The Karlsruhe Series on
Software Design
and Quality

24

Scientific
Publishing (

Max Emanuel Kramer

Specification Languages for Preserving Consistency
between Models of Different Languages

The Karlsruhe Series on Software Design and Quality
Volume 24

Chair Software Design and Quality
Faculty of Computer Science
Karlsruhe Institute of Technology

and

Software Engineering Division
Research Center for Information Technology (FZI), Karlsruhe

Editor: Prof. Dr. Ralf Reussner

Specification Languages for
Preserving Consistency between
Models of Different Languages

by
Max Emanuel Kramer

ST isisnin

Dissertation, Karlsruher Institut fur Technologie
KIT-Fakultat fur Informatik

Tag der mundlichen Prifung: 10. Februar 2017
Gutachter: Prof. Dr. Ralf H. Reussner
Prof. Dr. Colin Atkinson (Universitdt Mannheim)

Impressum
ﬂ(l Scientific
Publishing
Karlsruher Institut fur Technologie (KIT)
KIT Scientific Publishing

StraBe am Forum 2
D-76131 Karlsruhe

KIT Scientific Publishing is a registered trademark
of Karlsruhe Institute of Technology.
Reprint using the book cover is not allowed.

www.ksp.kit.edu

This document — excluding the cover, pictures and graphs - is licensed
BY SA

under a Creative Commons Attribution-Share Alike 4.0 International License
(CC BY-SA 4.0): https://creativecommons.org/licenses/by-sa/4.0/deed.en

The cover page is licensed under a Creative Commons
oY N

Attribution-No Derivatives 4.0 International License (CC BY-ND 4.0):
https://creativecommons.org/licenses/by-nd/4.0/deed.en

Print on Demand 2019 — Gedruckt auf FSC-zertifiziertem Papier

ISSN 1867-0067
ISBN 978-3-7315-0784-0
DOI: 10.5445/KSP/1000081446

Abstract

In this thesis, we present three languages for the development of tools that keep
different system representations consistent during software development.

When complex IT systems are developed, it is common practice to use sev-
eral programming and modelling languages. System parts are designed and
represented using different languages in order to support various design
and development tasks. The overall structure of a system, for example, is
often represented with an architectural description language. To specify
the detailed behavior of individual system parts, a state-based modelling
language or a general purpose programming language are, however, more
appropriate. As these system parts and development tasks are related,
these representations often also contain redundant information. Such par-
tially redundant representations are usually not used in a static way but
evolve during system development, which can lead to inconsistencies that
yield faulty designs and implementations. Therefore, consistent system
representations are crucial for the development of such systems.

There are various approaches to achieve consistent system representations
by avoiding inconsistencies. It is possible, for example, to create a cen-
tral, redundancy-free representation that encompasses all information so
that all other representations can be projected from it!. Creating such a
redundancy-free representation and editable projections is, however, not
always feasible, especially if existing languages and editors have to be
supported. Another possibility to evade inconsistencies is to only allow
modifications for a piece of information at a unique source representation
so that all other representations can only read this information. This makes

1 C. Atkinson et al. “Orthographic Software Modeling: A Practical Approach to View-Based
Development”. In: Evaluation of Novel Approaches to Software Engineering. Vol. 69. Com-
munications in Computer and Information Science. Berlin/Heidelberg: Springer, 2010,
pp. 206-219.

http://books.google.com/books?vid=ISBN978-3-642-14819-4
http://books.google.com/books?vid=ISBN978-3-642-14819-4

Abstract

it possible to always override such information in all read-only representa-
tions, but it also makes it necessary to completely isolate all editable regions
of representations.

If inconsistent representations cannot be completely avoided during system
development, developers or tools have to actively preserve consistency
when representations are modified. Manual consistency preservation is,
however, a time-consuming and error-prone task. Therefore, consistency
preservation tools that semi-automatically update models during system
development are developed in academia and industry. Such special software
engineering tools can be developed with general purpose programming
languages and with dedicated languages for consistency preservation.

In this thesis, we have identified four major challenges that are currently
only insufficiently addressed by languages for developing consistency pre-
servation tools. First, these languages do not combine specific consistency
preservation support with the expressive power and flexibility of established
general purpose programming languages. Therefore, developers are either
restricted to designated use cases or have to repeatedly develop solutions to
generic consistency preservation problems. Second, these languages either
support solution- or problem-oriented programming paradigms, which
forces developers to also provide preservation instructions for cases in
which consistency declarations would be sufficient. Third, these languages
do not abstract away from enough consistency preservation details, which
requires developers to explicitly consider, for example, preservation direc-
tions, change types, or matching problems. Last, these languages yield
preservation behavior that often appears to be detached from the specific
use case when interpreters and compilers run or generate code that is not
needed to realize a particular consistency specification.

To address these issues of current approaches, this thesis makes the fol-
lowing contributions: First, we present a collection and classification of
consistency preservation challenges and discuss, for example, which chal-
lenges should not be addressed when consistency is specified but only when
it is enforced. Second, we introduce an approach for preserving consistency
according to abstract specifications and formalize it using set theory. This
formalization is independent of how consistency enforcement is finally
realized. With the presented approach, consistency is always preserved

ii

Abstract

according to monitored edit operations in order to avoid well-known match-
ing and diffing problems. Last, we contribute three new languages for the
development of tools that follow this specification-driven approach and
which we briefly explain in the following,.

We present an imperative language that can be used to precisely define
how models have to be updated in reaction to specific changes in order to
preserve consistency in one direction. This reactions language provides
solutions to common problems, such as identifying and retrieving changed
or corresponding model elements. Furthermore, it achieves unlimited ex-
pressive power as it allows developers to fallback to a general purpose
programming language. A second, bidirectional language for abstract map-
pings can be used for cases in which different edit operations do not need to
be distinguished and preservation directions are not always relevant. With
this mappings language, developers can declare conditions for model ele-
ments that should be considered consistent without bothering about details
of checking and enforcing consistency. For this, the compiler automatically
derives enforcement code from checks and bidirectionalizes conditions that
are specified for one consistency preservation direction. This bidirection-
alization is based on an extensible set of composable, operator-specific
inverters that fulfill common round-trip requirements. As a result, devel-
opers can express common consistency requirements concisely and do
not need to repeat code for different consistency preservation directions,
change types, or properties of model elements. A third, normative language
can be used to complete the previous ones with parameterized consistency
invariants. This invariants language adopts collection operators and itera-
tors from the Object Constraint Language (OCL). Furthermore, it relieves
developers from writing code that searches for invariant-violating elements
as queries that perform this task are automatically derived for invariant
parameters. The three languages can be used in combination or individually.
They give developers the possibility to specify consistency using differ-
ent programming paradigms and language abstractions. We also present
prototypical compilers and editors for the three consistency specification
languages based on the multi-view modelling framework ViTruvius. With
this framework, changes in textual and graphical editors are automatically
monitored to trigger reactions, to enforce mappings, and to check invariants
by executing the Java source code that is produced by our compilers.

iii

Abstract

For all languages presented in this thesis, we have evaluated theoretical
completeness and correctness as well as practical applicability and benefits.
We show that the languages completely cover the intended range of use and
analyze their computational completeness. Furthermore, we discuss cor-
rectness for each language individually and for specific language features.
The operator-specific inverters that we have developed to bidirectionalize
mapping conditions, for example, always fulfill a new notion of best-possible
behaved round-trips. It is based on the established notion of well-behaved
transformations? and guarantees that common round-trip laws are fulfilled
whenever this is possible. We demonstrate the practical applicability with
case studies in which consistency was successfully preserved with tools
that were written using the presented languages. Finally, we discuss po-
tential benefits of the languages and compare, for example, consistency
preservation tools that were realized in two case studies. Those tools that
were developed using the reactions language have between 33% and 71%
fewer source lines of code than functionally equivalent tools that were
written in Java or the Java dialect Xtend.

2 J.N. Foster et al. “Combinators for Bidirectional Tree Transformations: A Linguistic Ap-
proach to the View-update Problem”. In: ACM Transactions on Programming Languages and
Systems (TOPLAS) 29.3 (May 2007).

iv

http://dx.doi.org/10.1145/1232420.1232424
http://dx.doi.org/10.1145/1232420.1232424

Zusammenfassung

In dieser Dissertation stellen wir drei Sprachen fiir die Entwicklung von Werk-
zeugen vor, welche Systemreprdsentationen wihrend der Softwareentwicklung
konsistent halten.

Bei der Entwicklung komplexer informationstechnischer Systeme ist es iib-
lich, mehrere Programmiersprachen und Modellierungssprachen zu nutzen.
Dabei werden Teile des Systems mit unterschiedlichen Sprachen konstruiert
und dargestellt, um verschiedene Entwurfs- und Entwicklungstatigkeiten zu
unterstiitzen. Die tibergreifende Struktur eines Systems wird beispielsweise
oft mit Hilfe einer Architekturbeschreibungssprache dargestellt. Fiir die
Spezifikation des detaillierten Verhaltens einzelner Systemteile ist hingegen
eine zustandsbasierte Modellierungssprache oder eine Allzweckprogram-
miersprache geeigneter. Da die Systemteile und Entwicklungstatigkeiten
in Beziehung zueinander stehen, enthalten diese Représentationen oftmals
auch redundante Informationen. Solche partiell redundanten Reprasenta-
tionen werden meist nicht statisch genutzt, sondern evolvieren wahrend
der Systementwicklung, was zu Inkonsistenzen und damit zu fehlerhaften
Entwiirfen und Implementierungen fithren kann. Daher sind konsistente
Systemreprasentationen entscheidend fiir die Entwicklung solcher Syste-
me.

Es gibt verschiedene Ansétze, die konsistente Systemreprasentationen da-
durch erreichen, dass Inkonsistenzen vermieden werden. So ist es beispiels-
weise moglich, eine zentrale, redundanzfreie Repriasentation zu erstellen,
welche alle Informationen enthilt, um alle anderen Reprasentationen dar-
aus projizieren zu konnen®. Es ist jedoch nicht immer praktikabel solch eine
redundanzfreie Reprasentation und editierbare Projektionen zu erstellen,

3 C. Atkinson u. a. “Orthographic Software Modeling: A Practical Approach to View-Based
Development”. In: Evaluation of Novel Approaches to Software Engineering. Bd. 69. Commu-
nications in Computer and Information Science. Berlin/Heidelberg: Springer, 2010, S. 206~
219.

http://books.google.com/books?vid=ISBN978-3-642-14819-4
http://books.google.com/books?vid=ISBN978-3-642-14819-4

Zusammenfassung

insbesondere wenn existierende Sprachen und Editoren unterstiitzt werden
missen. Eine weitere Moglichkeit zur Umgehung von Inkonsistenzen be-
steht darin Anderungen einzelner Informationen nur an einer eindeutigen
Quellreprasentation zuzulassen, sodass alle anderen Repréasentationen diese
Information nur lesen konnen. Dadurch kdnnen solche Informationen in
allen lesend zugreifenden Reprisentationen immer tiberschrieben werden,
jedoch mussen dazu alle editierbaren Reprisentationsbereiche komplett
voneinander getrennt werden.

Falls inkonsistente Représentationen wihrend der Systementwicklung nicht
vollig vermieden werden kénnen, miissen Entwickler oder Werkzeuge aktiv
die Konsistenz erhalten, wenn Reprasentationen modifiziert werden. Die
manuelle Konsistenthaltung ist jedoch eine zeitaufwéndige und fehleranfil-
lige Tatigkeit. Daher werden in Forschungseinrichtungen und in der Indus-
trie Konsistenthaltungswerkzeuge entwickelt, die teilautomatisiert Modelle
wihrend der Systementwicklung aktualisieren. Solche speziellen Software-
Entwicklungswerkzeuge konnen mit Allzweckprogrammiersprachen und
mit dedizierten Konsistenthaltungssprachen entwickelt werden.

In dieser Dissertation haben wir vier bedeutende Herausforderungen identi-
fiziert, die momentan nur unzureichend von Sprachen zur Entwicklung von
Konsistenthaltungswerkzeugen adressiert werden. Erstens kombinieren
diese Sprachen spezifische Unterstiitzung zur Konsistenthaltung nicht mit
der Ausdrucksmaichtigkeit und Flexibilitét etablierter Allzweckprogram-
miersprachen. Daher sind Entwickler entweder auf ausgewiesene Anwen-
dungsfalle beschrankt, oder sie miissen wiederholt Losungen fiir generische
Konsistenthaltungsprobleme entwickeln. Zweitens unterstiitzen diese Spra-
chen entweder 16sungs- oder problemorientierte Programmierparadigmen,
sodass Entwickler gezwungen sind, Erhaltungsinstruktionen auch in Fillen
anzugeben, in denen Konsistenzdeklarationen ausreichend wiren. Drittens
abstrahieren diese Sprachen nicht von gentigend Konsistenthaltungsde-
tails, wodurch Entwickler explizit beispielsweise Erhaltungsrichtungen,
Anderungstypen oder Ubereinstimmungsprobleme beriicksichtigen miis-
sen. Viertens fithren diese Sprachen zu Erhaltungsverhalten, das oft vom
konkreten Anwendungsfall losgelost zu sein scheint, wenn Interpreter und
Ubersetzer Code ausfiihren oder erzeugen, der zur Realisierung einer spezi-
fischen Konsistenzspezifikation nicht benétigt wird.

vi

Zusammenfassung

Um diese Probleme aktueller Ansitze zu adressieren, leistet diese Disserta-
tion die folgenden Beitrége: Erstens stellen wir eine Sammlung und Klassifi-
zierung von Herausforderungen der Konsistenthaltung vor. Dabei diskutie-
ren wir beispielsweise, welche Herausforderungen nicht bereits adressiert
werden sollten, wenn Konsistenz spezifiziert wird, sondern erst wenn sie
durchgesetzt wird. Zweitens fithren wir einen Ansatz zur Erhaltung von
Konsistenz gemif3 abstrakter Spezifikationen ein und formalisieren ihn
mengentheoretisch. Diese Formalisierung ist unabhéngig davon wie Konsis-
tenzdurchsetzungen letztendlich realisiert werden. Mit dem vorgestellten
Ansatz wird Konsistenz immer anhand von beobachteten Editieroperatio-
nen bewahrt, um bekannte Probleme zur Berechnung von Ubereinstim-
mungen und Differenzen zu vermeiden. Schliefllich stellen wir drei neue
Sprachen zur Entwicklung von Werkzeugen vor, die den vorgestellten, spe-
zifikationsgeleiteten Ansatz verfolgen und welche wir im Folgenden kurz
erldutern.

Wir présentieren eine imperative Sprache, die verwendet werden kann,
um prizise zu spezifizieren, wie Modelle in Reaktion auf spezifische An-
derungen aktualisiert werden miissen, um Konsistenz in eine Richtung
zu erhalten. Diese Reaktionssprache stellt Losungen fiir hdufige Probleme
bereit, wie beispielsweise die Identifizierung und das Abrufen geanderter
oder korrespondierender Modellelemente. Auflerdem erreicht sie eine un-
eingeschrankte Ausdrucksmachtigkeit, indem sie Entwicklern erméglicht,
auf eine Allzweckprogrammiersprache zuriickzugreifen. Eine zweite, bi-
direktionale Sprache fiir abstrakte Abbildungen kann fiir Félle verwendet
werden, in denen verschiedene Anderungsoperationen nicht unterschieden
werden miissen und aulerdem die Erhaltungsrichtung nicht immer eine
Rolle spielt. Mit dieser Abbildungssprache kénnen Entwickler Bedingungen
deklarieren, die ausdriicken, wann Modellelemente als konsistent zuein-
ander angesehen werden sollen, ohne sich um Details der Uberpriifung
oder Durchsetzung von Konsistenz bemithen zu miissen. Dazu leitet der
Ubersetzer automatisch Durchsetzungscode aus Uberpriifungen ab und bi-
direktionalisiert Bedingungen, die fiir eine Richtung der Konsistenthaltung
spezifiziert wurden. Diese Bidirektionalisierung basiert auf einer erwei-
terbaren Menge von komponierbaren, operatorspezifischen Invertierern,
die verbreitete Round-trip-Anforderungen erfiillen. Infolgedessen kénnen
Entwickler haufig vorkommende Konsistenzanforderungen konzise ausdrii-
cken und miissen keinen Quelltext fiir verschiedene Konsistenthaltungs-

vii

Zusammenfassung

richtungen, Anderungstypen oder Eigenschaften von Modellelementen
wiederholen. Eine dritte, normative Sprache kann verwendet werden, um
die vorherigen Sprachen mit parametrisierbaren Konsistenzinvarianten zu
erginzen. Diese Invariantensprache tibernimmt Operatoren und Iterato-
ren fiir Elementsammlungen von der Object Constraint Language (OCL).
Auflerdem nimmt sie Entwicklern das Schreiben von Quelltext zur Suche
nach invariantenverletzenden Elementen ab, da Abfragen, welche diese
Aufgaben tibernehmen, automatisch anhand von Invariantenparametern
abgeleitet werden. Die drei Sprachen konnen in Kombination und einzeln
verwendet werden. Sie ermoglichen es Entwicklern, Konsistenz unter Ver-
wendung verschiedener Programmierparadigmen und Sprachabstraktionen
zu spezifizieren. Wir stellen auch prototypische Ubersetzer und Editoren
fiir die drei Konsistenzspezifikationssprachen vor, welche auf dem ViTrU-
vius-Rahmenwerk fiir Multi-Sichten-Modellierung basieren. Mit diesem
Rahmenwerk werden Anderungen in textuellen und graphischen Editoren
automatisch beobachtet, um Reaktionen auszuldsen, Abbildungen durch-
zusetzen und Invarianten zu Uberpriifen. Dies geschieht indem der von
unseren Ubersetzern erzeugte Java-Code ausgefiihrt wird.

Auferdem haben wir fiir alle Sprachen, die in dieser Dissertation vorgestellt
werden, folgende theoretischen und praktischen Eigenschaften evaluiert:
Vollstandigkeit, Korrektheit, Anwendbarkeit, und Nutzen. So zeigen wir,
dass die Sprachen ihre vorgesehenen Einsatzbereiche vollstindig abdecken
und analysieren ihre Berechnungsvollstindigkeit. Aulerdem diskutieren
wir die Korrektheit jeder einzelnen Sprache sowie die Korrektheit einzelner
Sprachmerkmale. Die operatorspezifischen Invertierer, die wir zur Bidi-
rektionalisierung von Abbildungsbedingungen entwickelt haben, erfiillen
beispielsweise immer das neu eingefithrte Konzept bestmdglich erzogener
Round-trips. Dieses basiert auf dem bewéhrten Konzept wohlerzogener
Transformationen? und garantiert, dass iibliche Round-trip-Gesetze erfiillt
werden, wann immer dies moglich ist. Wir veranschaulichen die praktische
Anwendbarkeit mit Fallstudien, in denen Konsistenz erfolgreich mit Hilfe
von Werkzeugen erhalten wurde, die in den von uns vorgestellten Sprachen
geschrieben wurden. Zum Schluss diskutieren wir den potenziellen Nutzen
unserer Sprachen und vergleichen beispielsweise Konsistenthaltungswerk-

4 J.N.Foster u. a. “Combinators for Bidirectional Tree Transformations: A Linguistic Approach
to the View-update Problem”. In: ACM Transactions on Programming Languages and Systems
(TOPLAS) 29.3 (Mai 2007).

viii

http://dx.doi.org/10.1145/1232420.1232424
http://dx.doi.org/10.1145/1232420.1232424

Zusammenfassung

zeuge die in zwei Fallstudien realisiert wurden. Die Werkzeuge, die mit der
Reaktionssprache entwickelt wurden, benétigen zwischen 33% und 71%
weniger Zeilen Quelltext als funktional gleichwertige Werkzeuge, die mit
in Java oder dem Java-Dialekt Xtend entwickelt wurden.

ix

Fir Lotte

Contents

Abstract i
Zusammenfassung \%
I. Prologue 3
1. Introduction 0L 5
1.1. Motivation Lo 5

1.2. Problem Statement 9

1.3. Goalsand Questions 10
1.3.1. Identify Challenges and Define Consistency 10

1.3.2. Support through Specification Languages 11

1.4. Contributions 12
1.4.1. Consistency Challenges and Definitions 13

1.4.2. Specification Languages for Preserving Consistency 14

15. Outline 15

2. Foundations 17
2.1. Models and Languages 17
2.1.1. ModelTheory 17

2.1.2. Model-Driven Software Development. 18

2.1.3. Meta-Modelling Languages 25

2.2. Multi-View Modelling 27
2.2.1. Orthographic Software Modeling 28

2.2.2. The ViTruvius Framework 29

2.2.3. The View-Update Problem 29

2.3. Formal Foundations 31
2.3.1. Notation, Conventions and Abstractions 31

xiii

Contents

3.

Xiv

2.3.2. Metamodelsand Models
2.3.3. Conditions and Valid Models

Consistency Preservation Challenges and Formalization

Challenges to Consistency Preservation
3.1. Classification and Terminology
3.1.1. Classification According to Origin and Abstraction
3.1.2. Fundamental Terms of Consistency Preservation
3.2. Conceptual Challenges
3.2.1. Diverse Consistency
3.2.2. Tolerating and Wanted Inconsistency
3.2.3. Evolving Consistency
3.2.4. Totality of Consistency
3.2.5. Dependencies between Consistency Relations . . .
3.2.6. Identification of Elements
3.2.7. Determining Corresponding Elements
3.3. Modelling Language Challenges
3.3.1. Consistency-Enabling Abstraction
3.3.2. Different Roles for Models
3.3.3. Different Usage of Types and Identity
3.3.4. Other Representation Variations
3.4. Specification Challenges
3.4.1. Unspecifiable Consistency
3.4.2. Complex Consistency Relations
3.4.3. Consistency for a Flexible Number of Elements . .
3.4.4. Consistency for Specific Instances
3.4.5. Abstract Consistency Specifications
3.4.6. Redundancy in Specifications
3.4.7. Reuse in Specifications
3.4.8. Scope of Consistency Relations
3.49. Referring to Changes and States
3.5. Specification Language Challenges
3.6. Enforcement Challenges
3.6.1. Enforcement Time and Granularity
3.6.2. Enforcement Space and Boundaries
3.6.3. Automated Enforcement

Contents

3.7.

3.8.

3.9.

Implementation Challenges

3.7.1. Consistency between Checks and Enforcements . .
.. 9
.. 9%
.. 97
.. 98
.. 98
.. 99
.. 99
.. 100
.. 101
.. 102
.. 102
.. 103

3.7.2. Debugging Consistency Preservation
3.7.3. Keeping Associated Information
3.7.4. Retrieving the Right Correspondence
3.7.5. Partial Evaluation and Execution
Orthogonal Bidirectionality Challenges
3.8.1. Bidirectionality without Bijectivity
3.8.2. Single or Double Specification
3.8.3. Well-Behaved Roundtrip Enforcement
Future Challenges
3.9.1. Propagating Propagations without Cycles . . .
3.9.2. Order of Multi-Directional Propagations

3.10. Conclusions

A Formal Language for Change-Driven Model Consistency

4.1.

4.2.

4.3.

4.4.

Consistency Rules and Specifications
4.1.1. Rules and Correspondences
4.1.2. Prescriptive Consistency
Consistency Updates and Preservation
4.2.1. Updates of Links, Labels, and Models
4.2.2. Results and Consistency Preservation
Change-Driven Consistency Preservation
4.3.1. Consistency-Breaking Model Changes
4.3.2. Model Updates After a Change
4.3.3. Update Functions for Consistency Rules

4.3.4. Consistency-Preserving Update Specifications . . .
.. 133

Conclusions

Languages for Consistency Preservation

A Language Framework for Consistency Specifications

5.1.

5.2.

Consistency Preservation Specifications
5.1.1. Preserving Consistency
5.1.2. Specifying Consistency
Change-Driven Languages
5.2.1. Change-Driven Consistency Preservation . . .

94

105

.. 106
.. 106
.. 108
.o 11
o111
.. 114
.. 118
.. 118
..oo121
.. 125

129

.. 135

.. 137
.. 138
.. 138
.. 139
.. 140
.. 140

XV

Contents

6.

Xvi

5.2.2. Languages Providing Reusable Solutions
5.3. Usage of the Language Framework
5.3.1. Complementary Languages
5.3.2. Supported Programming Paradigms
5.3.3. Expressive Power and Restrictions
5.4. Language Integration and Alignment
5.4.1. A Language for Representing Model Changes . . .
5.4.2. Reusing a Java-Based Expression Language
5.43. An OCL-Aligned Expression Extension
5.5. Technical Realization and Code Generation
5.5.1. Retrieving Model Elements and Correspondences .
5.5.2. Generating and Executing Preservation Code
5.6. Conclusions and Future Work

An Imperative Language for Consistency Reactions
6.1. Overview: Triggers, Retrievals, and Actions
6.2. Running Example: Component Models and OO Design . .
6.2.1. Component-Based Architecture Models
6.2.2. Object-Oriented Design
6.2.3. Consistency Requirements
6.3. Reactions and Separate Reaction Routines
6.4. Change Triggers, Restrictions, and Routine Calls
6.4.1. Triggering Reactions based on Changes
6.4.2. Restricting Reactions based on Changes
6.4.3. Calling Reaction Routines
6.5. Encapsulating Matching and Actions in Routines
6.5.1. Retrieving Corresponding Elements
6.5.2. Retrieval and Match Restrictions
6.5.3. Add and Remove Actions for Correspondences . .
6.5.4. Create, Delete, and Update Element Actions
6.5.5. Executing Arbitrary Code and Routines
6.5.6. User Change Disambiguation
6.6. Realizing a Compiler for the Reactions Language
6.6.1. Reactions Language Syntax
6.6.2. Editing, Compiling, and Executing Reactions . .
6.7. Semantics of Consistency Preservation Reactions
6.7.1. An Explanatory On-Demand Construction
6.7.2. From Reactions to Consistency Rules

Contents

6.8.

A Bidirectional Language for Consistency Mappings
Overview: Mappings, Conditions, Enforcements

7.1.

7.2.

7.3.

7.4.

7.5.

7.6.

7.7.

6.7.3. Constructing an Update Function for a Reaction . .
6.7.4. Consistency Preserving by Construction
.. 212

Conclusions and Future Work

7.1.1. Example Mapping for Repositories and Packages

7.1.2. Comparison of Mappings and Reactions
7.1.3. Mapping Dependencies and Bidirectionalization . .
Mapping Signatures and Conditions

7.2.1. Ordinary Mappings and Bootstrap Mappings

7.2.2. Single-Sided and Bidirectionalizable Conditions . .
Checking and Enforcing Single-Sided Conditions
7.3.1. General Enforceable Operators
7.3.2. Special Enforceable Operators
7.3.3. Manual Checking and Enforcement
Bidirectionalizable Conditions and Inverters
7.4.1. Inversion Examples and Overview
7.4.2. Round-Trip Laws and Inverter Properties
7.4.3. Bidirectionalization trough Inversion
7.4.4. Inverter Classification and Overview
7.4.5. Operator and Inverter Composition
7.4.6. Operator-Specific Inverters
7.4.7. Limitations of the Approach and the Inverters . . .
7.4.8. Fall Back to Unidirectional Enforcement
Dependencies and Multi-Parameter Mappings
7.5.1. Inter-Mapping Dependencies
7.5.2. Mapping Possibilities and Consequences

206
. 209

. 215
. 216
. 218
. 220
222
. 224
224
225
. 229
. 231
. 235
. 237
. 238
. 240
. 242
. 247
. 250
. 253
. 253
267
. 268
. 268
. 269
. 270

7.5.3. Nesting as a Discarded Alternative to Dependencies 274

Realizing a Compiler for the Mappings Language
7.6.1. Mappings Language Syntax

7.6.2. Editing, Compiling, and Executing Mappings
Semantics of Consistency Mappings based on Reactions

7.7.1. Algorithms for Mapping Instantiations
7.7.2. Distinguishing Pure from Impure Mappings
7.7.3. A Reaction for All Impure Mappings
7.7.4. Reactions and Data for Pure Mappings
7.7.5. Consistency Preserving by Construction

. 278
. 278

280

282
. 283
285
. 287
. 288
. 293

xvii

Contents

8.

7.8. Conclusions and Future Work

A Normative Language for Consistency Invariants
8.1. Invariants for Consistency Preservation
8.1.1. Normative Inter-Language Invariants
8.1.2. Invariant Violating Elements
8.1.3. Parameters for Query Derivation
8.1.4. Automated Deriviation of Queries for Parameters .
8.2. Iterator Variable Queries for Violating Elements
8.2.1. Transformation Overview and Limitations
8.2.2. Extended Example Invariant
8.2.3. Expression Trees for Constraint Transformation .
8.2.4. Matching Parameters to Iterator Nodes
8.2.5. Parent-Dependent Top-Down Transformation . . .
8.2.6. Node Transformation Rules for Queries
8.2.7. Transformation Example
8.3. Conclusions and Future Work

IV. Evaluating and RelatingtheLanguages

9.

Evaluation and Discussion
9.1. Evaluation Overview
9.2. Evaluation of Theoretical Completeness
9.2.1. Completeness of the Formal Language
9.2.2. Change Language is EMOF Complete
9.2.3. Completeness of OCL-Aligned Expressions
9.2.4. Reactions Language Completeness
9.2.5. Mappings Language Completeness
9.2.6. Invariants Language Completeness
9.3. Evaluation of Theoretical Correctness.
9.3.1. Formal Language Correctly Models Consistency .
9.3.2. Change Modelling Language Correctness
9.3.3. Correctness of OCL-Aligned Expressions
9.3.4. Reactions Correctly Preserve Consistency
9.3.5. Mappings Language Correctness
9.3.6. Invariants Correctly Transformed to Queries

XViii

319

321
321
325
325
328
329
330
334
337
337
338
340
341
342
343
360

Contents

10.

9.4. Evaluation of Practical Applicability
9.4.1. Application of the Formal Language
9.4.2. Application of the Change Modelling Language . .
9.4.3. Application of OCL-Aligned Expressions and
Invariants
9.4.4. Applications of Reactions
9.4.5. Applications of Mappings
9.5. Discussion of Practical Benefit
9.5.1. Intermediary Change Models for Editors
9.5.2. Integration and Code Generation for OCL-Aligned
Expressions
9.5.3. Code Size Comparison for Reactions
9.5.4. Discussion of Benefits of the Mappings Language .
9.5.5. Discussion of Automated Query Derivation
9.6. Future Evaluations
9.6.1. Further Case Studies and Comparisons
9.6.2. Planned Experiment on Program Comprehension .
9.7. Conclusions

RelatedWork
10.1. Consistency between Models, Views, and after Updates . .
10.1.1. The View Update Problem
10.1.2. Models, Databases, and Ontologies
10.1.3. Synthetic and Projective Multi-View Approaches .
10.1.4. Tolerating Inconsistency
10.2. Challenges, Formalizations, and Consistency Checking . .
10.2.1. Challenges to Consistency Preservation

386

10.2.2. Formal Consistency Checking and Synchronization 387

10.2.3. Determining Inconsistencies and their Causes . . .
10.2.4. Finding Consistent Models using Checks
10.3. Automated Consistency Preservation
10.3.1. Focused on Tool Integration
10.3.2. Based on Triple-Graph Grammars.
10.3.3. Focused on Bidirectionality
10.3.4. Based on Model Differences
10.3.5. Based on Model Deltas or Edit Operations
10.3.6. Domain-Specific Consistency Preservation

389
391

Xix

Contents

V. Epilogue 401
11. Conclusionsand FutureWork 403
11.1. Summaryo 403
11.2. Current Limitations 407
11.3. Future Work 408

11.3.1. Short-Term Specification Language Improvements 408
11.3.2. Long-Term Support Beyond Pairwise Consistency . 410

Bibliography L 413
Figures e 433
Tables 437
Listings 439

XX

Acknowledgments

I am grateful to Jorg, who made me dream of a PhD, grateful to Jacques,
because he made me start it, and grateful to Colin, as he made me discover
an exciting research area for it.

My deepest thanks go to Ralf. He was an infinite source of inspiration and
paved my way to a successful dissertation on many occasions and with
great foresight.

Moreover, I am glad that my vitruvian colleagues Michael, Dominik, Heiko,
and Erik supported me in many ways and on many days throughout the
last years. Without them, I would have written a very different thesis or I
would not have written a thesis at all!

In addition, much more people contributed to the content of this thesis, for
example, as they were discussing ideas and developing prototypes with me.
Others simply gave me invaluable feedback or accepted my responsibilities
while I was writing this thesis. Representative for them, I thank Kirill,
Nicolas, and Sebastian as well as all colleagues from the SDQ crew.

Partl.

Prologue

1. Introduction

In this thesis, we present languages that can be used to develop software
engineering tools that keep models of different languages consistent during
development. Before we explain which research goals and questions lead
to the development of these languages, we briefly introduce the context of
our research and explain how it is motivated.

1.1. Motivation

Complex IT systems are often developed using several programming and
modelling languages. In order to support various development tasks, differ-
ent languages can be used to represent parts of the system under develop-
ment from several perspectives. As the system parts and the development
tasks are usually not isolated but related, it cannot be avoided that system
information is redundantly represented. Such partially redundant represen-
tations are not in themselves problematic, but they are usually not created
one after the other and then never changed again. Instead, these repre-
sentations often evolve during design and development and thus become
inconsistent with other representations. Such inconsistencies can lead to
wrong design decisions and faulty implementations, which may be costly
to fix. For this problem of inconsistent redundancy in system representa-
tions, it is not important whether the information is textually or graphically
represented and which other information is abstracted away. Instead, it is
crucial which parts of the representations are related and to which rules
these relations have to comply to achieve consistent representations. All
representations—also those that describe the precise runtime behavior and
are often called code—can be regarded and treated as models of the system.
Therefore, the process of avoiding or repairing such inconsistencies can
also be described as the process of preserving consistency between models

1. Introduction

of different languages, which is the last and biggest part of the title of this
dissertation.

One possibility to avoid such inconsistencies between different models is
to create a central model that encompasses all information so that all other
models can be projected from it [ATM15]. Such a redundancy-free system
representation is also called a Single Underlying Model (SUM) and used,
for example, in the Orthographic Software Modeling approach [ASB10].
Before inconsistencies can be completely avoided using a SUM, a modelling
language for this SUM has to be defined and transformations have to be
developed for projecting SUM information into views and vice versa. If
changes in the projective views are directly applied to the SUM, then such
a SUM-based approach guarantees consistency by construction. It can, how-
ever, be complex to develop the modelling language for the SUM and the
editable projections, especially if many different perspectives are needed.
Furthermore, it is impossible to use editors without major modifications
and it can be costly to develop new editors for existing languages in order
to apply editor changes correctly to the SUM.

If redundant models cannot be avoided because existing languages or edi-
tors have to be used, then inconsistencies can still be evaded with strong
editability restrictions for redundant information [Bur14]. One possibility is
to support modifications of redundant information only in one model and
to only allow reads but no writes for this information in all other views.
This way, changes can always be propagated from the unique source to all
other views by overriding the old version of the redundant information. It
is, however, very difficult to decide which information may be modified in
which models so that a piece of editable information is always completely
isolated from other editable parts. This problem of isolating editable regions
is similar to the problem of finding a redundancy-free SUM and has the
effect that this approach can also not be used in all development contexts.

If neither projections from a redundancy-free SUM nor modification restric-
tions to unique information sources are feasible, then consistent models
cannot be guaranteed, and consistency needs to be actively preserved. As
consistency preservation is a time-consuming and error-prone task, special
software engineering tools that update models during system development
are often developed and used. These tools are responsible for keeping
models of different languages consistent and can be seen as a special form

1.1. Motivation

of model transformations. If models become inconsistent or are at risk of
becoming inconsistent with other models, then these tools update model
elements in order to preserve consistency. When developers create such
tools, they indirectly define under which conditions models are considered
consistent, how consistency is checked, and how it is enforced in case of
inconsistencies. These three parts of specifying, checking, and enforcing
consistency are closely related, but they have very different characteristics.
What is considered consistent is solely determined by the conceptual rela-
tions between the domains that are modelled and by the notation that is
prescribed by the used languages. How this consistency should be checked
is, however, also influenced by many technical concerns and not only by
specifics of the used models and languages. Similarly, consistency enforce-
ment mechanisms often mix issues of the technical solution with concerns
of the modelling domain. Questions of when and how to enforce consis-
tency can, for example, also be influenced by the way in which users modify
models in editors.

Current approaches and languages that can be used to develop consistency
preservation tools consider the above-mentioned specific characteristics of
specifying, checking, and enforcing consistency insufficiently. With current
approaches, developers are, for example, often forced to solve technical
issues of realizing consistency checks and enforcement even if these issues
are not related to the specific models and languages for which consistency
is to be preserved. Furthermore, many approaches only support declarative
consistency specifications for particular relations between model elements
and are therefore limited to suitable consistency preservation contexts.
Finally, developers that use such approaches cannot take all information
on changes that were performed by users into account, and cannot request
user feedback in order to decide how consistency has to be preserved.

In this thesis, we analyze challenges to consistency preservation and con-
tribute new consistency specification languages for the development of
tools that keep models of different languages consistent after changes. We
identified four Open Consistency Specification Language Challenges (OC-
SLCs):

Specificity Limits Expressive Power: Specific consistency preservation sup-
port can only be used in certain contexts and for special consistency rela-
tions.

1. Introduction

Either Solution- or Problem-Oriented Paradigms: This forces developers to
realize all consistency requirements from one perspective and to provide
preservation instructions where consistency declarations would be suffi-
cient.

Missing Abstractions and Adaptations: Consistency preservation details of-
ten have to be considered although they are not needed to preserve consis-
tency for a particular modelling language.

Detached Preservation Behavior: Interpreters with complex rules and com-
pilers that produce much code that is not needed to realize a particular
consistency specification.

The languages presented in this thesis address these open challenges and
provide solutions for problems that occur in many contexts of consistency
preservation. In order to explain how consistency can be preserved using
the presented languages, we have formally defined fundamental concepts
that describe consistency specifications and consistency preservation in a
realization-independent way. To adequately support all possible contexts
and requirements of consistency preservation for models of arbitrary lan-
guages, the presented languages support different programming paradigms
and provide fallback mechanisms. If it is necessary, developers can use the
reactions language to precisely define how models have to be updated in
reaction to specific changes in order to preserve consistency in a certain
direction. Common tasks, such as resolving corresponding elements, are
supported with dedicated language constructs in order to relieve devel-
opers from repeatedly solving such generic problems. For cases where
consistency never needs to be preserved in a change-specific way and not
always in a direction-specific way, we present the mappings language. With
it, developers can specify consistency conditions in a declarative way to
abstract away from individual changes and details of checking and en-
forcing consistency. This abstraction is possible because enforcements are
automatically derived from checks, and unidirectional enforcement code is
automatically bidirectionalized using program inversion techniques. Both
the imperative reactions language and the bidirectional mappings language
are complemented by the normative invariants language. Developers can
use it to specify consistency invariants in a notation that is closely aligned
with the Object Constraint Language (OCL). To ease consistency preser-
vation after violations of such invariants, the compiler of the invariants

1.2. Problem Statement

language automatically derives queries that return the model elements that
violate an invariant. All three languages give developers various possibili-
ties to declare which cases are considered consistency problems without
providing instructions on how these problems are to be solved if this is not
necessary.

We have realized all languages with prototypical compilers and evaluated
theoretical and practical properties of the presented languages. For every
language, we discuss completeness with respect to the intended range
of use and correctness, for example, according to formal semantics or
round-trip laws. For the inversion of mapping conditions, for example,
we show that code for both consistency enforcement directions always
fulfills a new notion of best-possible behaved round-trips. It guarantees
that common round-trip laws are fulfilled whenever this is possible and is
based on the established notion of well-behaved transformations [Fos+07].
Furthermore, we demonstrate the applicability of the languages using case
studies in which consistency was successfully preserved with tools that
were written using the presented languages. Finally, we discuss potential
benefits of the presented languages. We discuss, for example, two case
studies in which consistency preservation tools that were realized using
the reactions language have between 33% and 71% fewer source lines of
code than functionally equivalent realizations in Java or a Java dialect.

1.2. Problem Statement

To summarize the problems that we already presented in the preceding
motivation, we formulate a problem statement in terms of a research gap:
To our knowledge, all current approaches provide

no realization-independent notion of how consistency can be specified and
preserved for models of arbitrary modelling languages

no change-driven consistency preservation that is triggered by user changes,
depends on performed edit operations, and provides possibilities to interact
with users in order to disambiguate the intended effects of their changes

1. Introduction

no comprehensive language for developing consistency preservation tools
with support for all potential contexts and requirements of consistency
preservation

1.3. Goals and Questions

The research presented in this thesis was guided by and is presented to
achieve the following goal:

Goal: Identify recurring challenges of change-driven consistency preserva-
tion for models of different languages and provide support for specifying
such consistency preservation.

As a first step towards operationalizing this goal, we rephrase it as a question.
This will give the reader the possibility to determine whether we reached
our goal by analyzing whether we provided a satisfactory answer to the
question.

Question: What are recurring challenges of change-driven consistency pre-
servation for models of different languages and how can we provide language
support for specifying such consistency preservation?

As both the goal and the question already consist of two distinct parts, we
have separated and refined these parts. For both parts we have formulated
two more specific research questions, and we have created subquestions
that pinpoint further details.

1.3.1. Identify Challenges and Define Consistency

For the first part of our overall goal, we formulated a research question,
which does not only ask about challenges to consistency preservation but
also about a definition that does not depend on how consistency is realized
in the end. This research question is mainly answered in Part II of this
thesis and stated as follows:

10

1.3. Goals and Questions

Research Question 1: How to define change-driven consistency preservation
for models of different languages in a realization-independent way and what
are recurring challenges to it?

In order to further operationalize our research, we have formulated four
subquestions for this question:

Subquestion 1.1: What are recurring challenges of consistency preservation
and how can they be classified, for example based on when they should be
addressed?

Subquestion 1.2: Which of these challenges occur when consistency is spec-
ified and which challenges should be addressed by consistency specification
languages?

Subquestion 1.3: Can we formally define how consistency can be speci-
fied in a realization-independent way and what are differences of such a
specification-driven notion of consistency to other notions of consistency?

Subquestion 1.4: How to formally define whether this specification-driven
notion of consistency is preserved after changes and how can we check this
in a realization-independent way?

Answers to this question and its subquestions can help developers of con-
sistency preservation tools to better understand which of the challenges
that they are facing are not specific to their context and are therefore also
addressed by other developers. Furthermore, developers of consistency
specification languages or of other consistency preservation approaches
can use such answers to put their work into relation and to embed it into
an overall concept of consistency preservation. This kind of support is,
however, rather conceptual, and therefore we have also formulated a second
research question that asks for more practical consistency preservation
support.

1.3.2. Support through Specification Languages
The second research question is concerned with the second part of the

overall goal and particularly asks for specification languages that support
developers by addressing those challenges that should be addressed on this

11

1. Introduction

language level. This research question is mainly answered in Part III of this
thesis and states as follows:

Research Question 2: How to provide support for specifying change-driven
consistency preservation for models of different languages with specification
languages that address the challenges identified in subquestion 1.2?

For this question, we have also created four subquestions with further
details. They are the direct result of our answer to subquestion 1.2, which
asked about challenges for consistency specification languages. Every
subquestion is a pendant to an OCSLC, which we will present in detail in
section 3.5.

