional algorithms to convey some particular physical mechanism (e.g. entrainment effects, wall 

boundary conditions or turbulent effects), do not appear to perform much better than the analytical 

model, but cost much more effort and time. In addition, the discussed numerical models were often 

fine-tuned to fit the experimental data (e.g. by setting turbulence parameters). The absence of 

empirical parameters is a strong advantage of the analytical model138. Numerical models, however, 

can handle the complexity of many geometries that are not accounted for in the analytical model, 

the presence of pick-off hooks being the most prominent example. The analytical model appears to 

achieve decent predictions for many geometries, which led to the conclusion that straight type 

geometries are represented well by the model, but the quantitative impact of the simplification of 

complex geometries in the analytical model remains unknown. The representation of non-uniform 

velocity profiles proved helpful in explaining the vanishing separation efficiency at very small droplet 

diameters, but determining the actual width of the profile without comparative data is arbitrary and 

the impact of a more skewed profile has not been investigated. The same can be said for the 

representation of remixing of non-uniform droplet distributions. 

 

The experiments provided several important insights. First of all, in the presence of re-entrainment it 

proofs hard to achieve separation efficiencies close to unity. Specifically the carry-over of liquid film 

through the subsequent stages and the consequent re-entrainment from the edge of the last stage 

had a major impact, which is apparently correlated to the inlet droplet size distribution; the actual 

stage in which droplets are separated (i.e. the distance from the vane separator exit) playing an 

important role. The analysis of the cumulative droplet mass fractions, after application of a cut-off 

filter, allowed for a detailed investigation of the experimental results, with very satisfactory results. 

The symmetry of the nozzle distribution and the separation characteristics of the spray chamber 

proved relevant for the measurement of the inlet droplet size distribution. In the case of asymmetric 

nozzle distributions, larger droplets are thought to shoot past the PDA measuring point towards the 

opposite wall, causing a comparatively low number of them to be measured, which results in an 

under-estimation of the inlet Sauter mean diameter. In the case of symmetric nozzle distributions, 

larger droplets are thought to concentrate in the center of the channel, possibly also coalescing, 

causing a comparatively high number of them to be measured, which results in an over-estimation of 

the inlet Sauter mean diameter. Specifically for the experiment with varying gas velocity, the 

accumulation of larger droplets near the channel center caused an under-representation of smaller 

droplets in the PDA measurement data, leading to under-predicted cumulative droplet mass 

fractions in the range of very small droplets. It is noted that this automatically leads to a steeper 

profile for the cumulative mass fractions, as is visible in the data (appendix A.V-b), which means that 

the predicted separation efficiency does not necessarily have a stronger dependence on the droplet 

diameter than the experimental data suggests. 
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The (predicted) contribution from the straight channel sections to the separation efficiency was not 

large enough for an isolated investigation. The reason is that the vane separator geometry under 

investigation already reached high efficiencies at low Stokes numbers, for which the relative 

contribution from the straight sections is very small (refer to Fig. 3.5). This effect is enhanced by the 

fact that a large number of stages are present, reducing the relative contribution from the straight 

sections to the total separation efficiency with each additional stage. Referring to Fig. 3.5, the 

straight channel sections become relevant in vane separators operating at higher Stokes numbers, 

e.g. when they are optimized for costs and/or space restrictions (comprising fewer number of stages 

and/or smaller bend angles). 

 

The pressure drop measurements revealed that, even at higher Reynolds numbers, the low-Reynolds 

number formulation by Wilkinson [70] was in better agreement with experiment than his predictions 

following the high-Reynolds number regime change. Wilkinson [70] performed experiments on 

straight type geometries: it is likely that the round bends of the simplified model caused the 

turbulent effects underlying the regime change proposed by Wilkinson [70] to occur at higher 

Reynolds numbers. A dependence of the pressure drop on the liquid mass fraction can clearly be 

denied for liquid mass fractions below 10%. 

 

The optimization of the vane separator design carried out in chapter 6, led to better separation 

characteristics in the range of very small droplets. Clouded by re-entrainment effects (caused by 

liquid film carry-over), this improvement was made evident through the analysis of the cumulative 

droplet mass fractions, for both sets of experiments, and most clearly visualized by the comparison 

of the outlet Sauter mean diameters. For the simplified design VS-1 there was no improvement in 

separation efficiency beyond gas velocities of 12 m/s; for the novel design VS-2 beyond gas velocities 

of 10 m/s, the difference being due to the earlier inducement of turbulent effects caused by the 

variable channel width of VS-2, in combination with its sharper corners and its perforations, which 

increased wall roughness. These channel characteristics were also the cause of the increased 

pressure drop of VS-2, in comparison with VS-1. A correlation between separation efficiency and 

liquid mass fraction was not evident. 

 

It was shown that many physical phenomena of two-phase flow through vane separator channels 

find a representation in an analytical model of the droplet separation efficiency. The predictive 

power of the analytical model is satisfactory for the use as algorithm in larger numerical models, as 

well as in engineering methods for design, and is in many cases not inferior to numerical modeling. 

Its fast and simple application allows significant cost savings when determining the optimum 

geometrical parameters of the vane separator as a system component (e.g. the application in an 

MSR), for a given set of boundary conditions. 
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8 Summary 

The industrial use of vane separators in steam power plants and their importance with regard to 

drying the steam is explained, through several examples of material erosion and a reference to 

thermo-dynamic efficiency. A short overview is provided of different vane separator types and their 

most relevant geometrical features. The intention of this paper is to extend the analytical description 

of droplet separation efficiency and improve its predictive power, allowing for a more effective and 

cheaper design process, as well as maintaining the possibility of its direct application in numerical 

simulations of the water-steam cycle. A number of papers on droplet separation in vane separators 

has been reviewed, in which most authors focus on experimental results and/or numerical 

simulations, presenting analytic results only in the form of a simple balance of forces, incorporating 

the basic physical mechanisms of inertia and drag along a circular path. Occasionally some form of 

remixing and/or turbulence is accounted for. Some authors fit experimental results using different 

empirical relations that are not always founded on a strong physical background. The relatively 

simple formulas for separation efficiency that were established before the widespread use of CFD 

tools, often achieve decent results in comparison with experiments. The exponential form of the 

separation efficiency, based on an analysis of droplet concentration along the vane separator bend, 

is chosen as the analytical foundation for the extending investigations introduced in this paper. 

 

Different forces acting on droplets migrating in a gas velocity field are summarized and discussed, 

after which a simple numerical model is introduced for Lagrangian tracking of the droplet paths 

through a vane separator channel, resulting in an explicit representation of the contribution of the 

straight channel sections to the overall separation efficiency. Apart from centrifugal and drag forces, 

only the gravitational force is incorporated in the model and investigated in relation with the droplet 

separation efficiency. It can be concluded that its effect is significant only in combination with low 

Stokes numbers and correspondingly small centrifugal forces; for example for small droplets in slow-

moving media through separators comprising only a few stages. The possibility of different spatial 

orientations of the vane separators, or the flow field itself, is accounted for in the model by allowing 

a rotation of the gas velocity vector. Such a rotation induces two counter-acting effects: it elongates 

the channel, increasing the effective length of both bends and straight sections, but it also widens 

the channel, increasing the effective channel width. Which of these is predominant, depends mainly 

on the bend angle of the channel and the angle of rotation, meaning that the maximum separation 

efficiency does not necessarily correspond to orthogonal flow conditions. In combination with 

gravitational effects, it turns out that this optimum is influenced by the gravity vector as well. 

 

Measured and computed velocity profile inside the channel, reported by different authors, convey 

distortions of the flow field, consisting of low-velocity regions near the outside wall of the bends. The 

absence of the driving centrifugal force inside these wall boundary regions prevents smaller droplets 

with too little inertia from reaching the outer wall. The corresponding adjustment of the terminal 

radial droplet velocity results in a modified separation efficiency that vanishes at droplet diameters 

below the escape diameter, which is defined as the minimum droplet diameter required to cross the 

wall boundary region, possibly limited by the total bend angle. Above a certain droplet diameter, the 

modified separation efficiency is larger, due to the increased gas velocities outside the wall boundary 

region, as compared to uniform velocity profiles. 
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The phenomenon of a non-uniform droplet distribution after passage through the first bend, and its 

consequent remixing, is represented by a modified droplet volume fraction that accounts for the 

magnitude of the deformity of the droplet distribution at the entrance of the bend and the rate of 

remixing. The resulting modification of the separation efficiency is equivalent to a reduction of the 

total bend angle, due to the diminished droplet volume fraction in the first part of the bend. After 

the analysis of the different relevant parameters and physical phenomena, and their impact on single 

stage grade efficiency, the combination of single stage grade efficiencies into a total vane separator 

efficiency, for a given droplet distribution, is discussed. 