Subquestion 2.1: How to provide languages that combine specific consistency
specification support with unrestricted expressive power and flexibility?

Subquestion 2.2: How to support solution-oriented and problem-oriented
specifications of change-driven consistency with such languages?

Subquestion 2.3: How to adapt this language support to specific needs and
abstract away from details that are not relevant for consistency preserva-
tion?

Subquestion 2.4: How to preserve consistency with such languages in a way
that allows developers to foresee how consistency is enforced according to
their specification?

1.4. Contributions

The contributions of this thesis are our answers to the previously presented
two research questions, which we provide in chapter 3-8. Our answers to
the second research question are not only textually described but also pro-
vided in terms of compilers and editors that realize the presented languages.
The two central parts of this thesis, the research questions, the contribution
chapters, and their relations are also illustrated in Figure 1.1.

12

1.4. Contributions

Part II (research question 1):

‘ address

’ Chapter 3: Challenges |

explained using

’ Chapter 4: Formal Language

Part III (research question 2):

use features of

’ Chapter 5: Language Framework ‘

’ Chapter 6: Reactions Language ?

complements >—

Chapter 7: Mappings Language

realized with

Chapter 8: Invariants Language ‘

adds to

Figure 1.1.: Parts, research questions, and contribution chapters of this thesis

1.4.1. Consistency Challenges and Definitions

To answer the first research question, we provide a classification of chal-
lenges to consistency preservation and a formal language that defines how
consistency can be specified and preserved after changes. More specifically,
we contribute

a collection and classification of challenges that can occur when consistency
is to be preserved for models of different languages. Developers of consis-
tency preservation tools can encounter these challenges regardless of the
used modelling languages and preservation techniques. The classification
illustrates which consistency challenges should be addressed, for exam-
ple, already when modelling languages are designed and which challenges

13

1. Introduction

should not be addressed when consistency is specified but only when it
is enforced. Both, the collections of challenges and its classification are
presented in chapter 3 as an answer to subquestion 1.1 and 1.2.

a formal language that introduces fundamental concepts of consistency
preservation in a realization-independent way using set theory. It defines
how consistency can be specified in such a way that it is possible to analyze
whether consistency is preserved after changes. These specification-driven
consistency concepts are also used to explain the semantics of the languages
that can be used to develop consistency preservation tools. The formal
language is presented in chapter 4 to answer subquestion 1.3 and 1.4

1.4.2. Specification Languages for Preserving Consistency

To answer the second research question, we present three new languages
for developing consistency preservation tools based on specifications, and a
language framework that integrates features that are provided by all three
languages. These languages complement each other, and together they
answer subquestion 2.1-2.4. More specifically, we contribute

a framework for languages that can be used to specify consistency in such
a way that consistency according to a specification is semi-automatically
preserved after user changes. These changes are monitored and can be
universally processed by preservation programs as they are represented as
instances of a generic change modelling language. The language framework
provides a Java-based expression language that also supports well-known
collection operators and iterators of OCL. It is presented in chapter 5 and
especially answers subquestion 2.2 and 2.4.

an imperative language for universal consistency reactions that consist of
preservation actions which are triggered for particular changes. To relieve
developers from writing repetitive code, the reactions language provides
declarative constructs for common consistency preservation tasks, such as
resolving or creating corresponding elements. Furthermore, the language
supports developers in structuring their code along three main steps of
consistency preservation so that they develop manageable reactions without
unwanted side-effects. The reactions language is presented in chapter 6
and especially answers subquestion 2.1 and 2.3.

14

1.5. Outline

a bidirectional language for abstract consistency mappings that comple-
ment the reactions language as they can be used if consistency does not
need to be preserved in a change- or direction-specific way. In order to
relieve developers from specifying symmetric consistency relations twice,
the language automatically derives code that enforces conditions from a
check specification and inverse enforcement code from bidirectionalizable
conditions for the opposite preservation direction. To support many pos-
sible consistency relations, the mappings language gives developers the
possibility to fallback to imperative, unidirectional code whenever this is
necessary. It is presented in chapter 7 and especially answers subquestion
2.1and 2.3.

a normative language for parameterized consistency invariants that can
be used in addition to the reactions and the mappings language whenever
constraints should be declared. If such invariants are violated the model
elements that are responsible for the violation can be obtained using queries
that are automatically derived for invariant parameters. The invariants
language is presented in chapter 8 and especially answers subquestion 2.2.

1.5. Outline

The remainder of this thesis is structured as follows: First, we briefly in-
troduce fundamental concepts and terms in chapter 2. This concludes the
prelude part of this thesis. Then, we present our collection and classifi-
cation of challenges to consistency preservation in chapter 3 and explain
our formal language in chapter 4. Together, both chapters form the second
part corresponding to research question 1. Subsequently, we introduce our
language framework that also comprises the change modelling language
and the OCL-aligned expression extension in chapter 5. Then, we present
the reactions, mappings, and invariants language in chapter 6-8. This con-
cludes the third part corresponding to research question 2. Next, we discuss
how we evaluated our contributions in chapter 9 and describe related work
in chapter 10. These chapters form the fourth part of this thesis. Finally,
we conclude this dissertation and provide an outlook on possible directions
for future work in chapter 11.

15

1. Introduction

We suggest readers that cannot read the complete thesis to start with the
framework chapter 5 and to follow back references to the challenges of
chapter 3 and to the formal language of chapter 4 where necessary. As
several parts of the chapters for the individual languages rely on the features
provided by the framework, we do not suggest to directly start with one of

these chapters. Apart from these features, each language chapter can also
be read in isolation.

16

2. Foundations

In this chapter, we introduce fundamental concepts and terms that are used
in the subsequent chapters of this thesis. First, we explain what models
are, how they are used for software development, and how modelling
languages can be built. Then, we briefly describe the multi-view modelling
framework ViTrRUvIUs, which we have extended in this thesis, refer to the
approach that inspired it and introduce the fundamental problem of multi-
view consistency preservation. Finally, we formally define all modelling
concepts on which our formal language for specification-driven consistency
preservation is built (see chapter 4).

2.1. Models and Languages

In this thesis, we present programming languages that can be used to
develop tools that preserve consistency between models that conform to
different modelling languages. Therefore, models and modelling languages
are central concepts of this thesis, which we will explain in the following.

2.1.1. Model Theory

Models are used in many engineering disciplines and in several fields of
computer science. These models share many common properties, but what
is considered a model can also be very different depending on the con-
text. Therefore, we briefly introduce the so-called general model theory of
Stachowiak [Sta73] before we explain models in the context of software
development. Stachowiak defines the term model by postulating three main
characteristics of models: representation, reduction, and pragmatics Sta-
chowiak [Sta73, pp. 131-133]

17

2. Foundations

According to Stachowiak, the representation characteristic is fulfilled if
a model represents originals and their properties. These originals can be
any “perceptiple” or “constructable” entities and they may be itself act as a
model of another original [Sta73, p. 131]. We interpret the statement that
“representation coincides with mapping properties of models to properties
of originals” [Sta73, p. 132] in such a way that it is required that all properties
of a model can be mapped to a property of an original. That is, a modelled
property has to represent a property of an original and may not add any
properties.

The reduction characteristic is fulfilled if not all but only those properties
of an original “that seem relevant to the creator or user of a model” are
represented [Sta73, p. 132]. This characteristic does not yet demand further
requirements for those properties that are represented or not. It only
requires that some properties are selected and others are not.

A model fulfills the last main characteristic, called pragmatics, if it replaces
an original for certain subjects, for certain periods, and for certain functions
to achieve a certain purpose [Sta73, p. 132]. This means, a model is no
absolute representation of an original but a pragmatic replacement for a
certain context and usage. The two other characteristics of representation
and reduction should be considered relative to the pragmatics of a model.
That is, how reduced properties of an original are represented and which
other properties are abstracted away is determined by the pragmatics of a
model.

2.1.2. Model-Driven Software Development

Model-Driven Software Development (MDSD) is a term that is not precisely
defined but in many contexts, in which it is used, it stands for a development
paradigm in which models are used in an automated way for all development
tasks. Some of the goals that are often pursued using this paradigm by means
of automation are an increase in development speed, improved software
quality, and better productivity through reuse [VS06, pp. 13]. The central
goal of automation in MDSD is also what is often used to distinguish MDSD
from other software development approaches in which models are used,
for example, for documentation purposes but not processed automatically.

18

2.1. Models and Languages

To ease the automation, many concepts and tools for model transformations
are used in MDSD.

The Model-Driven Architecture (MDA) approach of the Object Management
Group (OMG) [OMG14] is a particular approach for developing software
according to the MDSD paradigm. Similarly, the Unified Modeling Language
(UML) [ISO12a] is a well-known modelling language that can be used to
create models of software systems. Both are two prominent examples, but
MDSD can also be realized according to other development approaches
and using other modelling languages. It is also important to note that
there is not always a clear border between concepts and tools that are used
in compiler construction and MDSD. On the contrary, code is often also
regarded as a model of the software and many MDSD tools use, for example,
the parser generator ANTLR [PQ95].

2.1.2.1. Modelling Languages and Metamodels

To support model transformations, a modelling language has to specify
which conditions have to be fulfilled by models of this language and what
effects this has. Such a language specification is often separated into four
parts [VS06, pp. 57-58]:

the abstract syntax of a modelling language specifies the represented con-
cepts, their properties, and their relations

the concrete syntax defines how concepts, properties, and relations are rep-
resented in a textually or graphical way

the static semantics specify constraints that have to be fulfilled by all mod-
els but that cannot be defined in the abstract syntax

the dynamic semantics define the meaning of the models of the language
for example by mapping them to models of other languages or to code

In MDSD the abstract syntax of a modelling language is often specified in
terms of a metamodel. In this case all models of the modelling language
are also called instances of the metamodel. A metamodel is usually itself a
model of a meta-modelling language that is expressed as an instance of a
meta-metamodel. A meta-modelling language can be self-descriptive. This
possibility to define a meta-modelling language using its own concepts is,

19

2. Foundations

however, not mandatory and in general there may be an arbitrary number
of meta-levels. The static semantics of a modelling language are often
defined together with a metamodel or even added to it in order to have all
rules that are necessary validating a model instance in one place.

2.1.2.2. Domain-Specific Languages

Standardized modelling languages, such as the UML, are well-supported
and widely used but sometimes they are not well-suited, for example, to be
automatically processed in a particular context. This can be the case if not
all information that is needed to transform the models to models of another
language can be modelled in a suitable way. An important concept of MDSD
that can also be used to solve such problems is that of a Domain-Specific
Language (DSL). Such a DSL can be tailored to represent the concepts of
a particular domain with the level of detail that is needed for a specific
development task. In this way, a DSL makes it possible to better achieve the
model characteristics postulated by Stachowiak by tailoring the structure
of all models to make them fit the pragmatics (see subsection 2.1.1).

The idea of tailoring a language to a specific context or domain can be used
independent of the concrete syntax of the language and independent of
the level of abstraction. Nevertheless, the term Domain-Specific Modelling
Language (DSML) is often used to emphasize that the artefacts that are
created using such a language are models and therefore support a particular
abstraction. This term can, however, be misleading because many software
developers associate the term modelling to a graphical syntax which is
not characteristic for a model in contrast to, for example, a particular
level of abstraction. Furthermore, we want to emphasize that the notion
of models and of a DSL can also be used if the application domain is a
particular area of software engineering, that is if the represented originals
are pieces of software. The term DSL can be used to describe, for example,
a language that is used to represent contracts of an insurance company. In
the same way, languages that are used to represent, for example, design
elements of mobile applications or rules for preserving consistency between
development artefacts, can be considered DSLs. Finally, the concept of a
DSL is independent of the question whether a concrete syntax of a host
language is reused or whether a new concrete syntax is provided. Therefore,

20

2.1. Models and Languages

a library that can be used in an existing language can also be regarded as
an internal DSL and distinguished from an external DSL.

There can be different reasons for using a DSL instead of a general lan-
guage. We already mentioned the goal of developing or using a DSL to
ease automated transformations. Another goal that is often pursued with a
DSL is to relieve domain experts and software developers from performing
certain tasks or to support them in performing tasks according to their
field of expertise. A DSL can be used, for example, to give domain experts
the possibility to express their concerns in a way that abstracts away from
technical concerns that are encapsulated in the DSL. Furthermore, a DSL
can be used to give domain experts possibilities to express concerns that
would have to be considered by software developers if no DSL would be
used.

2.1.2.3. Model-Driven Software Development Process

If several languages are used in a forward engineering process that follows
the MDSD paradigm, we can distinguish between two general actions:
On the one hand, models can be manually refined to lower the level of
abstraction by adding additional details. On the other hand, models can be
enriched with information of other models in automated transformations.
Such manual refinements and automated transformations can be combined
arbitrarily and can be repeated for models of different languages to finally
obtain models that are detailed enough to serve their purpose. This purpose
can be different depending on the usage context. One possibility is to
directly execute models in interpreters. Another possibility is to generate
code that can be directly or indirectly executed, for example, in a virtual
machine.

Volter and Stahl presented a process for the development of a DSL using
a code base that was developed without the DSL [VS06, pp. 14-16]. We
illustrate this DSL development process using Figure 2.1, which we adopted
from [VSO06, p. 15]. In the first step, the code base is analyzed to identify
three different code parts:

generic code , which does not need to be adapted to individual applications
that are developed in the domain,

21

2. Foundations

F—
code base L > DSL
application model
?— transformations
P —
1
1
! L
1
| individual *
== code
individual
code
generic
code o platform
schematic 2
repetitive schematic .
code repetitive code |||
uses creates

Figure 2.1.: Process for the development of a DSL based on an application code that
was developed without the DSL, adapted from [VS06, p. 15]

schematic repetitive code , which is not identical for all applications but can
be adapted in a systematic way, and

individual code , which is specific for a particular application and does not
need to be generalized

During the development of the DSL these three parts of the code take
different roles: Generic code becomes a single platform that can be used
in all applications that are developed using the DSL. Schematic repetetive
code is obtained by transforming application models that are created using
the DSL. Individual code is deployed together with the code generated from
the application models and both parts use each other as well as the platform
code.

22

2.1. Models and Languages

2.1.2.4. Eclipse Modeling Framework (EMF)

The Eclipse Modeling Framework (EMF) is a set of plug-ins for Eclipse,
which is an Integrated Development Environment (IDE). It is also the tech-
nological base for further IDEs and for other software engineering tools in
industry and academia. The EMF combines several tools that can be used
to create, edit, analyze, and transform Java-based models that can be repre-
sented graphically and textually. It is mainly used to build Eclipse-based
software engineering tools that can be applied in software development
projects that follow the MDSD paradigm. It provides the meta-modelling
language Ecore, which is often regarded as the reference implementation
of the Essential Meta Object Facility (EMOF). We will briefly introduce the
meta-modelling languages Ecore and EMOF later in this chapter.

2.1.2.5. Xtext Language Workbench

A well-known example for a tool that is built on top of EMF is the Xtext
language workbench [EV06]. It is a set of Eclipse plug-ins that can be used
to develop textual DSLs. It provides a grammar language that uses a syntax
that is similar to the Extended Backus-Naur Form (EBNF) [Int96]. From a
grammar that is created with this language a complete compiler toolchain
can be generated to obtain extensible implementations of a lexer, a parser,
a validator, and a code generator. Languages that are created with Xtext
are programming languages and modelling languages at the same time:
For every Xtext grammar a metamodel is created and the compiler creates
instances of this metamodel. These model instances can be processed in
the same way as any other EMF model. The metamodel that is created for a
grammar can be influenced using the grammar language. It gives developers
the possibility to specify, for example, which metaclass is to be instantiated
when a parser rule is processed. In addition to compilers, Eclipse-based
editors can also be generated for Xtext-based languages. These editors
provide, for example, possibilities to influence auto-completion or to add
quick-fixes that are suggested in case of common compilation errors.

To ease the development of DSLs that contain common expressions , the
Xtext workbench provides the expression language Xbase [Eff+12]. The

23

2. Foundations

syntax of Xbase expressions is very similar to Java method body expres-
sions and in large parts identical. Variable assignments, method invocations,
and most expression operators, for example, are identical. Furthermore,
language features that are not provided by Java, such as type inference for
variable declarations, can be used when the Xbase grammar is integrated
into the grammar of a Xtext-based DSL. Xtend' is an example of a language
that was developed using Xtext and Xbase. It is a general purpose pro-
gramming language that is similar to Java and it compiles to Java so that
both languages are interoperable. Xtend provides, for example, lambdas
for functional programming, template expressions for code generation and
other features for working with EMF models. As Xtend is similar to Java
but can deviate from it, it is also called a Java dialect.

We realized the compilers for the languages presented in this thesis using
Xtext but will not show the Xtext-specific parts of the grammar rules. In-
stead we will use plain EBNF, which is a standardized notation for syntax
definitions. In EBNF terminals are given in quotes and rule parts are explic-
itly concatenated with commas for denoting the concatenation operator.
Therefore, it is possible to use spaces in identifiers of non-terminals and
they do not have to be escaped. Furthermore, the following rules of EBNF
are adopted from the original Backus-Naur Form (BNF):

[1 square brackets enclose optional rule parts,

| the pipe character separates alternatives,
{} rule parts in curly braces are repeated zero, one, or more times,
() parentheses group rule parts, and

; the semi-colon denotes the end of a rule.

In addition, the minus character (-) is used to define exceptions as if symbol
sequences would be removed from a previous set of symbol sequences.
Therefore, symbol sequences that have to occur at least once can be achieved
by removing the empty symbol sequence from a repeated rule part.

! eclipse.org/xtend — A Java dialect based on Xtext and Xbase

24

https://www.eclipse.org/xtend/

2.1. Models and Languages

2.1.3. Meta-Modelling Languages

To build MDSD tools it can be useful to have a common format for models
of different modelling languages. One way to achieve this is to us a fixed
meta-modelling language to create metamodels for modelling languages, no
matter whether they are domain-specific or not. If such a meta-modelling
language is used, tools, for example, for creating, editing, or transforming
models of a particular modelling language can be built by adapting and
extending generic tools that are based on the common meta-meta model.
In the following, we will briefly present two meta-modelling languages.
The consistency specification languages presented in this thesis can be
used to preserve consistency between models that conform to arbitrary
metamodels that were created using these two languages.

2.1.3.1. Essential Meta Object Facility (EMOF)

The Essential Meta Object Facility (EMOF) is one of two variants of the
standardized meta-modelling language Meta Object Facility (MOF) [ISO14].
From a mathematical point of view, EMOF is a language for representing
metamodels and models in a way that is equivalent to attributed, typed
graphs with inheritance. MOF is a language of the OMG and it was ini-
tially developed by generalizing concepts of object-oriented UML class
diagrams. It is self-descriptive as its concepts can be represented using a
MOF-compliant metamodel. We illustrated the central concepts of EMOF
in terms of a simplified class diagram in Figure 2.2 and briefly explain
them in the following. Metamodels that are defined using EMOF consist
of metaclasses that are instantiated by model elements which can also be
called objects. Metaclasses have properties that are typed using metaclasses,
primitive types and enumerations. The number of values that can be added
to instances of a metaclass for a certain property can be restricted using
lower and upper bounds for the multiplicity. Furthermore, properties can
have a so-called composite aggregation kind. It denotes that the objects
that are listed at an instance of the metaclass for the property are contained
by the instance, which is therefore also called a container.

25

2. Foundations

Element NamedElement TypedElement
D a K—
name:String
l o S— o1
EnumerationLiteral EClassifier Type
ownedLiteral | 0.”
0.* | /superClass
Enumeration N DataType Class
~®| abstract:bool
MultiplicityElement PrimitiveType AggregationKind
L__| /lower:int none
/upper:int shared A
isOrdered:bool composite
ownedAttribute | 1
Property

aggregation:AggregationKind
/isComposite:bool

Figure 2.2.: Simplified class diagram showing central metaclasses of the EMOF
metamodelling language [ISO14, p.27] (dotted lines denote indirect inheritance)

2.1.3.2. Ecore Metamodelling

A central part of EMF is the meta-modelling language Ecore, which is often
regarded as the reference implementation of the EMOF standard. Some
concepts of EMOF have, however, been refined in Ecore. We will briefly
mention those refinements that are relevant for the languages presented
in this thesis, but we ignore, for example, minor naming differences and
the fact that Ecore has a simplified inheritance hierarchy. The central
metaclasses of Ecore are also illustrated as a simplified class diagram in
Figure 2.3. To emphasize the commonalities of EMOF and Ecore, we used
the same layout as in Figure 2.2, where this was possible.

For this thesis, only the following differences between EMOF and Ecore are
important: In Ecore, properties of metaclasses are called structural features.

26

2.2. Multi-View Modelling

Features that are typed using a primitive type or using an enumeration
are called attributes, whereas features that are typed using a metaclass
are called references. Instead of providing a composite aggregation kind,
Ecore distinguishes between references that are marked as containment
reference and non-containment references. In models conforming to an
Ecore metamodel, the links that realize such containment references build
a containment hierarchy. In this hierarchy every model element except for
a root element is contained in exactly one container using one link for a
containment reference. EMOF requires, however, only that all elements
have at most one container [ISO14, pp. 31-32]. As with composite properties
in EMOF and UML, the semantics of containment references in Ecore are
that the existence of contained elements is bound to the existence of the
container. Therefore, deletions have transitive effects [ISO12a, p. 36,p. 38].
We realized the prototypical compilers for the languages presented in this
thesis using EMF so that they can be used for any models that conform
to Ecore-based metamodels. Ecore can be seen as a refinement of EMOF,
at least with respect to the differences that are relevant for the presented
languages. Therefore, the concepts of the languages can also be used for
any other EMOF-compliant modelling language. If our compilers would be
ported to support other EMOF-compliant modelling languages the neces-
sary modifications would mainly introduce additional checks to correctly
treat properties with different types. Nevertheless, we use the Ecore termi-
nology throughout this thesis. That is we write about features, attributes,
and references instead of properties and call the container-containee rela-
tion containment instead of composition.

2.2. Multi-View Modelling

In the last informal section on foundations for this thesis, we briefly present
two approaches for multi-view modelling. The first approach inspired our
work on the second approach, which we extended using the languages
presented in this thesis.

27

2. Foundations

EModelElement | ENamedElement | ETypedElement

name:String lowerBound:int |4
i upperBound:int
[| ordered:bool

EEnumlLiteral EClassifier eType
eLiterals | 0.* 0.1
0. | eSuperTypes

EEnum > EDataType 4 EClass
abstract:bool

/eAttributeType | 1

/eReferenceType | 1

eStructuralFeatures | 0.*

EAttribute EReference EStructuralFeature

id:bool containment:bool abstract:bool

| T

Figure 2.3.: Simplified class diagram showing central metaclasses of the Ecore meta-
modelling language according to [Ste+08, pp.97] and [Bur14, p.25]

2.2.1. Orthographic Software Modeling

Orthographic Software Modeling (OSM) is an approach for the develop-
ment of software using multiple views and was presented by Atkinson et al.
[ASB10]. It transferred the principle of othrographic projections to soft-
ware development. All views in OSM are projections of a Single Underlying
Model (SUM), which contains all information of the system under devel-
opment [ISO11]. In OSM, the views and the metamodel for the SUM are
created upfront by developers that take a special role called methodologist.
Later on, developers only access information of the SUM via the projective
views so that only these views have to be kept consistent with the SUM in a
hub-and-spoke manner. To ease this consistency preservation between the
views and the SUM, it should not contain any redundant information. In
OSM views are dynamically generated using transformations. Furthermore,
views can be navigated in a dimension-based way.

28

2.2. Multi-View Modelling

2.2.2. The ViTRUVIUS Framework

In this thesis, we present three DSLs for developing consistency preserva-
tion tools based on the multi-view modelling framework ViTrRuvIus [KBL13].
The development of this framework was strongly influenced by OSM but
follows a hybrid approach that combines synthetic and projective elements
(see also subsection 10.1.3). Instead of a SUM, the VITRUVIUS framework
uses a Virtual Single Underlying Model (VSUM) to uniformly access models
of different modelling languages. As this VSUM reuses existing modelling
languages it usually contains redundant information. VITRUVIUS support
developers in creating views for these languages and in preserving con-
sistency between models of the VSUM in a change-driven way.. This way,
they can reuse existing modelling languages and tools, such as editors. The
overall goal of VITRUVIUS is to decouple views, modelling languages, and
consistency preservation so that they can be reused in different combina-
tions and for different projects. Currently, the ViTruvIUs framework

« monitors changes that are applied in Eclipse-based editors to models
or code in order to trigger consistency preservation code [Lan17]

« processes these changes based on a generic change modelling
language (see subsection 5.4.1)

« manages correspondences between models across languages based
on temporarily unique identifiers (see subsubsection 5.5.1.1)

« supports the integration of code and models that were created
without the framework for later consistency preservation [Lan17]

« can be used to create new views that combine information from
several models using ModelJoin [Bur+14; Bur14]

2.2.3. The View-Update Problem

The need to preserve consistency between partially redundant information
is not particular to MDSD or multi-view modelling. It has been discussed
as the view-update problem in many publications and in different areas of
computer science, for example databases [BS81]. We will only motivate this

29

2. Foundations

problem in a simplified way and informally introduce some desired proper-
ties for transformations between two models. A more formal discussion of
these properties can be found in subsection 7.4.2 and a review on literature
about the view-update problem is presented in subsection 10.1.1.

Broadly speaking, the problem of consistency preservation between two
models that contain redundant pieces of information can be described
in terms of the view-update problem. A possibility to achieve this, is to
transfer the notion of a view on a database to the notion of two models
that are related using two model transformations. Even if the problem does
not need to be asymmetric, we usually call one model the source model
and the other model the target model for a forward transformation from
the source to the target. Analogous, the other transformation is usually
called a backward transformation from the target to the source. In this
asymmetric terminology, the roles of source and target are usually chosen
in a particular way. The forward transformation, which is also called GET,
only requires a new source value to compute a new target value. The
backward transformation, however, may have to obtain the old source
value in addition to the new target value in order to yield a desired new
source value. Therefore, it is also called PuT.

To preserve consistency between two models, common laws for round-trip
transformations can be used. These laws are concerned with cases in which
amodel is updated and GET and Put transformations are executed to obtain
values for the other model with partially redundant information. Foster
et al. [Fos+07], for example, formulated a GETPUT law, and a PUTGET law
(see also subsection 7.4.2). The informal idea of both laws is that roundtrips,
in which no value was changed, should end up at the same value regardless
of whether they started at the source model or at the target model. More
specifically, the GETPUT law demands that invoking GET for an arbitrary
source value and then PuT for the obtained target value and the source value
always yields the initially used source value. Similarly, PUTGET demands
that invoking PuT for arbitrary source and target values and then GET for
the obtained source value always yields the initial target value.

30

2.3. Formal Foundations

2.3. Formal Foundations

In this section, we define fundamental concepts for a formal change-driven
consistency preservation language, which is presented in chapter 4

We reused parts of existing formalizations for models and consistency
constraints where this was possible, but had to create a specific notation
in order to support the three specification languages appropriately. The
formal language abstracts away from properties that are not needed for
the reactions, invariants, or mappings language. It expresses only those
properties that are central for the challenges tackled in this thesis. This
is especially important for the explanation of the semantics of the three
languages, which should not suffer from the accidental complexity of exist-
ing formalizations that also deal with concerns that are irrelevant for the
languages. Those properties that are represented in our formal language
are closely aligned to the implementation of the languages in order to avoid
unnecessary gaps between formal descriptions of the semantics and im-
plementation code. In this way, the formal language is itself a model for
our specification languages with its own representation, reduction, and
pragmatics (see subsection 2.1.1). Nevertheless, this formal representation
of change-driven consistency is not entirely restricted to the three specifi-
cation languages and could be reused for other approaches and languages
for model consistency.

2.3.1. Notation, Conventions and Abstractions

Before we present the formal language that is the foundation for the three
specification languages of this thesis, we explain the notation, conventions,
abstractions and simplifications of it in this section. We also explain which
formal descriptions of models or consistency are related to our formal
language and why they are different.

2.3.1.1. Notation and Conventions

The formal language is based on set theory and uses the common notation
for sets, elements, and operations, such as intersection. Therefore, we do

31

2. Foundations

not need to explain all these common notational elements. A notation that
is worth mentioning is, however, the use of £(S) to denote the powerset of
a set S, i.e. the set of all subsets of S. Furthermore, we explicitly mention
when a set is infinite or a function is partial. Therefore, all sets that are
not called infinite are finite and all functions that are not called partial are
total.

Binary relations and their transitive closures on sets and functions are used
in many definitions of the formal language. In order not to explain these
central concepts at every usage, we briefly discuss them in general upfront:
For a set S, the transitive closure of a binary relation R € S X S on a subset
B C S is denoted by

BR:=BU{b, €S|3(b,b) e BXS
A H(bl,bz),(bz,bg),...,(bn_l,bn) ER A n> 1}

In this way, the transitive closure of a relation on a subset yields all elements
of the subset and all elements of the superset that are directly or indirectly
related to the elements of the subset. For two sets D, S, the transitive closure
of a binary relation R € S X S on a function FUNc: D — S is denoted by

FuNck := d — {Func(d)} U {s, € § |
EI (FUNC(d)» 51), (317 32), D) (Sn—l7 Sn) € R A n> 0}

In this way, the transitive closure of a relation on a function yields the func-
tion value and all elements of the codomain that are directly or indirectly
related to the function value.

To ease the reading of our definitions, we established some conventions
regarding the use of variables and fonts. All sets are denoted by a single
character in upper case, e.g. O. All elements are denoted by single characters
in lower case, e.g. 0 € O. All functions and relations are denoted by a string
in small capitals, e.g. Foo: O — O. For all concepts of the metamodel level,
i.e. the level above model instances, which defines modelling languages
based on metamodels, metaclasses etc., a blackboard bold font is used,
e.g. € € C. For all concepts that only pertain to specifications that define
consistency for models using concepts of the metamodel level, a fraktur
font is used, e.g. cr. To emphasize that a set contains sets, a calligraphic

32

2.3. Formal Foundations

font is used for the single character denoting the set of sets, e.g. O. Finally,
to emphasize that a variable denotes a tuple, angled brackets surround the
variable name, e.g. (C) or (o).

2.3.1.2. Abstractions and Simplifications

There are several properties of EMOF-based models which are not relevant
to formally define consistency and therefore not part of the formal language.
These properties that are completely abstracted away are:

L. names, e.g. of metaclasses, attributes, or references
II. operations of metaclasses
III. abstractness of metaclasses
IV. attribute and reference multiplicities, i.e. lower and upper bounds

The reasons why we chose these abstractions are different: I.. Names are
only descriptive and are not used to identify or retrieve elements because
this is not necessary for sets. The membership relation between sets and
elements is sufficient. II.. When operations are executed on models, they can
only perform the same modifications that can be performed directly on the
models. III.. It has to be ensured that abstract metaclasses cannot be directly
instantiated, but they have the same effect on models like metaclasses that
are not abstract. IV.. Restrictions on multiplicities of references are just a
special form of restrictions and can be represented expressed with general
invariant constraints for model validity.

In addition to properties that are not represented at all, there are also
properties of models that are only represented in a simplified form in the
formal language. These simplifications can also be interpreted as limitations
on models that can be represented with the formal language. As long as
the formal language is not extended to also support these cases, only a
subset of all possible EMOF-based models can be represented with it. Our
programming languages, which we describe using the formal language, do,
however, not have these limiations. The current limitations of our formal
language are:

1. References only refer to metaclasses of the same metamodel.

33

2. Foundations

2. Links only link to objects of the same model.

No subtype relation between attribute types is defined.

oW

No attribute types like strings or integers are predefined.
5. No types of attribute types, such as enumerations are defined.
An object is only linked once per reference and linking object.

An attribute value is only labeled once per attribute and object.

® =N o

Links and attribute labels have no order.

Again, the reasons why we decided to make these simplifications are di-
verse: The simplifications 1 and 2 were made because the effect of dividing
metamodels or models into parts are only syntactical. All three attribute
type simplifications (3-5) were made because attribute values are always
fixed in a metamodel. In contrast to reference values, which are model
elements, attribute values are not instantiated in models but just referenced.
Therefore, subtype relations, attribute types that are already predefined for
all metamodels, and different types of attribute types like enums have no
direct influence on models. Finally, the simplifications 6 — 8 were made in
order to avoid the complexity of using tuples to express linked object and
label values. Such multiplicities and the order of linked objects and label
values could be used to specify or enforce consistency, but in our opinion
the possible uses do not justify the added complexity for the presented
formal language.

Furthermore, our definitions of model consistency only allow the specifica-
tion and enforcement of consistency for two models that conform to two
metamodels. Neither consistency for several models of two metamodels
nor consistency for models of more than two metamodels can be expressed.
The first restriction on two models is technical and does not limit the ex-
pressiveness of the formal language. We decided to accept this limitation
in order not to complicate all definitions for consistency and enforcements
without a conceptual benefit. The formal language could be easily extended
by defining consistency for two sets of models for both metamodels instead
of two models for both metamodels. Boundaries of models are technical
as it makes no semantic difference whether an element is part of one or
another model. Therefore, such an extension for more than two models

34

2.3. Formal Foundations

would not allow any consistency specifications or enforcements that cannot
be expressed with the presented formal language.

The second restriction that consistency can only be specified and enforced
for models of two metamodels is, however, a major conceptual limitation.
This limitation applies, however, also to the programming languages pre-
sented in the subsequent chapters of this thesis and to our approach to
change-driven consistency in general . It will be targeted in future work
(see also section 3.9) and will be analyzed in future case studies.

2.3.1.3. Foundations and Related Formalizations

We used parts of the formal semantics of the Object Constraint Language
(OCL) [ISO12¢, Annex A.1-A.3, pp. 193-201] as a basis for the definition of
our formal language. As OCL is based on the Meta-Object Facility (MOF)
[ODbj06] it formally defines MOF-based metamodels and models?. An ex-
ample of reuse is the general idea to define separate sets for attributes and
associations of each metaclass. The majority of the formal MOF semantics
of the OCL Annex, however, was not appropriate for our formal language.
As the OCL supports all properties of MOF-based models the formal se-
mantics of it are too detailed for our purposes. Therefore, the rationale
for the abstractions and simplifications of the previous section are also
rationale for our decision not to reuse the formal OCL semantics. In the
formal OCL semantics names are, for example, used to identify elements
instead of set-membership. This is necessary to precisely specify OCL for
implementations of the language but unnecessary for the languages of this
thesis.

Burger adapted the formal OCL semantics to specifics of the Ecore imple-
mentation of the Essential Meta-Object Facility (EMOF) in his disserta-
tion [Bur14]. He restricted, for example, the MOF notion of associations
with an arbitrary number of ends to the Ecore notion of references with
two ends. As the formal OCL semantics are only adapted to Ecore but
not simplified, they are also too detailed to be reused for our purposes.
Rentschler used a formal definition of models as typed graphs with inheri-
tance by Kleppe in his disseration [Kle08; Ren15]. The core of our formal

2 No relevant changes were performed in these parts of the new versions of OCL [Obj14] and
MOF [ISO14]

35

2. Foundations

language can be seen as a set-based alternative to attributed, typed graphs
with inheritance, so the missing attributes or labels make it impossible to
reuse this formalization. There are further formal definitions of models and
consistency, such as those by Hettel and Macedo et al., but they were also
defined with different reductions and pragmatics [Het10; MJC17].

2.3.2. Metamodels and Models

Before we can precisely define how consistency can be specified and en-
forced for two models, we have to define what a model is. We are not
concerned with models that were created with a fixed modelling language.
Instead, this thesis and the formal language of this chapter are concerned
with models that conform to metamodels.

2.3.2.1. Metamodels and Types

Metamodels are models that define a modelling language, which can be
used to create other models. In this sense, metamodels are itself ordinary
models but the meta-modelling language, which is also often called meta-
metamodel, is fixed. The formal language as well as the programming
languages presented in this thesis are defined for metamodels that were
created using the meta-modelling language EMOF. Therefore, we start by
formally defining EMOF-based metamodels:

Definition 1 (Metamodel)

A metamodel m is a tuple (C, <,R, A, V), where C is a set of metaclasses,
< C CxC isthe partial order that represents the specialization hierarchy
of metaclasses, R is a set of references, A is a set of attributes, and V is a
possibly infinite set of attribute values.

These five elements of a metamodel are sufficient to completely specify
which models can be created using the metamodel. The references and
attributes depend on metaclasses. Thus, it would also be possible to define
that they are not directly a part of a metamodel but only of a metaclass. This

36

2.3. Formal Foundations

would, however, make it complicated to access references and attributes
across several metaclasses, e.g. in order to obtain all references or attributes
that are defined for a metaclass or for its superclasses. Therefore, we
directly define these second-class elements in a metamodel and not only in
the metaclasses.

It would also be possible to define metamodels as many-sorted structures,
which are a common concept used in mathematical logics. Then it would
be necessary to explicitly define the arity of functions in terms of tuples of
the sorts in order to explain which function has which domain. We decided
to avoid this unnecessary complexity for the definition of metamodels and
many subsequent definitions because tuples are sufficient for our formal
language.

Some readers might expect attribute values to be part of models instead
of metamodels. This is, however, misleading: A metamodel pre-defines
which attribute values can be used in model instances. This set of allowed
attribute values can be infinite but it is fixed and no model can use any
further attribute values. Therefore, it is more precise to directly make these
values part of the metamodel and not of models. Besides, the set of allowed
attribute values is often finite in practice, e.g. because only numbers up to
a certain size and strings up to a certain length are supported.

So far, we only defined that metamodels consist of metaclasses with a partial
specialization order, references, attributes, and attributes values. In the next
steps, we define what these elements of metamodels are and start with the
central concept of metamodels: metaclasses.

Definition 2 (Metaclass)
Let m:= (C, <,R,A,V) be a metamodel.

A metaclass ¢ € C of m is a tuple (R¢, Rc.o, Ac) where Re C R are the
references defined for C, Rc o C R are the containment references defined
forc, and Ac C A are the attributes defined for C such that the references
and attributes of m are partitioned by C, i.e. V C;,¢; € C withi # j it
holds that Re, URc, = 0 = Aic U Aj_.s

37

2. Foundations

Note that the containment references, which are special references that
are used to serialize models, are a subset of the references of a metaclass.
It would also be possible to define a set of non-containment and a set of
containment reference with empty intersection. This would, however, make
it more complicated to reason about references when it does not matter
whether they are containment references or not.

Definition 3 (Specialization Relation)
Let (C, <,R, A, V) be a metamodel.

Two metaclasses C1,Cp € C are related using the metaclass specialization
relation < such that C1 < Cy iff C1 specializes Cp. In such cases Cq is
called a subclass of C2 and Cy is called a superclass of C1.

The transitive closure of < is denoted by <. For ¢1 < C2, we also
call ¢y a direct subclass of C; and C; a direct superclass of ¢1. For
C1 < C2 AC1 £ Co, we call 1 an indirect subclass of Co> and Co an
indirect superclass of C1.

The effect of a direct (<) or indirect specialization relation (<) between
two metaclasses is well-known from object-oriented programming. Every
property that is defined for a superclass is also present in all its subclasses.
For models this means that every reference and attribute that is defined
for a metaclass can be used in objects that instantiate the metaclass or one
of its subclasses in order to link to other objects and in order to label it
using attribute values. In other words a metaclass inherits all references
and attributes of its superclass.

We call this relation between metaclasses a specialization relation and do
not use the name generalization relation of the formal OCL semantics. The
reason is that for two metaclasses C1,C, the expression C; < C2 can be read
from left to right as “Cy specializes C,”. For sentences in English this is
more intuitive than reading “C, generalizes €1” from right to left.

Definition 4 (Transitive References and Attributes)
Let ¢ := (R¢, Re s, Ac) be a metaclass of a metamodel m.

38

2.3. Formal Foundations

The transitive references, transitive containment references, and transitive
attributes of C are the closures of metaclass specialization < on Re, Re,,,
and Ac. They are denoted by RS, Ré‘, and AS and contain all references,
containment references, and attributes that are defined for C or one of its
superclasses.

The definition of a transitive closure on a subset of the set on which a binary
relation is defined was already given in subsubsection 2.3.1.1.

Definition 5 (Reference)
Let C1 := (Re,, Re,, o5 Ac,) be ametaclass of a metamodel (C, <, R, A, V).

A reference r € R, has a target metaclass type C2 € C.

References that are defined for a metaclass are used by objects that instanti-
ate this metaclass or a subclass of it in order to link to other objects. These
links can be seen as directed edges of a directed graph. We just call them
links instead of edges to ease the discussion of linked objects and incoming
or outgoing links.

We do not distinguish between a metaclass and a reference type but di-
rectly use the set of metaclasses as the codomain of RTYPE. Furthermore,
metaclasses may define reflexive references, i.e. C; = C2 may hold for
Definition 5.

So far, we defined that a metamodel pre-defines all possible attribute values
but we did not define which attribute values can be used for which attribute.
To this end, we introduce attribute types before we define attributes, as
they have no further properties than a type:

Definition 6 (Attribute Type System)
Let m:= (C, <,R, A, V) be a metamodel.

39

2. Foundations

An attribute type system for m is a tuple (T, P}, aTypE), where T :=
{ti,..., Y1} is a set of attribute types, P$ ={Vq,... ,Vtm} is a parti-
tion of V according to T, i.e VV,we V: I, t; e T: veVy, A WE
Ve, A (i#j= (t; 2t AV, NV, =0)), and aTyPE: A —> T isa

function that yields the type of an attribute.

Attributes of metaclasses are used to label objects using attribute values that
are pre-defined by the metamodel. The metamodel defines which attribute
values can be used for models. The attribute types are used to define which
of these values can be used for which attributes. To this end, an attribute
type system simply partitions the set of attribute values into a partition for
each attribute type.

To keep the definitions as simple as possible for our goals, we do not depict
subtype relations as mentioned in subsubsection 2.3.1.2. This means that
it cannot be expressed, for example, that the attribute type representing
all natural numbers is a subtype of the attribute type representing all inte-
gers. An extension of Definition 6 and all dependent definitions would be
straightforward but is not necessary for this thesis.

Different attribute values may have the same type, but a single attribute
value has—as we discussed in the previous paragraph—only one type. There-
fore, the expression defining the partition of V does not require that v and
w are different. It uses the condition that i and j are different only as a
precondition for the empty intersection of V¢, and Vy,. The inclusion of v
in V¢, and W in VtJ has, however, no such precondition. Therefore, it also
holds for v = w, which leads to t; = t; because P$ is a partition.

Based on the definition of attribute types, we can now extend our definition
of metamodels to typed metamodels. We could have started directly with
typed metamodels without the need to define a separate attribute type
system. We decided, however, to introduce attribute types after an initial
definition of metamodels and metaclasses in order keep the initial definitions
small and simple.

40

2.3. Formal Foundations

Definition 7 (Typed Metamodel)
Let m := (C, <,R,A,V) be a metamodel and let s := (T, PT. ATYPE) be
an attribute type system for m.

A typed metamodel M is a tuple (C,<,R,A,V,RTYPE, T, P$,ATYPE),
where RTYPE: R — C is a function that yields the target metaclass
of a reference.

The transitive closure of metaclass specialization < on RTYPE is denoted
by RTYPES. It contains the target metaclass of a reference and all direct
and indirect superclasses of it. As V, T, and P$ are often not directly
needed when ATYPE and RTYPE are given, we briefly write (C, <, R, A,
RTYPE, ATYPE) for M.