 

An investigation of vane separator efficiency is not complete without discussing re-entrainment. 

Different mechanisms for re-entrainment exist; film detachment and droplet separation from liquid 

film flow being the most relevant for vane separators. Carry-over of liquid film through subsequent 

stages is also relevant, because, reaching the end of the last stage, the liquid film can detach and 

become re-entrained in the gas flow. In order to estimate liquid film carry-over, liquid film flow and 

liquid film thickness are analyzed, leading to a formulation of the maximum gravitational drainage, 

given the film flow angle and the geometry of the plate, and of the maximum carry-over mass flow, 

bound by the liquid film velocity, the film flow angle and the film thickness. These two limits identify 

the boundaries between which actual carry-over is expected to lie. If these limits are equalized, an 

alternative method emerges for the computation of liquid film thickness, varying with gas velocity 

and differing from the constant shearless Nusselt film thickness. This result is used to visualize the 

incoming droplet mass, the liquid film mass on the wall and the amount of liquid drained, in 

subsequent stages of a vane separator. It is shown that the separation characteristics of a vane 

separator can be significantly improved when carry-over of liquid film is diminished by providing 

additional drainage through perforations in the walls. 

 

By analyzing the conditions for stability of the liquid film, several authors have arrived at different 

definitions for critical film flow and the onset of re-entrainment of droplets from the film, resulting in 

a wide range of critical film and gas velocities from literature. Comparing different sources 

investigating critical gas velocities through experiments, it is concluded that values between 5 - 8 m/s 

are most commonly reported. A comparison of sources reporting experimental and computed 

pressure drops for different types of vane separators, conveyed a general trend that the contribution 

of pick-off hooks to the separation efficiency decreases with increasing gas velocities, but their 

corresponding contribution to the pressure drop does not. 

 

Several experiments reported in literature are compared with predictions from the analytical model 

introduced in this paper, which in most cases is in good agreement. It is concluded that straight type 

geometries, i.e. without rounded bends, are represented well by the model, and that the assumption 

of non-uniform velocity profiles can improve the agreement with experiment, although many of the 

vane separators under investigation feature relatively complex geometries (e.g. with pick-off hooks), 

the simplification of which in the analytical model is difficult to evaluate, let alone quantify. The 

experiments performed on a simplified vane separator geometry provide additional insight. The 

measured separation efficiency, and implicitly also re-entrainment, appears to be correlated to the 

Sauter mean diameter of the inlet droplet distribution. This is explained by the earlier separation of 

larger droplets, increasing the average migration distance toward the end of the separator as well as 

downward film flow velocity, thus limiting carry-over and improving gravitational drainage. After 
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compensating for liquid film carry-over and consequent re-entrainment at the edge of the last stage, 

the cumulative droplet mass fractions at the separator outlet, from experiment and model, are in 

very good agreement, especially so for the experiment with varying liquid mass fractions. The liquid 

mass fraction has no impact on droplet separation efficiency in the recorded range of 2 - 9%. The 

slight discrepancy in the predictions for the experiment with varying gas velocity is thought to be 

related to non-uniform droplet distributions at the PDA recording point shortly downstream of the 

spray chamber. The conditions of the experiments did not allow an isolated investigation of the 

contributions from the straight channel sections to the overall separation efficiency, and these are, 

for the given physical conditions and vane separator geometry, too small for a quantitative 

discussion. The pressure drop as a function of gas velocity is represented well by the model from 

Wilkinson [70], although his proposed regime change for higher Reynolds numbers leads to 

disagreement with the experiment. The liquid mass fraction appears to have no effect on pressure 

drop in the recorded range. 

 

Based on the investigations presented in this paper, a novel vane separator design is proposed, 

incorporating the major findings in earlier chapters. Exemplary boundary conditions are defined for 

the particular industrial application inside an MSR, according to which the remaining physical and 

geometrical parameters are determined that are expected to lead to an optimum geometry. The 

example is worked out using a simple analytical formulation of a cyclone separator and the analytical 

vane separator model introduced in this paper. Numerical computations on the resulting geometry 

display higher separation efficiencies, as compared to the model predictions, especially at low gas 

velocities, which is thought to be due to increased gas velocities around the narrowed bends, which 

are not accounted for in the analytical model. A numerical comparison with a commercial geometry 

featuring pick-off hooks, showed that for saturated steam at 12 bar, the novel design has a higher 

separation efficiency than the commercial design for gas velocities above 4 m/s. From the liquid mass 

flow balances measured during the experiments performed on the novel design, no clear advantage 

can be discerned in comparison with the measurements on the simplified design, apart from a more 

consistent separation efficiency at high gas velocities, visible also from the comparison with the inlet 

Sauter mean diameters. Both the analysis of the cumulative droplet mass fractions and the 

comparison of the outlet Sauter mean diameters, clearly convey the increased separation 

characteristics of the novel design. While the increased separation efficiency is at very small droplet 

diameters, which are separated later in the channel and thus have a large probability for re-

entrainment from the last stage, the increased performance does not show, without the isolation of 

re-entrainment effects. The pressure drop of the novel design is about twice as high as that of the 

simplified design, but, with a value of 300 Pa at a velocity of 8 m/s, remains very acceptable. 

 

It is concluded that the analytical model presented in this paper represents a useful tool in predicting 

droplet separation efficiencies of vane separators of different shapes and sizes, and that its 

predictive power is satisfactory for the intended applications. 

8.1 Summary of scientific results 

Although the 'classical' equation for the separation efficiency that forms the basis of the analytical 

work in this paper, was formulated several decades ago, few efforts to extend this analysis, on a 

physical rather than an empirical basis, such as to allow a broader investigation into the dependence 
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of the separation efficiency on its input parameters, as has been provided in this paper, have been 

reported in literature. 

 

The additional droplet separation due to droplet relaxation in straight channel parts had not been 

explicitly reported and its impact on separation efficiency has firstly been defined. 

 

Droplet migration across low-velocity wall-boundary regions has been investigated mainly through 

the application of CFD. The analytical relations for the limiting droplet escape diameters reported in 

this paper are new, and the decrease in separation efficiency due to impaired droplet migration 

across low-velocity wall-boundary regions, had thus far not been expressed in analytical terms. 

 

The interdependence of the impacts of gravity and non-orthogonal gas flow through the vane 

separator channels and its quantification along a continuous spectrum of geometrical and physical 

parameters is a novelty. 

 

This paper provides a connection between film flow angle, film thickness and carry-over of liquid film 

for arbitrary vane separator geometries, and a quantification of the related re-entrainment in terms 

of deteriorated total separation efficiency. The use of this result to provide an approximation for the 

average liquid film height for the given conditions also embodies a new approach to this topic. 

8.2 Proposal for future work 

Several physical phenomena have been discussed in this paper, for which experimental data for a 

proper validation are lacking. An experimental validation of the presented investigation into the 

impact of the spatial orientation of vane separators, both with respect to gravity as with respect to 

the gas flow field, would be very interesting, especially because such conditions are quite common in 

industrial applications. 

 

Measurements of the terminal radial droplet velocity across low-velocity wall boundary regions, and 

in general through non-uniform velocity profiles, would help to quantify their impact on separation 

efficiency (as well as validate numerical models for droplet motion). These experiments could include 

measurements in straight wall sections of vane separator channels and would then also provide 

insight into the redistribution of droplets in these sections, allowing for a validation of remixing 

models and a testing of the suggested formula for non-uniform droplet distributions. Such 

measurements could be performed with PDA systems, although high-speed camera recordings would 

also provide very interesting data. 

 

Liquid film flow and film flow angles have been investigated and experimental data on these subjects 

is available. Nonetheless, the relationship between shear gas velocity, liquid mass fraction, liquid film 

thickness and film flow angle, in combination with perforated walls, would certainly provide valuable 

data for further investigation of this subject. Carry-over of liquid film had a major impact on the 

presented results. Investigating the effectiveness of gravitational drainage in this context, as well as 

the effectiveness of different perforation types (e.g. holes or slits), would certainly be invaluable to 

the potential reduction of carry-over and possibly of droplet re-entrainment from liquid films in 

general. 
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A.I Determination of droplet radial velocity in 

straight sections 

The trajectory of a droplet exiting the bend and entering the straight section is schematically shown 

in A. Fig. 1. 