In contrast to metamodels, we do not list the set of attribute values V for
typed metamodels. It is indirectly given by [, 1 Vt;. To focus on important
parts, we will keep on using metamodels instead of typed metamodels where
types are not necessary for subsequent definitions, even if metamodels are
usually not used without types.

Definition 8 (Attribute)
Let C := (R¢, Re s, Ac) be a metaclass of a typed metamodel m := (C,
<,R,A,V,rTYPE, T, P}, ATYPE).

An attributea € A¢ has a typet, which can be obtained using the function
ATYPE: A — T.

An attribute of a typed metamodel only has one property: its type. It
is unnecessary to define an attribute for an untyped metamodel because
it would have no properties. A metaclass may have several attributes of
the same type or inherit attributes with the same type from superclasses.
Therefore, it is not possible to directly identify attributes with their types
and the attribute elements are needed to relate metaclasses and attribute

types.

41

2. Foundations

2.3.2.2. Models and Objects

We have defined all concepts of metamodels that are necessary to define
what a model is and what it consists of. For our formal language, a model
is just a container for objects and it has no additional properties. Therefore,
we first define objects before we define models:

Definition 9 (Object)
Let ¢ := (R¢,Rcs,Ac) be a metaclass of a metamodel m := (C, <
,R,AV).

An object o that instantiates C has links to other objects for references of
C and for references of direct or indirect superclasses of C and label values
for attributes of C and for attributes of direct or indirect superclasses of C.

We do not formally define sets of linked objects and labelled values for an
object, because we only need them in combination with other objects of a
model. Objects as well as their links and labels are always part of a model,
for which we define functions to obtain linked objects and labelled values
in the next definition. Because objects always depend on a model they are
also called model elements.

Definition 10 (Model)
Let m := (C, <,R, A, V) be a metamodel with C := {c;,...,C|c|}.

A model that instantiatesm is a tuple (O, . . . , O, LINK, LABEL), where
each Og, contains all objects that directly instantiate C;, LINK: O X R —
P(O) is a function that yields objects that are linked from an object for
a reference, and LABEL: O X A — P (V) is a function that yields values
that are labeled to an object for an attribute.

We briefly use the set O := |Jgec Oc do denote the model
(Oc¢,s .- Oc/c» LINK, LABEL). All objects that directly or indirectly in-

stantiate a metaclass C2 € C are denoted by Oé = Uten,epe< Ocy-

42

2.3. Formal Foundations

Definition 10 does not enforce all restrictions of the given metamodel. It
uses the metamodel to instantiate only objects of the given metaclasses
but the domains and co-domains of the functions LINK and LABEL are not
restrictive enough. LINK(o, I') or LABEL(0, &) can return objects or attribute
values for I or a even if they are not defined for the metaclasses that are
directly or indirectly instantiated by o. Furthermore, LINK can return objects
that are not of the prescribed type. In order to keep our definitions simple,
we separate the instantiation of a metamodel from the conformance to a
metamodel:

Definition 11 (Model Conforming to a Metamodel)
Let O := (Oc,, - - ., Oc,, LINK, LABEL) be a model that instantiates a
metamodel m := (C, <,R,A,V)

The model O conforms tom iff both LINK and LABEL are defined exactly for
references and attributes that are defined for the metaclasses instantiated
by the given object, i.e.
(VreR: uink(o,r) = L & r ¢ RY)
A(YaeA: raBer(o,a) = L @ a¢AY)

The three conditions of Definition 11 ensure that the model adheres to all
restrictions that are specified by the metamodel without attribute types.
Definition 10 only required that every object of a model that instantiates
a metamodel directly instantiates a single metaclass of the metamodel.
For models conforming to a metamodel Definition 11 requires that the
links and labels adhere to the restrictions of the references and attributes
of the metamodel. In the first condition, we use RTYPES(I) to obtain all
metaclasses that can be instantiated by objects that can be linked using the
reference r. Conformance to a typed metamodel with its attribute types
has an additional condition for the labels:

43

2. Foundations

Definition 12 (Conforming to a Typed Metamodel)

Let O := (O, - - -, Oc/c» LINK, LABEL) be a model that conforms to a
metamodel m := (C, <,R,A,V)andletm = (C, <,R,A,V,rTYPE, T, Pg,
ATYPE) be a typed metamodel.

The model O conforms to the typed metamodel M iff it only links to objects
that instantiate the type of the reference or a subclass of it and only has
label values of the type of the attributes, i.e.

VceC: YoeOg: (VreRS: Link(o,r) C U Oq)
derTyPES ()

VceC: VoeO.: Yace Af: LABEL(0,8) € V urypr(a)

This label condition for models conforming to typed metamodels is the last
piece of our general definitions for metamodels and models conforming
to them. These definitions precisely show how metamodels can be used
to restrict the links and labels of objects instantiating their metaclasses.
These restrictions are, however, only very coarse-grained and therefore not
sufficient for defining consistency specifications and enforcement. It is only
possible to specify that objects instantiating certain metaclasses may link
to any of the objects instantiating another metaclass or may be labelled
using any of the values of certain attribute type. Before we can define how
consistency can be specified and ensured, we provide a possibility to specify
more precise conditions for valid models in the next section.

2.3.3. Conditions and Valid Models

In this section, we define how additional conditions can be specified to
define which models are valid models. Such conditions for validity can
be used to complete the restrictions of metamodels for all possible models
conforming to them. In practice, models that do not fulfill such conditions
are considered invalid and are therefore often not supported by modeling
tools and development environments. We will reuse the following defini-
tions for model conditions in the next section in order to specify additional

44

2.3. Formal Foundations

conditions that have to be fulfilled for models that are consistent to other
models.

2.3.3.1. Serializability and Supporting Tuples

Before we define concepts that allow the specification of custom conditions,
we pre-define a serializability condition that is a prerequisite for many prac-
tical applications of EMOF-based models. It would be possible to support
unserializable models for applications that do not need to serialize models
because they only process them in memory. We decided, however, to make
serializability a precondition for validity so that serializability does not
need to be considered when consistency is checked or enforced on valid
models.

Definition 13 (Serializable Model)
Let O be amodel (Oc,, . . ., Oc/c> LINK, LABEL) that conforms to a typed
metamodel m := (C, <,R, A, RTYPE, ATYPE).

The model O is serializable iff three conditions are fullfilled:
1. O has no cyclic containment links, i.e.

VCl,...,Cn_H e C: VOI EOCIa~-'7On+1 EOC,,H:
< <
VrieR:,,....rn €RC ,:
(LINk(01, 1) =03 A ... A LINK(0p, V) = 0py1) = 01 # 0y

2. One object has no incoming containment link, i.e.

J,ceC: J10€ Oc:
| U {(02,T) € Og, X sz" | LINK(05,F) = 0}| =0

cpeC

45

2. Foundations

3. All other objects have one incoming containment link, i.e.

Ve, €C: Vo, €0, \ {o}:
|| {02, 1) € 0, xRS,y | Link(0z, 1) = 01}] = 1

cpeC

The objects and links of a model can be represented as the nodes and edges
of a directed graph. If we only consider containment links, then the three
serializability constraints ensure that serializable models can be represented
as a special form of a directed acyclic graph, which is called a rooted out-tree.
The first serializability constraint ensures that the containment graph has
no cycles. This means an object of a model can never directly or indirectly
contain itself. For this constraint, it is not necessary to directly require that
01,...,0p41 are pair-wise disjunct, because this is indirectly required for
o1 and 0,41 and for any n. The second constraint ensures that there is a
root node with an indegree of 0. It is for the object o without an incoming
containment link of the model. The last constraint ensures that all other
nodes have an indegree of 1. This means all objects except o have exactly
one container, i.e. an object with a containment link pointing to them. As a
result, all nodes are connected to each other and for every non-root node
there is exactly one path from the root node to it. This makes it possible to
easily serialize and deserialize such models using the containment links.

As alast preparatory step for defining custom models conditions, we define
tuples of metaclasses and tuples of objects that instantiate these metaclasses
element-wise. We use these two concepts in order to define a condition
in two-steps: 1. Which metaclasses have to be instantiated by objects that
could fulfill the condition? 2. For which objects of these metaclasses is the
condition fulfilled?

Definition 14 (Metaclass Tuple of Metamodel)
Let m:= (C, <,R, A, V) be a metamodel.

46

2.3. Formal Foundations

Atuple(Cy,...,C;,) suchthatc;,...,c; € Ciscalled a metaclass tuple

of m.

A metaclass tuple contains an arbitrary multiset of the metaclasses of a
metamodel in arbitrary order. We do not use an ordered set instead of a
multiset because custom conditions should be specifiable for objects that do
not necessarily instantiate different metaclasses. Therefore, Definition 14
uses a sequence of indices iy, . . ., i,, for which i; = iy may hold for 1 <
j,k<n.

Definition 15 (Universe of a Metamodel)
Let m be a metamodel.

The universe of the metamodel m is the infinite set of all models that
instantiate M and denoted by Om. The infinite set of all serializable
models of M is called universe of serializable models of m and denoted by
O} € Om.

The concept of a universe of a metamodel makes subsequent definitions
more compact. Such a universe contains every model that instantiates the
metamodel. Every model in the universe is finite because it has a fixed
number of objects with a fixed number of links and labels. The universe of
the metamodel, however, is infinite because it contains every model that
instantiates the metamodel and the size of a model is not limited.

Definition 16 (Instance Tuple for Metaclass Tuple)
Let O be a model that instantiates a metamodel m and let (C) :=

(Ci,...,C;,) be ametaclass tuple of m.
A tuple (o) := (0j,,...,0;,) € Ofil X ... X Oén is an instance tuple for
(c) in O.

47

2. Foundations

The set of all instance tuples for (C) in O is denoted by O(cy := {{0) €
Ofil x...xoén}.

An instance tuple of a metaclass tuple in a model is nothing else than an
ordered multiset of objects of the model with the same length like the
metaclass tuple and an additional constraint: Every object of the instance
tuple has to directly or indirectly instantiate the metaclass at the same
position in the metaclass tuple. We already mentioned for Definition 14
that metaclass tuples may list the same metaclass multiple times. Similarly,
an instance tuple may list the same object multiple times. Furthermore,
the same object may be listed for different metaclasses of the metaclass
tuple, i.e. 0;, = 0;, may hold for 1 < ji,j; < nevenif iy # i; as long as
0g, 2 0j, €05, .

Definition 17 (Universe of a Metaclass Tuple)
Let (C) := (C;,, . . .,C;,) be a metaclass tuple of a metamodel m.

The universe of (C) is the infinite set of all instance tuples for (C) in all
models that instantiate m. It is defined as Oy := Uopco,, O(c) using the
universe Oy of the metamodel m.

Every instance tuple in the universe of a metaclass tuple is finite because the
metaclass tuple lists a fixed number of metaclasses that have to be instan-
tiated by the objects of every instance tuple. The universe of a metaclass
tuple, however, is infinite because the universe of the metamodel, from
which the instance tuples are created, is infinite.

2.3.3.2. Conditions and Validity

With the support of serializability, metaclass tuples, and instance tuples we
are now able to take the next steps towards formal model consistency by
defining conditions for metamodels and when they are valid in a model.

48

2.3. Formal Foundations

Definition 18 (Condition for a Metaclass Tuple)
Let (C) be a metaclass tuple of a metamodel m and let Oy, be the
universe of m.

A condition for (C) is a unary relation COND on the universe of (M), i.e.
CoND C Ogy.

A condition is simply represented by a possibly infinite set of tuples that list
objects that fulfill the condition. The metaclass tuple for which a condition
is defined, indicates which metaclasses have to be instantiated by objects
that can fulfill the condition. Therefore, the metaclass tuple represents a
type restriction for the condition which makes it possible to directly see
which objects of a model are candidates that can fulfill the condition and
which are not. The possibly infinite set COND contains all instance tuples
(0), which list such candidate objects, for which the condition is fulfilled.
For such instance tuples (0) € conND, we say that conD is valid for (o).

Definition 19 (Condition Valid in a Model)
Let O be a model that instantiates a metamodel m and let conND be a
condition for a metaclass tuple (C) of m.

The condition conD is valid in O iff the relation holds for all instance
tuples of (C) in O, i.e. Ocy & COND

The simple idea of this definition is that a condition holds for a complete
model iff it holds for all possible combinations of objects in the model. More
precisely, a condition for a metaclass tuple is valid in a model if it is valid
for all possible instance tuples that can be created for the metaclass tuple of
the condition in the model. This can also be re-formulated as a constraint
for every object of the model that could be part of a combination of objects
that fulfill the condition: Every combination of such candidate objects has
to fulfill the condition.

With the above reformulation of the constraint for the validity of a condition
in a model, we can demonstrate that it would also be possible to define

49

2. Foundations

a weaker notion validity for complete models. It would be possible, for
example, to require for every of these candidate objects, which could be part
of a fulfillment, that there is at least one combination of objects for which
the condition is fulfilled. More precisely, such a weaker notion of validity
would require for every object that is listed in a possible instance tuple that
there is at least one instance tuple for which the condition holds. Such a
weaker notion of validity for complete models would make consistency
checks more complex than with the strong notion of Definition 19. For the
weaker notion checks would either not be stateless or would have at least
quadratic complexity, because it would be necessary to either keep track of
the condition fulfilling instance tuples for every object or to always iterate
over all of them.

Based on these definitions, which codify how custom conditions can be
specified, we can now define how such conditions can be used. We begin
with a usage that is not yet specific for consistency checks or enforce-
ment: General conditions that always have to hold for every instance of a
metamodel can be specified in order to complete the implicit constraints
of the metamodel. Such additional metamodel conditions are also called
invariants.

Definition 20 (Constrained Metamodel)
Let m := (C, <, R, A, RTYPE, ATYPE) be a typed metamodel.

A constrained metamodel is a tuple M := (C, <,R, A, RTYPE, ATYPE, |)
where | is a set of conditions for metaclass tuples of m called invariants.

A model conforms to M if it conforms to (C, <, R, A, RTYPE, ATYPE).

Instead of extending the definition of metamodels to constrained meta-
models, we could have made the set of invariants | directly part of the
metamodel definition. This would not have changed which metamodels
could be specified, because | can always be empty. We decided, however,
not to do this in order not to distract the reader from the more central
concepts, such as metaclasses.

50

2.3. Formal Foundations

Definition 21 (Valid Model)
Let O be a serializable model that conforms to a constrained metamodel
m := (C, <, R, A, RTYPE, ATYPE, |).

The model O is a valid model of m iff all invariant conditions in | are
valid in O.

This definition of model validity concludes our preparatory definitions for
model consistency: A serializable model is valid iff all invariant conditions
are valid, i.e. iff all invariants hold for all possible object combinations.
As we already mentioned in the introduction of this section, we made
serializability a prerequisite for validity. This relieves us from the necessity
to demand respectively check serializability whenever we want to persist
valid models.

The most important definitions that we presented so far are also depicted in
Figure 2.4. It relates our five definitions for models to our three metamodel
definitions and to attribute type systems. At the very end of this confor-
mance hierarchy are valid models, which depend on all other definitions as
they are serializable models that conform to a constrained metamodel and
fulfill invariants.

51

. Foundations

N

Metamodel (1) ’ Attribute Type System (6)

includes a

instantiates a| includes an

Model (10) ’ Typed Metamodel (7) ‘

[=]

. conforms .
isa includes a
toa
’ Conforming Model (11) ‘ conforms to a ’ Constrained Metamodel (20) ‘

isa conforms includes

’ Type-Conforming Model (12) ‘ s @ariamts)

e

fulfill
CSenahzablhty Constramts}L—{ Serializable Model (13) ‘ fulfills

isa

Valid Model (21)

legend: ’ Concept (Definition Number) ‘

|
|
|
|
I directed relation
|
|
|
|
|

Figure 2.4.: Hierarchy of models that instantiate a metamodel, conform to a meta-
model, conform to type restrictions, or fulfill additional serializability constraints
and invariants

52

Partll.

Consistency Preservation
Challenges and Formalization

3. Challenges to Consistency
Preservation

Before we provide reusable solutions to some recurring challenges to
change-driven consistency preservation, we present an analysis and classifi-
cation of challenges. With this challenge classification we provide answers
to the first part of our research question 1 and to the subquestions 1.1 and
1.2, which we presented in section 1.3.

3.1. Classification and Terminology

We briefly present how we have classified the challenges that we identified
and introduce general terms that are necessary to discuss the individual
challenges.

3.1.1. Classification According to Origin and Abstraction

We identified five classes of challenges to consistency based on their origin.
These classes range from conceptual to implementation challenges and are
sorted by the level of abstraction at which the challenges arise. We start
with the class of challenges at the highest level of abstraction. It contains
conceptual challenges to consistency, which stem from the relationship
between modelled originals regardless of how models and consistency
specifications are expressed. Our classification continues with modelling
language challenges, which result from the way modelling languages are
designed and realized, often without a special focus on consistency with
models of other languages. Next, we discuss the most important class of con-
sistency challenges for this thesis: specification challenges. These challenges

55

3. Challenges to Consistency Preservation

high little
1. conceptual challenges g
2. modelling language challenges .g
3. specification challenges % %
4. enforcement challenges F%
5. implementation challenges 'g
low much uni-

Figure 3.1.: Classes of challenges to consistency preservation with their level of
abstraction, their dependence on challenges of other classes, and the orthogonal
dimension of directionality

arise when consistency shall be specified for models of given languages in
a way that makes it possible to check and possibly also enforce consistency
but that does not fix how checking and enforcement are performed. Then,
we present a separate class of Open Consistency Specification Language
Challenges, which we address with the languages that we present in thesis.
After this, our classification continues along the abstraction dimension with
enforcement challenges, which occur if consistency according to a given
specification can be achieved in different ways. The last class of challenges
deals with implementation issues, which are related to technical properties
of the languages and tools that are used to implement a given checking
or enforcement strategy. In addition to this five classes that correspond
to different levels of abstractions and the class for specification language
challenges, we also discuss challenges to bidirectionality as an orthogo-
nal dimension. The five abstraction-related classes of challenges and the
orhogonal dimension of directionality are also depicted in Figure 3.1. It
also illustrates how the level of abstraction decreases with every class of
challenges and how the dependence on other classes increases.

Some challenges to consistency reappear in different forms at different
levels of abstraction. We divide these challenges into individual challenges
for each level and relate them to their counterparts on the other levels.
An alternative would be to describe bigger challenges for which different
aspects are discussed at different levels of abstraction. Some challenges

56

3.1. Classification and Terminology

at one level are, however, related to several challenges at other levels,
which would be difficult to describe in terms of level-spanning challenges.
Therefore, we take a more fine-grained approach with challenges that are
always assigned to a single level of abstraction but that can be part of a
bigger group of related challenges on several levels. Many challenges at
the specification level, for example, can reappear at the enforcement level
if they are not completely addressed in consistency specifications.

Our five challenge classes can be used for many other approaches for con-
sistency preservation, but the exemplary challenges that we present are
influenced by the perspective on consistency that we describe in this thesis
and realize with our approach. More specifically, we only consider chal-
lenges to consistency between models of two languages to which a sequence
of changes is performed by a single user. Challenges of circular change
propagation and concurrent editing, for example, are not discussed.

3.1.2. Fundamental Terms of Consistency Preservation

We introduce some central terms in order to have the necessary vocabulary
to discuss the challenges to change-driven consistency preservation that we
identified. In order to keep the discussion general and as straightforward as
possible, we introduce these terms only informally and refer the reader to
the next chapter for a more formal and precise discussion of consistency.

The most important term for our perspective on consistency is consistency
specification. It denotes a description of consistency for a given set of
modelling languages in an arbitrary format or representation that is pre-
cise enough for unambiguous consistency checks or even enforcement.
This means that for any given set of models of the concerned languages
a consistency check specification always has to clearly specify whether the
models are consistent with each other. In analogy, a consistency enforce-
ment specification always has to specify what has to be done to achieve
consistency. The latter of these two types of consistency specifications is a
specialization of the first: Because an enforcement specification can always
be used to check consistency, every consistency enforcement specification
is also a consistency check specification. Our notion of a consistency spec-
ification implies that it can be used as the only source for checking and
enforcing consistency in addition to the models to be kept consistent. We

57

3. Challenges to Consistency Preservation

call an approach that fulfils this restriction specification-driven. Note that
consistency specifications have to specify unambiguously what is consistent
or which actions have to be performed in order achieve consistency, but how
consistency can be checked or enforced should be left open as specifications
should be more abstract than realizations of consistency mechanisms.

A property of consistency specifications that should not be confused with
the role that specifications can play in consistency preservation approaches
is its nature: The nature of a consistency specification can be prescriptive
or descriptive. A prescriptive specification dictates consistency that did not
exists without it and does not exist alongside. A descriptive specification is
an additional representation of consistency that already exists. Therefore,
specifications used in specification-driven approaches can be prescriptive
or descriptive.

In analogy to the prescriptive and descriptive nature of consistency specifi-
cations, we call those specifications that are used to enforce consistency
executive and those that are used to check consistency analytic. With these
two terms we distinguish different usages of consistency specifications that
is not bound to their type: Even a consistency check specification can not
only be used in an analytic way but also in an executive way. Examples
for this are approaches that check consistency for many candidate models,
which are exhaustively derived by manipulating initial models.

Consistency specifications describe a single consistency relationship that can
be present between models of two modelling languages by defining several
consistency relations between elements of these two languages. They relate
language elements by implicitly or explicitly specifying the conditions that
have to hold if instances of these elements shall be considered consistent.
When consistency is checked on concrete models according to a specifica-
tion, it is analyzed whether the consistency relations that are defined for
the language elements are realized by instances of these language elements
according to the conditions. For consistency it is not necessary that all pos-
sible combinations of language element instances for every relation realize
the relation by fulfilling the conditions. A specification can require that
consistency relations only have to be realized for a subset of combinations
by specifying appropriate restrictions.

To denote consistency not only for complete models but also for their
elements, we introduce a correspondence relation between them. A set of

58

3.1. Classification and Terminology

elements of models of one modelling language corresponds to another set
of elements of models of another modelling language with respect to a
relation of a consistency specification for these languages if the relation is
specified for the instantiated language elements and if all conditions of it
are fulfilled. If several relations are defined for the same combination of
language elements, then it is also possible that two sets of model elements
correspond to each other with respect to more than one of these relations. In
other words: several consistency relations can be realized by the same sets
of model elements. It is important that correspondence is only determined
by those relations of a consistency specification that are defined exactly for
the combination of language elements that are instantiated. As a result, only
those sets of model elements for which consistency is explicitly specified
can correspond to each other. This is different from the notion of consistency
for elements with respect to a consistency specification: Combinations of
two sets of model elements for which no conditions are specified cannot be
inconsistent because specification conditions that do not exist can also not
be violated. Therefore, such sets of model elements are always consistent
but do not correspond to each other.

To increase the readability, we often do not write about a modelling language
of a consistency specification or about a set of model elements of this
language but simply call such a language or such a set a side. Unless stated
otherwise, we always discuss consistency for both sides in a symmetric way
where both sides are equally treated. Nevertheless, we use the terms left
side and right side in order to be able to refer to them with distinct names
even if the assignment could be initially swapped.

To handle consistency for models that are changed we introduce the notions
of model state and change operations. A model that is changed is going from
one state to another as an effect of the change operations that are applied to
it. If an approach for consistency preservation requires several model states
as input it is called state-based. If it requires a description of the performed
change operations it is called operation-based. We distinguish between
two types of change operations: user change operations are performed
by individuals and may lead to enforcement change operations, which are
performed in order to preserve consistency.

For the act of performing change operations to enforce consistency after
user change operations, we use the term consistency preservation. Such

59

3. Challenges to Consistency Preservation

enforcement operations can also be performed if a user change did not yet
violate the consistency relationship between models, e.g. in order to prevent
future inconsistencies. Therefore, we use the term consistency preservation
instead of consistency restoration, which implies that consistency is only
restored after it was destroyed. We consider this implication more mislead-
ing than the fact that we use the term preservation even if consistency does
not need to be preserved at all times because there may be cases in which
temporal inconsistencies occur for a short period of time.

3.2. Conceptual Challenges

Our first class of challenges to consistency contains challenges that arise on
the highest level of abstraction. These challenges directly result from the
properties of modelled originals and the relations between them. Whether
they arise and how they can be addressed is not influenced by the way
these originals are represented using a modelling language. Therefore,
understanding the reasons for these challenges and developing potential
solutions can be beneficial for a variety of systems in which these elements
are modelled and processed.

3.2.1. Diverse Consistency

For many pairs of modelling languages, there is not a single notion of
consistency but diverse possibilities how models can be related in a way that
can be deemed consistent. This freedom to choose and define consistency
for two modelling languages can be challenging already on a conceptual
level regardless of issues, for example, on the specification or enforcement
level.

If two modelling languages describe properties of modelled originals in a
way that allows different co-occurrences that are deemed consistent, then
they do not induce a canonical notion of consistency. In such cases, the
decision to restrict the notion of consistency to one or several possibilities
and certain conditions can have a strong impact. Therefore, the freedom to
define consistency for two modelling languages can be indirectly restricted
in several ways.

60

3.2. Conceptual Challenges

For example, the way the modelling languages are used to develop systems
in certain project contexts can influence our definition of consistency. Fur-
thermore, the benefits of consistency preservation for the models of these
languages—may it be automated or not—can vary with the chosen notion
of consistency. In addition, the way consistency diversity is approached
can influence whether and how it is possible to specify, check, or enforce
consistency.

3.2.2. Tolerating Inconsistency and Wanted Inconsistency

Consistency that can be described for models of a set of modelling languages
does not always need to be enforced immediately or at all. In some cases,
it can be desired to tolerate inconsistencies, for example, as long as they
are restricted to certain model elements, certain model regions, or certain
intermediate model states. But, there are also cases in which consistency
should never be enforced. Inconsistencies are generally tolerated, for ex-
ample, in cases where inconsistencies were deliberately introduced and
these decisions shall be documented. This can be necessary if violations of
consistency specifications are not only allowed but also have an impact on
system development or if uncertainty cannot be expressed in a consistent
way.

Conditionally or generally tolerated inconsistencies are not only a question
of consistency enforcement, but have conceptual implications. On the one
hand, tolerated inconsistencies make it possible to apply strategies that
cannot be used if consistency always has to be achieved. Examples are
postponed or delegated consistency checks and enforcements. On the other
hand, tolerated inconsistencies can also impede consistency preservation:
If some consistency conditions are not strict because their violation is tol-
erated, then the checks and enforcement of all other conditions also have
to deal with these tolerated inconsistencies. We cannot profit from toler-
ated inconsistencies if checks and enforcement for a consistency condition
assume that all other conditions hold. Therefore, it has to be explicitly
specified for which conditions inconsistencies can be tolerated and whether
preconditions can deal with that. Such precautions have to be taken when
inconsistencies are tolerated in order not to turn analyses useless due to

61

3. Challenges to Consistency Preservation

the general rule in classical logic that anything can be deduced from con-
tradictions.

In some cases, inconsistencies only need to be tolerated if changes are
performed on a specific side, but not if the corresponding elements are
changed on the other side. One possibility to address such a requirement
without tolerating inconsistencies would be to only allow changes on the
other side. The classical relation between code on the one side and tests
or contracts on the other side is an example for such a requirement for
tolerating inconsistencies or no changes: Let us consider a change to a
test that makes the code inconsistent with it, e.g. because a new method
signature is prescribed by the test. A strategy could be to repair consistency
by adapting the method signature in the code accordingly. If an analog
change is performed in the code, e.g. a method signature is modified, it
could be erroneous to adapt the tests if they fix the signatures that have
to be provided. In such a case, one could tolerate the inconsistency until
somebody revokes the change or modifies the contractually specified tests.
Or, one could simply decide that method signatures are prescribed by the
tests and therefore can only be changed in the tests. If all signature changes
are propagated to the code, this would not reduce the power of developers
but would prescribe for some changes where they have to be performed.

The idea of “tolerating inconsistency” has been prominently discussed in an
article by Balzer [Bal91]. He has introduced an approach for inconsistency
resolution by marking tolerated inconsistencies and storing the values
leading to them. The principle of explosion, which states that anything can
be followed from contradictions, has also been used to motivate an article
by Finkelstein et al. [Fin+94]. They have presented an approach in which
inconsistencies in databases are not repaired but it is specified with an
“action-based meta-language based on linear-time temporal logic” [Fin+94,
p. 574] how to act depending on the context. Two reasons that are similar to
the reasons for generally tolerated inconsistencies that we mentioned in the
first paragraph of this section, have been discussed in an article by Nuseibeh
etal. [NERO1]: They have stated that “inconsistency may indicate deviations
from a process model” and that “inconsistency can be used to identify areas
of uncertainty” Nuseibeh et al. [NERO1, p. 173]. Furthermore, they have
presented a general framework for managing inconsistency based on a loop
with four steps of monitoring, diagnosing, and handling inconsistencies as
well as monitoring the consequences of this handling.

62

3.2. Conceptual Challenges

3.2.3. Evolving Consistency

What is deemed consistent for a given pair of modelling languages is not
always fixed for all times, but can evolve on its own, and may need to be
adapted to evolving modelling languages. This evolution of consistency
specifications and modelling languages is not only difficult to realize in
practice, but can already be conceptually challenging.

We can decide, for example, to follow a backward compatible way of con-
sistency preservation. Then, we have to allow the coexistence of model
elements that were consistent according to an old specification, and of
elements that are consistent according to a new specification. On the one
hand, this relieves us from solving problems like the migration of old con-
sistent models. On the other hand, it forces us to be explicit with regards to
preconditions and dependencies, if we do not separate the elements that
are consistent according to the old specification from the remaining model
elements.

If a modelling language evolves, this always has technical implications
for the coevolution of model of the language, but it can also influence
consistency with models of another modelling language in a conceptual
way. Concepts or properties that are also represented in the other language
may be introduced, modified, or removed so that consistency can newly,
differently, or no longer be checked or enforced. Therefore, all challenges
that can occur initially may reappear when one of the modelling languages
evolves. But, such an evolution can also pose new challenges that do not
need to be addressed, if modelling languages are fixed. An example is the
challenge to reuse or even adapt parts of a consistency specification for
an old version of a modelling language in order to obtain a specification
for a new version. Another example is the challenge to ensure backward
compatibility. For this compatibility, everything that can still be expressed
with a new language version and that was consistent according to the
specification for an old language version is of interest. Such models should
still be consistent according to the specification for the new language
version.

63

3. Challenges to Consistency Preservation

3.2.4. Totality of Consistency

In the context of consistency for models of two modelling languages the
notion of totality can be discussed in three ways:

Totality of the relationship for the consistency relationship between models
as defined by a complete specification,

Totality of relations for individual consistency relations specified on the
language level, and

Totality of correspondences for the correspondence relations that realize
them for model elements on the instance level.

There may be other names for it, but this question whether there is a
consistent counterpart for every model, for every possible set of elements
of a relation, or for every concrete element has strong implications.

The consistency relationship between models, which is defined by a consis-
tency specification, is left-total respectively right-total, iff there is a consis-
tent counterpart for every possible left model respectively right model. If a
relationship is not left-total, for example, then there are changes that can be
performed on a left model so that no consistent right model exists. In such
a case, it can be interesting to investigate whether and how it is possible to
avoid such dead ends if reverting changes on the left side is not an accepted
or desired option. One possibility for this is to analyze which changes lead
to a dead end and to disallow these exact changes on specific elements or
even complete change types for all elements. For this, a specification that
allows such analyses is needed.

A consistency relation for two sets of language elements of the two lan-
guages of its consistency specification is left-total respectively right-total,
iff it relates every possible set of instances of the left respectively right set
of language elements for which its conditions hold to a set of instances of
the other set of language elements. If a consistency relation is left-total, for
example, then it is sufficient to check its conditions for the elements on the
left side to know whether it can be enforced by only modifying elements
on the right side. This can be important, for example, if consistency shall
only be enforced on the unchanged side, e.g. in order to avoid unexpected
overrides of user changes.

64

3.2. Conceptual Challenges

The correspondence relations for the consistency relations of a consistency
specification for two languages are left-total respectively right-total, iff
every possible model element of the left respectively right language cor-
responds to at least one element of the other side. Therefore, left-total
respectively right-total correspondence relations of a consistency speci-
fication indicate that no element on the left respectively right side can
be modified independent of the other side. A consistency specification
between a language and a superset language, for example, should always
have left-total correspondence relations to preserve consistency according
to the superset relation between the languages.

3.2.5. Dependencies between Consistency Relations

It is often not only the case that the elements and conditions of several
consistency relations of a consistency specification are related to each other,
but that they depend on each other. More specifically, a consistency relation
depends on another consistency relation if at least one of the conditions of
the first relation can only hold for elements that are related to consistent
elements using the other relation. No matter if such a dependency is made
explicit in the specification or not, it has an effect on how consistency can
be checked and enforced.

On the one hand, dependencies between consistency relations can be ex-
ploited to improve the structure and execution of consistency enforcement
and checking code. On the other hand, such dependencies can make it
more complex to understand or process consistency specifications and can
cause problems. Mutual exclusions or cyclic dependencies, for example,
can result in specifications that cannot be enforced. Therefore, automated
dependency analyses can be necessary to detect and avoid such cases.

In order to work with dependencies between consistency relations, it is
often beneficial to identify sets of relations that have dependencies within
a set but no dependencies to relations outside the set. One possibility is to
search for sets of relations that are minimal in the sense that every subset
has at least one relation that depends on a relation that is not in the set.
This notion of minimalism can, however, only provide a lower bound for
sets of relations that should be specified and processed together because it
relies on our strict notion of dependency: If some language elements, for

65

3. Challenges to Consistency Preservation

example, are affected by two relations but the satisfaction of the conditions
of one of them is not always a prerequisite for the satisfaction of a condition
of the other, it can be very beneficial to treat them together even if they
have no formal dependency.

3.2.6. Identification of Elements

A crucial requirement for consistency preservation is the possibility to
identify model elements. It is a prerequisite for determining and modifying
corresponding elements in order to preserve consistency. If elements cannot
always be identified, then it is possible, for example, that a change operation
on a model element leads to an enforcement operation that is performed
on a wrong element with the same identifier.

Identifiers can only be used to check and enforce consistency according to
a specification, if the element identification complies with the consistency
conditions of it. Let us consider, for example, two elements that have
the same identifier and appear in one model of a certain metamodel. For
another model of another metamodel, it has to make no difference in terms
of consistency to which of the two elements a consistency is established.
More specifically, specification compliance means that two elements on
one model side that have the same identifier do not need to have identical
properties but every condition of every consistency relation that is fulfilled
by one of the elements also has to be fulfilled by the other and vice-versa.
As aresult of the consistency compliance requirement, it is possible that
the identification of elements of a single modelling language has to be
performed differently for two specifications that define consistency to
elements of two different modelling languages.

Because user change and enforcement operations can always change prop-
erties that are not used for identification, it is necessary that the element
identification used for consistency preservation is robust with respect to
such contextual changes. More precisely, contextual robustness means that
every change or enforcement operation that results in a change from an
old to a new identifier for a model element, for example, has to result in the
same identifier change, if it is performed on an arbitrary element with the
same identifier regardless of the context, i.e. properties that did not cause
an initially different identifier.

66

3.2. Conceptual Challenges

For practical consistency preservation, all identifiers of model elements
for consistency preservation have to be temporally unique for any given
model state but not globally unique across all possible model states. That is,
if two elements of a model state share the same consistency identifier, they
can be treated as equivalent during consistency checking and preservation.
The temporal relaxation of uniqueness concerns individual identifiers and
the set of all identifiers in two ways: An identifier for an individual element
can change during the lifetime of an element, and an individual identifier
may identify different elements throughout different model states.

The identification of model elements for consistency preservation can also
be challenging, because the identifier of a single element may not only
depend on the properties of this element but also on properties of other
elements. In such cases, user change and enforcement operations on a
single model element may lead to new identifiers for several dependent
elements. Because of such identifier dependencies and the consistency
compliance of identifiers as discussed above, a single change can lead to
many enforcement operations. One reason, why this can be challenging,
is that users may not always anticipate such series of reactions. Another
reason is that the management of correspondence relations has to rely on
identifiers and has to process such series.

3.2.7. Information for Determining Corresponding Elements

The identification of a model element is only the first step for determining
which elements correspond to it according to the consistency relations
defined in a consistency specification. First, we have to know whether we
have enough information to determine corresponding elements. If this is
not the case, we have to know how we can obtain the necessary information
or how we can deal with its lack.

If information that is required for determining corresponding elements
is not directly available in a model, then we have to derive it from the
available information or have to obtain it from additional sources. Both
possibilities to obtain the required information have implications on further
consistency preservation. If the information that is required for determining
or enforcing correspondences can be derived from available information,
then we either have to recompute these derivations if the input changed

67

3. Challenges to Consistency Preservation

or we also have to preserve the consistency of the derivation results. The
same applies to information from additional sources: If such information is
necessary for consistency preservation, then it also has to be kept consistent
just as models have to be kept consistent.

In case the information required for determining corresponding elements
cannot be derived from available information nor be obtained from addi-
tional sources, it is possible to acquire it from the user or to suppose default
values for it. Asking the user to provide such information has the advantage
that we may obtain more suitable information for specific cases. This is
more difficult to achieve with fixed or dynamically computed default values,
but it has the advantage that no interaction with the user is required, which
may disturb the workflow or not be available after a change.

If the information required for determining and preserving correspondences
cannot be derived, obtained, acquired, nor supposed, the only remaining
option is to postpone consistency preservation until the information is
available. The difficulty with this is that the correct point in time at which
the information is available or can be obtained has to be detected. Further-
more, there may be abortion criteria, which specify under which conditions
consistency cannot be enforced anymore so that postponing is no longer
possible.

3.3. Modelling Language Challenges

The challenges to consistency of the second class, which we present in this
section, arise at the second but highest level of abstraction, which is the
level of modelling languages. These challenges directly result from the way
modelled originals and the relations between them can be represented using
a given modelling language. How a modelling language is used and defined
in terms of abstract syntax can have many implications on how consistency
to another modelling language can be checked or enforced. If it is possible
to shape a modelling language according to consistency preservation needs,
it can be beneficial to directly address the following challenges during this
language definition process so that some consistency challenges on lower
levels of abstractions are less likely to occur. But, often it is necessary
to preserve consistency for models of given modelling languages which

68

3.3. Modelling Language Challenges

cannot be changed. In such cases, the challenges presented in this section
may only be addressed during consistency specification, enforcement, or
implementation.

3.3.1. Consistency-Enabling Abstraction

Modelling languages for which models shall be kept consistent with models
of other languages, have to provide abstractions that are detailed enough
with respect to the abstractions of the other languages. Different modelling
languages are often designed for models that are used for different tasks (see
also pragmatics in subsection 2.1.1). To support these tasks only with the
required information, the languages can use different levels of abstraction. If
the languages are used in combination and consistency between its models
shall be enforced automatically, it is often necessary to overcome such
abstraction differences.

If a modelling language abstracts away from details that are necessary for
consistency preservation, these details can either be obtained from other
models, from additional sources or the user. The first case refines the con-
ceptual challenge of the previous section subsection 3.2.7 which does not
take into account which modelling language is used for the model that
provides the required information. If the necessary details are available
in models of another modelling language, these models can be used to
implicitly or explicitly augment the models that abstracted away from the
details. In case of an implicit augmentation the model that abstracts away
from the necessary details is left unchanged and the details are always
retrieved from the models of the other languages. To ease this retrieval
references from the elements missing the details to the elements providing
it are often stored in so called witness structures. An explicit augmentation
adds the necessary details to the models requiring them, so that they can
be directly used without following any references etc. As we already dis-
cussed above for conceptually determining correspondences using explicitly
added additional information, such solutions have the disadvantage that
the information that is added has to be kept consistent afterwards.

69

3. Challenges to Consistency Preservation

3.3.2. Different Roles for Models

Whether models have a prescriptive or descriptive nature (see also page 58)
and which role they play during system development is often already given
by the modelling language and it has an influence on consistency preserva-
tion. The role played by a model can, for example, be described with a level
of rigidity. Models can be used in a rigid way, e.g. in automated processes
or with a catalogue of manually performed but inevitable consequences, or
in a flexible way where they are rather guidelines than rules. Furthermore,
models can have different origins as they can be automatically derived from
existing development artifacts or manually created by developers. Mod-
els from both origins can have faults depending on the regulation of the
automated or manual derivation or creation process.

The nature, rigidity, and origin of models can influence consistency preser-
vation, especially in terms of precedence. For the enforcement of consistency
it can be beneficial if the used modelling languages lead to models that
play complementary roles. Prescriptive models and models that are auto-
matically implemented in a rigid way, e.g. using code generation or model
execution techniques, may, for example, take precedence over descriptive
models or over models that are manually created to express additional
but uncertain information on a best-effort basis. Incompatible roles can,
however, hinder consistency enforcement. Consider, for example, a de-
scriptive model that is automatically derived and a prescriptive model that
is manually created and rigidly used to generate code. If these models
are inconsistent, it can be argued that the descriptive model takes prece-
dence because the derivation process is assumed to be correct. But it can
also be argued that the prescriptive model should take precedence because
the intent of the developer should be preserved and it is assumed that no
unintentional changes are performed.

3.3.3. Different Usage of Types and Identity

If different notions of types and identity are used in two modelling languages
for which models should be kept consistent, these differences have to be
taken into account during consistency preservation. Elements or values
that are considered fixed or identifying on the type level in one language,

70

3.3. Modelling Language Challenges

may be considered flexible or common in the other language. In such
cases, consistency preservation also has to preserve these notions and has
to translate flexible instances to the corresponding types. This can be
especially challenging, if both modelling languages do not fix the possible
set of types on the language level but postpone this to the instance level.
These belatedly defined types can be explicitly provided using hard-wired
particular models that contain these types or implicitly during their usage
as a matter of modelling conventions. Some modelling languages, such
as the Unified Modeling Language (UML) [ISO12a; ISO12b], even provide
distinct language constructs to support types on the instance level, e.g.
stereotypes or powertypes.

An example for different notions of types is the combination of a modelling
language that has a fixed set of possible enumeration literals to represent
a certain property of an original with another modelling language that
uses a metaclass with an unlimited number of different instances with an
own identity to represent the same property. Preserving consistency is
straightforward if only the first modelling language is used to model this
property, because a unique instance of the metaclass of the second language
can be automatically created for every enumeration literal. But, if new
instances of the metaclass of the second language are manually created by
developers, then we may have to map several such instances of the second
language to a single literal of the first language and the correct instance
has to be chosen when a literal is used in the first language.

A similar problem occurs, if one modelling language uses a certain property
value to uniquely identify instances that represent an original but another
modelling language represents the same original using instances that have
no identity so that the same property value can be used several times. The
challenge is to establish a notion of identity for the combination of both
languages, which may identify instances based on the combination of their
properties in both languages. This also means that it is not always possible
to determine the identity of elements by only taking one of both languages
into account, which can be difficult for developers that only work on models
of one of the languages.

71

3. Challenges to Consistency Preservation

3.3.4. Other Representation Variations

Modelling languages can use many different ways that influence consis-
tency preservation to represent further properties of modelled originals
in addition to types and identity. Such variations can either differ only in
syntactic terms with restricted consequences for consistency preservation,
or they also represent semantic differences, which can be more difficult
for consistency preservation. Whether modelling language variations have
semantic consequences is not directly determined by the variations itself,
but it depends on the usage of the language and the semantics of it.

A variation that may have semantic consequences is, for example, the repre-
sentation of several simple-typed attributes or references to model elements
as an unordered collection or as an ordered list. If one modelling language
has an unordered collection and the other has not, consistency preservation
has to take the consequences of a change in order into account. In models of
the first language, different orders of such a collection make no difference or
cannot even be represented. But the order of a corresponding collection in
a model of the second language may be interpreted by automated processes
or developers. Therefore, consistency preservation has to ensure that the
correct order in the model of the second language is used when changes
are applied to models of the first language.

Another possibility for variation that may have semantic consequences for
consistency preservation is whether a property of a modelled original is
represented using a single model element respectively attribute or several
elements and attributes. Such variations can be challenging during consis-
tency preservation in terms of atomicity. If a single element or attribute in a
model of one language is kept consistent with several elements or attributes
in a model of another language, then changes to some but not all elements
of the second model can be difficult to propagate to the single element of
the first model.

Purely syntactic variations in modelling languages present no challenges to
consistency preservation semantics but have to be addressed nevertheless.
Type-safe enumerations in one modelling language, for example, may have
to be kept consistent with attributes of model elements of another language
that are not statically checked. In such a case, attribute values that cannot
be translated to one of the fixed enumeration literals have to be avoided in

72

3.4. Specification Challenges

models of the second language. Other syntactic variations can, for example,
occur if the navigability or opposition of references to other model elements
is handled differently. Limitations of navigability for references in one
modelling language can be technically overcome if consistency preservation
with models of another modelling language cannot be achieved without it. If
model elements of one language always have a reference to another element
that references it but the corresponding elements of another language
only exhibit one of these opposite references or both but without such
a constraint, then consistency preservation has to ensure that references
changes in models of the second language can be correctly propagate to
both references of the first modelling language.

3.4. Specification Challenges

This section presents the third class of challenges to consistency after
conceptual and modelling language challenges. It contains challenges that
may occur when consistency for two fixed languages is specified so that
consistency can later be checked or enforced according to this specification.
These challenges are still independent of the mechanisms that are used to
check or enforce consistency.

3.4.1. Unspecifiable Consistency

Not all consistency relations that should exist between models of different
languages can be specified in such a way that it can be unambiguously
decided for any given input models whether they are consistent or how
consistency can be achieved. For such ambiguous cases, an imprecise
consistency description can be provided in addition to a specification for
the unambiguous cases. Such a description can be used as a guideline even
if it is too ambiguous to serve as a specification for these cases. Whether
and how such cases occur can depend on the involved modelling languages
and on the language for specifying consistency.

Two types of unspecifiable consistency relations can be distinguished
based on the expressivity of the specification language. First, consistency
relations that cannot be expressed unambiguously with any specification

73

3. Challenges to Consistency Preservation

language because the ambiguity is induced by the relation itself. Second,
consistency relations that cannot be expressed unambiguously with a given
specification language but with another one. Such cases only have an
influence on consistency, if the specification language cannot be extended
or replaced. In practice both types of unspecifiable consistency relations
are likely to be ignored: If it cannot be specified whether models have this
relation or how they should obtain it, then it is hard to imagine that parts
of the developed system or of development process are influenced by it.

3.4.2. Complex Consistency Relations

A major challenge for specifying consistency is the complexity of the con-
sistency relations that shall be checked or enforced. These relations do
not always directly map identical information, but may involve complex
conditional computations and conversions. On the one hand, such complex
consistency relations have to be described in a way that is precise enough to
serve as specification for all possible cases. On the other hand, specifications
only serve their purpose, if they are easy to write and understand and do not
describe more than is needed. Furthermore, the efforts for both specifying
and checking or enforcing consistency should be kept minimal. For simple
consistency relations, there are not many different ways of specifying and
checking or enforcing them. Complex relations, however, can be specified
in various ways and the conflicting goals discussed above make it difficult
to decide on it.

Let us consider, for example, a consistency relation for two model elements
of two modelling languages that represent information in different formats.
There are several possibilities for specifying the conversion of the repre-
sentation formats and the conditions for the overall relation and specific
conversion steps. Different cases, for example, can be integrated into a
single conversion description with conditional computations, subroutines
and intermediate results. This could reduce the specification effort and
later maintenance because no statements have to be unnecessarily repeated.
Checking and enforcing such a specification could, however, be more com-
plicated regardless of the degree of automation. An alternative would be to
specify independent and complete conversions for each case. This could

74

3.4. Specification Challenges

make it easier to understand and execute the specification, but it could
increase the efforts for maintaining the consistency specification.

3.4.3. Consistency for a Flexible Number of Elements

Specifying consistency for a set of elements with a size that may vary from
case to case is challenging. One reason is, for example, that the number
of model elements and the number of references between them may vary
independently. Therefore, such consistency specifications have to define
precisely which model parts that are involved in a consistency relation may
have a flexible size and which parts have to be of a fixed size. In this context,
references between flexible and fixed parts are especially challenging, for
example, because cardinality constraints of a reference from a fixed element
to flexible elements may indirectly restrict the possible number of flexible
elements.

Flexible numbers of elements are also addressed by different graph trans-
formation approaches. For example, using a collection operator for Triple
Graph Grammars (TGGs) [GKM11, pp.123f]. This operator matches an
arbitrary number of subgraphs that fulfill optionally specified cardinality
constraints on the left side of a graph rule. The changes that are specified by
the right side of the rule are applied to every subgraph that was matched by
the collection operator based on shared identifiers. Another approach for
dealing with flexible numbers of elements is multi-amalgamation [Leb+15,
pp-92ff]. So-called multi-rules are applied to a kernel rule in a way that
depends on the number of matches for the multi-rules. This makes it possi-
ble to define multi-amalgamated rules for which the number of involved
elements is determined at transformation time.

3.4.4. Consistency for Specific Instances

Consistency relations are usually specified on the language or type level, but
there may be cases in which specific element instances should be considered.
A specification for a consistency relation on the language level defined
conditions for consistency in terms of properties that are defined for model
elements of a certain type. This means, such relations hold whenever the

75

3. Challenges to Consistency Preservation

conditions are satisfied by those elements and different elements with the
same values for the relevant properties are treated identically. There are,
however, two cases in which such pre-defined consistency relations based
on element types may not be sufficient.

In the first case, the properties defined for elements of a certain type do not
allow a precise identification of the right element instances for consistency
preservation. More specifically, these properties defined in one language are
not sufficient to always select those element instances of the first language
that shall correspond to element instances of another language, which
may have more information. This means more information is necessary to
automatically distinguishing these element instances of the first language.
If this information cannot be retrieved from other models or be derived and
added to the models, a possible solution is to ask the user to perform the
distinction.

In the second case, it cannot be fixed upfront which property values shall
be kept consistent in which way. This means the problem in this case is
not a limited amount of information available in the models, but a limited
amount of information available in the consistency specification. Therefore,
the only way to address this lack of specification information is to let the
user chose specific element instances at runtime. It is not guaranteed that
the information available at runtime while be sufficient to choose the right
instances, but it is strictly more information than at compile time.

3.4.5. Abstract Consistency Specifications

Consistency specifications should abstract away from model details that
are not needed to check or possibly enforce consistency (see OCSLC 3 in
section 1.2). If specifications contain such unnecessary details, they may be
less concise and more difficult to understand, execute, and maintain than
needed. Therefore, specifications should only mention those attributes of
model elements for which different values may have a different impact on
consistency preservation. Similarly, only references to elements that are
relevant for a consistency relation should be mentioned. This is, however,
especially challenging because there can be transitive relations that involve
intermediate elements that are not relevant. In such a case, the fact that
there is a sequence of references and intermediate elements that links

76

3.4. Specification Challenges

two elements is relevant. All properties of the intermediate elements are,
however, irrelevant, except for the references forming the transitive relation.
This demonstrates that partial abstractions may be helpful for consistency
specifications, but can be difficult to define.

Abstract consistency specifications may choose different ways to deal with
the information that is abstracted away. One possibility is to specify ab-
stract patterns of relevant elements and implicitly match them to complete
models. With this approach, everything that is not specified in a pattern
can be present in different ways or not. Therefore, we call this pattern-
based approach open-world abstraction. An example is the star operator for
TGGs [Lin+07, pp.3f], which is analog to the star operator in Kleene alge-
bra [Koz94, pp.369f]. This operator finds an arbitrary number of matches
of a subpattern between two other subpatterns that are isomorph to each
other.

Another possibility to achieve abstract consistency specifications is to de-
fine abstract queries and explicitly match requested elements. In this case,
everything that is not specified in a query cannot be present and we call
this closed-world abstraction. The advantage of this approach, is that unin-
tentional implicit matchings can be excluded and that the matching process
can be influenced. A prominent example for this is the query-based model
transformation framework Viatra [Ber+11], which also uses patterns. It
also demonstrates that both abstraction possibilities, patterns and queries,
can be combined. Implicit abstraction and explicit matching instructions as
well as no or full control over the matching process are just the ends of a
continuous range of abstraction possibilities.

3.4.6. Redundancy in Specifications

The amount of redundant information in consistency specifications—and
in any other development artifact—should be minimized in order to reduce
the efforts necessary for evolving and maintaining them. This is especially
challenging because two characteristics of consistency preservation be-
tween models of two languages are inherently prone to redundancies: the
commonalities of checking or enforcing consistency and the symmetry of
preserving consistency after changes in forward or backward direction.

77

3. Challenges to Consistency Preservation

Every consistency enforcement specification can also be used to check
consistency. Consistency check specifications, however, usually do not
define what has to be changed, if a check is not successful (see also page
57). This one-way dependency means that enforcement could theoreti-
cally be specified by referring to a check specification and providing only
redundancy-free enforcement details that are not necessary for checks. In
practice, this is not always the case. Those parts of a consistency specifi-
cation that describe enforcements, can repeat information that is already
given in parts that define consistency checks. A specification may, for
example, define how a value for a property that is declared for an abstract
metaclass should be checked and may repeat this value in another part
that specifies how consistency is enforced for concrete subclasses of this
metaclass. This redundancy could be avoided if the enforcement specifi-
cation only added details for the subclasses and referred to the check for
the value of the superclass as it also implies that this value should be set
during enforcement.

The symmetry of enforcing consistency in forward or backward direction
is the second consistency characteristic that is prone to redundancy. In
this context, we use the term forward direction for enforcement change
operations that are performed on the right side in reaction to user change
operations on the left side. Likewise, the term backward direction is used
for changes on the left side in reaction to changes on the right side. These
directions are never completely isolated. More specifically, there is always
a reaction to a previous reaction to an initial change that has something to
do with the initial change. Therefore, redundancy cannot be avoided if both
directions are specified separately. Even if both directions are specified at
once, it is challenging to find redundancy-free definitions for all possible
consistency relations.

3.4.7. Reuse in Specifications

The reuse of complete specifications and parts of it is a challenge that is
closely related to redundancy in specifications and also the Open Consis-
tency Specification Language Challenge 1 (see section 1.2). Redundant
parts in consistency specifications that are hard or impossible to avoid are
often due to the consistency relations itself and not due to specification

78

3.4. Specification Challenges

deficits. In these cases, a major challenge is to find ways to explicitly reuse
parts of specifications instead of repeating them. Such reuse mechanisms
are mainly constrained by two factors: the support of variability and the
relation between initial efforts for introducing reusability and eliminated
efforts for maintaining redundant parts.

If specification parts that are not identical but structurally similar should be
expressed together for reuse, then variations between these parts have to
be expressible using a reuse mechanism. For this, points of variability have
to be defined in the reused specification parts and bindings for these points
have to be specified where they are reused. These definitions and usages of
variation possibilities should be described in a way that renders reusable
specifications more beneficial than alternatives with redundant parts. If
consistency specifications with reusable instead of redundant parts are not
easier to use or maintain, the reuse mechanisms should be put into question.
Even more, the benefits for the maintenance of reusable specifications
should not be eliminated by the initial effort to write a specification with
reusable parts.

3.4.8. Scope of Consistency Relations

Implicit and explicit restrictions on the sets of used modelling language
elements and property values are challenges for specifying consistency.
Such restrictions limit the scope of consistency relations, which is not
always bad but often just necessary. If the scope of a consistency relation is,
however, unintentionally to narrow or to wide, this may impede the reuse
for several development projects or for specifications of consistency with
other modelling languages.

Consistency specifications can implicitly inherit the limited scope defined
by the development context and may implicitly further restrict it. In many
software development projects only some of the elements types and rela-
tions that are defined by a modelling language are used in model instances.
Large and standardized modelling languages can, for example, be a reason
for this. If consistency between two modelling languages is specified for
such a project, it may be implicitly assumed that only certain element types
and relations are used. The specification may implicitly inherit the limited
scope and may impose further restrictions, for example, by not mentioning

79

3. Challenges to Consistency Preservation

irrelevant subclasses etc. Such a specification should not be used outside
its scope for models with instances of excluded element types to avoid
unexpected results.

It is difficult to build mechanisms for defining explicit scope limitations that
do not only restrict relations but that can also be enforced to move elements
into the scope. Individual consistency relations often need to be restricted
to certain parts of modelling languages or to elements fulfilling special
conditions. There are many different ways to directly or indirectly express
such restrictions, which have an influence on how easy the resulting scope
limitation can be determined. For consistency enforcement specifications
it is, however, especially challenging to provide facilities for specifying
limitations that can also be enforced. A consistency relation may, for
example, take the form that only those elements that do not have a certain
value correspond to other elements with a certain value. The value of one
of the later elements can be changed so that it should no longer correspond
to one of the former elements. It is clear that these two elements are no
longer in the scope, but it is unclear how the value of the former element
should be changed. The scope limitation that this element should not have
a certain value is not sufficiently described to be enforced.

3.4.9. Referring to Changes and States

If a specification is used to check or enforce consistency after a change, it
can be beneficial to have the possibility to refer to the change or to the state
of models before or after the change. In this context it can be challenging
to decide which information about a change should be accessible in which
way and which model information shall be provided for which state. These
decisions can influence the way specifications are written and how they
are checked and enforced.

The possibility to refer to changes in consistency specifications is not
always needed, but if it is provided for change-driven specifications, then
its representation and the access to it influences specifications. Change
representations can, for example, be designed in a way that emphasizes
the uniformity of different change types by providing similar types of
information in the same way. Explicitly changing a value to an identity
element, such as the empty string, can be represented in the same way like

80

3.4. Specification Challenges

the removal of a value in order to ease a uniform treatment of these two
cases. But it can also be a goal to allow as much differentiation between
different change types and contexts as possible by distinguishing even very
similar changes. The explicit removal of a model element together with its
only incoming reference, for example, can be represented in a different way
than the removal of a last reference to such an element, if both changes
require different consistency checks or enforcements although they can
have the same initial effect. The representation of model changes is also
important for composite changes that can be presented as a composition of
atomic changes.

If a specification is used to check or enforce consistency after a change,
it is possible to provide access to model information from the old state
before the change happened and from the new state after it happened. As
long as complete information about a change and about one of the two
states is provided, it is theoretically possible to derive all information about
the other state. But in practice information about one state may be more
appropriate for specifying consistency than the other. If a new state can
be reached from several old states using the same change—or the other
way round—, then consistency specifications can be more complex or less
precise than needed if the wrong state is provided.

Together, a change and one or both model states can be used for change-
driven consistency specifications and complement each other. Information
that is needed for specifying consistency but not available from a change
representation has to be obtained from a model state and the other way
round. If the old state is provided together with a description of a change
that can be executed on this old state, this is usually called a forward
change description. In analogy, the combination of the new state and a
change description that can be executed on it is usually called a backward
change description. If both states are provided together with a change
description that can be executed on both states, we call this a bothward
change description.

81

3. Challenges to Consistency Preservation

3.5. Specification Language Challenges

In this section, we do not present challenges at another level of abstraction.
Instead, we introduce four special challenges of consistency specification
languages. This means, that these challenges can occur when consistency is
specified—like the challenges of the previous section—but instead of being
readdressed for every individual specification, they should be addressed by
languages for consistency specifications. Furthermore, these challenges are
not yet sufficiently addressed in current specification languages. Therefore,
they are central to this thesis and we name them Open Consistency Specifi-
cation Language Challenges (OCSLCs). These challenges are the basis for
the research subquestions of research question 2, which we have presented
in subsection 1.3.2. The goal of each of these subquestions is to explore
how the following open challenges can be addresses by new specification
languages, which we will present in chapter 6-8.

The four OCSLCs that we identified are:

1. Specificity Limits Expressive Power: Current consistency
specificaton languages hardly combine specific support for
consistency preservation with full expressive power. Instead,
developers often have to decide whether the cases supported by
dedicated languages for consistency specifications are sufficient for
their needs or whether they have to use a general-purpose language
to express their needs with unlimited expressive power. That is,
more specific support for important or frequently occurring cases is
often traded against limitations in terms of expressive power. As a
result, developers are either restricted to certain use cases or forced
to also apply general-purpose languages to cases in which full
expressive power would not be needed and specific languages could
be applied.

2. Either Solution- or Problem-Oriented Paradigms: Many consistency
relations can be preserved based on specifications that only define
problems of consistency without specifying how these problems can
be solved or have to be solved. To preserve other consistency
relations, it is often necessary to specify exactly how
inconsistencies are to be resolved. Current languages often support
programming paradigms that either allow solution-oriented or

82

3.5. Specification Language Challenges

problem-oriented consistency specifications but not both. Therefore,
developers are forced to address all consistency requirements and
problems for all modelling parts and relations from one perspective.

. Missing Abstractions and Adaptations: To preserve consistency
between models of two modelling languages, not all concerns and
details that are represented in the models are relevant. Different
variants of modelling related concepts, for example, can often be
treated uniformly when consistency to less detailed models is
specified. Moreover, it is not always necessary to consider all
possibilities of how and where consistency can be preserved.
Current languages, however, only provide insufficient means to
abstract away from such modelling and preservation details when
consistency is specified. If abstraction is achieved, the level of
abstraction can often not be adapted to specify consistency for
different model elements and relations using different abstractions.
As a result, irrelevant details often have to be considered so that it
becomes unnecessarily complex for domain experts or developers to
specify consistency.

. Detached Preservation Behaviour: Many consistency specification
languages make it difficult for developers to understand how
consistency is going to be preserved according to their specification.
It is often difficult to foresee how different specification possibilities
affect the resulting consistency preservation behaviour in different
situations. Interpretative realizations of consistency specifications
languages, for example, burden developers with complex engines in
which the behavior of many routines can hardly be related to a
particular part of a consistency specification. Similarly, many
compilers generate a lot of code for which developers may find it
difficult to trace the instructions back to consistency specification
parts. This makes it difficult to assess upfront whether a
specification will preserve consistency as required.

83

3. Challenges to Consistency Preservation

3.6. Enforcement Challenges

In this section, we present challenges to change-driven consistency preser-
vation that occur if a consistency specification is enforced. The presented
challenges are concerned with general properties, such as the time, space,
and automation of consistency enforcement. They are independent of the
implementation for a given consistency enforcement technique.

3.6.1. Enforcement Time and Granularity

The first subclass of consistency enforcement challenges is concerned with
the point of time at which consistency enforcement takes place and the
distance between these points of time, which is also called granularity.

3.6.1.1. When to Enforce

The identification and selection of points of time at which consistency is
enforced is fundamental for change-driven consistency enforcement. First,
we have to identify times at which it is possible to enforce a consistency
specification, e.g. when all enforcement pre-conditions are fulfilled. Sec-
ond, if different points of times were identified as candidates for enforcing
consistency after a change, we have to select one. These two steps for
identifying and selecting enforcement times have equivalents in terms of
change grouping: First, we have to identify groups of changes with which
consistency for a given change can be enforced. These groups can also
be considered change compositions. Second, if different groupings are
possible, we have to select one to decide for which changes consistency
shall be enforced together. Both steps are closely related to the conceptual
challenge of deciding how much inconsistency shall be tolerated at the
time of enforcement, which we discussed in subsection 3.2.2. Furthermore,
both steps do not only depend on the modelling language of the changed
elements but also on the language of the models to which consistency is
enforced. Consistency specifications for different target languages can lead
to different decisions on enforcement times and change groups.

84

3.6. Enforcement Challenges

3.6.1.2. What Information is Needed to Enforce

To enforce consistency after a change, it has to be determined which infor-
mation is necessary for the enforcement. For example, information about
decisions on enforcement times and change groups has to be provided if
their results influence the enforcement because different times or groups
would lead to different enforcements. Like these decisions on enforcement
times and groups, the general challenge of determining the information
necessary for enforcement also depends on the target language. Therefore,
different information may be provided for enforcing consistency to different
target modelling languages.

An important group of information, which can be necessary for change-
driven consistency enforcement is all information that describes the context
of a change and that is not present in the changed models. Such additional
context information may, for example, convey who performed a change
or how it was performed, if this is relevant for consistency enforcement.
Consistency after a change by a developer that was trained in the subject of
a special model part, for example, could be enforced differently than after a
change by a developer that was not trained accordingly. Furthermore, con-
sistency could be enforced differently after two different change operations
leading to the same model state, if one operation copies a certain value
from another model part and the other sets the same value without such a
relation. If such context information is not obtained upfront and provided
as an input to consistency enforcement, it may be difficult to restore it after
consistency enforcement started.

A possible solution for the challenge of deciding which change grouping
or composition information should be provided is a greedy two-phased
approach: When changes occur, all available information about the compo-
sition of changes is preserved without any analysis of its necessity. During
enforcement of consistency after these changes to models of each target
language, this information is ignored or removed per default as if no com-
position information would be available. Only for those languages and
enforcement cases for which such information is required, the available
information is used to correctly enforce consistency for these change com-
positions.

85

3. Challenges to Consistency Preservation

3.6.1.3. When and How to Undo Enforcement

If consistency enforcement operations can fail, then mechanisms for de-
tecting such failures and undoing the enforcement change are necessary.
A consistency specification may, for example, define post-conditions that
have to hold when consistency was enforced after a user change operation.
If they are violated, the specification may require that only the enforcement
change operation or also the user change operation are undone in order to
reach a consistent state.

Undoing enforcements is not necessary if a consistency specification makes
it possible to determine for each user change whether consistency can
be successfully enforced or not. For this, the specification may directly
specify conditions for changes that can be enforced, which only have to
be evaluated. If such conditions are not given, it is still possible to analyze
upfront if the result of an enforcement change operation and the fulfillment
of post-conditions can be determined. In cases where this analysis is not
possible, it may still be possible to simulate enforcement, e.g. on model
copies, in order to avoid undoing enforcements.

Enforcements can be undone by executing reverse operations for each
enforcement change operation or by restoring an old version of the model
state. Reverse operations can be performed based on the user change
operations and the enforcement change operations. They can inspect both
changes to indirectly obtain all old values. In this way, the old model state
can be reached again but no additional bookkeeping for this old model state
is necessary. Such bookkeeping is necessary if old versions should directly
be restored. The advantage is, however, that the complexity of enforcement
change operations and user change operations has no influence on version
restoration. Restoring and old model state and discarding the state after a
failed enforcement can always be performed the same way regardless of
what happened. Both undo mechanisms of change reversion and version
restoration have to guarantee that enforcement that did not happen cannot
be distinguished from an enforcement that was undone.

If different ways of grouping user change operations influence consistency
enforcement as discussed above, then enforcement operations for such
change groups may have to be undone in a transactional manner. A con-
sistency specification may, for example, require that consistency after two

86

3.6. Enforcement Challenges

subsequent changes is either successfully enforced for both changes or
for none of them. If the first enforcement is successful but the second en-
forcement fails, both enforcements have to be undone. A change reversion
mechanism has to perform reverse operations for both enforcements and a
version restoration mechanism has to go back to the version before both
enforcements. This is, however, only a simple example for transactional
undoing of enforcements, which may be much more challenging. It may,
for example, be necessary that user change operations are also undone or
that users are requested to repeatedly disambiguate their changes with a
limited set of possibilities in order to find a way to successfully enforce
consistency.

3.6.2. Enforcement Space and Boundaries

The second subclass of consistency enforcement challenges is related to the
boundaries of the model space in which enforcement takes place.

3.6.2.1. Enforce on One or Both Sides

An important question of enforcement is whether it is sufficient to enforce
consistency only on the side that was not changed with a user change
operation. Such a strict boundary between the side at which a change orig-
inated and the side at which consistency is enforced is preferable because
it avoids conflicts between user operations and enforcement operations.
The question whether such a boundary is possible is closely related to the
totality of consistency, which we discussed in subsection 3.2.4. It was also
discussed in a survey paper on bidirectional transformations [Ste08, p.413],
but it is relevant for all types of consistency transformations.

If a consistency relation is not left- or not right-total, then there can be
changes to a consistent state that cannot be made consistent by only modi-
fying one side. Either such changes have to be undone as discussed before,
or consistency enforcement operations that modify both sides have to be
performed. If enforcement operations can modify both sides, then man-
ually performed changes can conflict with the effects of an enforcement
operation. Such conflicts of manual changes and automated consistency

87

3. Challenges to Consistency Preservation

enforcement can be avoided if enforcement operations modify only the
other side. A simple approach, for example, is to enforce consistency before
changes are performed on the other side. That is, for a sequence of changes
that individually occur on either of both sides, consistency is enforced after
every maximal subsequence of changes that modified only one side.

3.6.2.2. Where to Enforce

A consistency specification may not always directly define which model
elements have to modified, created, or deleted in order to enforce consis-
tency after a change. In such cases, these locations at which consistency
enforcement has to take place have to be determined because enforcement
change operations can be performed. This question of identifying enforce-
ment locations can be functionally relevant if different locations would
yield different enforcement results. If consistency has to be enforced at
several locations, then even the order in which enforcement operations
are performed at these locations may make a difference. Determining en-
forcement locations can also be relevant if non-functional properties of the
consistency preservation, such as performance, are important. Consider,
for example, a consistency specification for which references to other el-
ements have to be checked on every model element of a certain type to
determine enforcement locations regardless of the user change. If these
possible enforcement locations cannot be restricted, then the worst-case
runtime of consistency enforcement may be quadratic in the number of
model elements.

The locations at which consistency has to be enforced may be indirectly
given by the context of a change, e.g. by the correspondence of a changed
model element. Such indirect specifications of enforcement locations may
result in consistency specifications that are less verbose and complex than
specifications that explicitly define enforcement locations. This requires
mechanism that determine locations for consistency enforcement, e.g. by
analyzing correspondences of elements at which consistency conditions
were violated.

88

3.6. Enforcement Challenges

3.6.3. Automated Enforcement

The last subclass of consistency enforcement challenges deals with pos-
sibilities and degrees of automated consistency enforcement. We already
discussed the conceptual challenge that models do not always contain all
information that is necessary to decide whether they are consistent in sub-
section 3.2.7. The automation challenges on the enforcement level have a
similar cause: How much automation can be performed and how it can be
performed depends on the amount and unambiguousness of information
contained in the models and in the consistency specification.

3.6.3.1. How Much Automation

The degree of consistency enforcement automation that is possible increases
if the ambiguity of the information in models and consistency specifications
decreases. We introduce six degrees of automation from no automation,
over automated checking of consistency, automated change impact analysis,
automated enforcement suggestions, and semi-automated repair with user
interaction, to fully automated consistency repair. The borders between
these degrees are only precise for a consistency approach in general but
not for parts of it or for individual executions on specific models. If a user
performs, for example, a selection from a list of enforcement suggestions
after a change but not every suggestion can be executed automatically, this
interaction can already be seen as semi-automated repair. Furthermore, an
enforcement process that is in general semi-automated can be performed
without a single user interaction for some input models and changes. We
will now briefly present the six automation degrees, which are also illus-
trated in Figure 3.2, and we will discuss three further automation challenges
in the next sections.

In the worst case, no automation can be achieved at all because the informa-
tion in models and consistency specifications is not sufficient for automated
checking of consistency so that. This is the lowest degree of consistency
enforcement automation. The next possibility is that the information is
sufficient for automated checking, but not for automatically determining
which model parts could need to be modified to enforce consistency after
an inevitable change that breaks consistency. Such an automated change

89

3. Challenges to Consistency Preservation

little many
1. no automation ®
e
2. automated checking bfo
~Q
3. automated change impact analysis g
.5 4. automated enforcement suggestions
=]
<
g 5. semi-automated interactive repair
3
8 6. fully-automated repair
much few

Figure 3.2.: Increasing degrees of achievable consistency enforcement automation
with their relation to a decreasing number of ambiguities in the consistency specifi-
cation

impact analysis that only computes which elements could need to be mod-
ified but not how this could be done is the next degree of consistency
enforcement automation. After this, automated enforcement suggestions
that describe which operations can be performed to enforce consistency
but cannot be automatically executed are the next degree. Theoretically,
a way to automatically check consistency can always be used to analyse
the change impact or to obtain enforcement suggestions with brute force.
Practically, we suggest to define upper bounds for the time neeed to perform
a change impact analysis and for the time needed to compute enforcement
suggestions as well as for the number of provided suggestions. This would
ensure that these three degrees do not always coincide. The remaining
two degrees semi-automated interactive repair and fully automated repair
are the only two degrees of consistency enforcement automation that also
automate the execution of enforcement operations. On the second highest
degree of semi-automation all operations for enforcing consistency are
performed automatically but the user can still be prompted interactively to
decide which operations are performed or to provide values for parameters
of the automated execution. This is not necessary for the highest degree: a
fully automated consistency enforcement approach can only be influenced
with a previously defined configuration.

90

3.6. Enforcement Challenges

These degrees of consistency enforcement automation can be used to clas-
sify consistency problems and solutions. If a certain degree of automation
is theoretically achievable for a given set of modelling languages to en-
force consistency according to a given specification, there can, however,
be reasons why one may decide to realize a lower degree of automation
in practice. The effort for reaching a certain degree of automation may,
for example, not be in an appropriate or desired relation to the benefits
resulting from it.

3.6.3.2. How to Obtain Enforcement Options

If the models and the consistency specification make it possible to auto-
matically check consistency but do not determine how it can be enforced,
it can be challenging to compute enforcement options. One possibility to
use an automated consistency check to enforce consistency is to perform
arbitrary modifications until a model state that passes the consistency check
is found.

To improve the performance of such a brute-force approach one can try
to direct the search for consistent models. One can control where mod-
ifications are performed e.g. by starting at elements that were changed
when consistency broke. Furthermore, one can control which modifications
are performed e.g. by inspecting which properties are analyzed during the
automated consistency check.

Regardless of performance it can be challenging to find models that are not
only consistent according to a given specification but also satisfy further
requirements that are not encoded in the specification. Such requirements
can, for example, state that certain modifications are more desired than
others e.g. to prefer additions over deletions. Therefore, the applicability
of an approach that enforces consistency by finding consistent models
strongly depends on the restrictiveness of the modelling languages and of
the consistency specification. A decreasing amount of freedom increases
the chances and speed for finding not only any consistent models but the
right ones.

In the literature, three approaches for deriving consistent models from
constraints and relational transformations using answer set programming

91

3. Challenges to Consistency Preservation

[Era+12], satisfiability solving [MC13; MGC13; CGR15], or abduction
[HLRO09; Het10] are described. With these approaches consistent mod-
els are found by formulating search problems, checking the satisfiability of
relations, or by inferring modifications for which the given transformation
rules would induce the observed change.

If several possible enforcement options are computed, one either has to
ask the user to manually choose, as discussed in the next section, or one
has to choose automatically, as discussed in the last automation challenge
section.

3.6.3.3. When and How to Interact with the User

A challenge that is closely related to the previous automation challenge is
whether and how users can be involved in order to provide information that
is required to enforce consistency. If the information in involved models and
the consistency specification is not sufficient to determine how consistency
should be enforced, then the user can be asked for this information.

The missing information that leads to a user interaction can have different
reasons. Either the consistency specification deliberately allows different
ways to enforce consistency, or the specification is faulty. Often, there are
several valid ways to enforce consistency because a modelling language
forces a developer to choose from several ways to represent information
even if the choice has no influence on inter-language consistency. Even
in such cases, it can be beneficial to let the user decide in order to avoid
that models contain many default values or elements for which it is un-
clear whether they were created on purpose or not. If the choice of an
enforcement option has an influence on consistency, then user interaction
can hardly be avoided.

There are different possibilities for interactive user influence on consistency
enforcement. We briefly discuss different points of time and types of inter-
action but avoid discussing, for example, interface and design options.

The information required for consistency enforcement can be provided by
the user in advance, when needed, or afterwards. The first case, in which
the information is provided in advance, can be seen as an interactive re-
configuration of consistency enforcement. In the second case, consistency

92

3.6. Enforcement Challenges

enforcement information is interactively provided by a user. Such an in-
teraction has to happen after a change made it necessary but before a next
change happens. This case can be seen as the highest level of interaction
but it may lead to requests for consistency enforcement information that
could be avoided if the interaction would be postponed. The last case of
postponed interaction can avoid such requests and makes it possible to del-
egate information requests to other users. This can be beneficial if different
users play different roles during development, but it also bears the risk of
wasting efforts if complex sequences of changes prove to be unnecessary
after they already have been performed.

Interactive request for information that is needed to enforce consistency
can ask users to choose an enforcement option or to provide values to
complete or influence enforcement. In the first type of interaction, a user is
asked to choose from a fixed set of different enforcement operation where
each specific operation in the set is always performed in the same way. In
the second type of interaction, a user can provide input values that either
only complete the result of a fixed enforcement operation or influence a
parameterized enforcement operation. Both, the set of options in the first
case and the input in the second case, can be realized in very different
ways so that it may be hard to see whether the enforcement is fixed or
not. Let us consider, for example, a request for change disambiguation
that is used to obtain a name for an element that was newly created in a
model of one language but has to be kept consistent with a list of names
in a model of another language. If the user simply enters a name it can be
unclear whether this will choose, complete, or influence an enforcement
option. The set of allowed names is usually fixed because the number of
allowed characters and possibilities for each character is usually fixed. But,
it is not obvious, whether the enforcement result—apart from the chosen
name—is the same for every possible choice, or if the enforcement will, for
example, create additional elements in the model of the other language
depending on the name. The first case with a result that only differs by the
chosen name can theoretically be realized as interaction of both types, but
in practice users will probably not be forced to choose a name longer than
a few characters from a complete list.

93

3. Challenges to Consistency Preservation

3.6.3.4. How to Choose from Enforcement Options

To decide how consistency should be enforced if the consistency specifi-
cation leaves several options, it is also possible to automatically choose
an enforcement option instead of interacting with the user. In this case, a
major challenge is to define and implement criteria according to which the
selection is performed. First, one needs to decide which properties of a con-
sistent result should have an influence on the selection process. Then, one
has to define metrics that analyze these properties so that different results
can be automatically compared. Last, one has to develop an algorithm that
determines which comparisons are performed and how an enforcement
option is chosen based on the metrics results.

Several approaches address this challenge by measuring the difference
before and after an enforcement operation has been performed and by
choosing the enforcement result representing the least change [Mee98].
It is also possible to attempt to measure the difference to concurrently
performed modifications as least surprise [Che+15]. Another possibility
for bidirectional consistency would be to measure an inverse propagation
distance to minimize round-tripping differences. For a change on one side
with several enforcement possibilities on the other side, one could perform
every enforcement option as if it was a manual update to the second side
and measure the distance between every possible enforcement result on
the first side and the state after the original update on that side.

3.7. Implementation Challenges

The last class of challenges to consistency contains challenges that arise
on the lowest level of abstraction when consistency enforcement is imple-
mented.

3.7.1. Consistency between Checks and Enforcements
Checks and enforcement of consistency are inter-dependent: First, consis-

tency checks have to fail, if and only if consistency enforcement is needed.
Second, all consistency checks have to pass after executing all necessary

94

3.7. Implementation Challenges

consistency enforcement operations. These two constraints for consistency
checks and enforcement either have to be guaranteed by the developer or
by the consistency preservation tool.

Whenever the tool obtains separate check and enforcement specifications
from the developer, these specifications have to fit together. The tool can
support the developer by verifying whether the specifications fit in order
to issue error messages, or it can even replace parts of the specifications
to make them fit. If the tool is capable of fixing some check and enforce
specifications that do not fit, it should be investigated, whether check and
enforcement can be derived from a single specification in some cases as
described in subsection 3.4.6.

If the tool performs consistency checks and enforcement based on a single
specification, the tool bears all responsibility to make them fit. It can be
designed in such a way that the two constraints for checks and enforcement
hold for all possible input specifications and models. If this is not the case,
it can perform dynamic checks to avoid illegal states, e.g. by evaluating
and asserting that all consistency checks pass after every successful en-
forcement. Both options for correctly realizing checks and enforcement
have advantages and disadvantages: Static guarantees for fitting checks and
enforcement can be difficult to achieve or proof or may impose restrictions
on how specifications can be described. Dynamic checks, however, can be
cheap to develop at design time but may turn out to be costly in terms of
execution at runtime.

3.7.2. Debugging Consistency Preservation

Several factors make it difficult to debug implementations of change-driven
consistency preservation mechanisms. The construction of change de-
scriptions, for example, may have to be debugged both for state-based and
operation-based preservation mechanisms. Furthermore, debugging the
enforcement itself can be difficult, e.g. when specifications are enforced
using interpreters or using generated code that calls platform routines.

Change-driven consistency preservation begins with the computation of
change-representation that serve as input and that may also have to be
debugged. For state-based approaches the comparison of old and new model

95

3. Challenges to Consistency Preservation

states and the computation of differences may have to be debugged. This
can be challenging, for example, because many combinations of new and old
properties of model elements are possible. If an operation-based approach
is used, then the monitoring of user change operations and construction of
appropriate operation descriptions may have to be debugged. The simu-
lation of user changes may, for example, present challenges to systematic
debugging of this process.

It can be difficult to debug code that enforces consistency according to a
specification if this code depends on a lot of other code that is not particular
for this specification. A declarative consistency specification, for example,
may be interpreted so that the code of an interpreter may also have to be
debugged to analyze the effects of the specification. In such cases, it may be
difficult to identify those code parts of such general interpreters that may
be relevant for a given consistency specification. If a specification is not
interpreted but used as input for a generator, it is sufficient to analyze the
code that was particularly generated for the specification. Such generated
consistency enforcement code can, however, call general platform routines
(see subsubsection 2.1.2.3). These calls in generated code may also be
difficult to debug if a lot of irrelevant code has to be inspected. Altogether,
the difficulty of debugging consistency preservation is an important part
of the Open Consistency Specification Language Challenge 4, which is
about the general difficulty to relate observed enforcement behavior to a
consistency specifications (see section 1.2).

3.7.3. Keeping Associated Information

If a change is performed in one model but consistency is automatically
enforced in other models that are not in sight of the user, then it is possible
that information in these models is removed but the user does not take note
of it. This is one of the reasons why facilities for rolling back changes and
change propagations as described in subsubsection 3.6.1.3 can be desired.
But, even in cases where an original change should not be undone and
the initial information removal is wanted, it can be desired to keep such
information in other models in the long run.

A reason for keeping such information can be the dependency between
information containers that are deleted during consistency enforcement and

96

3.7. Implementation Challenges

contained information that is not automatically re-created but indirectly
destroyed during consistency enforcement. If the initial deletion of such a
consistency container is implicitly undone by recreating the corresponding
elements, then the same or an equivalent container may be recreated during
enforcement but the information that was initially removed can still be
lost. To keep this information it either has to be restored automatically
or the user has to be asked whether this should be done. Regardless of
automated restoration decisions, it is already challenging to decide which
information shall be stored for restoration in which cases and how long. It
can be sufficient to only keep certain and not all removed information for
restoration and it can be adequate to keep it only for a certain time or until
a certain number of further changes were performed.

An example for an approach that strives to keep such information is the
synchronization technique for TGGs by Greenyer et al. [GPR11]. During
a synchronization step, they mark element for deletion instead of directly
deleting them in one rule application in order to reuse these elements in
the matching process of subsequent rule applications. Only those elements
that are marked for deletion and not reused are deleted at the end of the
synchronization step. By this, it can be avoided that elements are deleted
and re-created in reaction to a single change but not in reaction to several
changes.

3.7.4. Retrieving the Right Correspondence

If more than one correspondence may exist for a model element, mecha-
nisms for retrieving the correct correspondence are necessary for successful
consistency enforcement. We already discussed in subsection 3.2.7 how the
information that is required to identify correspondences can be obtained.
On the implementation level it can be challenging to design mechanisms
for retrieving correspondences based on this information.

Consistency specifications may treat several correspondences between
the same set of model elements differently if these correspondences were
established, for example, under different conditions or for separately speci-
fied consistency relations. In such cases, it is not sufficient to implement
correspondence retrieval mechanisms that only inspect the correspond-
ing elements. They may also have to take into account which conditions

97

3. Challenges to Consistency Preservation

were fulfilled when the correspondence was established and with respect
to which consistency relation this happened. For this, there has to be a
way to identify relations of a consistency specification and the conditions
or subcases they define. All factors that distinguish correspondences on
the specification level have to be considered when correspondences are
established or retrieved in the implementation.

3.7.5. Partial Evaluation and Execution

Change-driven consistency preservation can be implemented in an incre-
mental way to avoid unnecessary overhead in terms of runtime for the
implementation and debugging complexity for developers. Such incre-
mental implementations have to determine which parts of a consistency
specification are not relevant after a change. With such knowledge it is
possible to perform only partially evaluate consistency checks and only
partially execute enforcements.

Partial evaluation can be performed if it can be determined which conditions
of which consistency relations of a specification might be no longer or newly
fulfilled after a change. Depending on the language that is used for the
specifications of such conditions, it may be necessary to evaluate conditions
for which it cannot be decided upfront whether their fulfillment may change.
Consistency enforcement specifications can be partially enforced if it can
be determined which executions cannot change the current model state.
Again, the computational power of the used languages may restrict the
possibilities to statically analyze which enforcement operations do not need
to be executed.

3.8. Orthogonal Bidirectionality Challenges

In addition to the five classes of challenges to change-driven consistency,
we present challenges to bidirectionality, which are orthogonal to the levels
of abstractions represented by the five previous classes. We describe these
bidirectionality challenges for the conceptual, specification, and enforce-
ment level, but they also influence other levels such as the implementation.
They are relevant for all consistency preservation mechanisms that allow

98

3.8. Orthogonal Bidirectionality Challenges

changes to model elements at both sides and require both preservation
directions to work appropriately together.

3.8.1. Bidirectionality without Bijectivity

A major conceptual challenge to bidirectional consistency preservation is
to achieve bidirectionality without bijectivity. This is crucial because many
consistency relations cannot be specified in terms of bijections even if the
modelling languages can be adapted accordingly. The reason is that many
common mappings from values of an attribute of a model element on one
side to values of an attribute of a model element on the other side are not
left-unique (injective). Basic examples for such mappings are the string
concatenation or integer division, which are both fundamental parts of
many consistency relationships.

One possibility to achieve bidirectional consistency even for mappings that
are not bijective is to restrict the set of possible values or the changes that
can be applied. The goal of such techniques is to avoid exactly those cases
that are not left-unique. Consider, for example, a mapping that maps two
values [; and [, of an attribute of a model element on the left side to the
same value r of an attribute of a model element on the right side. If it is not
possible to set the value r on the right side, but I; and I, can both be used
on the left side, then such a mapping can still be treated in a bidirectional
way if the decision for either I; or I, is correctly preserved.

3.8.2. Single or Double Specification

Another central challenge to bidirectionality is concerned with the advan-
tages and disadvantages of a single specification for both directions (see
also [Ste08, p. 412]). Bidirectionality only requires that consistency can be
enforced in both directions. It is not necessary that the specification used
for this enforcement never distinguishes between these directions.