 

A. Fig. 1 Droplet trajectory in straight section 

The time   it takes for a droplet, after leaving the previous bend, to reach a given location s  on 

the wall of the straight section, equals 

 gs v    (1.1) 

The terminal radial velocity with which it leaves the bend is given by 
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in which r  is the radial position of the droplet and y  is the distance from the outer wall. The radial 

velocity of the droplet in the straight section, at a given time   after exiting the bend, was 

determined by equation (3.37), resulting in 
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The radial distance y  (i.e. the distance perpendicular to the plane of the wall) that has been 

traversed by the droplet as it hits the wall at position s  at time  , is then given by 
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Combining equations (1.1) and (1.4) and solving for y  with use of the quadratic formula, leads to 
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Rejecting the plus sign in front of the square root and making use of the approximation 

 2 2a a a    , valid for a  , leads to 
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The terminal radial velocity at the bend exit, of a droplet hitting the wall in the straight section at the 

location s , is thus given by 
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The droplet radial velocity in the straight section, for a droplet being separated at position s , equals 
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in which  du s  is the approximated radial droplet velocity defined by equation (3.43) in chapter 

3.1.4. For small droplets, in the regime 1gd  , the approximation    d du s u s  is valid. 
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A.II Gravitational influence on efficiency in inlet 

and outlet sections 

The ratio of separated and inlet mass flows for curved vane separator sections under the influence of 

gravity was given by equation (3.52): 
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For inlet sections at positive x -coordinates, this equation is integrated between the limits 

0 2   , resulting in 
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For inlet sections at negative x -coordinates, this equation is integrated between the limits 

2     , resulting in 
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For outlet sections at positive x -coordinates, this equation is integrated between the limits 

02    , resulting in 
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For outlet sections at negative x -coordinates, this equation is integrated between the limits 

2     , resulting in 
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It is now easy to see that the addition of equations (2.2) and (2.5), as well as the addition of 

equations (2.3) and (2.4), both of which imply an even number of stages, lead to the cancellation of 
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the contributions of gravity in these equations. Thus, for a single stage ( 1n  ) the resulting 

efficiency is: 
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The addition of equations (2.2) and (2.4), and the addition of equations (2.3) and (2.5), which both 

imply an uneven number of separation stages, lead to an addition of the contributions of gravity to 

that of a full bend, thus ultimately resulting in equation (3.58): 
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A.III Quantitative analysis of gravitational 

influence on efficiency 

The default input parameters for the ceteris paribus calculations are given in A. Table 1 below. The 

number of stages is either 4 or 5; for even or uneven numbers of stages. In all cases, inlet and outlet 

sections are included, leading to an effective number of curved sections of 1n  . Configurations are 

abbreviated with U, Ep and En for uneven number of stages and even number of stages with inlet 

oriented towards positive and negative x , respectively. 

A. Table 1 Default input parameters 

dD  20 µm 

gv  5 m s-1 

g  20 mg m-1 s-1 

  80 deg 

n  4 / 5 - 

R  1 cm 

outR  2 cm 

L  6 cm 

  0 deg 

  30 deg 

A.III-a Geometrical and gravitational variations 

A. Fig. 2 depicts the separation efficiency as a function of the gravitational angle  , normalized with 

the equivalent separation efficiency without the influence of gravity139. The influence of gravity for 

90    is zero and grows as 0   . All contributions are positive, because the velocity and the 

gravity vector are in the same half-plane. The largest impact is recorded for an even number of 

stages with an inlet towards positive x . 

                                                             
139

 The results for even and uneven number of stages are normalized using different separation efficiencies with 

the corresponding numbers of stages. 
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A. Fig. 2 Normalized separation efficiency as a function of the gravitational 

angle    

A. Fig. 3 depicts the separation efficiency as a function of the gravitational angle  . The influence of 

gravity for an uneven number of stages is zero at 0   , because the contributions in the curved 

sections, including inlet and outlet, in this case cancel. The contribution of gravity tends to increase 

for increasing  , representing an increasing alignment with the gas velocity vector. It is noteworthy 

that the maximum and minimum separation efficiencies are not at 90    , but lie at 69    . 

This is explained by the fact that, for the asymmetrical configurations, there is an optimum 

orientation at which the gravity vector does not fully align with the velocity vector, but is slightly 

slanted towards the side with the greatest number of bends. This optimum is at 0    in the limit 

0    and approaches 90    for 180   . It further approaches 90    for an increasing 

number of stages n  . 