Single specifications can be written using languages with a special focus
on bidirectionality in order to statically guarantee that certain bidirectional
properties are fulfilled. This can make it easier to avoid incorrect specifi-
cations. It should, however, be ensured that simple specifications are not

99

3. Challenges to Consistency Preservation

more difficult to define than without such precautions. Nevertheless, the
fact that bidirectionality is guaranteed can be easier to detect with single
specifications. Therefore, the benefits of single specifications for bidirec-
tional consistency relations should take both the efforts for writing and for
using or maintaining specifications into account.

If both directions are specified separately no special constructs for bidirec-
tional specifications have to be used. In this way, it is possible to reuse
specification parts that already existed before and to use unidirectional
languages. The available possibilities for automatically checking and guar-
anteeing the coherence of both specifications are, however, more restricted
than with a single specification with special bidirectional constructs and
predefined coherence checks. Therefore, the responsibility for achieving
bidirectionality as desired remains with the person writing the double spec-
ification and not with the tool that implements a single specification in a
bidirectional way. Furthermore, the coherence of both directions has to
be preserved during the maintenance of evolving specifications for both
directions. To achieve this additional requirement for double specifications
there are, however, techniques for automatically verifying the coherence
of separate specifications for both directions. For example, additional con-
straints can be provided for two sets of graph transformation rules [Pos+14].
Despite these disadvantages, double specifications provide the flexibility to
deliberately deviate from bidirectionality requirements when necessary.

3.8.3. Well-Behaved Roundtrip Enforcement

Bidirectional enforcement should usually fulfill requirements for well-
behavedness in order to avoid problems during roundtrip consistency
preservation. Such requirements may, for example, demand symmetry
properties or avoid unexpected effects, such as oscillations. Their fulfill-
ment can guarantee that both sides may be treated and modified in the
same way.

Some classical requirements for so-called well-behaved bidirectional trans-
formations are the round-trip laws GETPuT, PUTGET, and PuTPUT [Fos+07]
(see also subsection 2.2.3). They can also be applied to bidirectional change-
driven consistency preservation: All three laws distinguish between a

100

3.9. Future Challenges

source side and a target side. Informally, they are concerned with consis-
tency enforcements on the target side that may retrieve views on values
from the source side (get), from which the change originated, and may
update source values according to target views (put). The GETPUT law
demands that every roundtrip that first retrieves a target view on a source
value and then updates the source value according to the unmodified target
value, has to end at the original source value. Similarly, the PUTGET law
demands that every roundtrip that first updates a source value according to
a target value and then retrieves a target view on the updated source value,
has to end at the original target value. The PUTPUT law is for so-called very
well-behavedness and demands that two updates of a source value according
to the same target value result in the same source value as a single update
with this target value.

Further requirements for bidirectional transformations that can be ap-
plied to bidirectional change-driven consistency preservation have been
described in the literature. We translate three such requirements to our con-
sistency preservation terminology based on the discussion by Xiong et al.
[Xio+11]: First, consistency enforcement operations are correct with respect
to a consistency relation if they establish this relation [Ste10]. Second, they
are hippocratic if they leave consistent models consistent [Ste10]. Finally,
they are undoable if undoing a change on one side also undoes the effects
of the enforcement operations on the other side [Dis08]. The first and the
second of these three requirements also apply to unidirectional consistency
enforcement.

3.9. Future Challenges

In this chapter’s last section, we present two exemplary challenges that
are out of scope of this thesis as they only occur if models cannot be kept
consistent when pairs of modelling languages are considered in isolation of
other pairs. These challenges should be addressed in future work as soon
as this restriction is dropped.

101

3. Challenges to Consistency Preservation

3.9.1. Propagating Propagations without Cycles

If more than two modelling languages are used, then it has to be ensured
that transitive effects do not lead to propagation cycles. Let us consider a
general case in which three models of three languages contain elements
such that elements of the first model can be in a consistency relation with
the second model, elements of the second model can be in a consistency
relation with elements of the third model, and elements of the third model
can be in a consistency relation with elements of the first model. In such
a case, a change to the first model has to be propagated to the second
model. Next, this change in the second model has to be propagated to the
third model. Finally, this change in the third model has to be propagated
back to the first model, where the change initially occurred. This need
to transitively propagate propagations is challenging in two ways: First,
enforcement change operations have to be monitored like user change
operations in order to propagate their effects, perhaps even using the same
mechanisms as for propagating effects of user change operations. Second,
it must not be the case that a transitive change in the first model leads
again to the same propagation to the second model or to any other type of
propagation cycle.

In some cases it may be sufficient to partition the set of element types of
modelling languages. More specifically, if the possible consistency relations
between models of three or more modelling languages can be specified in
such a way that they always concern different model elements, the problems
can be avoided. It is, however, questionable how often the consistency
relationships between modelling languages induce such a partition.

3.9.2. Order of Multi-Directional Propagations

If a modelling language has more than one consistency relationships with
other languages, the order in which changes to instances of this language
are propagated to instances of the other languages may make a difference.
Let us consider a general case in which three models of three languages con-
tain elements such that elements of the first model can be in a consistency
relation with both other models. In such a case, a change to the first model
has to be propagated to both other models, but is in unclear in which order

102

3.10. Conclusions

these propagations should happen. This order is important if elements of
both propagation targets can be in turn in a direct consistency relation
or in an indirect consistency relationship that involves models of the first
language or of other languages. Thus, the elements and their consistency
relations form a diamond. For such a diamond, the final enforcement result
may be different if the enforcements for one of these direct or indirect
relationships were already perfirned or will be performed later. Even if no
further consistency relations exist, the order may have an effect on consis-
tency if the user is demanded for input during consistency enforcement but
may behave differently for different orders.

3.10. Conclusions

In this chapter, we have presented a collection and classification of chal-
lenges that can occur when consistency has to be preserved between models
of different modelling languages. We have informally introduced general
terms of specification-driven consistency preservation to ease the discus-
sion. Based on this, we have presented a collection of challenges that
occur in this context as an answer to subquestion 1.1, which we presented
in section 1.3. We have classified these challenges according to the level
of abstraction at which they occur. These levels range from conceptual
challenges that are even independent of the used modelling languages to
implementation challenges. We have also presented a special class of open
challenges that should be addressed by consistency specification languages.
These Open Consistency Specification Language Challenges are our answer
to subquestion 1.2 and the reason why we have developed the consistency
preservation languages that we will present in Part III of this thesis. Many
challenges that we have presented are related to other challenges on the
same or on different levels of abstraction. For such challenges, we have
explained which parts should be addressed on which level in order to relieve
developers of consistency preservation tools. Many concerns of general
challenges to consistency enforcement, for example, should already be
addressed by preservation tools so that developers can choose from appro-
priate enforcement options when they specify consistency for particular
modelling languages. We have also presented challenges to bidirectional

103

3. Challenges to Consistency Preservation

consistency preservation as a separate class of challenges because the di-
rection in which consistency is preserved is not related to the level of
abstraction. Finally, we have discussed challenges that occur if consistency
has to preserved for more than two languages. We have called them future
challenges because this thesis only discusses consistency preservation for
models of two languages.

104

4. AFormallLanguage for
Change-Driven Model
Consistency

In this chapter, we present a formal language for change-driven consistency
preservation based on set theory and all the definitions that we have already
provided in section 2.3 of the chapter on foundations for this thesis. This
formal language is the foundation for the change-driven languages for con-
sistency preservation specifications, which we present in the subsequent
chapters. It was designed to enable precise explanations of the semantics
of the specification languages, which are implemented by the compilers
of these languages. The formal language is a prerequisite for these ex-
planations, which we will provide in section 6.7 and 7.7, and therefore
one of the ways in which we address the Open Consistency Specification
Language Challenge 4. With this language, we provide answers to our
research question 1 and to the subquestions 1.3 and 1.4, which we presented
in section 1.3.

In the foundations chapter of this thesis, we defined basic concepts for
models that fulfill the restrictions of a metamodel and additional conditions
called invariants (see section 2.3). These conditions are added to a single
metamodel in order to impose further restrictions on all models that con-
form to it. In this chapter, we will define how consistency can be specified
and enforced for models of two metamodels based on conditions that are
specified for such a pair of metamodels. All definitions together provide the
neccessary precision for our specification-driven notion of consistency for
models of different languages, which we introduced in subsection 3.1.2.

105

4. A Formal Language for Change-Driven Model Consistency

4.1. Consistency Rules and Specifications

In the first section of this chapter, we will define how consistency can be
specified and checked using rules, before we define how consistency can
be enforced in the second section.

4.1.1. Rules and Correspondences

Before we can define how consistency specifications can be checked for
two complete models, we have to define individual consistency rules and
correspondences for individual combinations of objects.

Definition 22 (Consistency Rule)

Let (C;) and (C,) be two metaclass tuples of two typed metamodels m;
and m,, let O,y and O(c,) denote the universes of (C;) and (C,), let
COND(¢,y C Oy, be a condition for (C;), and let cOND(c,)y € Oy, be
a condition for (C,).

A consistency rule for the metaclass tuples (C;) and (C,) is a set Re, c, C
P(COND(c,y X COND(c,y) Which contains pairs of co-occuring instances
tuples for (C;) respectively (C,) that fulfill the conditions of COND(c,)
respectively COND(c,).

To make this relationship between a rule and its condition sets explicit,
we briefly write Re, ¢, binds the conditions COND ¢,y and COND(c,).

A consistency rule for two metaclass tuples of two typed metamodels is a
possibly infinite set of pairs of instance tuples for these metaclass tuples.
Every instance tuple in such a pair has to fulfill an appropriate consistency
condition. More specifically, every pair consists of an instance tuple that
fulfills a condition for the left metaclass tuple and of an instance tuple
that fulfills a condition for the right metaclass tuple. Note that there is no
need to define explicit dependencies between consistency rules, because the
same effect can be achieved if a rule is directly restricted to pairs that are
also listed in the set of the other rule. To have a name for the relationship

106

4.1. Consistency Rules and Specifications

between the conditions and the consistency rule, we say that a consistency
rule binds the conditions.

A consistency rule specifies which instance tuples always have to occur
together with another instance tuple. It does, however, not specify that a
certain instance tuple has to be present in a model that is to be considered
consistent. Consider, for example, a consistency rule that expresses that
the name of an instance of a left metaclass always has to be identical to
the name of an instance of right metaclass if some further constraints are
satisfied. The set of the rule contains all pairs of objects that have the
same name and fullfill the further constraints. As a long as none of these
objects occurs, the consistency rule does not require anything, but if such
an object occurs in a model then the other object of the pair has to occur
in another model of the other metamodel. To keep track of those pairs
of consistency rules that occur in two specific models, we introduce the
concept of so-called correspondences that witness consistency. Our notion
of change-driven consistency, which we introduce gradually in this chapter,
is not absolute but always defined relative to these correspondences. We
will now define these correspondences, which are of central importance to
the conceptual approach and to the three programming languages of this
thesis.

Definition 23 (Correspondence for a Consistency Rule)

Let R, c, be a consistency rule that binds two conditions cOND(c,y and
COND¢,), Which are defined for two metaclass tuples (C;) and (C,) of
two typed metamodels m; and m,, and let O; and O, be two serializable
models of m; and m,..

A correspondence ¢ for the consistency rule Re,.c, in Oy and O, is a pair
of two instance tuples for (C;) and (C,) in O; and O, that adheres to the
consistency rule Re, ¢, , i.e. O,y X O,y € ¢ 3 Re, ¢,

Correspondences are central to many subsequent definitions but simple:
They only list objects that instantiate metaclasses of one metamodel and
fulfill the condition of a consistency rule for that metamodel. Additionaly,
they list objects that instantiate metaclasses of the other metamodel and

107

4. A Formal Language for Change-Driven Model Consistency

fulfill the other condition of the rule. As we already mentioned above, the
motivation for this definition of correspondence is that we want to define a
relative notion of consistency. This relative consistency can only be checked
and enforced with respect to correspondences, which are meant to witness
consistency.

Similar to the prerequisite of serializability for validity, we make serializ-
ability a prerequisite for consistency. This relieves us from dealing with
all cases in which serializability may be fulfilled or not. To achieve this,
we only define correspondences in serializable models, even if we do not
directly use this precondition in the next definition.

4.1.2. Prescriptive Consistency

Based on our notion of individual consistency rules and correspondences,
we will now define consistency according to a rule and consistency ac-
cording to specification, which bundles rules and their correspondences.
This notion of consistency and all subsequent definitions are intended for
approaches with prescriptive consistency specifications (see page 58 of
subsection 3.1.2).

Definition 24 (Consistency According to a Rule)

Let R, ¢, be a consistency rule that binds two conditions cOND ¢,y and
COND(c,), Which are defined for two metaclass tuples (c;) and (C,) of
two typed metamodels m; and m,, let O; and O, be two serializable
models of m; and m,, and let € C O(c;) N COND(c;y X O(c,) N COND(c,)
be a set of correspondence candidates for R in O; and O,.

The models O; and O, are consistent according to the consistency rule
Re,.c, with respect to € iff all elements in € are correspondences and
there is at least one correspondence for every instance tuple for which the
condition is valid:

Y (01) (S O(C,) N COND(c,): 3 (0,) S O(C,): ((01), (0,)) e
AY <Or> € O(C,) N COND(c,): 3 <01> € O(C,): (<01>, (Or>) el

108

4.1. Consistency Rules and Specifications

By Definition 24, two models are consistent according to a consistency
rule with respect to a set of correspondence candidates if every fulfillment
of the conditions of the rule is witnessed by at least one correspondence.
This witnessing is required for every combination of objects in one of the
two models that fulfills the condition for the instantiated metamodel of the
consistency rule: The set of correspondences has to contain at least one
pair with these condition fulfilling objects and objects of the other model.
It is not necessary to impose any constraints on these pairs in addition to
the requirement that they are correspondences because Definition 23 and
Definition 22 already require that they fulfill the other condition for the
other metamodel, i.e. ({0;), {0,)) € € C COND(c,) X COND(c,).

Our notion of consistency neither requires that only one correspondence
exists for a fulfillment of a condition, nor that every pair of fulfillments
for both conditions of a rule has to be witnessed. This means the role
of a correspondence is more than just a pointer to objects that fulfill the
conditions of a rule. Because of these flexible multiplicities, a set of corre-
spondences can also be seen as a selection of object combinations for which
consistency shall be documented. The goal of selecting correspondences
from all possible fulfillment combinations is to have a possibility to specify
where consistency has to be preserved after changes even if these changes
may remove objects. Therefore, it is possible to meet the requirements of
our definition of consistency with a subset of all possible correspondences,
i.e. O,y N COND(,y X O,y N COND(,) does not need to be a subset of
€. The reason is that it is not necessary that every left instance tuple for
which the left condition is valid has to correspond to every right instance
tuple for which the right condition is valid. If this is, however, the case,
then € encompasses all pairs of instance tuples in O; and O, that fullfill
the conditions, i.e. O,y N COND(,) X O,y N COND(,y = € because of
Definition 23 (see previous paragraph).

As correspondences fulfill the conditions on both sides by definition they
can only witness consistency but not inconsistency. That is, if all correspon-
dence candidates are correspondences, then the two models can only be
inconsistent according to the rule and with respect to the correspondences
if a correspondence is missing but not because a correspondence lists two
instance tuples for which one does not fulfill the appropriate condition.
Therefore, we define consistency not for a set of correspondences but for a
set of correspondence candidates. Consider, for example, a case in which

109

4. A Formal Language for Change-Driven Model Consistency

a model is changed in such a way that two instance tuples that formed a
correspondence before the change are no longer corresponding because
one of both does no longer fulfill the appropriate condition. To detect
this inconsistency, we only have to check for all former correspondence
candidates whether they are (still) fulfilling the conditions.

Definition 25 (Consistency Specification)
Let Oy and O, be two serializable models of two typed metamodels m;
and m,.

A consistency specification ¢s for Oy and O, is a tuple R, ,.c,,, ¢4,
R, Re, e,) whereRe ¢,y ..., Re,, ¢, are consistency rules for
metaclass tuples of m; andm,, and where every €; C O, ,NCOND(c, ;) X
O¢c,,) N COND(c,) is a set of correspondence candidates in O; and O,
for the rule Re, . c, , -

A consistency specification for two models lists consistency rules for the
two metamodels of the models and a set of correspondences in the two
models for each consistency rule. It would also be possible to define a
notion of consistency specification purely on the metamodel level for two
metamodels and without correspondences for concrete models. Such a
specification term is, however, not necessary for our purposes and could
mislead the reader to a notion of absolute consistency instead of our concept
of correspondence-relative consistency.

Definition 26 (Consistency According to a Specification)
Let ¢s := (R, €4,...,R,, E,) be a consistency specification for two
serializable models O; and O,.

The models O; and O, are consistent according to the consistency speci-
fication ¢s iff O; and O, are consistent according to every rule R; with
respect to ;.

The notion of consistency according to a complete specification is a straight-
forward continuation of the notion of consistency for a single consistency

110

4.2. Consistency Updates and Preservation

rule with respect to a set of correspondences: It is sufficient if two models
are consistent with respect to every consistency rule of a consistency spec-
ification with respect to the according set of correspondences. All rules
and correspondences contribute independently and equally to the notion
of specification consistency.

So far, we defined how consistency can be specified in terms of rules and
correspondences and defined under which conditions two models are con-
sidered consistent. In the next section, we define how models can be updated
to enforce consistency and which updates are consistency preserving.

4.2. Consistency Updates and Preservation

In the last part of our formal language for consistency preservation, we
define how models can be updated to enforce consistency. We also define
which conditions have to be fulfilled by updates that correctly preserve
consistency.

4.2.1. Updates of Links, Labels, and Models

In order to preserve consistency it is necessary to update models. Therefore,
we will now define link updates and label updates for objects as well as
model updates.

Definition 27 (Link Update for an Object)

Let 0 € O¢ be an object that instantiates a metaclass C := (R¢, Re o, Ac)
of a typed metamodel M in a serializable model O := (Oc,, .. ., Oc»
LINK, LABEL) of m.

A link update for the object o in the model O is a tuple (o,r,0~,0"),
wherer € R is a reference of C or one of its superclasses, O~ and O*
are sets of objects to be removed and added from and to the links of o for
r,ie O C LINK(0,) A O% C Ugepryre=(r) Od \ LINK(0, T).

111

4. A Formal Language for Change-Driven Model Consistency

A link update only affects the set of objects that are linked by an object for
a reference that is defined for one of the metaclasses instantiated by the
object. Links can be removed by removing objects from this set and can be
added by adding new objects to the set. Such added objects have to directly
or indirectly instantiate the metaclass of the type that is specified by the
reference and have to be from the model to which the object for which the
links are updated belongs. This is necessary to ensure that a link update
does not break metamodel conformance.

Definition 28 (Label Update for an Object)

Let 0 € O¢ be an object that instantiates a metaclass € := (R¢, R, o, Ac)
of a typed metamodel M in a serializable model O := (Og,, . . ., Oc,,
LINK, LABEL) of m.

A label update for the object o in the model O is a tuple (0,a,V~,V"),
wherea € A3 is an attribute of ¢ or one of its superclasses, V™ and V* are
sets of attribute values to be removed and added from and to the labels of
o fora,ie V™ C 1aBEL(0,8) A V' C Vv \ LABEL(0,).

Analog to a link update, a label update only affects the set of attribute values
that are labelled to an object for an attribute that is defined for one of the
metaclasses instantiated by the object. Labels can be removed by removing
attribute values from this set and can be added by adding new attribute
values to the set. Such added attribute values have to be of the type that is
specified by the attribute. The only structural difference to Definition 27 is
that attribute types have no hierarchy and all attribute values are defined
for the metamodel so that no constraint for their origin is needed.

Definition 29 (Object Update)
Let O := (Og,, . . ., Oc;» LINK, LABEL) be a serializable model of a typed
metamodel m := (C, <, R, A, RTYPE, ATYPE).

An object update in the model O is a tuple (o, C;, k), where o is an object
that directly instantiates the metaclass C; € C and k.. € {k,,k_} is the

112

4.2. Consistency Updates and Preservation

update kind, which indicates whether o will be added to O or removed
fromO,ieo0€ O & ks =k_.

An object update in a model lists a single object to be removed from the
model or to be added to the model together with the metaclass that is
directly instantiated by the object. This definition is not intended to give
the reader any further insights. It is a supporting definition that gives
us a counterpart of link updates and label updates, which is used in later
definitions of consistency preservation after an update.

Definition 30 (Model Update for a Consistency Rule)

Let € be a set of correspondences for a consistency rule R in two
serializable models O; and O, := (Oc,, ..., Oc/c» LINK, LABEL) of two
typed metamodels m; and m,..

A model update for the consistency rule R in the model O, based on the
correspondences € is a tuple (€=, €+, O, 3, A), where €~ and €* are sets
of correspondences to be removed and added from and to €, where O
is a set of object updates in O,. where 3 is a set of link updates, and
where U is a set of label updates. The link and label updates in 3 and U
update objects of O, after the object removals and additions, i.e. objects

in (Or \ Useo{o | 0 =(0,C;,k-)}) U Usen{o | 0 = (0,Ci, k1))

A model update is called empty if all sets of it are empty. All model
updates for R in all serializable models of m, based on arbitrary corre-
spondences for R are denoted by ‘LLJT’. We call a model update for R
in O, also briefly an update in O,.

Updates in O; are defined analogously by replacing the direction-specific
occurrences of O, with O; and C, with C; in Definition 30.

A model update brings several object updates, which remove and add objects
from the model, together with links and label updates for different objects.
It is only defined for a specific consistency rule and lists correspondences to
be removed and added for this rule. Such correspondences require a second

113

4. A Formal Language for Change-Driven Model Consistency

model of a second metamodel. Therefore, a model update is indirectly based
on both models of the correspondences, even if updates are only performed
in one of these two models.

Definition 30 imposes no constraints on the linked objects and labelled
attribute values that are removed or added using link and label updates.
The link and label updates of a model update may, however, only update
objects that are not removed. It would not cause any problems to also allow
link or label updates for objects to be removed. This could, however, be
misleading and the result of a model update would not be different if objects
were updated before removal. This constraint on the targets of link and
label updates are best explained using the implied order of execution: Link
and label updates are performed after the object removals and additions.

The metaclass tuples for which the consistency rule R is defined, are irrel-
evant for our definition of a model update. By Definition 23 it is already
given that the consistency rule R is defined for two metaclass tuples of
the correct metamodels m; and m,. Therefore, we do not have to make
this an additional requirement for Definition 30. Furthermore, it does not
need to be mentioned in the definition which metaclasses are listed in
these metaclass tuples. The sets of correspondences to be removed and
added, however, are affected by them as they contain objects as required by
them.

4.2.2. Results and Consistency Preservation

In this section, we define results of model updates for consistency rules and
conditions for consistency-preserving updates.

Definition 31 (Result of a Model Update)
Let 11, := (€7, €%, 0,3, A) be a model update for a consistency rule
R in a serializable model O, := (Oc,, . . ., Occ» LINK, LABEL) of a typed

metamodel m, := (C, <, R, A, RTYPE, ATYPE) based on correspondences
c.

114

4.2. Consistency Updates and Preservation

The result of the model update 1, is a tuple (€, 0,), where € = (€ \
€)UCT is the resulting set of correspondence candidates and O, := (Oc,,
cees 6;; , LINK, LABEL) is the model conforming to m, resulting from the
object removals and additions, i.e.

VceC: Og:= (OC\U{ol0=(o,C,k_)})UU{o|D=(o,C,k+)}

0ed 0ed

with IINk: O, X RS — P(0) and £aBEL: O, x AS — P(V) according
to the link and label updates, i.e.

[Nk(o, 1) i= {(LINK(O, N\O)UO* ifd(o,r,07,0") €

LINK(0, I) else

— (zaBEL(0,@)\V7)UV* if3(0,a,V_,V*) e U
LABEL(0,8):=
LABEL(0, @) else

Results of updates 11; in the left model are defined analogously by replacing
the direction-specific occurrences of the index r with [and the forward
arrow with the backward arrow in Definition 31.

A model update results in a new model, which is obtained by executing the
link, label, and object updates. It also results in a new set of correspondence
candidates, which is obtained by removing and adding the correspondences
directly given by the model update. The resulting model is completely
defined by the given updates. No further constraints are necessary and no
degrees of freedom remain. The resulting model is identical to the model in
which the model update is performed, except for the modifications precisely
prescribed by the model update. In this sense, the definition of a result of
model update provides the semantics for a model update.

By Definition 30 it is already given that the elements in € are correspon-
dences for R in a serializable model of a typed metamodel and in O,. This
other model, which we usually name O;, and its metamodel are not needed

115

4. A Formal Language for Change-Driven Model Consistency

in Definition 31. They have, however, an indirect influence on the result of
a model update, as the old and new correspondences are based on them.

Definition 32 (Serializability-Preserving Model Update)

Let ut, := (C,0,) be the result of a model update 1, :=
(€, €+, O, 3,) for a consistency rule R in a serializable model O, of
a typed metamodel m, := (C, <, R, A, RTYPE, ATYPE,) based on corre-

spondences €.

The model update 11, is serializability preserving iff the resulting model
O, = (O'\C:, el O:I;‘, LINK, LABEL) is a serializable model of m, without
correspondence candidate pairs that contain removed objects and without
links to removed objects, i.e. for Oy := {J,cp{o | 0 = (0,C;, k-)}:

Y ((01),(0r1s- 10, m) €EC: V1<i<m: 0,;¢0;

AVC;i€C,: V0, €0, reRe,: Yo, € LINK(0,T): 05 & O

Serializability-preserving updates 11; in the left model are defined analo-
gously by replacing the direction-specific occurrences of the index r with [
and the forward arrow with the backward arrow in Definition 32.

Serializability-preserving model updates are updates which result in serial-
izable models and correspondence candidates such that no correspondence
candidate pair contains a removed object and no links to removed objects
remain. This means that the model update has to ensure that all corre-
spondences and all links to removed objects are removed as well. It also
means that no cyclic containment references or multiple containers for an
object may be introduced by the model update. There are, however, no
requirements for the conditions of the consistency rule for which the model
update is performed. Such a requirement is added in the next definition
which deals with consistency preservation.

As in Definition 30, the correspondences in € are for the consistency rule
R and they are based on O, and another serializable model of a typed
metamodel. Both, the other model and metamodel are not directly relevant
for Definition 32 and therefore omitted. In other words, whether a model

116

4.2. Consistency Updates and Preservation

update is serializability preserving or not cannot be influenced by changing
the other model or metamodel. It only depends on the updated model and
on those halves of the correspondences that are related to the updated
model.

Definition 33 (Consistency Rule Preserving)

Let ut, := (€, O,) be the result of a serializability-preserving model
update 11, for a consistency rule R in a serializable model O, based on
correspondences € in a serializable model O; and in O, such that O,
and O, are consistent according to R with respect to €.

The model update 11, is consistency preserving according toR with respect
to € iffO; and the resulting serializable model O, are consistent according
to R with respect to C.

Updates 11; in O; that preserve consistency according to a rule are defined
analogously by replacing the direction-specific occurrences of the index r
with [and the forward arrow with the backward arrow in Definition 33.

A model update preserves consistency according to a consistency rule if the
resulting model is consistent with the other model, for which correspon-
dences were given, according to the rule. This definition of consistency
preservation demands only that the resulting model has to be consistent
with the other model with respect to the resulting correspondences. It
is not further restricted how this consistency is achieved. This minimal
definition of consistency preservation is only possible because the combi-
nation of two other definitions imposes enough constraints. Our notion of
consistency (see Definition 24) contains strong requirements for the corre-
spondences, and a model update (see Definition 30) may only update one of
both models. In particular, the instance tuples of the correspondences from
the model that is not updated are still present after an update and still fulfill
the condition of the consistency rule. Thus, the definition of consistency
requires that there is at least one correspondence for these instance tuples,
which witnesses consistency with objects in the updated model. Therefore,
a consistency-preserving model update has to add new correspondences
for all removed correspondences that were not optional because there are
several correspondences for the same instance tuples of the other side.

117

4. A Formal Language for Change-Driven Model Consistency

We only define consistency preservation for updates of models that are
already consistent. A model update that results in consistent models when
the initial models were not consistent could be called consistency establishing.
If the initial models can be consistent or not, then a model update that results
in consistent models could also be called consistency achieving in order to
emphasize that it is not specified whether consistency was preserved or
newly established. For our change-driven approach it is, however, not
necessary to define such concepts because we are always working based
on a former model state that was already consistent.

As before, there are some details that follow from other definitions but that
are not central to our definition of consistency preservation according to a
rule. By Definition 31 and Definition 23, for example, it is already given that
O, and Oy are serializable models of typed metamodels. These metamodels,
which we usually name m; and m,, are not relevant for Definition 33, so
we do not mention them in the definition.

4.3. Change-Driven Consistency Preservation

In order to keep two models consistent after changes, it is not sufficient
to preserve consistency for two models that are already consistent as in
our last definition. A key concept of the change-driven consistency pre-
servation approach presented in this thesis, is to re-establish consistency
after a change that renders two previously consistent models inconsistent.
To this end, we will first define what a model change is and when it is
considered consistency-breaking. Then, we introduce a change-relative
notion of consistency preservation. Note, however, that we will only define
consistency preservation for changes that break consistency according to
at most one rule at once.

4.3.1. Consistency-Breaking Model Changes

In this section, we define model changes, explain the difference to model
updates and define which changes are considered consistency-breaking.

118

4.3. Change-Driven Consistency Preservation

Definition 34 (Model Change)
Let O be a serializable model of a typed metamodel m.

A model change in O is either a link update for an object in O, a label
update for an object in O, or an object update in O.

We call a model change in O also briefly a change in O.

A model change only affects a single object and changes exactly one part
of the model: It either adds or removes linked objects for a single reference,
adds or removes labelled values for a single attribute, or it adds or removes
the object. Therefore, it is very different from a model update, which may
combine several link, label, and object updates. Furthermore, a model
change is neither directly nor indirectly related to another model or to a
consistency rule. A model update, however, is only defined for a consistency
rule and based on correspondences with another model.

Definition 35 (Result of a Model Change)
Let ¢ be a change in a serializable model O of a typed metamodel m.

The result of a model change ¢ is a model O, which conforms to m
and results from executing ¢ in O analogous to Definition 31, i.e. O :=
(Oc,,---,0¢,,,Oc;,Ocys - - - » Ocye;» LINK, LABEL) With

LINk(0, ¥) := (LINK(0,) \O")U O ifc=(o,r,07,0%)
LABEL(0,d) := (LABEL(0,2) \ V) UV™ ifc = (0,8, V", V")
Og, := O, U {o} ifc = (0,Ci, ky)
Os, := 05, \ {0} ifc = (0,Ci k)

and unchanged Oc,, LINK, and LABEL in all other cases.

The result of a model change is the model that we obtain by executing the
change on the model for which it is defined: In case of a link or label update,
the given objects or attribute values are removed and added to the set of
linked objects or labelled values. If the model change is an object update,

119

4. A Formal Language for Change-Driven Model Consistency

the given object is added or removed depending on the given update kind.
This definition provides the semantics for a model change and is analogous
to the definition of a result of a model update (Definition 31).

Our goal is to re-establish consistency directly after two models became in-
consistent through a model change. To achieve this, we want to distinguish
such model changes from other changes. We are not interested in changes
that preserve consistency for two models that were already consistent, be-
cause no model update is necessary to preserve consistency in such a case.
Furthermore, we are not interested in changes that re-establish consistency
for two models that were inconsistent, because no model update is needed
in this case either. Finally, we are not interested in changes that preserve
inconsistency for two models that were already inconsistent, because we
want to avoid such cases, which can be difficult to handle as nothing is
known about the inconsistencies. We are only interested in those changes
that break consistency, because they can be considered as witnesses of the
reasons for inconsistency. Therefore, we define which model changes have
this consistency-breaking property:

Definition 36 (Consistency-Breaking Change)

Let O; and O, be two serializable models that are consistent according
to a consistency rule R with respect to a set of correspondences € and
let ¢; be a change in O;.

The model change ¢; in Oy is consistency breaking for O, according to R
with respect to € iff the result O; of ¢; and O, are not consistent according
to R with respect to € and Oy is serializable.

A consistency-breaking change renders two previously consistent models
inconsistent but preserves the serializability of the changed model. There-
fore, all consisteny-breaking changes are serializability-preserving changes.
We could distinguish these changes from changes that break not only con-
sistency, but also serializability and we could differentiate between changes
that do or do not break validity if it was given before. Such serializability-
breaking or validity-preserving changes are, however, not necessary for our
approach to change-driven consistency. First, we do not support changes

120

4.3. Change-Driven Consistency Preservation

that break serializability, because they should be avoided by the editors in
which models are changed. Second, we do not distinguish between validity-
breaking, validity-preserving, or invalidity-preserving changes, because we
react with model updates in all cases. These updates have to re-establish
consistency with respect to consistency rules for both metamodels and can
only influence the validity of the unchanged model.

4.3.2. Model Updates After a Change

Based on the definition of a consistency-breaking change, we will now
introduce a concept for preserving consistency after such changes through
model updates.

Definition 37 (Consistency Preserving After Change)

Let O; be the result of a model change ¢; in a serializable model O,
that is consistency-breaking for a serializable model O, according to
a consistency rule R with respect to a set of correspondences € and
let ut, := (T, 0,) be the result of a serializability-preserving model
update 1, for R in O, based on €.

The model update 1, is consistency preserving after the model change
¢; according to R with respect to € iff the models O; and O, resulting
from the change ¢; and the update 11, are consistent according to R with
respect to .

Consistency-preserving updates 1; in O; after changes in O, are defined
analogously by replacing the direction-specific occurrences of the index r
with [and the forward arrow with the backward arrow in Definition 37.

This refined notion of consistency preservation after a model change brings
all central concepts of our approach to change-driven consistency preser-
vation together. It starts with two models that are consistent according to
a rule with respect to certain correspondences, which witness this consis-
tency. Then, a single change occurrs in one of the models, which renders
both models inconsistent. We want to update only the unchanged second

121

4. A Formal Language for Change-Driven Model Consistency

model in order to preserve consistency after this change. Therefore, we are
interested in those updates of the second model that result in an updated
second model that is consistent with the changed first model. These up-
dates are exactly those that are defined as consistency preserving after a
change by Definition 37. Note, however, that it does not define a notion of
consistency preservation if several changes occurr.

Similar to our definition of consistency preservation without a change
(Definition 24), this definition of consistency preservation after a change
imposes no additional constraints on the model update. Every model up-
date, for which the models resulting from the change and the update are
consistent, is allowed. Again, this is only possible because our definition
of consistency (Definition 24) makes strong requirements and the update
only affects the unchanged model: For every instance tuple of the changed
first model that was part of a correspondence before the change and is still
present after the change, there has to be at least one correspondence which
involves objects of the updated second model. Therefore, it is, for example,
not possible that a model update that preserves consistency after a change
simply deletes all inconsistent elements in the second model and removes
all correspondences to them. The change may only have deleted a single
object. Thus, all objects of the first halves of the removed correspondences
except for at most one object are still present and still fulfill the condition
of the consistency rule. Therefore, the definition of consistency requires
that there are correspondences for these objects of the changed first model
that witness consistency with objects in the updated second model.

Of course, consistency according to a single consistency rule is not enough,
because several such rules may be necessary to specify consistency for two
metamodels. Therefore, we define consistency preservation according to a
complete consistency specification, i.e. according to several rules:

Definition 38 (Consistency Specification Preserving)

Let O; and O, be two serializable models that are consistent according
to a consistency specification ¢s := (R, €, ..., R, €,), let O; be the
result of a change ¢; in O; that is consistency-breaking for O, according
to R; with respect to €;, and let ur, := (€;,0;) be the result of a
serializability-preserving model update 1, for R; in O, based on C;.

122

4.3. Change-Driven Consistency Preservation

The model update 1, is consistency preserving after ¢ accord-
ing to s iff the models O; and O, resulting from the change
¢; and the model update 1, are consistent according to 5 =
R, € Ry, €y, R, € Ry, iy, R, €).

Consistency specification preserving updates 11; in O; after changes in O,
are defined analogously by replacing the direction-specific occurrences
of the index r with [and the forward arrow with the backward arrow in
Definition 38.

In Definition 38, it can already be seen that an update in a model preserves
consistency after a change to another model according to a rule with respect
to a set of correspondences regardless of any additional consistency rules
and correspondences. This is a direct consequence of our definition of
consistency according to a specification (Definition 26), which deduces con-
sistency according to several rules from independent consistency according
to a single rule. To demonstrate this independence, we present a corol-
lary, which shows that all other rules have no influence on the consistency
preservation property of an update for a single rule:

Corollary 1 (Rule Preserving is Enough)

Let O; and O, be two serializable models of two typed metamodels
m; and m,, let ut, := (€, O,) be the result of a model update 1, in O,
that is consistency preserving after a change ¢; in O; according to a
consistency rule R with respect to correspondences €, and let O; be
the result of the change ¢;.

The model update \t, is consistency preserving after the change ¢; accord-
ing to every consistency specification ¢s := (R, €, R, €, ..., R, €,) for
m; and m,, with arbitrary additional consistency rules R; and arbitrary
additional correspondences €;, iff both the original models O; and O, as
well as the models O; and O,, which result from the change ¢; and the
model update 1t,, are consistent according to (R, €y, ..., R, €,).

123

4. A Formal Language for Change-Driven Model Consistency

Proof 1

« 2

=

Given:

W, consistency preserving after ¢; according to ¢s
with Definition 38 this yields

O; and O, consistent according to (R, € R.,C,..., R, €,
and with Definition 26 this yields

O, and O, consistent according to (R1, €y, ..., R,, €,).

From the given and Definition 38 we obtain

O; and O, consistent according to (R, €, R, €y, ..., R,,E,)
and with Definition 26 this yields

Oy and O, consistent according to (R, €, ..., R,, €,).

« 2

=

Given:
O, and O, consistent according to (Ry, €y, ..., R, €,)

Prerequisite of Corollary 1:

W, consistency preserving after ¢; acc. to R with respect to €
with Definition 37 this yields

O, and O, consistent according to R with respect to €
with Definition 26 and the given this yields

O, and O, consistent according to (R, €, Ry, €, ..., R, €,)

124

ey

4.3. Change-Driven Consistency Preservation

Also given:
O; and O, consistent according to (R, €y, ..., R,,C,) (2)
with Definition 38 the previous facts (1) and (2) yield

W, consistency preserving after ¢; according to ¢s

This corollary shows that an update that is consistency preserving for a
single rule only has to ensure that it does not break consistency for any other
rules in order to be consistency preserving for them too. More specifically,
every update that is consistency preserving after a change for a single rule
is consistency preserving after the change for any consistency specification
that contains this rule iff the original models and the models resulting from
the change and the update are consistent according to all other rules of the
specification. A key requirement is that the original models were already
consistent according the other rules. This means that a single update for a
single rule is enough to preserve consistency for a complete specification
after a change iff neither the change nor the update breaks consistency
for the other rules. Therefore, the corollary demonstrates that consistency
can be achieved in a way that deals with individual rules in isolation by
updating models directly after changes that only break consistency for an
individual rule.

4.3.3. Update Functions for Consistency Rules

The goal of the formal language presented in this chapter is to represent
a change-driven approach to consistency preservation, which starts with
empty—and thus trivially consistent—models and always updates one of
these models after a consistency-breaking change in the other model. In
order to reach this goal of automated consistency preservation it is not
enough to only consider an update for two fixed models and a single change.
Therefore, we define functions that yield an update that shall preserve
consistency after a change as output if we provide two models, a change,
and correspondences for these models as input:

125

4. A Formal Language for Change-Driven Model Consistency

Definition 39 (Update Function for a Consistency Rule)

Let R, ¢, be a consistency rule for two metaclass tuples (C;) and (C,)
of two typed metamodels m; and m, and let O}, and Oy, denote the
universes of serializable models of m; and m,.

An update function for the consistency rule Re, ¢, is a function UF(c,), (c,)
On, X0, X C™M X P(Oc)y X Oc,y) — (L{‘)r?ncr,‘c,’ which takes two seri-
alizable models of m; and m,, a change in a model of m;, and a set of
correspondence candidates in O,y X O, as input and yields a model
update for Re, ¢, in the given model of M, as output, i.e. C™ denotes the
infinite set of changes in all serializable models of m; and (Ll(;l’l . denotes

the infinite set of updates for R, ¢, in all serializable models of m, based
on arbitrary correspondences for R, c, .

Backward update functions UF (c,), (¢, : O, XOm XC™ xP(Oc,yxO¢c,)) —
(Lli}TcI,,cr for R, ¢, are defined analogously by replacing the direction-specific
occurrences of the index r with I and the forward arrow with the backward

arrow in Definition 39.

Update functions take two models, a change in the first model, and instance
tuples that could be correspondences for these models as input and out-
put an update for the second model. This definition is only the basis for
subsequent definitions of special update functions that yield serializability-
preserving or even consistency-preserving updates for inputs that fulfill
certain constraints. We could have incorporated these constraints in our
definition of update functions, but refrained from it in order to avoid ad-
ditional complexity. The domain P(Oc,) X O(,)) for the correspondence
candidates, for example, could have been restricted to those instance tuples
that occur in the two models that are provided as first and second input.
This would, however, make Definition 39 even more complex and would
still not be enough as we are finally only interested in consistency-breaking
changes and consistency-preserving updates. Therefore, we extend our
definition of update functions with additional constraints and guarantees
in two separate steps and define serializability-preserving update functions
before we define consistency-preserving update functions:

126

4.3. Change-Driven Consistency Preservation

Definition 40 (Serializability-Preserving Function)

Let IfF(cl), (c): Or;l X Or;r X C™ x POy X O,y) — (L[\}TC' . be an
update function for a consistency rule R, ¢, for two metaclass tuples
(c1) :=(Cy,...,C;,)and (C,) of two typed metamodels m; and m,.

The update function UFc,) (c,) is serializability preserving iff it yields
serializability-preserving model updates for Re, ¢, in the given right
model based on the given pairs of instance tuples if these are correspon-
dences for Re, ¢, in the given models and the given change results in a
serializable model, but is undefined otherwise, i.e. for (L{‘J?c, c,*(@) denot-
ing the infinite set of serializability-preserving model updates for R, c, in
O, based on correspondences € := {({01,1), {0r,1)) - - - » ({01, n;)> {Or,n;))}
and CJ"" denoting the infinite set of all changes in all serializable models
of m; with serializable result model:

GF<CI>- (Cr>(Ol? Or, cl, 0:) =
Or .)
celUy (€ ifgeCl AVI<i<n:

Re,.c
({o1,1), {0r,i)) € COND(c,) X COND(c,)

L otherwise

Serializability-preserving backward update functions UF (¢,) (c,) for Re,.c,
are defined analogously by replacing the direction-specific occurrences
of the index r with [and the forward arrow with the backward arrow in
Definition 40.

A serializability-preserving update function yields a serializability-preserving
model update as output if it is given a serializability-preserving change
and correspondences for the considered rule. It is undefined in all other
cases, i.e. if the change results in a model that is not serializable, or the
given pairs of instance tuples are not correspondences for the given models
and the considered rule, or both. Furthermore, it is only required that
the provided instance tuples are correspondences for the considered rule
in the given models. By Definition 23 this means that these tuples have
to fulfill the conditions of the considered rule but no completeness as in

127

4. A Formal Language for Change-Driven Model Consistency

our definition of consistency (see Definition 24) is required. Therefore,
a serializability-preserving update function contains no constraints and
guarantees for consistency and consistency preservation. It only provides
guarantees regarding the serializability: If the function returns an update,
then the provided change preserves serializability from the model O; to the
changed model O;. Every returned update preserves serializability from
the model O, to the updated model O,. Altogether, this means that for all
cases for which a serializability-preserving update function is defined, the
change input preserves serializability for the changed model and the update
output preserves serializability for the updated model.

Definition 41 (Consistency-Preserving Function)

Let GF((:,),)" Or?n X OrT"n, x C™ x 7)(0<01> X O(cr)) — (L{;;’ be a
C.Cr

serializability-preserving update function for a consistency rule Re,.c, .

The update function UF(c,) (c,) is consistency preserving according to
Re,c, iff UFc,), (c,)(O1, Oy, ¢1, €) yields updates for the given right model
O, that are consistency preserving after ¢; according toRe,.c, with respect
to the given pairs of instance tuples € if these are correspondences for
Re,.c, in the given models and ¢ is consistency-breaking for the given
models according to the considered Re, ¢, with respect to the given €, but
is undefined otherwise.

Consistency-preserving backward update functions UF(c,), (c,) for Re,.c,
are defined analogously by replacing the direction-specific occurrences
of the index r with [and the forward arrow with the backward arrow in
Definition 41.

A consistency-preserving function yields a consistency-preserving update
iff it is given a consistency-breaking change and correspondences that wit-
ness the broken consistency. Similar to a serializability-preserving function,
it is undefined in all other cases. More precisely, in addition to all cases
for which a serializability-preserving function is undefined, a consistency-
preserving function is also undefined in the following cases: If the given
change results in a serializable model that does not break consistency, or
the set of correspondences is incomplete because not all condition ful-
fillments are witnessed, or both. This means a consistency-preserving

128

4.3. Change-Driven Consistency Preservation

function makes stronger requirements for inputs for which it is defined
than serializability-preserving functions.

In the same way a consistency-preserving function also provides stronger
guarantees for its outputs than a serializability-preserving function. It
preserves serializability for both models individually and consistency for the
combination of both models. Therefore, alonger description for consistency-
preserving functions, which emphasizes the stronger requirements and
guarantees would be as follow: Functions that yield updates that preserve
consistency, which also guarantees serializability, after changes that break
consistency but preserve serializability of the changed model if they obtain
all correspondences that witness the broken consistency.

4.3.4. Consistency-Preserving Update Specifications

As consistency specifications consist of several consistency rules, a single
update function for one of these rules is not enough to preserve consistency
according to the specification. Therefore, we will define consistency update
specifications with several consistency update functions in this section.
Prior to that, we will show that update functions that yield updates that pre-
serve consistency for a single rule independent of other rules, are sufficient
to preserve consistency for all rules:

Corollary 2 (Rule Preserving is Still Enough)

Let O; and O, be two serializable models of two typed metamodels
m; and m, that are consistent according to a consistency rule R with
respect to correspondences € and let UF(c,). () be an update function
that is consistency preserving for R.

The update function UF(c,), (c,)(O1, Oy, ¢1, €) yields updates W, that are
consistency preserving after ¢; according to every consistency specification
s := (R, E, N, Cq, ..., Ry, €,) form; and m,., with arbitrary additional
consistency rules ‘R; and arbitrary additional correspondences €; iff both
the original models O; and O, as well as the models O; and O,, which
result from the change ¢; and the model update1,, are consistent according
to (R, €y, ..., R, €,), and is undefined in all other cases.

129

4. A Formal Language for Change-Driven Model Consistency

Proof 2

« 2

=

Given:
W, consistency preserving after ¢; according to ¢s
with Definition 38 this yields
O; and O, consistent according to (R, € R.,C,..., R, €,
with Definition 26 this yields
O, and O, consistent according to (Ry, €y, ..., R,, €,) (1)

From the given we also obtain with Definition 38 and 36
O; and O, consistent according to (R, T, R.,C,..., R, C,)
with Definition 26 this yields
O; and O, consistent according to (R, €y, ..., R,,C,) 2)

Together, (1) and (2) show the required forward implication.

« 2

‘—
Given:

O; and O, consistent according to (R, €, ..., R,,C,) (1)
and also given:

O; and O, consistent according to (R1, €4, ..., R,). (2)

130

4.3. Change-Driven Consistency Preservation

Prerequisite of Corollary 2:
L7F<Cl>, (c,) consistency preserving for R
with UF(c,), (¢c,)(O1, Oy, ¢1, €) = u, this yields

1t, consistency preserving after ¢; acc. to R with respect to € 3)

With Corollary 1 the previous facts (1), (2), and (3) yield

W, consistency preserving after ¢; according to cs.

This corollary demonstrates that we can consider update functions, which

yield consistency-preserving changes for every consistency-breaking change,
instead of updates for specific changes without losing the advantage that

we can deal with individual consistency rules in separation. It is still enough

to preserve consistency for an individual rule to preserve consistency ac-
cording to a complete specification iff the original models and the models

resulting from the change and the update are consistent according to all

other rules of the specification. As a result, it is sufficient to have a separate

update function for each rule of a consistency specification:

Definition 42 (Consistency Update Specification)
Let ¢s := (Re, ,cp,»> C1s oo, R, Re, 4o,) be a consistency specification
for two typed metamodels m; and m,.

A consistency update specification for ¢s is a tuple (UF(c,) (c,,)» - - - »
UF(c,.1), (Cnr))» Where every UF(c,). (c,.,) is an update function forRe, ¢, -

Backward update specifications are defined analogously.

A consistency update specification is just a list that contains an update
functions for every consistency rule of a consistency specification in the
same order as the rules. It only requires that the update functions are

131

4. A Formal Language for Change-Driven Model Consistency

defined for models and changes of the correct metamodels and for pairs of
instance tuples that could be correspondences of the considered rule.

Definition 43 (Consistency Preserving Specifications)
Let us := (UF(c,), (c,,)» - - -» UF(c,), (ca,)) D€ an update specification
for a consistency specification ¢s := (Re, ,.c,,» €15 .., R, Re, e,)

The update specification us is consistency preserving iff every update
function UFc,), (c,) is consistency preserving according to R, . c, .

Consistency-preserving backward update specifications are defined analo-
gously.

A complete consistency update specification is consistency preserving iff ev-
ery individual update function preserves consistency for its rule. Because of
Corollary 2, this means that it is possible to preserve consistency for any two
serializable models that conform to two metamodels using a consistency-
preserving forward update specification and a consistency-preserving back-
ward update specification for both models. This can be done by starting
with two empty models, which are trivially consistent, and performing an
update in one of the two models after every consistency-breaking change
in the other model. These updates can be obtained by invoking the update
function for the consistency rule for which a condition is no longer fulfilled
after the change. All definitions and corollaries of this chapter were pre-
sented in order to guarantee that such a consistency-preservation strategy
always results in consistent models if no serializability-breaking updates
are performed and if no change breaks the conditions of more than one
consistency rule at once. But even in such a case, it could be possible that
a subsequent execution of several updates for a single change results in
models that are consistent according to the complete specification. This
can, however, not be guaranteed with the presented formalization.

132

4.4. Conclusions

4.4. Conclusions

In this chapter, we have presented a formal language that defines realization-
independent concepts of specification-driven consistency preservation us-
ing set theory. It is based on definitions for fundamental concepts, such
as metamodels, models, or conditions, which we have presented in sec-
tion 2.3. First, we have introduced concepts for consistency rules and for
correspondences, which are used as witness structures for the fulfillment
of consistency conditions. Then, we have defined how updates of model
elements, links, and labels can be formally represented and we have ex-
plained their semantics in terms of the results of such updates. Next, we
have specified which conditions have to be fulfilled by an update to preserve
consistency according to a rule or a set of rules. Subsequently, we have in-
troduced atomic changes and we have discussed the conditions under which
such changes break consistency. Based on this, we have presented a refined
definition of consistency preservation after a consistency-breaking change.
Then, we have introduced functions that output consistency-preserving
updates when they obtain two given models, a change, and correspondence
candidates as input. Finally, we have discussed circumstances in which it
is sufficient to always preserve consistency after a single change and ac-
cording to a single rule in order to preserve consistency inductively and for
all rules. Altogether, the presented definitions and explanations represent
answers to subquestion 1.3 and 1.4, which we presented in section 1.3.

133

Part llil.

Languages for Consistency
Preservation Specifications

5. ALanguage Framework for
Consistency Preservation
Specifications

In this chapter, we present and explain a language framework, which is
the foundation of the three languages for consistency preservation specifi-
cations, which we present in the next chapters. First, we explain the key
concept of preserving consistency based on specifications that do not need
to explicitly prescribe how consistency is to be preserved but mainly what
is considered consistent. Then, we present the concept of change-driven
consistency preservation and discuss why we decided to provide reusable
solutions in the form of purpose-built languages. Next, we explain how the
language framework is used by the three languages for reactions, invariants,
and mappings. Then, we show how languages for changes, expressions,
and constraints are integrated into all languages created with the frame-
work. Finally, we describe how we realized the identification of elements,
triggering of updates, and generation of code technically.

Each of the previous two chapters on challenges and on our formal language
answered two subquestions of our first research question. This chapter and
the next three chapters presenting our three languages have, however, a
more complex relation to our second research question and its subquestions.
We formulated each subquestion in order to find answers to the Open
Consistency Specification Language Challenges that we identified. These
problems are addressed in different ways with several language constructs
and code generation techniques. In this chapter, we briefly mention some
of these constructs and techniques. They will be presented and explained
in a comprehensive and detailed way in the next chapters. Therefore, this
chapter mostly provides an outlook on how we will answer subquestions
2.1 to 2.4 in the next chapters.

137

5. A Language Framework for Consistency Specifications

5.1. Consistency Preservation Specifications

The framework described in this chapter is the basis for our three languages
for developing tools that preserve consistency between models of different
modeling languages by performing automated model updates in reaction to
changes that were performed by developers. Before we explain the common
foundation of the three languages in the next sections, we have to introduce
the concepts of consistency preservation and consistency specifications.

5.1.1. Preserving Consistency

We already discussed why it is challenging to preserve consistency between
models of different languages in chapter 3. These challenges are an impor-
tant motivation for the languages presented in this thesis and the language
framework described in this chapter. In order to demonstrate the need for
the languages and the framework, we have, however, to briefly repeat why
we cannot achieve consistency differently in some development contexts
(see section 1.1).

Often consistency is needed for models that were created using modelling
languages for which existing editors or other tools have to be reused as
black boxes. In such a situation, projective views on central models of a
single modelling language that combine all information are often infeasi-
ble. Consistency cannot be achieved using editors that directly perform
changes in all models in the background because the editors cannot be
altered. Therefore, it is necessary to develop a new modelling language that
incorporates all information of all used modelling languages. To completely
avoid inconsistencies with this new language while supporting existing
languages, projective views have to be created. These views have to output
models for the existing tools and have to propagate every change to the
central models.

If projective approaches cannot be used because existing tools have to be
supported, then consistency has to be achieved in a synthetic way. This
means, consistency has to be achieved by directly checking and modifying
the models of the different languages. Often, models with inconsistencies
cannot be used for further development until consistency is restored again.

138

5.1. Consistency Preservation Specifications

Therefore, consistency has to be achieved continuously while models evolve
during development. To highlight, that inconsistencies are only temporarily
tolerated in such a process, we call it consistency preservation (see also page
59).

5.1.2. Specifying Consistency

In chapter 4, we formally defined how consistency can be specified, checked,
and updated according to consistency rules. The conditions for such rules
are simply defined by listing all combinations of elements of all possible
models for which the conditions hold. This is very precise, but only theo-
retically relevant because listing all elements that are considered consistent
is infeasible when consistency shall be specified for two realistic modelling
languages. In order to allow automated consistency preservation, a precise
and practical specification of what shall be considered consistent is needed.
The main goal of the language framework presented in this chapter is to
support the development of languages that allow such specifications.

A key concept of our approach to consistency preservation is to provide lan-
guages that enable developers to specify consistency in a problem-oriented
way if this is possible and in a solution-oriented way if this is necessary.
This means a developer can specify consistency by defining in which cases
consistency is a problem or not and only has to specify how consistency is
achieved by solving these problems if this cannot be avoided. To make this
possible, we created a language framework for consistency preservation
specifications that supports declarative and imperative language constructs.
For declarative languages, which focus on the problem of defining con-
sistency or identifying inconsistencies, we rely on code generation. This
makes it possible to realize complex control flow during code generation
for language constructs that do not support direct control flow instructions.
If imperative language constructs are needed for consistency preservation,
they can be newly defined or existing constructs of the imperative tar-
get language can be reused. Such constructs are, however, not provided
per default because the language framework is intended for consistency
specification languages that are specific with respect to what is defined
as consistent but unspecific with respect to how consistency is achieved.
We introduced the Open Consistency Specification Language Challenge 2

139

5. A Language Framework for Consistency Specifications

of supporting several programming paradigms in section 1.2 and we will
explain the paradigms supported by the three languages presented in this
thesis in subsection 5.3.2.

5.2. Change-Driven Languages

In the previous section, we explained what we mean by preserving and
specifying consistency and why these concepts are central to our approach
and language framework. We continue by describing two more central
characteristics: The preservation of consistency in reaction to changes per-
formed by developers and the provision of reusable and adaptable solutions
to common problems in the form of a purpose-built language.

5.2.1. Change-Driven Consistency Preservation

Our language framework and therefore also the three languages realized
with it preserve consistency in reaction to and according to model changes
that are performed by developers during the design and implementation
of an IT system. Such model changes are not only used to trigger the
consistency preservation process but they are also the central input for it.
The changes are the central driver for consistency preservation and the lan-
guage framework is built around them. It provides, for example, language
constructs to describe and analyze changes regardless of the used mod-
elling language and editor. Furthermore, the code generator of the language
framework uses changes to structure the control flow of the generated code
and to integrate it with the change monitoring process. As a result, whether
and how consistency is checked and enforced is mainly influenced by what
has changed or how a change was performed, and not, for example, by the
complete model or by a comparison of an old and a new model state. There-
fore, we use the term change-driven to emphasize that changes drive the
preservation process like tests drive the development process in test-driven
development. In the literature, the term change-driven [RVV09; Ber+12]
is already used when changes are used as input or output but nothing is
stated about the role that these changes play, for example, if they are used
as the only input. Similarly, the term reactive programming [Bai+13] is

140

5.2. Change-Driven Languages

— — —
specification modelling modelling
language language B language A
T ; -
I) writes : instantiates ,” refers to : -7 instantiates :
[
consistency | refersto .-~ |
> . . -
specification | _ -~ |
methodologist [lr) changes
& JH) reads | instantiates
1
(code generator) ’ model b ‘ %
developer
IIT) generates 3) updates 1a) uses
consistency 2) triggers monitored
preservation editor
updates
legend:

I)-III) specification time 1)-5) development time

Figure 5.1.: Process for writing consistency specifications using a language of the
framework and for updating models according to these specifications to preserve
consistency

used to denote that developers can express reactions to changes but it is not
stated whether everything has to be expressed in reaction to changes.

The change-driven consistency preservation process for an arbitrary con-
sistency specification language created with our language framework is
shown in Figure 5.1. Before models are created and updated, a so-called
methodologist writes a consistency specification using the language (step
I) for models of two modelling languages. When the code generator is
executed (step II), it reads the specification (step III) and produces a con-
sistency preservation program that contains updates for different possible
changes (step IV). This concludes the general preparations that have to be
performed before a concrete system is developed. If a developer changes a
model that was created with one of the languages (step 1¢), the monitored
editor, which records all changes, has to be used (step 1a). This monitor
triggers the previously generated consistency preservation update that
reacts to the performed change (step 2). It may update a model of the other

141

5. A Language Framework for Consistency Specifications

modelling language to restore consistency after the change according to the
specification (step 3). This process of recording changes and performing
according updates is continuously repeated during system development
and starts with empty models, which are trivially consistent.

5.2.2. Languages Providing Reusable Solutions

The last key characteristic of our approach is that we provide reusable and
adaptable solutions to common problems of consistency preservation in the
form of languages. These consistency specification languages are built for
change-driven consistency preservation and are not suited for other pur-
poses. In this sense, they are so-called external domain-specific languages
for the domain of change-driven consistency preservation. Instead of creat-
ing such languages, we could also have provided, for example, a fixed library
with an advanced programming interface (API), which is sometimes also
called an internal domain-specific language (see subsubsection 2.1.2.3).

We decided to create external languages with a custom syntax and code
generation step in order to address two Open Consistency Specification
Language Challenges. By defining a custom syntax for a consistency speci-
fication language we can abstract away from details of models or changes
that are not relevant for consistency preservation (OCSLC 3). During code
generation, the reused solutions, which are encapsulated in language con-
structs, can be adapted to the current usage and to the modelling languages
for which consistency is specified. It is possible to generate only those
code snippets that are necessary and to use, for example, usage-specific
identifiers for generic elements. These techniques cannot be used if the
code is fixed before use and we support them in our language framework to
ease the understanding and debugging of consistency enforcement (OCSLC
4).

5.3. Usage of the Language Framework

We used the language framework to create three languages for specifying
consistency in terms of imperative reactions, bidirectional mappings, and
normative invariants. The primary reason for developing the language

142

5.3. Usage of the Language Framework

framework was not to support the creation of arbitrary languages but to
have a common foundation for these three particular languages. In this
section, we briefly explain why we designed three separate languages and
discuss how they complement each other. Furthermore, we present the
programming paradigms supported by the languages and explain what can
be expressed with which language.

5.3.1. Complementary Languages for Reactions, Invariants,
and Mappings

Different modelling languages can be in very different relationships and
may therefore benefit from different support for specifying what is deemed
consistent and how consistency can be preserved. It is, however, always
possible to specify imperatively which updates shall be performed in reac-
tion to changes. Therefore, the reactions language is the central language of
this thesis. For many combinations of modelling languages, consistency can
also be specified in terms of invariants. Such invariants declare which con-
straints have to hold but do not specify how consistency shall be enforced.
Therefore, reactions can be triggered if an invariant is newly violated or
no longer violated after a change. In this way, the invariants language
complements the reactions language with constraint-based programming.
Finally, some consistency relationships are symmetric so that two unidi-
rectional specifications would exhibit redundant parts that can be avoided
with bidirectional specifications. For such cases, the bidirectional mappings
language provides the possibility to declare in a direction-agnostic way
how model elements, attributes, and references shall correspond. Develop-
ers can specify such mappings without considering whether updates shall
be performed in one or the other direction. They do not need to convert
checks to enforcements, or forward- to backward-assignments, because this
is done automatically when unidirectional reactions are generated from the
bidirectional mappings. In this way, the mappings language complements
the reactions language with bidirectionalization techniques.

The reactions language or any other Turing-complete language is expressive
enough to preserve consistency in a change-driven way. Constraints of
invariants can be formulated in terms of check and bidirectional consistency
relationships can be formulated using two unidirectional specifications.

143

5. A Language Framework for Consistency Specifications

This forces, however, developers to specify redundantly how invariants
shall be checked and elements that violate them shall be retrieved or how
consistency shall be preservation in each direction. In such redundant
specification parts, developers need to address challenges that are not
specific for the modelling languages for which consistency is specified. The
invariants language and mappings language provide reusable solutions for
such generic challenges of consistency checking and bidirectionalization.
With these two languages, developers can specify invariants and mappings
that complement reactions while abstracting away from details that are
only relevant if invariant violations are inspected manually or propagation
directions are made explicit. This is one of the ways in which we address
the Open Consistency Specification Language Challenge 3, which is about
missing abstractions (see section 1.2).

Abstractions that relieve developers from details of consistency preservation
are not only provided by the complementary invariants and mappings
languages but also by the reactions language. It offers constructs that
make it possible to declare which model elements and correspondences
shall be retrieved, created, or deleted without specifying how models and
correspondences are navigated and filtered. These constructs also abstract
away from technical details such as necessary clean-up steps to deleted
model links and correspondence links to deleted elements. Such steps
always have to be performed during consistency preservation regardless
of the used modelling languages. Therefore, we relieve developers from
writing explicit calls to methods that perform such steps by providing
declarative language constructs for which we generate code that performs
all necessary steps.

5.3.2. Supported Programming Paradigms

The reactions, mappings, and invariants languages support several program-
ming paradigms to ease the development of consistency preservation tools.
We already explained in section 1.2 that languages that only support either
solution- or problem-oriented programming paradigms force developers to
address challenges of consistency preservation only from one perspective
(OCSLC 2). We address this problem by supporting solution- and problem-
oriented programming paradigms in our three languages. This makes it

144

5.3. Usage of the Language Framework

possible to adapt the way how consistency is specified to the context in
which models are used and evolved.

Together, the three languages provide constructs that support the imper-
ative programming paradigm, the reactive programming paradigm, the
declarative programming paradigm, and the constraint programming pa-
radigm. In the following, we will briefly explain how these paradigms are
supported by which constructs of the three languages. Detailed presen-
tations of all language constructs are given in the according chapters for
every language.

The reactions language supports solution-oriented, imperative program-
ming but is influenced by ideas of reactive programming and also provides
problem-oriented declarative constructs: Routines for automatically updat-
ing models to restore consistency after user changes are always defined
in reaction to these changes. Some of the actions of such routines can be
defined using declarative language constructs as mentioned in the previous
section. Attribute values and links of model elements can, however, only
be updated with imperative code, which may contain variable definitions,
calls to helper methods etc.

The mappings language supports problem-oriented declarative program-
ming to preserve bidirectional consistency relationships and provides a
fallback to imperative code. It provides constructs to declare how model
elements, attributes and references shall be mapped to other elements, at-
tributes, and references. How these mappings are checked and enforced
cannot be specified with imperative language constructs but is automati-
cally derived from the mappings. It is only possible to fall back to imperative
code for specifying checks or enforcements that involve attributes and ref-
erences of one or both sides, if the provided declarative language constructs
are not sufficient. The code generator of the language bidirectionalizes
mapping specifications that are given in a direction-agnostic way. An at-
tribute mapping, for example, is specified using the common syntax of
assignment statements with an equals-sign, which assign the value of an
expression at the right of the sign to an attribute at the left of a sign. Such
an attribute mapping looks like an imperative assignment but is in fact
declarative because an assignment for the direction opposing the notational
direction is automatically derived using program inversion techniques as
explain in section 7.4.

145

5. A Language Framework for Consistency Specifications

The normative invariants language supports the problem-oriented con-
straint programming paradigm. It supports no further paradigms, and no
other language supports this paradigm. The invariants language can only
be used to define consistency constraints that always have to hold for every
instance of a given metaclass and are therefore called invariants. The lan-
guage is closely aligned to a subset of the Object Constraint Language (OCL)
and constraints only consist of a sequence of calls to methods that have no
side-effects and finally return a boolean value. In contrast to OCL, we can-
not only evaluate whether an invariant holds but also provide a mechanism
to automatically obtain those model elements that are responsible for an
invariant violation as explained in section 8.2. These elements can be used
in consistency preservation updates that are defined with the reactions
language which makes the invariants language a constraint programming
and not only a constraint checking language.

5.3.3. Expressive Power and Restrictions

Our three programming languages provide language constructs with lim-
ited expressive power in order to enable code generation and static analyzes
based on these limitations. If these language constructs would not enforce
these restrictions, it would not be possible to generate code for all possible
usages or to analyse them statically. In such cases, it is necessary to limit
the expressive power of a language part in order to provide consistency
preservation functionality that cannot be provided if everything can be
expressed. It is, however, not necessary to limit the expressive power of
the complete specification language. On the contrary, it should be possible
to specify arbitrary consistency relationships even if the language can only
provide restricted support for some of them. Therefore, we decided to make
the reactions and the mappings language Turing-complete by also providing
language constructs with full expressive power but limited assistance. In
this way, we address the Open Consistency Specification Language Chal-
lenge 1, which describes the usual dilemma of either providing particular
solutions with a restricted language or supporting all cases with powerful
but unspecific languages (see section 1.2). We will show in chapter 10 that
many languages that only provide constructs with limited expressivity pro-
vide solutions to many recurring problems but are also often too restrictive
to be used in all cases.

146

5.4. Language Integration and Alignment

The expressive power of the three languages presented in this thesis ranges
from Turing-complete to primitive recursive. Our central reactions language
is Turing-complete because it is possible to define reactions to arbitrary
changes that do not match or retrieve elements or correspondences and
only contain an update block for the changed element with arbitrary Java
code. The declarative language constructs of the reactions language, which
we already presented in the previous section, have, however, a limited
expressive power. Consider, for example, trigger statements for selecting
changes after which a reaction is to be executed or match statements for
retrieving elements corresponding to changed elements or related elements.
In both statements declarative language constructs can be used together
with blocks of almost arbitrary code but expressions with side-effects are
not supported. This restriction to expressions without side-effects also
applies to the conditions that can be defined in the invariants language.
Furthermore, it is not possible to express while-programs with it, but loop-
programs can be expressed with it. Therefore, the invariants language
can only be used to define primitive recursive functions, which will be
shown in detail in subsection 9.2.6. Finally, the mappings language is also
Turing-complete because it can simulate every single-taped Turing machine
using mappings for all metaclasses in which we fall back to custom code
for checking and enforcing consistency. This code can be arbitrary Java
code and therefore we are able to simulate any Turing machine with it. The
declarative language constructs for specifying bidirectional relationships
using direction-agnostic mappings are, however, much more limited in
terms of expressive in order to enable bidirectionalization.

5.4. Language Integration and Alighment

The language framework, which we created for the three consistency pre-
servation specification languages presented in this thesis, supports the
integration of existing languages and alignment of new languages to ex-
isting languages. In this section, we explain how we integrated a newly
developed modelling language for representing model changes into our re-
actions language. We also describe how we integrated an existing language
for Java-based method body expressions into all three languages presented
in this thesis. Finally, we explain how we extended this expression language

147

5. A Language Framework for Consistency Specifications

to obtain a side-effect free constraint language that is equivalent to a subset
of OCL.

5.4.1. ALanguage for Representing Model Changes

In order to perform the correct model updates after a model was changed
by a user, the reactions and the mappings language need to process an
abstract representation of the changes that are recorded by the used model
editor. These representations have to be independent of the used modelling
language and editor in order to make our languages applicable to different
modelling languages and editors. Furthermore, the representations have
to express which edit operations where performed by a user because con-
sistency may need to be preserved differently for different edit operations
that result in the same model state. In the literature, such representations
are called edit-based [Wag14; JR16] and contrasted to state-based and delta-
based representations of changes. Therefore, we developed a modelling
language that fulfills these requirements by supporting edit-based change
modelling in a generic way. This language is used to model changes that
can be processed by the code generated for reactions and mappings. It
was necessary to design a new change modelling language because existing
representations were developed with different pragmatics and therefore do
not provide exactly the edit operation information that should be available
in a change-oriented language.

A developer that uses a change-oriented language to specify which model
updates have to be performed after a change needs appropriate possibilities
to access all necessary change information but no more. That is, technical
details that are only relevant for the editor monitoring a change or for the
code generated for a specification should not be part of such a change model.
Furthermore, information that is required for change-driven consistency
specifications does not only need to be available in any form. All change
information should be convenientely accessible but all precision and type-
safety that is provided by the modelling languages of the changed model
has to be sustained. This is necessary because we cannot know in advance
whether it is necessary to perform fine-grained case distinctions to specify
consistency correctly with our languages. It is, for example, possible that a
developer does not only need to know whether a model element was created

148

5.4. Language Integration and Alignment

and added to a model but has to distinguish different possible insertion
targets. Such possible insertion targets can be distinguished by all properties
of the existing model element that links to the new element and by the all
properties of the reference defining this link.

5.4.1.1. Different Requirements for EMOF- and Ecore-Based Models

Different information and case distinctions are necessary to describe all
possible model changes for modelling languages that follow the Essential
Meta Object Facility (EMOF) standard or the Ecore variant. Both meta-
modelling languages and the differences between them are described in
subsubsection 2.1.3.1 and 2.1.3.2. Only two differences have a major effect
on our change modelling language and the specifications language that use
them:

1. In EMOF, properties can be typed using metaclasses or using other
data types, but in Ecore these are distinguished as references and
attributes.

2. Ecore requires that all elements except for a root element are
contained in exactly one container and EMOF only requires that all
elements have at most one container [[SO14, pp. 31-32].

If we only consider these two differences, then Ecore can be seen as a
refinement of EMOF, which only adds a more fine-grained distinction of
properties and further containment restrictions. Because of this refinement
relation, we will first describe which information is necessary to represent
model changes of EMOF-based models and then add further information
and distinctions for Ecore-based models. Finally, we briefly explain how we
made all this information available in practice using a change modelling
language.

5.4.1.2. Changesin EMOF-based Models

The generic change modelling language, which we use in our consistency
specification languages, has to be able to represent all changes that can
occur in models that conform to EMOF-based metamodels. We already
mentioned above, that different information of different type has to be

149

5. A Language Framework for Consistency Specifications

provided for different cases of changes. The case distinctions that are nec-
essary to correctly represent changes in EMOF-based models are illustrated
using a feature model in Figure 5.2. Cases are only distinguished if different
information is needed to represent a change or if different types can be
distinguished for this information. First, we distinguish between atomic
change representations and compound change representations. This distinc-
tion is not imposed by EMOF but due to goal to support representations of
all possible changes in models that may conform to arbitrary EMOF-based
metamodels. As different editors may use different composition of changes
to modify models, we solely base our distinction on the change representa-
tion: A compound change representation solely composes representations
of other changes. Change representations that are not compound according
to this definition are atomic change representations. A change in which
a model element is moved from one container to another, for example,
is represented as a compound change that consists of two atomic repre-
sentations for subtracting and adding the moved element. Often several
changes can be represented both as several unrelated changes with atomic
representations or as a single change with composite representation. Our
change modelling language provides the possibility to choose between both
representations in order to convey information on how changes occurred
and how they can be processed. This way we sustain information not only
on the result of a change but also on the edit operation that was performed
to obtain the result. If an editor monitored a single action that can be repre-
sented in both ways, then it can choose a compound representation with
several atomic representations to sustain the information that these atomic
changes occurred together. Let us consider, for example, a subtraction of an
element from one container that precedes and addition of the same element
to another container in a representation of a move change. If consistency
has to be preserved differently depending on the type of the new container,
then the information that both changes occured together may ease the
development of an appropriate preservation routine. The current compiler
of the reactions language does, however, not yet directly support compound
change representations but still handles the composed atomic changes in
isolation.

All case distinctions that are necessary for atomic changes are directly given
by EMOF. EMOF only defines classes with properties which can be ordered
and have a lower and upper bound. Elements and property values can be

150

5.4. Language Integration and Alignment

‘ Property ‘ ‘ Unset ‘ Move ‘ Replace

o

‘ Cardinality ‘

Content

‘ Order

‘ Additive ‘ Subtractive | | Permute ‘ Single

Eitq Bi@ constraints:

1. Permute = Multi
2. (Multi A Content) = (Additive @ Subtractive)
3. Single = (Additive A Subtractive)

‘ Multi

Figure 5.2.: Feature model for all changes in EMOF-based models that require dif-
ferent information or information of different types

added or subtracted but property values can also be permuted if they may
hold multiple values (constraint 1). A change of a property that can only
hold a single value always replaces a previous value even if this previous
value may be undefined. Therefore, it is not necessary to represent changes
that only add or only subtract a value of such a property. Thus, all changes
of such properties with single cardinality are additions and subtractions
(constraint 2). Additions and subtractions of values of properties that may
hold multiple values, however, can occur independent of each other. If they
occur together, this is not an atomic change according to our definition.
Therefore the only atomic changes of such properties either add or subtract a
value (constraint 3). New elements can be created and existing elements can
be deleted. Because EMOF imposes no appropriate constraints on composite
properties, such creations and deletions may but do not need to coincide
with a change of an appropriately typed composite property. All elements
can also just be added or subtracted directly from the model. Therefore,
creation or deletion is an optional feature of additive or subtractive content
changes.

151

5. A Language Framework for Consistency Specifications

During change-driven consistency preservation it is only necessary to react
to changes that result in a model that differs from the model before the
change. It would be possible to represent changes that have no effect
and leave a model unchanged with our change modelling language. Such
changes can, however, simply be discarded in the monitored editor or
during the conversion from an editor-specific change representation to our
modelling language.

5.4.1.3. Changes in Ecore-based Models

As we explained above, further cases have to be distinguished when changes
in Ecore-based models shall be represented with maximal type-safety based
on descriptions of changes for EMOF-based models. Consistency after a
change for a simple-typed attribute, for example, is usually preserved in
a more local way than consistency after a change for a reference. The
reason is that such a changed link to another model element for a reference
may also indirectly influence additional elements that link to the same
element. The additional case distinctions that are necessary for Ecore-
based models are illustrated as a feature model together with those case
distinctions that we already used for changes of EMOF-based model in
Figure 5.3. Changes of attributes and references have to be distinguished
because they have to represented using old and new values of the correct
complex or simple types. Ecore distinguishes between a single root element
without an incoming containment link and all other non-root elements
with exactly one incoming containment link. Therefore, changes in which a
root element is added, replaced, or removed cannot be handled like changes
to containment references in which non-root elements are added, replaced,
or removed. Furthermore, attribute values have no mutable properties
and therefore do not need to be created nor deleted. Values of references,
however, are model elements with mutable properties so they need to be
distinguished from other elements with currently equivalent properties
and can also be created and deleted. Therefore, creations and deletions
only occur when an appropriately typed containment reference is changed
but not when attribute values are added or subtracted (constraint 4). If an
element is created, a reference value or root element was added (constraint
5). Similarly, if an element is deleted, a reference value or root element was
subtracted (constraint 6). Other root changes than additions or subtractions

152

5.4. Language Integration and Alignment

‘ Unset ‘ ‘ Move ‘ ‘ Replace ‘

Operation Existential

‘ Additive

‘ Order ‘ Root ‘ Feature ‘ ‘ Create ‘ ‘ Delete ‘

‘ Permute | | Type Cardinality

. ‘ ‘ Multi ‘

‘ Attribute ‘ ‘ Reference ‘

constraints: 4. Existential = (Root @ Reference)
1. Permute = Multi 5. Create = (Additive @ Root)

2. (Multi A Content) = (Additive & Subtractive) 6. Delete = (Subtractive & Root)
3. Single = (Additive A Subtractive) 7. Root = (Additive & Subtractive)

Figure 5.3.: Feature model for all changes in Ecore-based models that require differ-
ent information or information of different types

of elements are not possible (constraint 7). Whether a containment or
non-containment reference was changed is not explicitly distinguished in
Figure 5.3 because this information can be obtained from the reference.
If we would have displayed feature attributes such as new values or a
containment flag for references, we would have needed to state in constraint
4 that existential changes can only be applied to containment references.

5.4.1.4. Realizing the Change Modelling Language

In the previous sections we described which cases have to be distinguished
when changes in EMOF- or Ecore-based models have to be represented.
It is, however, more complicated to explain which information of what
type is necessary in which cases. Therefore, we provide two class diagrams
and a textual description that explain the change modelling language from
different perspectives. The class diagrams are structured using the different
cases and list for each case which information is necessary. Figure 5.4 shows
all 12 metaclasses that are not abstract together with the information they
provide regardless of the hierarchy of abstract metaclasses that is used to
introduce this information using inheritance. The complete metamodel,

153

5. A Language Framework for Consistency Specifications

which we provide in ?? in the appendix, shows this hierarchy and therefore
does not repeat inherited attributes, references, and operations.

The following textual description is not structured by the distinguished
cases but by the provided information. For all information carried by an at-
tribute or a reference in the metamodel, we list all cases that are represented
as atomic changes in which the information is provided. Operations are
omitted for the sake of brevity. The element and feature that are affected
by a feature change, are provided in all atomic change descriptions except
for the two changes of inserting or removing a root element. A new value
is provided, if an attribute value or reference link is inserted in a list of
multiple values, or if a single attribute value or reference link is replaced.
Similarly, the old value is provided, if an attribute value or reference link
is removed from a list of multiple values or if a single attribute value or
reference link is replaced. The information at which index an attribute
value or reference links were inserted or removed in a list, is provided in
exactly these cases. A new index for all items at every former place, is
provided if lists of multiple attribute values or reference links are changed.
If a reference link is inserted in a list of multiple values or if a single refer-
ence link is replaced, then a flag isCreate is used to state whether the newly
linked element already existed before. Similarly, a flag isDelete is used to
denote whether the removed element still exist afterwards. Both flags are
necessary because a change of a containment references may be part of a
compound change, such as a move operation, and does not always need
to imply a creation or deletion of an element. Finally, a unique resource
identifier is provided if root elements are added or removed.

For compound change representations, it is not beneficial to structure the
description along the provided information because it is different for each
compound change except for an operation that simply returns all atomic
change descriptions. Therefore, we explain the provided information for
each change with compound representation. If a feature of a model element
is explicitly unset, then a change for every value that is subtracted due
to the unset change is provided. In case of a subsequent removal and
insertion of a value at the same position in a list, these two atomic changes
are provided together in a compound replace in list change. Finally, if a
model element is moved, then four atomic changes that represent which
model element links no longer or newly to the moved element using which
reference are provided.

154

5.4. Language Integration and Alignment

InsertEAttributeValue | | RemoveEAttributeValue | |ReplaceEAttributeValue
affectedEObject:A affectedEObject:A affectedEObject:A
affectedEFeature:F affectedEFeature:F affectedEFeature:F
newValue:T oldValue:T oldValue: T
index:int index:int newValue:T
fromNonDefault:bool
InsertEReference RemoveEReference toNonDefault:bool
affectedEObject:A affectedEObject:A
affectedEFeature:F affectedEFeature:F ReplaceEReference
pewVelue:T f)ldVa.l}Je:T affectedEObject:A
%ndex.mf | }ndex.mj[affectedEFeature:F
isCreate:boo isDelete:bool oldValue:T
isContainment():bool isContainment():bool newValue:T
fromNonDefault:bool
InsertRootEODbject RemoveRootEObject toNonDefault:bool
newValue:T oldValue:T %sCreate:bool
isCreate:bool isDelete:bool isDelete:bool
uri:String uri:String isContainment():bool
ExplicitUnsetEFeature MoveEObject ReplaceInEList
subtractiveChanges: subtractWhatChange:S removeChange:R
EChange[] | |subtractWhereChange:T | |insertChange:I
getAtomicChanges(): aggwgatcgﬁnge:é getAtomicChanges():
EChange[] addWhereChange:B EChange[]
getAtomicChanges():
EChange[]

Figure 5.4.: Metaclasses of the change modelling language that are not abstract with
all features directly and indirectly declared for them (simplified names and types,
no permutation changes)

5.4.2. Reusing a Java-Based Expression Language

To relieve developers from learning completely new programming lan-
guages and to keep our languages small, we reuse an existing Java-based
expression language. This reuse allows developers to write expressions
using a syntax and semantics that they are already familiar with. By embed-
ding the reused expressions language into the grammars for our consistency
preservation languages the size of these grammars is reduced. This also
reduced the effort to realize the compilers for the languages.

155

5. A Language Framework for Consistency Specifications

The reused expression language is called Xbase [EV06] as it can be used
as a base language for all languages that are created using the language
development framework Xtext [Eff+12]. We call it Java-based because the
compiler directly produces Java code and because the language syntax is
based on the syntax of Java. Some parts of this reused Xbase language,
such as variable assignments or method invocations, are identical to the
statements and expression in Java methods. Other parts, such as variable or
field declarations, are almost identical. Additional language features without
counterparts in Java, such as type inference or null-safe field access and
method invocations, are provided in an optional way. This way, developers
that learn to use the languages presented in this thesis can start writing
expressions that are almost identical to Java. When they become more
familiar with additional features of the reused expression language, they
can start to gradually use these features to write simpler expressions, e.g.
without explicit types or null checks. Because of the similarity to Java and
the possibility for flexible deviation from it, Xbase can also be seen as a
dialect for Java method body expressions.

The main difference between the reused Xbase language and Java is that
it does not distinguish between statements that do not return a value and
expressions that do return a value. Everything in the reused expression
language Xbase is an expression and all expressions except for variable
declarations do return a value. The control flow, for example, is influ-
enced using loops and conditional branches like in Java, but these language
constructs are also expressions that return the value that is returned by
the last expression in their block. Such blocks may also contain variable
declarations, which do not return a value as mentioned above. Therefore,
the last expression of a block may not be a variable declaration.

We reuse single expressions and expression blocks of the Xbase language in
two ways in our languages. Single expressions, which may not be variable
declarations, are used in many places but expression blocks are only used
to fallback to imperative code in special places as mentioned in subsec-
tion 5.3.3. The reason is that the consistency preservation specifications
that are created with our languages should use declarative language con-
structs whenever this is possible in order not to repeat code that could be
generated. Basic expressions, such as value comparisons or assignments
of variables, however, would result in the same Java code regardless of
the language constructs that we provide for them. Therefore, we decided

156

5.4. Language Integration and Alignment

to reuse the Xbase language for such single expressions in our languages
because implementing particular language constructs with the same func-
tionality would not provide any benefit. When we fall back to complete
expression blocks in the reactions and mappings language, the reason for
reuse is, however, different. Developers can write such fallback blocks
because we intentionally did not design declarative language constructs for
every possible way to achieve what is considered consistent in a certain
context. We reuse expression blocks when consistency specifications need
to be expressed in a way for which we did not design language constructs
with different functionality and not because we did not implement single
expressions with the same functionality.

Because of these two different ways of reusing expressions where it is
possible and expression blocks where it cannot be avoided, their usage in
consistency specifications can have different meaning. Single expressions
are no pointer to potential deficits of our languages and cannot be overused.
Expression blocks, however, may be used in situations where additional
language features could be useful and they can be misused when declarative
language features are available.

5.4.3. An OCL-Aligned Expression Extension

We extended the expression language to provide possibilities for navigating
and inspecting models without side-effects similar to OCL. This extension
was developed for the invariants language, but it can be used in all three
consistency specification languages. It provides the functionality of many
OCL operation body expressions [ISO12c¢, pp.42] and uses a similar concrete
syntax. This way, developers that are already familiar with OCL do not
have to learn many differences. Furthermore existing OCL expressions
are automatically converted to expressions of the extended language (see
subsection 9.4.3). In contrast to OCL, our OCL-aligned expression extension
does not need to be interpreted based on a given model instance. The
compiler produces Java code for all OCL-aligned extensions, which allows
static analyses and direct debugging.