 

A. Fig. 3 Normalized separation efficiency as a function of the gravitational 

angle   
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The gravitational influence as a function of the vane angle   is plotted in A. Fig. 4. As   increases, 

the increasing separation efficiency in the curved sections increasingly dominates the contribution of 

gravity in the straight sections, resulting in a general tendency toward unity. The maximum 

contribution of gravity thus lies at very small angles of   and further increases for 0   . The 

contribution of gravity for configurations with an uneven number of stages is much smaller, being 

positive (negative) for positive (negative) angles  . 

 

A. Fig. 4 Normalized separation efficiency as a function of total bend angle   

A. Fig. 5 depicts the normalized separation efficiency as a function of the number of stages n . Np 

and Nn refer to the orientation of the inlet toward positive or negative x , respectively. For 1n  , 

the contribution of gravity from the single stages is cancelled by the contributions from the inlet and 

outlet section140. For configurations with an uneven number of stages, their orientation (Np or Nn) 

has no effect on the outcome (refer to equation (3.74)). For 0   , the contribution of gravity 

would be zero for all uneven number of stages. For an increasing number of stages, the separation 

efficiency tends towards unity and the relative contribution due to gravity decreases. Consistent with 

A. Fig. 4, the contribution increases with decreasing  . Consistent with A. Fig. 3, the difference 

between the two configurations with an even number of stages (Np and Nn) decreases as 90    

(not depicted). In all figures, due to the particular physical default parameters, the contribution from 

gravity is very small. 

                                                             
140

 It is noted that this result for 1n   does not signify that gravity has no contribution to the separation 

efficiency of a single bend. If inlet and outlet sections are not present, this contribution does not cancel and 

has a non-zero value. 
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A. Fig. 5 Normalized separation efficiency as a function of the number of stages 

A.III-b Variation of physical parameters 

Regarding the influence of gravity, the two most significant physical parameters are the gas velocity 

and the droplet diameter. A. Fig. 6 depicts the impact of the gas velocity on the contribution from 

gravity to the separation efficiency. With increasing gas velocity, the separation efficiency tends to 

unity and the relative contribution from gravity decreases. For 0gv   m/s, the contribution from 

gravity tends towards positive (negative) infinity for positive (negative) angle  , because in this 

limit, the gravitationally incited terminal radial droplet velocity drives more droplets towards the 

wall, than can be replenished by the incoming gas flow. The equations tend to break down for 

2
g outv R g . 

 

A. Fig. 6 Normalized separation efficiency as a function of gas velocity 

A. Fig. 7 depicts the gravitational influence for different droplet diameters. Contrary to the intuitive 

expectation that the contribution from gravity would increase with increasing droplet diameter, 
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relative to the separation efficiency without gravity, it decreases. The reason is that the exponential 

powers for the curved sections and for the contribution of gravity from the straight sections (C  and 

H  in equations (3.68) and (3.72), respectively) are linear in dD , but the general contribution from 

the straight sections ( S  in equation (3.71)) is quadratic in dD . Thus, for increasing droplet diameter, 

the non-gravitational contribution to the separation efficiency increases faster than the gravitational 

contribution. 

 

A. Fig. 7 Normalized separation efficiency as a function of droplet diameter 
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A.IV Physical parameters of an air-water system 

The relevant physical parameters of the air-water system at which the experiments at the Institute of 

Fluid Mechanics (LSTM) of the Friedrich-Alexander University in Erlangen-Nuremberg were 

performed, are listed in the table below. 

A. Table 2 Physical parameters of the applied air-water system 

g  gravitational acceleration 9.8 m s-2 
p  pressure 1∙105 Pa 

T  temperature 20 °C 

f , l  dynamic viscosity of water 1.0∙10-3 kg m-1 s-1 

g  dynamic viscosity of air 1.8∙10-5 kg m-1 s-1 

f , l  density of water 958 kg m-3 

g  density of air 1.2 kg m-3 

  surface tension water-air 0.078 kg s-2 
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A.V Experimental results for a wavy vane 

separator 

A.V-a Varying liquid mass fraction 

The following graphs display the cumulated mass fraction of the measured inlet droplet distribution 

(blue), of the measured outlet droplet distribution after application of the cut-off filter (red) and of 

the computed outlet droplet distribution (black), corresponding to the experiments with varying 

liquid mass fraction. The inset provides a magnification of the latter two graphs. 