The main focus of our OCL-aligned extension was to create equivalent
methods for collection operators [ISO12c, pp.156—168] and iterators of
OCL [ISO12c, pp. 168—174] and make them available in all expressions. In

157

5. A Language Framework for Consistency Specifications

OCL Xbase Expression in extension method

<> 1= -

size size -

includes contains -

excludes - lcoll.contains(elem)

includesAll | containsAll | -

excludesAll - coll2.forAll[!colll.contains(it)]

isEmpty empty -

notEmpty - 'coll.empty

max max -

min min -

product - colll.forEach[el]
coll2.forEach[result.put(el,it)]
1

Table 5.1.: OCL collection operators and corresponding methods of the reused Xbase
language and our OCL-aligned extension

the UML metamodel, more than 80% of the OCL invariants consists of such
collection operator expressions, iterator expressions, or of feature access
expressions that can be trivially expressed with the reused expression lan-
guage [Fis15, p.40][FKL16, p.201]. An overview of the provided collection
operators and iterators is given in Table 5.1 and Table 5.2 in the order in
which they appear in the OCL standard. For every OCL operator or itera-
tor in these tables, we either provide the equivalent method of the reused
Xbase language or the expression with which we implemented an extension
method that provides the same functionality using the same name. We do
not show parameter declarations for collection parameters coll, colll, or
col12 and for element parameters elem. The only parameters that we make
explicit are predicates for a single element p, double predicates for two
elements dp, and functions f. Both tables list methods that we implemented
using lambda expressions, which allow in-line definitions of methods. In
the reused Xbase language these lambda expressions are enclosed in square
brackets [...] in order to distinguish them from arguments of method
invocations, which are enclosed in parentheses as in Java. Lambda expres-
sion either have an implicit parameter it or explicit parameters that are

158

5.4. Language Integration and Alignment

OCL Xbase Expression in extension method

iterate fold -

exists exists -

exists(dp) - coll.product(coll).exists[dp]

forAll forAll -

forAll(dp) - coll.product(coll).forAll[dp]

isUnique(f) - coll.groupBy[f.apply(it)]
.values.forAll[it.size == 1]

any findFirst -

one(p) - coll.filter(p).size ==

collect flatten o map | -

select filter -

reject(p) - coll.filter[!p.apply(it)]

collectNested | map -

sortedBy sortBy -

Table 5.2.: OCL iterators and corresponding methods of of the reused Xbase language
and our OCL-aligned extension

declared at the beginning of a lambda expression and separated using a
pipe character |.

We make the methods that are equivalent to collection operators and it-
erators of OCL available using an syntactic extension mechanism of the
reused Xbase expression language. With this extension mechanism we
can invoke a static utility method of another class as if it was a non-static
method that is available in the class of the first argument. As a result, a
developer does not need to distinguish between methods that are directly
available for fields or variables of a certain type and methods that extend
such a type using this mechanism. Technically, the extension mechanism
can be seen as the counterpart of how non-static methods are invoked on
the Java Virtual Machine (JVM) by passing the object on which a method is
invoked as the implicit first argument [Lin+14, p.52]. We implicitly import
the methods equivalent to collection operators and iterators whenever one
of our three languages is used. This way, it is possible to invoke these OCL-
aligned methods on collections as if they were defined in the collections
API of the Java language or as if they were provided using special language
constructs.

159

5. A Language Framework for Consistency Specifications

The collection operators and iterators provided in the OCL-aligned expres-
sions extension can be used to write code that should have no side-effects
just like OCL code would. Although the reused expression language Xbase
is not restricted in this way, it provides an annotation @Pure that can be used
to mark methods that have no side-effects. We are using this annotation
and a user-defined whitelist with methods that have no side-effects but
cannot be annotated with this annotation, for example, because they are
part of a library. Our current compiler prototypese produce warnings if
it is not certain that code that should not have any side-effects only calls
such pure methods. Both, the static code analysis and the inital whitelist
entries of library methods will be improved in future work to reduce the
number of false alarms.

5.5. Technical Realization and Code Generation

In this section, we explain how we realized the identification and retrieval
of corresponding elements as well as code generation for languages of
our framework. These steps are important because without our specifi-
cation languages developers often have to implement their own retrieval
mechanisms or have to understand a lot of generated code.

5.5.1. Retrieving Model Elements and Correspondences

To preserve consistency between elements of different models and mod-
elling languages, they have to be accessed and corresponding elements have
to be retrieved. For this, model elements have to be uniquely identified,
which we will explain in the following.

5.5.1.1. Temporarily Unique Identifiers

If consistency has to be preserved between model elements, it is necessary
to keep track of elements that are already consistent to each other. To
this end, every model element has to be uniquely identified throughout
consistency preservation independent of the question whether and how

160

5.5. Technical Realization and Code Generation

models are persisted. Appropriate identifiers are, however, not always
directly available for models of every modelling language. A common
reason is, for example, the use of a textual syntax for models or code. In
such cases, additional mechanisms are needed to identify model elements. If
explicit identifiers cannot be added to existing models or code, then implicit
identifiers have to be derived from properties of model elements.

An identifier for a java method, for example, can be derived from the
identifier of the class that declares the method, the return type, the method
name and the parameter types. According to the Java language specification
this identifier has to be unique!. If a method is, for example, renamed, its
identity has to be preserved if additional information in other models that
are kept consistent should not be lost [LK14]. The new identifier of the
method has again to be unique, but it is different from the old identifier.
Therefore, it is not sufficient to derive the identifier once from the current
properties of a model element. Instead, identifiers have to be recomputed
after changes that affect properties that were used to derive the identifier.

Often identifiers are hierarchical, that is an identifier of one element can
influence many identifiers of elements that depend on it. A package in
Java, for example, is used when the identifiers of all classifiers in all direct
and indirect subpackages are derived. Even worse, a package identifier
indirectly influences the identifiers of all fields and methods of these classi-
fiers. Therefore, a renamed package results in new identifiers for all these
subpackages, classifiers, fields and methods. This demonstrates that a local
change of a single property that is used to derive an identifier may change
identifiers of many other elements if these identifiers are hierarchically
constructed.

A common non-functional requirement for code that reacts to a model
change is that the performance of the code only depends on the size of the
change and not on the size of the model. As we explained above, the worst
case for a single model change is that the number of changed identifiers
is only limited by the total number of model elements. Therefore, such
requirements can only be fulfilled if several identifiers can be changed
in a single computation step. One possibility to achieve this is to use a
data structure that links identifier substrings to common predecessors and
provides fast forward identifier resolution, for example, based on hashes. In

1 see docs.oracle.com/javase/specs/jls/se7/html/jls-8. html#jls-8.4.2

161

https://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4.2

5. A Language Framework for Consistency Specifications

our current prototype, we use such a data structure to store all temporarily
unique identifiers of model elements.

5.5.1.2. Correspondences for Witnessing Consistency

The model element identifiers described above are used to document which
elements are already consistent to which other elements. We call such
a witness structure for consistency correspondence and already formally
introduced this term in Definition 23 of subsection 4.1.1. In our prototype,
such correspondences for model elements are registered and persisted us-
ing identifiers. This is used to retrieve corresponding model elements, i.e.
elements of models that were created using other modelling languages
and for which a correspondence is registered. For this, an identifier is
derived for the given element and the identifiers of corresponding elements
are resolved to obtain these elements. In most cases, developers that use
the specification languages of our framework do not need to take into
account when and how temporarily unique identifiers are derived, updated,
or resolved. Furthermore, they do not need to ensure, for example, that cor-
respondences for deleted elements are deleted as well or how multiplicities
of corresponding elements and string tags that mark correspondences are
handled.

5.5.1.3. Accessing Elements of Different Models

Another important are in which developers can be relieved from technical
details during consistency specification is model persistence and model
boundaries. To preserve consistency between model elements technical
details of model persistence are mostly irrelevant. Of course, all model
elements have to be persisted, but a developer that specifies which elements
have to co-occurr should not need to consider where and how these elements
are persisted. Therefore, our prototype gives developers the possibility to
add elements a model by only specifying a file path for the model and
an identifier for a container element in the model. They do not need to
consider whether the model already exists at the given path, whether it is
currently loaded, or when it is saved because this is not relevant. Instead,

162

5.5. Technical Realization and Code Generation

all models are automatically created, loaded, and saved whenever this is
necessary for consistency preservation.

In the future, we also want to relieve developers from considering model
boundaries and file paths. Model elements should only have global identi-
fiers and automatically be added to models that are persisted at predefined
paths. This should be realized with rules for metaclasses for which instances
may be root elements that define how a file path is obtained for such a
root element. Such a technique would be especially helpful for modeling
languages with model boundaries that have no semantics, e.g. compilation
units of textual languages. In Java, for example, a classifier of a compilation
unit refers to other classifiers in other compilation units. These compilation
units act as model boundaries and define a file path for the classifiers. For
consistency preservation, they have, however, no semantics as developers
only need to specify which classifiers of which packages should be kept
consistent regardless of compilation units.

5.5.2. Generating and Executing Consistency Preservation
Code

We already explained the process of change-driven consistency preservation
from the perspective of developers that specify consistency and users that
change models in subsection 5.2.1. In this section, we will briefly describe
important steps of code generation and execution that are not noticed by
developers until they start to debug their consistency specifications.

So far, we only explained that changes that are performed by a user on
a model are monitored to trigger consistency preservation updates on a
model of another modelling language according to a specification. This
explanation skips, however, intermediate steps of the consistency preser-
vation process. Therefore, we provide and explain an extended extract of
Figure 5.1 in Figure 5.5. It refines how a monitored editor triggers con-
sistency preservation updates and that these updates do not only update
a model but also correspondences. The input for consistency preserva-
tion updates are generic change models. These models are created from
change descriptions that are specific for monitored editors with different
technical realizations. Consistency preservation updates have no explicit

163

5. A Language Framework for Consistency Specifications

N—
v R
/‘\ /—\
/
III) generates 5a) update | refer to ,/ refer to T lar) changes
‘ 1 ’
consistency correspondences HJ
preservation 5a) update developer
updates 1a) uses
4) drives 3) transformed to monitored editor
eneric change specific change
& Chang 8 Chang 2) produces

description description

legend:
III) specification time 1)-3) development time

Figure 5.5.: Process for executing consistency preservation updates based on change
descriptions and correspondences

output but directly perform updates on models and correspondences. These
correspondences are created or updated between elements of models that
were created using the two modelling languages for which consistency is
specified. A single change may lead to the execution of several consistency
preservation updates, which may alter several models with elements that
directly or indirectly correspond to the originally changed element. We
will, however, not explain in this thesis how the updates to be executed are
technically selected for a given change.

All code that is executed to preserve consistency according to specifications
that were created using a language of our framework can be separated into
three parts according to Volter and Stahl [VS06, p. 15].

1. Generic code, which is independent of the modelling languages for
which consistency is preserved and independent of the
specifications according to which consistency is preserved.

2. Repetitive code, which depends on the modelling languages and
specifications but can be generated from usages of declarative
language constructs in the specifications.

164

5.6. Conclusions and Future Work

3. Individual code, which is copied from expressions and fallback code
blocks of specifications during code generation.

To address Open Consistency Specification Language Challenge 4 we strictly
separated these code parts during code generation. Individual code is di-
rectly copied with as few modifications as possible so that developers can
easily debug these code parts in the way that they would expect from a gen-
eral purpose programming language. During the generation of repetitive
code we try sustain type and naming information. The goal is that develop-
ers can easily understand which parts of the consistency specifications they
develop result in which code and what a potential change in a specification
would mean for the generated code. Finally, generic code is not generated
for every specification but only realized once as part of the framework
and called from generated code. This gives developers the possibility to
comprehend which consistency preservation behavior is generic and can
only be indirectly influenced when other calls to generic code are generated
for specification alternatives.

5.6. Conclusions and Future Work

In this chapter, we have presented a framework for the consistency preser-
vation languages of this thesis. We have introduced central concepts for
preserving consistency in reaction to changes and according to consistency
specifications. To explain how we address the Open Consistency Specifica-
tion Language Challenge 3 and 4, we have discussed why we developed new
languages instead of providing libraries for existing languages. Further-
more, we have explained how the languages for consistency preservation
specifications complete each other in order to support several programming
paradigms to counter Open Consistency Specification Language Challenge
2. We have also shown how we extend an existing expression language
and how we integrate this language and a change modelling language into
our framework. This way, we have demonstrated how to combine the ad-
vantages of a powerful general purpose language and of specific solutions
for change-driven consistency preservation to counter Open Consistency
Specification Language Challenge 1. Finally, we have explained how we

165

5. A Language Framework for Consistency Specifications

realize the retrieval of corresponding elements and how code is generated
and executed to preserve consistency according to specifications.

Altogether, this chapter makes first contributions to answering our research
question 2 and its subquestions 2.1-2.4 (see section 1.3). In the following
three chapters, we will present each language individually and we will
discuss how we designed these languages to address challenges of current
consistency specification languages. This way, we will complete and further
explain the initial answers to research question 2, which we presented in
this chapter.

We suggest to put the focus of future work for the language framework
especially on two topics: compound changes and code validation. The
current prototype handles an individual change that is part of a compound
change representation without considering sibling changes, as we already
mentioned above. In the future, we want to give developers the possibility
to specify consistency preservation for compound change representations
and for the atomic change representations they contain. We are planning
to realize further static code analyses in order to validate that restrictions
on the usage of the powerful expression language are respected. This way,
we will support the developer in avoiding unwanted side-effects even if no
special language constructs but ordinary expressions or helper methods
are used.

166

6. AnImperative Language for
Universal Consistency
Preservation Reactions

In this chapter, we present our change-oriented language for consistency
preservation reactions, which is also the basis of the two other languages for
invariants and mappings. It can be used to specify reactions that preserve
consistency by updating models of one language after a user changed a
model of another language. The reactions language provides declarative ele-
ments for typical consistency preservation actions, such as the management
of corresponding elements. It also includes check expressions and imper-
ative model manipulations, which are based on the expression language
Xbase [EV06] and our OCL-aligned extension (see subsection 5.4.2 and 5.4.3).
Therefore, the reactions language is a universal language for unidirectional
consistency preservation reactions. It can be complemented with invariants
and bidirectional mappings using the two languages presented in the next
chapters.

We designed the reactions language together with Heiko Klare, who also
implemented a compiler and generator for the language using the language
development framework Xtext [Eff+12]. His master’s thesis [Kla16], which
was supervised by the author of this dissertation, provides further back-
ground information on how we realized the reactions language and also
additional rationale for fundamental design decisions.

167

6. An Imperative Language for Consistency Reactions

6.1. Overview: Triggers, Retrievals, and Actions

The reactions language separates change-driven consistency preservation
into three main steps with different objectives and restrictions:

1. Triggering reactions according to the type and properties of a user
change

2. Retrieving model elements that correspond to elements of the
changed model

3. Performing actions on retrieved elements and managing
correspondences

For the first trigger step, the developer specifies for which changes a reaction
is responsible by inspecting the occurred change. The models of the two
modelling languages do not need to be taken into account in this first step.
If the reaction is responsible for the change in a model of one language, then
the retrieval step is used to obtain elements of models of the other language,
for which correspondences were established in previous reactions. Actions
are only performed if all elements that are necessary for a reaction and that
fulfill the optional retrieval conditions were successfully retrieved. Only
in this last step, the retrieved model elements and all elements accessible
through them may be modified. The model in which the change occurred
and all other models of that language cannot be modified in any of these
steps. This is necessary to prevent endless cycles of changes and consistency
preservation reactions. The individual language constructs for these three
steps are already sketched in Listing 6.1.

The goal of partitioning all activities of a reaction in this way;, is to reduce
the risk for developers to develop reactions with unwanted side-effects or
code that is unnecessarily complex. We carefully designed the language in
a way that imposes restrictions on exactly these reaction activities that may
be restricted without compromising the expressive power of the complete
language. These restrictions give developers the possibility to choose from
a limited number of building blocks for each step of consistency preserva-
tion reactions but also allow arbitrary actions in the last step. In this way,
developers can be guided through the process of specifying consistency
preservation reactions without restricting the language to certain use cases.
The restrictions make it impossible to alter models while checking the

168

6.2. Running Example: Component Models and OO Design

reactions Consistent0OorADL
in reaction to changes in adl
execute actions in oo

after // trigger definition ...

1

2

3

4

5 reaction {
6

7 call aSpecificRoutine(...)
8

}
9
10 routine aSpecificRoutine(...) {
11 match {
12 // retrieve corresponding elements ...
13 }
14 action {
15 // perform actions and manage correspondences ...
16 }
17 '}

Listing 6.1: Stub of a reaction illustrating the main language constructs and
three steps of change-driven consistency preservation

responsibility of a reaction or while checking conditions on candidate ele-
ments for correspondence retrievals. In this sense, developers are protected
during the specification of triggers and retrievals. The need for providing
specific language support and full expressive power was motivated as Open
Consistency Specification Language Challenge 1 in section 1.2. Semi-formal
sketches for proving that the constructs of our reactions language cover all
possible cases will be provided in subsection 9.2.4.

6.2. Running Example: Component Models and
Object-Oriented Design

In this section, we introduce a scenario, in which component-based ar-
chitecture models are kept consistent with an object-oriented design, as
a running example of consistency preservation. This example is inspired
from a case study, in which we preserved consistency between models
that are created using an Architectural Description Language (ADL) and
Java code (see subsubsection 9.4.4.1). We do, however, leave out details of

169

6. An Imperative Language for Consistency Reactions

the original case study that are not necessary to explain the syntax and
semantics of the reactions language. Thus, the modelling languages and
consistency requirements of our running example represent a simplified
subset of the languages and requirements used in the case study.

6.2.1. Component-Based Architecture Models

In the running example, we represent component-based architecture models
using an ADL for which we present a metamodel in Figure 6.1. Such a model
contains a repository, which has a name. A repository contains compo-
nent interfaces which declare service signatures, and reusable components,
which provide and require these services. Components and component
interfaces are both identified using unique names. A component interface
groups services that are required or provided together. For each of these
services, the component interface declares a signature. Such a service sig-
nature consists of an optional return type, a service name and parameters
that have a name and a type. These return and parameter data types can
either be simple types, such as integer types, or complex types. A complex
type either represents a collection of several values of the same data type
or a composition of values of different data type. Apart from the name
and the signatures, a component interface contains no further information,
for example, on how a service shall be realized. A component references
component interfaces to denote which services are provided by the com-
ponent and which services are required. Two service signatures of two
different component interfaces can be identical and a component interface
can be provided or required by several components [Rhi07]. In our running
example a component has no further properties than its name and these
provides and requires relations. The reason for this simple component
representation is that we do not need, for example, components that are
internally realized by composing components. Information on the ADL
used in the case study that inspired this running example, is provided in
subsubsection 9.4.4.1.

170

6.2. Running Example: Component Models and OO Design

Repository Component Interface Service Signature
name:String name:String name:String
| interfaces | 1 1 signatures | 1.
1| repository provided interfaces | 1.*
1.* | components
0.* | required interfaces
Component
name:String parameters
Parameter -
name:String L
returnType
type |1 ! 0.1
SimpleType DataType ComplexType
name:String
composedTypes | 1.* 1| collectedType
CollectionType CompositionType
I

Figure 6.1.: Class diagram showing a simplified metamodel for models of component-
based software architectures

6.2.2. Object-Oriented Design

The object-oriented design of a system is represented in our running exam-
ple using classes and interfaces as shown with a metamodel in Figure 6.2.
These interfaces and classes are two different types of classifiers and are
always contained in a package. For the running example it is irrelevant
whether these classifiers and packages are defined in text files using an
object-oriented programming language, such as Java, or in models using
a modelling language, such as the Unified Modeling Language (UML). A
package has a name and may have a parent package. In such a case the
package is called a subpackage of its parent package and this parent package
references all its subpackages. An interface in the object-oriented design

171

6. An Imperative Language for Consistency Reactions

subpackages | 0.* 0,,1aparent

Field type Classifier Package
name:String 1 name:String name:String
T 0.*| content 1?package
0.” | declaredFields
I
Class 1| type Parameter
0..1 | returnType name:String
0.* | parameters
0.* | implementedInterfaces)

Interface 1 Method

declaredMethods | hame:String

Figure 6.2.: Class diagram showing a metamodel for object-oriented designs that is
simplified as needed for our running example

declares methods with a method name, parameters, and an optional re-
turn type, which is a classifier. A parameter is typed using a classifier
and has a name. Classes have a name and declare which interfaces they
implement. They also declare fields, which have a name and are also typed
using a classifier. In our running example, classes only define methods that
are declared in the interfaces implemented by the class. Other methods
and constructors as well as other essential concepts of object-orientation,
such as class inheritance or interface extension, are not necessary in our
running example. In subsubsection 9.4.4.1, we explain how we reused a
special printer and parser for Java in order to treat Java code like any other
model.

6.2.3. Consistency Requirements

The consistency requirements of our running example demand correspon-
dences between repositories and packages, between components and pack-
ages, between components and classes, and between component interfaces
and interfaces of the object-oriented design. A repository corresponds to a
root package with the same name that has three subpackages for compo-

172

6.3. Reactions and Separate Reaction Routines

nent interfaces, data types, and components. Every component corresponds
to a subpackage in the components subpackage of its repository and to a
component-realization class. The component interfaces of a repository cor-
respond to an interface in the subpackage for component interfaces of the
repository root package. Service signatures in component interfaces corre-
spond to method declarations in the interfaces of the object-oriented design.
Simple data types have equivalent counterparts in the object-oriented design
and complex data types correspond to classes in the data types subpackage
of the repository root package. A class corresponding to a collection data
type extends an existing collection class of the object-oriented language
using the class corresponding to the inner type of the collection data type
as type parameter for the extension. Classes that correspond to a composite
data type declare a field for every inner type of the composite data type that
is types using the class corresponding to the inner type. A provides relation
between a component and a component interface corresponds to a imple-
ments relation between the corresponding component-realization class and
the corresponding interface of the object-oriented design. Finally, every
requires relation between a component and a component interface corre-
sponds to a field declaration in the corresponding component-realization
class that is typed using the corresponding interface. The original consis-
tency requirements for the case study, which inspired this running example,
were presented in a conference article [Kra+15]. They are explained in
more detail by Klare [Kla16] and Langhammer [Lan17].

6.3. Reactions and Separate Reaction Routines

Before we introduce the features of our reactions language, we explain the
overall structure of consistency preservation specifications that are created
with it. With our reactions language, consistency preservation is specified
in terms of reactions that define a trigger and call reaction routines. In
these reaction routines, elements are retrieved and actions are performed in
two subsequent routine parts. The main steps of consistency preservation
reactions, which we introduced in section 6.1, are expressed as triggers
of reactions and as retrieve and action parts of called reactions routines.
This relation between reactions, triggers, routines, retrievals, and actions
is also depicted in Figure 6.3. A reactions specification defines reactions

173

6. An Imperative Language for Consistency Reactions

Metamodel -
- Trigger
nsURI:String
executionTarget| 1 1 changeSource 1 | trigger
Action | L ReactionsSpec | g L Reaction
actions reactions | name:Identifier
1.7 | routines
1.7 | calls
Retrieval 0 - Routine 0.F| RoutineCall
— % name:Identifier |
retrievals calledRoutine

Figure 6.3.: Simplified class diagram with central metaclasses for representing con-
sistency preservation reactions in an AST

and routines that are executed in instances of one metamodel in reaction
to changes that occurred in instances of another metamodel. The first of
these metamodels is called execution target metamodel and the second is
called change source metamodel Metamodels are identified using the unique
resource identifier of their namespace and reaction routines are identified
using their unique names. A reaction has a trigger and calls one or several
reaction routines. These reactions routines can but do not need to retrieve
elements in instances of the execution target metamodel that correspond
to elements in instances of the change source metamodel. Every reaction
routine has to define at least one action to be executed.

For our running example, which we introduced in the previous section, we
can create a reaction to preserve consistency after a creation of a component
in the architectural model. This reaction only has to be triggered whenever
a component is created. Apart from this trigger definition it only contains a
call to a reaction routine. This routine specifies the retrieval of a package for
components which corresponds to the repository in which the component
was created. After this, it defines an action that has to be executed to create
the subpackage and component-realization class in the object-oriented
design as corresponding elements for the component of the architectural
model.

174

6.3. Reactions and Separate Reaction Routines

It is not necessary to separate triggers from retrievals and actions to support
the definition of arbitrary consistency preservation reactions. Reactions
could also directly contain triggers, retrievals, and actions. And it would be
possible to support reactions with calls to explicit routines and reactions
with direct retrievals and actions that are implicitly put into a nested routine
that is implicitly called. We had initially chosen to support these two reac-
tion types with our language. Finally, we decided to only support explicit
routines in order to keep the reactions language simple and to always bene-
fit from names and type restrictions of explicit routine parameters. Explicit
reaction routines give developers the possibility to declare parameters with
names that are meaningful for the specific reaction routine. In a reaction
definition, all change information is available and can be used to decide
whether the reaction should be triggered and as arguments for calls to
reaction routines. During the retrievals and actions of a reaction routine,
change information is only available if it was provided as an argument in
the call of the reaction routine. With implicit reaction routines, retrievals
and actions have to obtain direct access to all generic change information
and developers do not need to provide names and type restrictions for this
information.

The reaction for our running example, which we described above, can also
benefit from separated reaction routines. Exemplary code for the reaction
to a component creation is given in Listing 6.2. Instead of calling a single
routine that retrieves the package for components, creates a subpackage cor-
responding to the created component, and creates a component-realization
class, we call a separate routine that calls two further routines named cre-
ateSubpackage and createClass. For this, we have to obtain the created
element, which is a component, from the change for which we define a
reaction (line 7). The first routine (line 10) has a parameter for this com-
ponent and retrieves the package for components that corresponds to the
repository of the given component (line 11-15). It passes this components
package and the component to a call of a second routine (line 18) to create
a subpackage corresponding to the created component. The called routine
returns the created subpackage (line 17). This subpackage is passed as an
argument to a call to a third routine that creates a component-realization
class (line 19). Further arguments of this call are the created component
and a suffix “Impl” that is appended to the name of component to obtain the
name of the component-realization-class. As the component is provided as

175

6. An Imperative Language for Consistency Reactions

reactions ConsistentO0OorADL
in reaction to changes in adl
execute actions in oo

1

2

3

4

5 reaction {
6 after element adl::Component created

7 call createSubpackageAndClass(change.newValue)

8}

9

10 routine createSubpackageAndClass(adl::Component component) {
11 match {

12 val componentsPkg = retrieve oo::Package

13 corresponding to component.repository

14 tagged with "componentsPackage"

15 }

16 action {

17 val subPkg =

18 createSubpackage (componentsPkg, component, component.name, "")
19 call createClass(subPkg, component, "Impl")

20 }

21 }

Listing 6.2: Reaction to the creation of a component in an architecture model
by creating a package and a class in the object-oriented design

an argument, the routine createSubpackageAndClass is not concerned with
the change that led to a call of this routine and which change properties
were used to yield this argument.

To demonstrate that routines can be called to achieve different reactions
for different changes, we also provide the code for the two called routines
createSubpackage and createClass in Listing 6.3. The first routine is a
general routine for creating a package. It does not only create the package
but also initializes attributes and references of the new package in order to
add it as a subpackage to a given parent package and to set its name a given
string (line 4-7). Furthermore, it registers a new correspondence between a
given element of an architectural model and the newly created subpackage
for a given string tag (line 8-9). The routine is even used to create the
root package in the object oriented design (see line 7 of Listing 6.4 on page
183). This is possible because the parent package reference initialization
has no effect if no parent package is provided (line 5). The second routine

176

6.3. Reactions and Separate Reaction Routines

1 routine createSubpackage(oo::Package parentPkg,

2 adl::Element correspElem, String name, String newTag) {
3 action {

4 val subPkg = create o00::Package and initialize {
5 subPkg.parent = parentPkg

6 subPkg.name = name

7 }

8 add correspondence between correspElem and subPkg
9 tag with newTag

10 }

11 return subPkg

12 }

13

14 routine createClass(oo::Package parentPkg,
15 adl::NamedElement namedElem, String nameSuffix) {
16 action {

17 val class = create 00::Class and initialize {
18 class.package = parentPkg

19 class.name = namedElem.name + nameSuffix

20 }

21 add correspondence between namedElem and class
22 }

23 }

Listing 6.3: Reaction routines that create a package and a class in the object-
oriented design in correspondence with a named element of the architectural
model

is responsible for creating a component-realization class and for three
additional steps. First, it adds the class to a given package (line 18). Then, the
routine sets the name of the class to the string that results from appending
a given suffix to the name of a given element of an architectural model (line
19). Finally, it registers a new correspondence between this architectural
element and the new class (line 21).

177

6. An Imperative Language for Consistency Reactions

6.4. Change Triggers, Restrictions, and Routine
Calls

So far, we explained that consistency preservation specifications that are
created with the reactions language contain reactions and reactions routines.
In this section, we will explain the language constructs for defining which
reactions are triggered according to the type and properties of a user change.
Furthermore, we mention how reaction routines can be called. The language
constructs that are available in these routines for retrieving corresponding
model elements and for performing actions on them will be introduced in
the next section.

6.4.1. Triggering Reactions Based on Change Descriptions

After an optional reaction name, which is only used in the generated code
to ease debugging, the first element of every reaction definition is a trigger
definition. Such a trigger definition states in reaction to which changes
the reaction is going to be executed and whether this execution is going to
happen before or after the change. In addition to this trigger time, a trigger
definition has two parts in which trigger restrictions can be defined based
on change types and based on change properties. We will now describe all
three trigger parts in detail.

The definition of the time of execution in a trigger also determines whether
we obtain a state representing the changed model before or after the change
happened. If a reaction is triggered before a change, then the actions
can inspect properties of the changed model in the state before the change
happened. Similarly, reactions after a change can inspect the changed model
in the state after the change happened. In both cases, it is also possible to
reconstruct the other state using the provided change information. The goal
of this language feature is, however, to relieve developers from performing
change applications or reversals by doing this in the background according
to the given trigger time.

An important goal during the design of the reactions language was to
provide an easy and precise way of defining before or after which types
of changes a reaction has to be executed. Therefore, we created a special

178

6.4. Change Triggers, Restrictions, and Routine Calls

concrete syntax to denote types of changes in the second part of a trigger
definition. These types can be defined for changes that are represented us-
ing the change modelling language, which we introduced in subsection 5.4.1.
The concrete syntax for change types relieves developers from perform-
ing explicit type checks on the obtained change model element. Without
this syntax for change types, even simple trigger definitions can be quite
complex because type checks can refer to thirteen concrete metaclasses
as well as to the twentytwo abstract metaclasses. The concrete syntax for
defining a change type in the reactions language is illustrated as a syntax
diagram for the non-terminal change type in Figure 6.4. We provide five
main change type distinctions:

1. areplacement of a single attribute or reference value
2. list changes, that affect the whole list or a single entry
3. insertions and removal of root elements

4. creation or deletions of model elements

5. any change, which subsumes 1-4

Insertions respectively removals of list entries or root elements may go
along with a creation respectively deletion of a model element. There-
fore, the change types 2 and 3 can be combined with change type 4. Our
implementation currently decomposes compound change representations
into atomic representations and we do not yet provide keywords for all
compound changes. Future work should provide a possibility to directly
specify updates in reaction to changes that are represented as compound
changes by supporting appropriate keywords for the change type of trig-
gers. The semantics of such reactions could be that compound change
representations are only decomposed if no reaction would be triggered
before decomposition.

6.4.2. Restricting Reactions Based on Change Properties

In the third and last part of a trigger definition, it is possible to restrict
a reaction based on values of properties of the change description. Such
restrictions are called change properties checks and they are defined in terms
of an expression which may inspect change properties and call side-effect

179

6. An Imperative Language for Consistency Reactions

change type:

o—(value replaced for metaclass name 0 feature id 0 =0

inserted in

removed from

il’lSGI‘teCD)T metaclass name |——/

deleted and)—(removed

*GalemenH metaclass name

5 any change - /

constraints:
1. feature has to have an upper bound < 1 after “value replaced for”
2. feature has to have an upper bound > 1 after “list”

3. “list”...“created”/“deleted”... to be followed by containment ref.

Figure 6.4.: Syntax diagram showing all possible change types that can be given in a
trigger definition and additional validation constraints

free methods. It is necessary that these checks have no side-effects, because
developers can only control whether a trigger condition is evaluated by
defining appropriate change type restrictions. The order in which change
properties checks are performed for several reactions if the change type
checks passed, for example, cannot be controlled. Therefore, it is important
that models are not altered while the responsibility of a reaction is checked.
Furthermore, change properties checks do not have access to elements of
models of the execution target metamodel. They also do not have access to
elements of models of the change source metamodel that are not directly or

180

6.4. Change Triggers, Restrictions, and Routine Calls

indirectly accessible from the change information. The goal of restricting
change properties checks to information of the change was to reduce the
number of possibilities in which consistency preservation reactions can be
specified. It is sufficient to perform checks on model elements during their
retrieval after a successful evaluation of the change type restrictions and
change properties checks. With this restriction of reaction definitions to
change properties, we also enforce the partition of consistency preservation
reactions into three main steps as introduced in section 6.1.

The change type restrictions of a trigger definition determine which prop-
erties of a change are available in a change properties check expression. In
every change properties check expression a variable change is available,
but the type of this variable is adapted according to the change type re-
strictions. As a result, a new value that was inserted in a list, for example,
can only be obtained from this change variable if the type was restricted
accordingly. The type of this new value depends in turn on the type of
the feature for which the value was inserted. This type information is
available from the change source metamodel to which the changed model is
conforming. The usage of the change type information of the trigger and of
the type information in the change source metamodel, relieves developers
from explicitly performing type casts because all necessary type checks and
type casts are automatically performed in the generated code. An overview
on the properties that are available for different change types was given in
Figure 5.4 on page 155.

Trigger definitions with their change type and change property restrictions
represent a part of the reactions language that follows the reactive pro-
gramming paradigm (see subsection 5.3.2). This paradigm was described
by Bainomugisha et al. as a paradigm that “facilitates the declarative de-
velopment of event-driven applications by allowing developers to express
programs in terms of what to do, and let the language automatically manage
when to do it” [Bai+13, p.52:3]. In the reactions language, the management
of when actions are executed according to a trigger definition is done in
the code that is generated for trigger definitions. This code obtains a repre-
sentation of a change that was monitored in an editor. The representation
is an instance of a metaclass of our change modeling language (see subsec-
tion 5.4.1). On this representation type checks and methods are invoked
according to the change type and change property check of the trigger
definition. If all type checks and the overall change property check is suc-

181

6. An Imperative Language for Consistency Reactions

cessful, then all routine calls of the reaction are called and an appropriately
typed change description is passed as implicit argument. More details on
how code is generated and executed are provided in subsection 6.6.2.

6.4.3. Calling Reaction Routines

The second and last part of every reaction definition contains calls to re-
actions routines, which encapsulate element retrievals and actions. We
already explained in section 6.3 why reactions call separated reaction rou-
tines. Therefore, we only have to provide explanations of how reactions
can be called.

Every reaction definition either ends with a single reaction routine call or
with a code block for reaction routine calls. A single reaction routine call is
performed like a method call in Java: The name of the routine to be called is
followed by an opening parenthesis. Then, arguments for each parameter of
the called routine have to be provided and followed by a closing parenthesis.
A code block for reaction routine calls can contain several such reaction
calls and arbitrary Xbase expressions that cause no side-effects.

It would not be necessary to allow arbitrary side-effect free expressions
in routine call blocks in addition to routine calls. The reason is that it is
always possible to call a new routine that only contains a single call action
with arbitrary code. In such a call action for defining trigger decisions
it would, however, also be possible to modify model elements. This is
problematic with respect to our partition of change-driven consistency
preservation into three main steps (see section 6.1). Developers that create
such routines for trigger decisions can cause unintentional side-effects in
them. This means that they can move from the first main step, which is
about triggering reactions, to the third step of performing actions without
noticing it. Therefore, we decided to make it unnecessary to define trigger
decisions in a separate routine with a powerful call action by providing
the possibility to define such trigger decisions directly in the call block of
a reaction. In many cases, it is, however, not necessary to perform very
complex trigger decisions. Often, it is already sufficient to declare and
assign final variables that can be used as arguments for routine calls or to
cast the type of such variables. We will explain these two frequent types of
helper expressions for routine call blocks in the following.

182

6.4. Change Triggers, Restrictions, and Routine Calls

1 reaction {

2 after element adl::Repository created

3 action {

4 call {

5 val repo = change.newValue

6 val rootPkg =

7 createSubpackage(null, repo, repo.name, "rootPackage")
8 createSubpackagesForRepository(repo, rootPkg)
9 }

10 }

11 }

Listing 6.4: Reaction to the creation of a repository in an architecture model by
creating packages in the object-oriented design

If a final variable is declared in a routine call block, then it can be used
in argument expressions of subsequent reaction routine calls. This can
make these routine calls more readable because specific names can be used
instead of generic names, such as newValue. In our running example, we can
call two different routines in reaction to the creation of a new component
repository in the architectural model as shown in Listing 6.4. Before these
two routine calls, we declare a final variable for the created repository and
assign the appropriate value of the obtained change to it (line 5). Then, the
value of this final variable is used as an argument for a call to a routine that
creates a root package for the repository (line 7). The return value of this
call is assigned to a new final variable that stores the newly created root
package. Both variables are then used as arguments in a call to a routine
that creates subpackages that will contain all elements that correspond to
component interfaces, data types, and components (line 8).

If the type of a value that is available from the change description was
checked during the trigger, it can be necessary to cast such a value before
it can be correctly used as an argument of routine call. In our running
example, this is necessary to correctly react to deletions of composite data
types as shown in Listing 6.5. In the trigger, we require that the data type
that was deleted from a repository was a composite data type (line 3). In
the routine call block, we cast this general data type to a composite data
type (line 6). Then, we call a routine for deleting class that corresponds to
the data type using the correctly typed value as an argument (line 7).

183

6. An Imperative Language for Consistency Reactions

1 reaction {

2 after list entry removed from adl::Repository[dataTypes]

3 with change.oldValue instanceof CompositeDataType

4 action {

5 call {

6 val compositeDataType = change.oldValue as CompositeDataType
7 deleteClassifier(compositeDataType)

8 }

9 1}

10 }

Listing 6.5: Reaction to the deletion of a composite data type in an architecture
model by deleting the corresponding class

The complete concrete syntax for reaction definitions will be provided in
terms of a grammar in Listing 6.6 in subsubsection 6.6.1.2 to complete the
information provided in the class diagram and the syntax diagram of this
section.

6.5. Encapsulating Matching and Actions in
Reaction Routines

Apart from reaction definitions with triggers and routine calls, reactions
specifications also contain reaction routine definitions, which we present
in this section. Every reaction routine definition specifies the name of the
routine and optional parameters. Furthermore, it may contain a match
block in which retrieval expressions can be used to obtain elements of
models that conform to the execution target metamodel of the reactions
specification. Additionally, the match block can also specify arbitrary match
checks that may not have any side-effects. After the optional match block,
the routine definition lists the actions to be performed in single action block
that contains at least one action. These actions are only performed if all
retrievals and checks of a matcher are successful. Finally, a reaction routine
may end with a return statement in order to provide a value to the reactions
and reactions routines that call it.

184

6.5. Encapsulating Matching and Actions in Routines

The signature of a reaction routine is specified analogue to method sig-
natures in Java using a routine name and routine parameters. After the
reaction definition keyword reaction, the name of the routine to be defined
is followed by an opening parenthesis. Then, parameters can be defined by
specifying pairs of parameter types and parameter names, which are sepa-
rated by commas. The signature of a reaction routine definition is ended
by a closing parenthesis and followed by a reaction routine block that lists
optional retrievals and mandatory actions enclosed by curly braces. In con-
trast to Java, no access modifiers or keywords for final or static methods can
be given for reaction routines. Access modifiers could be added in future
work together with further infrastructure for reusing reaction routines,
e.g. through routine refinement or parameterized types. Only after such
an extension to the reactions language, a final modifier would make sense
to indicate which reactions cannot be overridden. Currently, all reaction
routines are static in the sense that there is no possibility to define routine
objects to keep and modify values between different routine invocations.
Therefore, a keyword static for routines would only make sense if such
routine objects would be introduced. We have no plans for such a language
extension in the future, as we are convinced that this would make routines
for consistency preservation reactions unnecessarily complex.

6.5.1. Retrieving Corresponding Elements

In the first part of a reaction routine definition it can be specified which
elements and conditions have to be matched before actions are executed. For
this presence and absence retrievals can be combined with arbitrary match
checks. Both language constructs are used in a block that is introduced
with the keyword match. In a retrieval, it can be declaratively specified
which elements of models that conform to the execution target metamodel
of the reactions specification shall be retrieved based on correspondences.
This can be done in a retrieval block which may contain one or several
retrievals. These retrievals can have three different types. Presence retrievals,
on the one hand, define which elements have to be present. They have
two subtypes for the retrieval of required and optional elements. The first
subtype is used to define which elements have to be retrieved before actions
are performed and the second subtype is used to define retrievals that do
not need to be successful but are attempted before actions are performed.

185

6. An Imperative Language for Consistency Reactions

Absence retrievals, on the other hand, define which elements have to be
absent. This is done by specifying which retrievals have to be impossible
before actions can be performed. Such an absence retrieval can be used, for
example, to ensure that a container element, such as a package, is not created
twice as it is only needed once for all contained classifiers. For such cases,
absence retrievals are a convenient means. They are, however, usually not
needed as often as presence retrievals. Required presence retrievals are the
default in the reactions language because they are the most frequent type
of retrieval. Optional presence retrievals are indicated using the keyword
optional and absence retrievals are denoted with require absence of.

All retrievals specify the type of the element to be retrieved and a source
element expression that returns an element for which the correspondences
are inspected during the retrieval. The purpose of a retrieval statement
is to check whether an element of a given type of the execution target
metamodel corresponds to a given element of a model that conforms to
the change source metamodel. Therefore, the type of the element to be
retrieved has to be an abstract or concrete metaclass of the execution target
metamodel. The element to be retrieved needs to instantiate this metaclass
directly or indirectly. In addition to this target type, all retrievals also have
to specify an expression that returns an element of a model conforming to
the change source metamodel. This source element is used to retrieve the
desired target element by inspecting the correspondences that were created
during the execution of previous consistency preservation reactions. For all
correspondences that exist for the given source element and an arbitrary
target element, it is evaluated whether these target elements instantiate
the given target metaclass. We call such an evaluation a retrieval condition
evaluation and explain in the next paragraph which consequences are
possible for these evaluations.

Depending on the retrieval type the retrieval condition evaluations have
different consequences. A presence retrieval is successful, if exactly one
of the corresponding target elements fulfills the retrieval condition. If all
other retrievals are also successful, then the retrieved element can be used
during the execution of the actions of the reaction routine. If none of the
corresponding elements fulfills this condition, then a presence retrieval
fails and no actions will be executed for the reaction routine. An absence
retrieval, however, is only successful in exactly this case, as it was impos-
sible to retrieve an element that fulfills the specified retrieval condition.

186

6.5. Encapsulating Matching and Actions in Routines

Therefore, an absence retrieval only influences whether the actions of the
reaction routine will be executed, but it provides no elements that could be
used during this execution.

In order to make the retrieved element accessible, optional and required
presence retrievals have to be combined with a variable declaration and
assignment. This final variable can be accessed in all actions of the reaction
routine to obtain the retrieved element. Altogether, the match keyword,
the variable declaration and assignment, the retrieve keyword, the type of
the element to be retrieved, the correspondence keywords, and the source
element expression can almost be read like English sentences. We illustrate
this with the reaction to the creation of a component of our running example
(see Listing 6.2, line 11-15):

11 match {

12 val componentsPkg = retrieve oo::Package
13 corresponding to component.repository

14 tagged with "componentsPackage"

15 }

This can be read as “Match a repository package: retrieve the package
corresponding to the component’s repository.