 

 

 

A. Fig. 8 Cumulative droplet mass fractions for the measurements with varying 

liquid mass fraction 
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A.V-b Varying gas velocity 

The following graphs display the cumulated mass fraction of the measured inlet droplet distribution 

(blue), of the measured outlet droplet distribution after application of the cut-off filter (red) and of 

the computed outlet droplet distribution (black), corresponding to the experiments with varying gas 

velocity. The inset provides a magnification of the latter two graphs. 

 

 

 

 

A. Fig. 9 Cumulative droplet mass fractions for the measurements with varying 

air velocity 
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A.VI Experimental results for the novel vane 

separator design 

A.VI-a Varying liquid mass fraction 

The following graphs display the cumulated mass fraction of the measured inlet droplet distribution 

(blue), of the measured outlet droplet distribution after application of the cut-off filter (red) and of 

the computed outlet droplet distribution (black), corresponding to the experiments with varying 

liquid mass fraction. The inset provides a magnification of the latter two graphs. 

 

 

 

A. Fig. 10 Cumulative droplet mass fractions for the measurements with varying 

liquid mass fraction 

  



A.VI EXPERIMENTAL RESULTS FOR THE NOVEL VANE SEPARATOR DESIGN 

160 
 

A.VI-b Varying gas velocity 

The following graphs display the cumulated mass fraction of the measured inlet droplet distribution 

(blue), of the measured outlet droplet distribution after application of the cut-off filter (red) and of 

the computed outlet droplet distribution (black), corresponding to the experiments with varying gas 

velocity. The inset provides a magnification of the latter two graphs. 

 

 

 

 

A. Fig. 11 Cumulative droplet mass fractions for the measurements with varying 

air velocity 
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Nomenclature 

Symbols 

Latin 

A  m2 area 
dc  - drag coefficient 

pc  - pressure loss coefficient 

vmc  - virtual mass coefficient 

D  m diameter 

escD  m droplet escape diameter 

hD  m hydraulic diameter 

R  m channel width 

f  - probability density function 

mf  - mixing factor 

G  kg m-2 s-1  flux 
g  m s-2 gravitational acceleration 

H  m height 

fh  m film thickness 

k  m2 s-2 specific turbulent kinetic energy 

L  m length of straight wall section 

e  m turbulent eddy length 

M  kg mass 

m  kg s-1 mass flow 
p  Pa pressure 

R  m radius 

r  m radial coordinate 
s  m (lateral) spacing 

T  °C temperature 
t  s time (continuous) 

vt  m vane profile thickness 

u  m s-1 radial velocity 

V  m s-1 homogeneous velocity 
v  m s-1 circumferential velocity 
w  m s-1 axial velocity 

vw  m vane pitch 
y  m transverse droplet migration distance 

 

  



NOMENCLATURE 

162 
 

Greek 

  - volume fraction 
  rad polar angle of gravity vector 

v  rad inlet flow angle 

  rad azimuthal angle of gravity vector 

   - uncertainty 
   m2 s-3 dissipation of turbulent kinetic energy 
  rad bend angle 
  - mass fraction 
  - efficiency 

  - removal geometric parameter 

  m micro-scale turbulent eddy length 

fr  - friction factor 

v  m vane wavelength 
  kg m-1 s-1 dynamic viscosity 
   m2 s-1 kinematic viscosity 

  rad azimuthal angle of droplet position 

  - liquid film flow angle 
  kg m-3 density 
  kg s-2 surface tension 

ij  kg m-1 s-2 interfacial shear stress 

  s timestep (discrete) 

gd  s droplet relaxation time constant 

   s-1 turbulent frequency 
 

Superscripts 

t  turbulent 
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Subscripts 

0  initial 

10  arithmetic mean 

20  surface mean 

30  volumetric mean 

32  Sauter mean 

b  bend 

coll  collected 

C  curved section 
c  critical 

d  droplet 
e  eddy 

f  liquid film 
g  gas 

in  inner (radius) 

l  liquid 
ng  no gravity 
out  outer (radius) 

pump  pump 

S  straight section 
s  stage 

term  terminal 

VS  vane separator 
w  wetted 

 

Operators 

  Laplace transformation 

  effective 

 average 

  OR 
 





 

165 
 

Abbreviations 

BWR Boiling Water Reactor 

CFD Computational Fluid Dynamics 

EIM Eddy Interaction Model 
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