We provide declarative retrieval statements in order to relieve developers
from considering many technical details that have to be considered if cor-
respondences are inspected manually to obtain corresponding elements.
With these retrieval statements we also address the Open Consistency Spec-
ification Language Challenge 3. The code generated for retrievals contains
type checks, type cast, variable declarations, assignments, and case distinc-
tions if several retrievals are combined. In this way, we can also abstract
away from multiplicities of corresponding elements. The generated code
performs all necessary operations if an element has one or more several
corresponding elements before or after type restrictions were applied. A
retrieval statement, however, can always be formulated in the same way as
it does not need to differentiate between these cases.

6.5.2. Retrieval and Match Restrictions

The conditions under which actions shall be executed are restricted by
presence or absence retrievals as their success or failure is a precondition

187

6. An Imperative Language for Consistency Reactions

for the execution of the actions of a reaction routine. Whether actions
are executed or not can also be restricted by providing specifying check
restrictions for retrievals or for the complete matching process. It is not
sufficient to only allow further restrictions for retrievals because conditions
may have to be formulated for combinations of several elements.

The retrieval conditions, which are created for a given target type and a
given source element expression, can be further restricted in two ways.
On the one hand, it is possible to restrict the target elements that are to
be retrieved using a retrieve properties check, which has to be preceded by
the keyword with. Such an expression can inspect any of the properties of
an element that is to be retrieved and may call any helper methods that
have no side-effects. This is necessary because neither successful nor failed
retrieval attempts should have an influence on other retrievals (see also
subsection 6.4.2). On the other hand, the correspondences of the elements
returned by the source element expression can be restricted with a tag
expression, which has to be preceded by the keywords tagged with. Such
a tag expression specifies which string tag had to be used to register the
correspondence in one of the previous executions of a reaction routine. To
this end, any expression that returns a string value and has no side-effect
can be used.

The check expressions resulting from both possibilities to further restrict
retrievals are conjunctively added to the retrieval condition obtained for
the target type and source element expression. This means the definition
of success and failure for a presence or absence retrieval as well as the
consequences of such a success or failure remain the same. Only the re-
trieval condition evaluation that is performed for every retrieval statement
is extended. If a retrieve properties check is specified, then it is conjunc-
tively added to the retrieval condition. Independent of this, a check for
tag equivalence is conjunctively added to the retrieval condition if a tag
expression is provided.

The concrete syntax for all three different types of retrievals with their
two additional restriction possibilities is depicted in Figure 6.5 as a syntax
diagram. It shows that the optional keyword can only be specified for
presence retrievals and that both additional retrieval restrictions can be
specified in all cases.

188

6.5. Encapsulating Matching and Actions in Routines

retrieval:

type

= retrieve

require absence of

[4 corresponding to)—>| source element |)
LGagged with)—>| tag

retrieve properties check

Figure 6.5.: Syntax diagram showing all possible correspondence retrievals that can
be given in a match block

If further retrieval restrictions based on tags or properties checks are not
sufficient, then developers can also specify arbitrary match checks. As for
trigger definitions and retrieval restrictions, match checks also have to be
side-effect free in order to free developers from considering when and in
which order matching is performed. Both, retrievals and match checks can
be combined in any order in a match block and none of them is necessary
for a reaction routine.

6.5.3. Add and Remove Actions for Correspondences

The second part of a reaction routine definition lists all actions that have
to be performed to preserve consistency. These actions can have three
different types, which are illustrated in Figure 6.6 using classes that are
used to build an Abstract Syntax Tree (AST). The first type of actions register
or de-register correspondences, which can be seen as a witness structure or
trace model for consistency (see subsubsection 5.5.1.2 and Definition 23 in
subsection 4.1.1). With the second type of actions, model elements can be
created, deleted, or updated. In third type of action, other reaction routines
or arbitrary code can be called.

189

6. An Imperative Language for Consistency Reactions

0..1
TypedExpr Tag tagv CorrespondenceAction
firstElem:Identifier
J secondElem:Identifier
kind:ActionKind
Action
<Enumeration>
‘ ActionKind
ElementAction CodeAction add
remove
elem:Identifier
initializationCodeT 11 TupdateCOde
| | |
CreateElement DeleteElement UpdateElement

Figure 6.6.: Simplified class diagram for metaclasses for representing actions of the
consistency preservation reactions language in an AST

An action for adding or removing a correspondence can be specified by pro-
viding the two model elements that should newly or no longer correspond.
One of these elements has to instantiate a metaclass of the change source
metamodel and the other element has to instantiate a metaclass of the
execution target metamodel. To simplify the use of these actions, the order
in which the elements are given does not matter. That is, it does not need
to be the same order as in the reactions specification header. The result of a
correspondence addition action is that a new correspondence is registered
and persisted for the two given elements. This happens regardless of any
other correspondences that may or may not already exist for one or both
elements. Similarly, the result of a correspondence removal action is that
the registered correspondence for the given elements is removed regardless
of any other correspondences for one or both elements. An exception is
thrown if no correspondence for the given elements exists or if more than
one correspondence exists for this element combination when the action is
executed.

For cases in which several correspondences shall be registered for a sin-
gle element and several other elements, it is possible to specify a string

190

6.5. Encapsulating Matching and Actions in Routines

tag to identify different correspondences. This tag is used to identify the
correspondence during addition, retrieval, and removal. As we described
in the previous section, the retrieval of corresponding elements can be
restricted to correspondences that were registered using a given tag. If
a tag is provided, a correspondence removal only leads to an exception
if no correspondence or several correspondences with the given tag are
registered for the given elements. In our running example, we use such tags
to differentiate between the four different packages in the object-oriented
design that correspond to a single component repository in the architectural
model. The correspondence to the root package for the repository, which
contains all subpackages, is tagged “rootPackage”. Its subpackages have
correspondences that are tagged “interfacesPackage”, “dataTypesPackage”,
and “componentsPackage” to denote the type of the elements for which
they contain corresponding elements.

A correspondence is identified using the two elements for which it is reg-
istered and optionally using the tag that was used during registration. It
has no other properties and thus no own identity. That is why it makes no
sense to speak of a correspondence creation or deletion. Therefore, we use
the keywords add or remove to specify actions in which correspondence
are registered or de-registered. The keywords create and delete are only
used to specify the creation or deletion of model elements, which have an
own identity. We describe these actions and element update actions in the
next section.

6.5.4. Create, Delete, and Update Element Actions

With the second type of reaction routine actions instances of metaclasses
of the execution target metamodel can be created, deleted, or updated. This
could also be done with imperative code that navigates through the models,
calls factory methods, and sets reference or attribute values. We decided,
however, to provide declarative language constructs for these actions in
order to give developers a possibility to structure reaction code and to
reduce the amount of boilerplate code that has to be written.

An element creation action has to provide the metaclass that is to be instan-
tiated and may be combined with a variable declaration and assignment
as well as with optional initialization code. For such an element creation

191

6. An Imperative Language for Consistency Reactions

action, the code generator produces a call to a factory method for the given
metaclass of the execution target metamodel. This factory method is always
available because our consistency preservation prototype is built on top
of the Eclipse Modeling Framework (EMF), which requires metamodels to
provide appropriate factory classes. If a new variable shall be declared to
hold the created element, then the respective keyword val or val has to
provided together with an identifier for the variable and an equals-sign to
denote an assignment to this variable. As in variable declarations in Xbase,
val denotes a declaration of a final variable and var denotes a declaration
of a non-final variable. If an element creation action is combined with
such a variable declaration and assignment, then the code generator simply
produces an identical variable declaration in the Xtend code and an assign-
ment from the result of the factory method call to the variable. Finally, an
element creation action may be combined with a block of initialization code
for the created element. In this initialization code, values of attributes and
references can be set for the newly created element. If initialization code
is provided, then the element creation action has to be combined with a
variable declaration and assignment. This is necessary in order to have a
possibility access the attributes and references of the newly created element.
In the generated code the initialization code is re-produced without any
changes directly after the declaration and assignment of the variable to the
call to the factory method.

Instead of or in addition to the variable identifier for a newly created
element, we could have provided other ways to access it in initialization
code. It would have been possible, for example, to provide a keyword
such as this or it to refer to the newly created element in initialization
code even if no variable is created for it. The first solution could, however,
mislead developers to think that they also obtain access to private fields
and methods in the initialization code. In order not to confuse developers,
the second solution would require an explicit lambda expression, which
would add unnecessary complexity to the reactions language.

With an element deletion action, an existing element of a model that con-
forms to the execution target metamodel can be deleted by simply listing its
identifier. The generated code for such an action ensures that all incoming
reference links to this element are also deleted. This is necessary to ensure
that no model contains dangling references. Furthermore, all elements that

192

6.5. Encapsulating Matching and Actions in Routines

are directly or indirectly contained by the element to be deleted are also
recursively deleted together with their incoming links.

Finally, an element update action provides the possibility to update values
for attributes and references of an existing model element. To this end, the
identifier for the existing variable has to provided together with a block of
update code. This syntax and semantics of this code block is identical to
the initialization code block of an element creation action. The attributes
and variables are again accessed using the element identifier and the code
is also re-produced without any changes in the generated code. Both, the
initialization code of an element creation action and the code of an element
update action give developers a possibility to structure their code. If values
for several attributes or references are initially set or updated in a single
reaction routine, then the code blocks of both actions make it possible to
group all code for an individual element. Other code, such as calls to helper
methods that may compute new attribute or reference values without any
changes on model elements, can be separated from these blocks. This can
make it easier for developers to identify how model elements are finally
initialized or updated in a consistency preservation reaction.

We are currently not restricting initialization code or update code to only
call side-effects on the given model elements, but we want to consider
this option in future work. Such a restriction could provide developers
an additional protection that ensures that their initialization or update
code only has the intended effects. Furthermore, it could make it easier to
understand code of other developers if it is guaranteed that every updated
element is explicitly mentioned. A possible drawback could, however, be
that syntactically different model elements with a common consistency
relation to elements of an instance of the change source metamodel would
have to be updated in separate update actions.

The concrete syntax for all correspondence and element actions is depicted
as a syntax diagram in Figure 6.7. We also added the non-terminals execute
action block and call action block to provide the complete syntax for all action
types of reaction routine definitions. Both are syntactically equivalent to a
routine call block, for which we will present the concrete syntax in Listing 6.6
on page 197 of subsection 6.4.3. The semantics and the rationale behind
these last two types of action are explained in the next section.

193

6. An Imperative Language for Consistency Reactions

action:

o @ correspondence betweerD—>| identifier @ identifier o
remove

@ = creath—>| metaclass name

init or update block I

{updat@—»i identifier
identifier

->@xecute>—>| execute action block Iﬁ

->.—>| call action block J

constraint:

1. “= create” to be followed by a metaclass that is not abstract

Figure 6.7.: Syntax diagram showing all possible actions that can be given in an
action block of a reaction routine definition

6.5.5. Executing Arbitrary Code and Calling Routines

The last two type of actions that can be specified in routines for consistency
preservation reactions can be used to execute arbitrary code and to call
other routines. Both actions are specified in blocks, which are called execute
action blocks and call action blocks. These blocks are syntactically identical
to the routine call block of reaction definitions (see subsection 6.4.3). The
only semantic difference is that execute action blocks may cause side-
effects. The goal of providing this fallback in execute action blocks is
to equip the reactions language with unrestricted expressive power (see
subsection 5.3.3). It can be argued, that the initialization and update code
blocks of the appropriate actions already provide such a fallback. We
are, however, convinced that developers should not be forced to pollute
initialization or update code blocks for individual elements with complex

194

6.5. Encapsulating Matching and Actions in Routines

computations and manipulations of arbitrary model elements, even if we
do not automatically enforce this.

After retrievals, and actions, the third and last part of a reaction routine
is an optional return statement. This return statement can be used, for
example, in order to provide callers of a reaction routine access to a model
element that was newly created in the routine. In the generated code, this
statement is directly re-produced and no additional code, for example, to
declare the return type of a reaction routine is necessary. This is possible
because we generate Xtend code, which does not require an explicit return
types for methods because it implicitly infers it by computing the type of
the value that is returned in the return statement.

6.5.6. User Change Disambiguation

The reactions that should be performed to preserve consistency after a
certain change cannot always be completely fixed upfront. In order to also
preserve consistency in such cases, we give developers the possibility to
define that the user that performs such a change is to be involved in the
consistency preservation process in order to resolve ambiguities [LK14].
The developer can, for example, decide to let the user select from a given
set of options or to require additional input. Further actions of a reaction
can then be based on the results of such interactions. We are currently not
providing any dedicated language constructs for user change disambigua-
tion and directly call appropriate API methods of the ViTrRUVIUS framework
in call action blocks [Lan17]. In our running example, users are asked to
disambiguate their change after the creation of a collection data type in the
architectural model. They can select from different collection implementa-
tions, such as those of a hash set or an array list. The selected collection
implementation is used as a superclass for the class that is created in the
object-oriented design and registered as corresponding to the collection

data type.

In future work, we want to investigate whether calling API methods for
user change disambiguation is sufficient or if additional language constructs
should be provided. Such constructs could, for example, make it easier to
define which options should be possible or which kind of interaction should
be used. Currently, all options have to be explicitly passed as arguments to

195

6. An Imperative Language for Consistency Reactions

the API calls. This could be simplified in the future if some or all possible
options can be derived, for example, by analyzing the routines to be called
and the input they require. At the moment the supported kinds of interac-
tion are blocking dialogs, non-blocking dialogs, and additions to task lists
for lazy interactions. The input and return values for these interaction kinds
could also be supported with dedicated language constructs if necessary.

Further information on the concrete syntax of routine definitions with the
reactions language will be provided in terms of a grammar in Listing 6.7
in subsubsection 6.6.1.2 to complete the information provided in the class
diagram and syntax diagrams of this section.

6.6. Realizing a Compiler for the Reactions
Language

We will now complete the information on the syntax of the reactions lan-
guage that we provided so far and briefly explain how we realized it in
terms of a prototypical compiler.

6.6.1. Reactions Language Syntax

In the previous sections, we have only presented parts of the syntax of the
reactions language using examples and in order to explain how it can be
used by developers. We have showed class diagrams that represent parts of
the abstract syntax and syntax diagrams to illustrate the concrete syntax.
In the following, we will explain the complete abstract syntax and provide
grammar rules for parts that we have not yet presented in a visual form.

6.6.1.1. Complete Abstract Syntax
From the explanations of the previous sections it would be possible to

derive the abstract syntax of the reactions language. This would, however,
be cumbersome and error-prone. Therefore, we present a class diagram that

196

6.6. Realizing a Compiler for the Reactions Language

reaction = "reaction" , [xbase identifier] , "{" ,
execution time , change type , ["with" , change properties check] ,
"call" , (routine call | routine call block) ,
"
execution time = "before" | "after";
change properties check = xbase expression;
routine call = xbase identifier , "(" , [arguments] , ")";
arguments = argument expression , {"," , argument expression};
argument expression = xbase expression;
routine call block = "{" ,
{[routine call | routine call expression]} - ,
"3
13 routine call expression = xbase expression;

_
= O 0 00U R W N

Ju
Do

Listing 6.6: Part of the grammar of the reactions language with rules for reaction
definitions in EBNF (without rules for change types)

covers the complete syntax in Figure 6.8 to explicitly summarize the lan-
guage structure on one page. It shows metaclasses that can be instantiated
to represent any reactions code in terms of an AST. Such instances of an
AST metamodel are produced by the prototypical compiler of the reactions
language (see subsection 6.6.2). As this metamodel is generated from an
enriched grammar, parts of it do, however, not abstract away from all details
of the concrete syntax. Therefore, we decided to present a simplified class
diagram to represent the abstract syntax of the language.

6.6.1.2. Concrete Syntax for Reactions and Routines

To complete the information that we have provided in section 6.3 and sub-
section 6.4.1 we present grammar rules for the concrete syntax of reactions
definitions. The rules are complete except for the rules for change type
expressions, which we already visualized in Figure 6.4, and except for the
reused rules from the Xbase expression language for identifiers, expressions,
and type expressions. Three trivial rules simply define change properties
checks, argument expressions, and routine call expressions as Xbase ex-
pressions. These rules ease the validation that these expressions have no
side-effects and return values of the correct type. For this grammar listing,

197

6. An Imperative Language for Consistency Reactions

trigger
i reactions Reaction Trigger
ReactionsSpec : 1 g8
1.* | name:Identifier _ | time:ExecutionTime
[
1.” | routines 1.* | calls
<Enumeration>>
— @ Routine 0.* RoutineCall ExecutionTime
@ name:Identifier before
calledRoutine after
changeType
TypedExpr ChangeTypeExpr | 1]
0" Ar | 1| inputs changeCheck
Retrieval |o InputParameter ChangeCheck

retrievals ¢ 0.1

0..1 | retrieveCheck tag | 0.1 CorrespondenceAction
RetrieveCheck Tag | 0.1 ! firstElem:Identifier
tag _| secondElem:Identifier
kind:ActionKind
PresenceRetrieval

SourceElemExpr AbsenceRetrieval

-

elem:Identifier

elem:Identifier

optional:bool
sourceElemExpr
1.x <Enumeration>>
Action ActionKind
. add
actions ‘F l remove
ElementAction CodeAction 1
elem:Identifier updateCode
Ar initializationCode T 1
— T 1
CreateElement DeleteElement UpdateElement

Figure 6.8.: Simplified class diagram with metaclasses for completely representing
reactions in terms of an AST

198

6.6. Realizing a Compiler for the Reactions Language

routine definition = "routine" , xbase identifier , "(" ,
[parameters] , ")" , "{" ,
{["match" , match block] ,
"action" , "{" ,
{action} - ,
B
"3
parameters = typed identifier , {"," , typed identifier};
typed identifier = type expression , xbase identifier;
type expression = xbase identifier , "::" , xbase identifier;
match block = "{"
{(retrieval | match check block)} - ,
"
retrieval = (["val" , xbase identifier , "="] , "retrieve" ,
["optional”]) | ("require_absence_of")
type expression , "corresponding_to" ,
source element expression ,
["tagged_with" tag expression] ,
["with" retrieve properties check];
type expression = xbase identifier , "::" , xbase identifier;
tag expression = xbase expression;
source element expression = xbase expression;
retrieve properties check = xbase expression;
match check block = "check" , "{" ,
{match check} - ,
"
27 match check = xbase expression;

_
= O 0 00U R W N =

T I T N T N R N S S G S g
oS IS Gy SR R R SN T R T)

Listing 6.7: Part of the grammar of the reactions language with rules for routine
definitions in EBNF (without rules for

we use the Extended Backus-Naur Form (EBNF) [Int96], which we have
already introduced in subsubsection 2.1.2.5.

To complete the information on the concrete syntax reaction routine def-
initions, which we have provided in section 6.5, we present simplified
grammar rules for this part of the reactions language in Listing 6.7. We
do not show the rules for actions because we already visualized them in
Figure 6.7 on page 194 of subsection 6.5.4. Again, trivial rules simply define
tag expressions, source element expressions, retrieve properties checks, and
match checks as Xbase expressions. This makes it easier to validate that
these expressions return a value of the correct type and that they have no
side-effects.

199

6. An Imperative Language for Consistency Reactions

6.6.2. Editing, Compiling, and Executing Reactions

The prototypical compiler for the reactions language was developed using
the Xtext language workbench [Eff+12]. With it, a lexer, parser, validator,
editor, and code generator were partly generated from a grammar definition.
This grammar is specified in an EBNF-like syntax with additional informa-
tion to influence the automated generation of a metamodel for the grammar.
For each parser rule in the grammar, it can be specified which metaclass is
to be instantiated when the rule is processed by the parser. The result of
parsing is always a model that instantiates the metamodel for the grammar
to represent an AST of the parsed code. Before code is generated for such
an AST model of reactions code, it is validated. Parts of the validation,
scoping, linking and code generation are realized by mapping models of
the reactions code to Java code models. Other parts are customized for the
reactions language, for example, to realize special scoping rules that restrict
the features that can be used to define a change trigger in terms of a list
entry change. In the prototype, the mapping to Java code is also used to
realize auto-completion in an editor for the Eclipse Integrated Development
Environment (IDE) and to perform type checks during the validation.

For each reaction and each reaction routine a separate Java class is generated.
In these classes methods are generated for triggers, checks, actions etc.
Method parameters are generated to realize the explicit routine parameters
and, for example, to pass retrieved model elements. Finally, mostly calls to
platform methods are generated for element matching and routine actions.
This way, we separate the code and the preservation behavior that results
from a specific reaction from the code and behavior that is identical for all
reactions. The goal of this separation is to make it easier for developers
to understand and debug the generated code in order to address Open
Consistency Specification Language Challenge 4. More details on code
generation can be found in Heiko Klare’s master’s thesis [Kla16, pp. 102—
106]. The overall process for generating and executing reactions code is
explained in general in subsection 5.5.2.

200

6.7. Semantics of Consistency Preservation Reactions

6.7. Semantics of Consistency Preservation
Reactions

In previous sections, we have informally explained the semantics of the
reactions language by describing the behavior of the code that is generated
for individual language constructs. To complete these descriptions from a
formal perspective, we will sketch how to map the reactions language to the
formal language, which we have introduced in chapter 4 based on section 2.3.
We explain how consistency rules and update functions can be created for
reactions and routines in such a way that consistency is always preserved by
construction if the reactions are appropriately designed. This demonstrates
how the reactions language relates to our formal definitions.

6.7.1. An Explanatory On-Demand Construction

The construction process that we will describe in the following explains
how and why the reactions language can be used to preserve consistency.
In the prototypical compiler, a different construction is, however, used.
The reason is that the goal of the construction presented in this chapter
and the goal of implementing a compiler are different. We have already
explained in section 2.3 that the formal language is a model that represents
concepts of our change-driven consistency preservation language. It was
designed to convey the central ideas in a precise way and not to support
an implementation in which the defined consistency preserving updates
can directly be executed and debugged. Based on this formal language,
the goal of the construction presented in this chapter is to explain the
semantics of the reactions language in a way that abstracts away from
many technical concerns, for example by using appropriate sets instead
of other data structures. Directly implementing this set-based notation
and the abstractions of the formal language in the prototypical compiler
would, however, introduce accidental complexity. Furthermore, it would
conflict with the goal that developers shall obtain code that can easily be
traced back to the specific reactions they developed. Moreover, general
consistency preservation behavior shall not be explained or illustrated but
encapsulated in calls to platform code.

201

6. An Imperative Language for Consistency Reactions

In general, it would be necessary to create a possible infinite set of tuples
of objects that fulfill a condition as required by Definition 18. To avoid this
and analogous problems for rules and update functions, we will only create
snapshots of conditions, rules, and update functions on-demand after we
obtained two given models and correspondences. The two models have
to be consistent according to the specification that is implied by a set of
reactions and reaction routines. In practice, this means the models either
have to be empty or they have to be the result of a previous consistency
preservation step after a single consistency-breaking change. The snapshots
are finite but sufficiently represent the possibly infinite counterparts. This
on-demand snapshot creation has, however, to be repeated for any two
given models, for every possible update, and after every subsequent change.
A current snapshot only considers elements of the current models and
of the models that can be obtained by performing the actions of reaction
routines. This is sufficient, because elements of inconsistent models are
not contained in the originals and therefore also not in the snapshots. For
correctness, it is only necessary that all tuples of objects that have to be in
the possibly infinite originals are added to the finite snapshots before we
check whether they are contained.

In the following three sections, we will describe how a consistency update
specification can be created for a set of reactions and routines by creating
consistency rules and update functions for every reaction. First, we will
explain how consistency rules can be created for every reaction. These
consistency rules express which conditions have to be fulfilled in the right
model if certain conditions are fulfilled in the left model before or after a
change depending on the time of execution that is specified in the trigger of
the reaction. Then, we will describe how an update function can be created
for every of these consistency rules by simulating the execution of the
reaction for every possible change in the given left model. Finally, we will
discuss why the resulting consistency update specification is consistency
preserving by construction and which cases are not covered by the according
formal definition.

202

6.7. Semantics of Consistency Preservation Reactions

6.7.2. From Reactions to Consistency Rules

Consistency rules can be constructed for two consistent models and a
reaction that was expressed using the reactions language by analyzing
which model elements are checked in which cases. For every possible
change in the left model, all model elements that would be checked on
a way to a successful entry in an action block of a reaction routine have
to be collected. Whether the action block performs any updates is not
relevant because the rules also have to cover cases in which a reaction
only checks consistency but does not need to enforce it. Otherwise the
rule would wrongly consider models consistent that do not fulfill such
conditions that are only checked. Therefore, it would not be sufficient to
perform a backward-construction of a rule by solely inspecting cases in
which updates are performed and capturing conditions for the model states
before these update.

Before we can explain how consistency rules can be constructed for re-
actions, we have to define the context. With the reactions language, a
set of reactions and reaction routines is always specified for a change
source metamodel, which is denoted by m;, and an execution target meta-
model, which is denoted by m,. Accordingly, the input models for the
on-demand construction are denoted by O; and O,. The tuple with sets of
correspondences for these models is denoted by (€4, ..., E,). Altogether,
our construction process yields a snapshot for a consistency update speci-
fication us := (I?F(CU)’ N T I?F(CM), (c..,) for the two metamodels m;
and m, (see Definition 42) which only captures updates for O;, O, based
on (€,...,E,). The update functions of us are denoted by UF (¢,), (c,)
and constructed for consistency rules. These rules R, c,, are based on
metaclass tuples (C;) and (C,), which have to be created first.

To construct a consistency rule Re, , ¢, according to Definition 22 for a
reaction, we first have to construct appropriate metaclass tuples according
to Definition 14. The metaclasses for the left metaclass tuple (C; ;) are
collected by determining all metaclasses that are directly instantiated by the
objects of the left model that would be checked if the currently considered
reaction would be executed for the currently considered change. To obtain
these metaclasses, we have to inspect the change properties check and
the routine call block of the reaction. Furthermore, we have to inspect all

203

6. An Imperative Language for Consistency Reactions

retrievals, match checks, and actions in all reaction routines that are directly
or indirectly called in the reaction. It is not sufficient to only inspect the
parameters of the routines because source element expressions and retrieve
properties checks of retrievals may also check properties of instances of
other metaclasses. This can be done by navigating from one of the objects
that was provided as an argument for a parameter in the routine call. This
navigation to instances of metaclasses that are not provided as a parameter
type is also possible in several forms in the different types of actions so they
have to be inspected as well. To obtain (C; ;), we create a tuple that contains
the collected metaclasses in a fixed but arbitrary order. The right metaclass
tuple (C; ,) is created differently as it will be used for the conditions that
have to be fulfilled after the updates that are specified by a reaction were
performed. All those metaclasses that are instantiated by the objects that are
retrieved from the right model have to be collected. Furthermore, all those
metaclasses are collected that are directly instantiated by the objects of the
right model that are directly or indirectly accessed in a match check or in
an action. Finally, the same step as for the left metaclass tuples is performed
to obtain (C; ,) with a fixed but arbitrary order for the metaclasses that
were collected for the right side.

To construct the conditions for a consistency rule, we have to simulate the
reaction to every possible change in the given left model O;. The resulting
left model O; for such a change can be obtained by executing the change
in the given left model O; (see Definition 35). Depending on the time of
execution that is specified for the reaction, we have to simulate the execution
of the reaction based on O; (before) or O; (after). To create a consistency
rule Re, , ¢, , for a reaction, we have to create pairs that contain instance
tuples (see Definition 16) for the metaclass tuples that are constructed for
the reaction as described above. For all those objects that were inspected to
obtain the metaclass tuples, we have to check during every simulation for
every change whether an execution of the currently considered reaction
would be aborted or not. This means, we have to determine whether such
an object is checked in at least one change properties check, routine call
block, retrieval, or match check during the simulation of an execution for
a change for which an action block would be successfully reached. If this
is the case, then we have to add the object to an instance tuple (o;) for
the change for which we currently simulate the reaction. Similarly, we
have to determine for every object that is retrieved or checked in a match

204

6.7. Semantics of Consistency Preservation Reactions

check whether the retrieval or match check would be part of an execution
that would lead to the execution of an action block. All those objects for
which this is the case and all objects of the right model that are directly or
indirectly accessed in an action that would be reached have to be added to
an instance tuple {o,) for the change for which we currently simulate the
reaction. To decide whether, we have to add the instance tuples {o;) to the
left condition coND(c,y and (o,) to the right condition cOND(c,) we have to
distinguish the following six cases:

1.

If the current simulation for a change yields correspondence
additions but no correspondence removals, then a pair with (o;) and
(o,) is added to the consistency rule to denote that the objects for
which consistency was checked always have to co-occurr with the
objects for which consistency was enforced.

. If the simulation yields no correspondence additions but

correspondence removals, then no pair with the tuples is added to
the rule because no co-occurrence has to be required.

If the simulation yields neither correspondence additions nor
correspondence removals but actions to be executed and at least one
presence retrieval was simulated, then a pair with the tuples is also
added to the rule as in case 1.

If the simulation yields neither correspondence additions nor
correspondence removals but actions to be executed and at no
presence retrieval was simulated, then then the reaction has to be
rejected and the developer has to be asked to add a presence
retrieval because our formal semantics cannot support this case.

If the simulation yields neither correspondence additions, nor
correspondence removals, nor actions, then the right tuple is empty
and no pair with the tuples is added to the rule because nothing
could be required as co-occurring on the right side.

. If the simulation yields correspondence additions and

correspondence removals, then the reaction has to be rejected and
the developer has to be asked to split the additions and removals
into two separate reactions because our formal semantics cannot
support this case.

205

6. An Imperative Language for Consistency Reactions

The last part of the construction to formally represent reactions as consis-
tency rules deals with correspondences. We will only explain the construc-
tion of update functions that also yield correspondence updates in the next
section. Before this, we cannot explain why the on-demand construction
of correspondences will fulfill the requirements of Definition 23. We can
only argue that these requirements are initially fulfilled because we start
with empty input models and an empty tuple of correspondence sets for
each consistency rule. The initially empty correspondence sets for the
empty models fulfill our definition of consistency according to a consis-
tency rule (see Definition 24). Correspondences will always be added to or
removed from these sets when the construction is extended to represent
the execution of a reaction after a single consistency-breaking change.

The construction that we described so far yields a consistency specification
s = (R, Cy,..., N, €,). Its consistency rules Re, , ¢,, specify which
instance tuples in the left model and in the right model have to occur
together. For those instance tuples that occur in the left model before
or after a change occurs there have to be corresponding instance tuples
in the right model after at least one action was taken by the reaction to
restore consistency if the change was consistency breaking. Together, all
consistency rules with their instance tuples for every reaction specify what
should be considered consistent because the reactions language is designed
for prescriptive consistency specifications (see also subsection 4.1.2 or page
58 of subsection 3.1.2). This means, by writing a reaction a developer does
not only implement consistency preservation but also prescribes that those
models that are obtained by executing the reactions are consistent.

6.7.3. Constructing an Update Function for a Reaction

So far, we explained how consistency rules can be constructed to describe
formally how consistency is checked using reactions. Now, we will extend
the construction in order to show formally in terms of update functions
and update specifications how consistency is enforced using reactions.

We describe how to construct a consistency update specification us for a
consistency specification ¢s := (R, €4, ..., R, €,) that was constructed
for a set of reactions and reaction routines. Our formal language composes
the notion of consistency preservation for a complete specification from

206

6.7. Semantics of Consistency Preservation Reactions

the notion of consistency preservation for an individual rule (see Corol-
lary 1 and 2). Therefore, it is sufficient to construct an update function
UF(c,), (c;,) (see Definition 42) for every individual consistency rule R, , ¢, ,
that was constructed for a reaction. As before, we will only construct a
snapshot of such an update function and define it exactly for those inputs
that are relevant when two models and correspondences in these models
are given for the currently considered Re, , ¢, ,. In general, an update func-
tion takes four inputs: a left model, a right model, a change in the left
model, and a set of correspondence candidates, which are pairs of instance
tuples for the metaclass tuples of the conditions of the consistency rule
(see Definition 39). We only have to consider the two given models O,
and O, and preserve consistency for the consistency rule R, c,, with
respect to the given ¢; after a single change. Furthermore, we have to
define updates exactly for those changes in O; that are consistency break-
ing according to R, ,.¢,, with respect to €; (see Definition 41). Therefore,
it is sufficient to define UF(c,), (c,,) only for inputs that provide exactly
the two given models, an arbitrary consistency-breaking change in the
left model, and the given correspondences as correspondence candidates.
In this case, the effective domain of the partial function UF(c,), (c,) Will

be {0} x {0} x CE% (€;) x {€;}, where C2°' (G,) is the set of all
Cir Ci,1:Ci,r

Re, .

changes in O; that aré consistency-breaking according to Re, 1., With
respect to €;. This set of changes is finite because we only have to check
for every single change that is possible in the finite model O; whether it
breaks consistency by checking whether the reaction would lead to the
execution of an action. We could extend the update function by repeating
this construction for every set of correspondences for Re, , ¢, in O; and O,
in order to fulfill the requirements of Definition 41. As the update function
will only be evaluated for the given correspondences €;, this is possible but
not necessary.

Having explained the input to an update function UF (¢,), (c,), we will
now explain how to determine the outputs from the reaction for which
the consistency rule R, , ¢,, was constructed. Such an output is always
a model update (€, €*, D, 3, A) in O,, which groups correspondences to
be removed and added as well as updates of objects, links, and labels (see
Definition 30). From now on, we have to distinguish informal and formal
correspondences. Informal correspondences are pairs of model elements

207

6. An Imperative Language for Consistency Reactions

with an optional string tag for which retrievals, removals, and additions are
specified in reactions. Formal correspondences are pairs in the condition
sets of a consistency rule that contain two instance tuples with all objects
that were checked or updated in a simulated reaction execution. In our
construction, we can construct several formal correspondences for a single
informal correspondence. Furthermore, we register dependencies from
formal correspondences to informal correspondences in order to know
which formal correspondences have to be removed when a removal of an
informal correspondence is specified in a reaction routine. To compute
model updates, we extend the simulation that we described in the previous
section to construct conditions. During this simulation, we collect the
informal correspondences to be removed and added in the correspondence
actions of called reactions. As we simulate the execution of the reaction
and called reaction routines based on the inputs, we only inspect those
actions that would finally be executed after all successful properties checks,
retrievals, and match checks on the way. We also collect the sets of object
updates O, link updates 3, and label updates 2 by inspecting the simulated
element actions and execute actions. These actions are the only potential
source for such updates because side-effects are not allowed anywhere else
in the reactions language.

So far, we only described how some of the sets that are needed for a model
update (€, €+, O, 3, A) are constructed. Now, we will explain how the
missing sets of formal correspondences to be added and removed €~ and
€™ are constructed. For this, we have to distinguish the first three of the
cases that we described for the construction of conditions for the consistency
rule on page 205 of section 6.7.2. In case 1, we add a formal correspondence
to €* and register a dependency from it to all informal correspondences for
which successful presence retrievals or correspondence addition actions
were simulated. The formal correspondence tuple can be constructed by
selecting the appropriate instance tuples that were created for the simulation
of this change. In case 2, we mark all formal correspondences that depend
at least one of the informal correspondences for which correspondence
removal actions were simulated as to be removed by adding them to €.
Finally, in case 3, we add a formal correspondence to €* and register a
dependency from it to all informal correspondences for which successful
presence retrievals were simulated. Again, this formal correspondence only
lists the appropriate instance tuples that were already constructed. If the

208

6.7. Semantics of Consistency Preservation Reactions

simulation shows that the reaction would not update anything, then all five
sets of the constructed model update are empty. In such a case, the change
for which we currently simulate the execution of the given reaction is not
consistency breaking and therefore UF(c,), (c,,) has to be undefined for
this change (see Definition 41). In all other cases, we extend the definition
of UF (¢,), (c;,) to return the model update (€, €*, O, T, A) for the given
models, correspondences, and the currently simulated change.

The correspondences in €~ and €%, which are collected during the sim-
ulation, are only to be removed from €; or added to it. All other sets of
correspondences can remain unchanged because of the above mentioned
notion of consistency for a specification that composes consistency for
each rule. If this construction is performed to obtain an update function for
every reaction, then correspondences are always added to the right set of
correspondences in the tuple of the consistency specification. The question
whether the correspondence additions and removals fulfill the requirements
for consistency according to a rule (see Definition 24) is discussed in the
next section.

6.7.4. Consistency Preserving by Construction

To conclude the explanatory mapping from reactions to our formal lan-
guage, we discuss which requirements have to be fulfilled by reactions if
they should formally preserve consistency. The goal for the development
of the reactions language was not to have a restricted language for which it
can be formally proven that consistency is preserved. Instead, we wanted to
provide a language for specifying consistency preservations that is restric-
tive enough to yield semantics that can be precisely explained but powerful
and general enough to be applicable in many cases (see also OCSLC 1 in
section 1.2). Therefore, we have to require that some possibilities of the
reactions language are not used for reactions for which it shall be formally
explained why they preserve consistency.

Let us briefly recap the two requirements that we indirectly described on
page 205 of section 6.7.2 in terms of two cases of simulations for which a
reaction has to be rejected. The first requirement is that every execution
of an action in reaction to a change has to be preceded by at least one
presence retrieval of a correspondence (case 4) The second requirement is

209

6. An Imperative Language for Consistency Reactions

that no execution of a reaction may combine correspondence additions and
correspondence removals (case 6). Both requirements are only technical and
not difficult to fulfill for a developer. To avoid case 4, a presence retrieval
for a correspondence has to be added, which should be no problem as the
executed actions clearly show that consistency is preserved and could be
witnessed. Case 6, can be avoided by defining two reactions such that one
reaction performs all necessary additions and the other reaction performs
all necessary removals. The combination of correspondence additions and
removals shows that some consistency for certain elements is replaced by
some other consistency. In such a case, it should be no problem to define
separate reactions and most redundant checks can easily be avoided if both
reactions call some common reaction routines.

In addition to these two technical requirements, developers have the respon-
sibility to fulfill three fundamental properties when specifying reactions.
These fundamental properties are concerned with conditions that are ful-
filled when an informal correspondence is successfully retrieved before an
action is executed or when an informal correspondence is added.

L. Such conditions have to be rechecked after every change that could
lead to a new fulfillment of them.

II. Informal correspondences for such conditions have to be removed
whenever the conditions are no longer fulfilled.

II. Such conditions may only check whether an object has a certain
attribute value or a certain reference link if this is necessary for the
fulfillment of the condition.

We have to assume that the two technical requirements and the three
fundamental properties are fulfilled to explain that our construction yields
a consistency-preserving update specification (see Definition 43). For this,
three steps are necessary for an arbitrary update function because our
construction is identical for all update functions. First, we have to explain
that the update function is only defined for changes that are consistency
breaking (see Definition 36 and 41). Then, we have to argue why the update
function yields for a consistency-breaking change a model update that is
consistency preserving after the change (see Definition 37). This is achieved
by discussing why the models after the update is performed are consistent

210

6.7. Semantics of Consistency Preservation Reactions

according to the consistency rule for which the update function is defined
(see Definition 24).

By the construction of the conditions for a consistency rule of a reaction and
the cases in which we add or remove formal correspondences, actions are
only executed in the reaction if conditions are newly or no longer fulfilled.
More specifically, the left condition is fulfilled after a change that leads to
a correctly witnessed consistency preservation and the right condition is
fulfilled after all the consistency preservation actions are executed. If con-
sistency was broken before actions were executed, then the right condition
may not have been already fulfilled before the actions were executed. In
theory, such a case would mean the update function would not be consis-
tency preserving. In practice, the requirement that a reaction should only
react to consistency-breaking changes can be relaxed. It is also sufficient
if the reaction only performs modifications that leave the right model in
the same state as before, for example, because values are set to the same
value as before. We could easily modify our definitions of consistency
preservation to formally tolerate such cases in which an update after a
consistent state is executed but does not change anything. This is, however,
not necessary because we can simply remove such updates that have no
effect in our construction. Therefore, consistency is always broken after
every change that leads to the execution of actions in a reaction as long as
these actions are not yet executed. As we only define the update function
for these changes it is defined exactly for consistency-breaking changes
and we are done with the first step.

So far, we have explained that the constructed update function only yields
updates when they are necessary. Now, we demonstrate why these updates
preserve consistency by explaining why the resulting models are consistent.
For this, the formal correspondences have to fulfill the conditions of the
consistency rule (see Definition 23) and such formal correspondences have
to be present iff the conditions are fulfilled (see Definition 24). The first part
is given by construction as we add formal correspondences by selecting
tuples from the condition sets. For the second part, we need the fundamental
properties I. and II. from page 210. If developers only create reactions that
adhere to these properties, then formal correspondences are present iff
the conditions are fulfilled. Altogether, we explained that the constructed
update function outputs a model update iff a change is consistency-breaking
and the result of the update is consistent to the changed left model.

211

6. An Imperative Language for Consistency Reactions

We want to repeat that fulfillment of the technical requirements and fun-
damental properties only guarantees consistency preservation after a sin-
gle change that breaks exactly one consistency rule. As we have already
mentioned in the last section of chapter 4, we neither define consistency
preservation if several changes break consistency or if consistency is bro-
ken for more than one consistency rule. The first problem is solved by
executing reactions after every single change, but the second problem has
to be addressed by the developers of reactions. They have to make sure that
reactions do not interfere with each other, i.e. that the subsequent execution
of all reactions for a change results in a consistent model because no action
undoes or overwrites an action of another reaction.

6.8. Conclusions and Future Work

In this chapter, we have presented an imperative language for consistency
preservation reactions. First, we have introduced three main steps of con-
sistency preservation and explained how the structure of the reactions
language reflects these steps and the order in which the are performed.
Then, we have introduced language constructs for triggering reactions,
retrieving elements and performing actions and have explained why they
are available in separate reactions and reaction routines. Furthermore, we
have described how change triggers and retrievals of corresponding ele-
ments can be restricted and how we address OCSLC 3 with such language
constructs. After these possibilities to specify when and where consis-
tency is preserved, we have explained the use of actions to specify how
consistency is preserved. We have described how correspondences can be
added or removed, how elements can be created, updated, or deleted, and
how arbitrary update code can be specified in order to address OCSLC 1.
Additionally, we have explained the syntax and how we address OCSLC 4
with our prototypical compiler for reactions. Finally, we have illustrated
the semantics of the reactions language using the formal language from the
previous chapters.

With this chapter, we have provided answers to the subquestions 2.1, 2.3,
and 2.4 of research question 2. These subquestions also correspond to the
addressed Open Consistency Specification Language Challenges 1, 3, and

212

6.8. Conclusions and Future Work

4. The reactions language demonstrates how specific language constructs
for change-driven consistency preservation can be combined with unre-
stricted expressive power. Furthermore, it shows how developers can use
constructs of the reactions language in a way that matches the preservation
context and abstracts away from irrelevant details. Last but not least, the
reactions language illustrates how consistency preservation behavior can
be realized with generated code in such a way that developers can foresee
the consequences of their consistency specifications.

We are planning to conduct future work to provide further possibilities
for reusing reaction parts, to further restrict side-effects, and to ease the
development of reactions in which user changes are disambiguated. To
further ease the reuse of reactions parts for different modelling languages,
we will investigate whether well-known concepts such as access modifiers
or parameterized types should also be provided by the reactions language
or whether special concepts such as reaction refinement are necessary (see
also section 6.5). Furthermore, we are planning to improve the validation
part of our compiler in order to further restrict side-effects, for example,
in element initialization or update code to the created or updated model
element (see also subsection 6.5.4). Moreover, we will explore how user
change disambiguation can be better integrated into reactions, for example
with more convenient ways for defining dialogs and disambiguation options
(see also subsection 6.5.6).

213

7. ABidirectional Language for
Abstract Consistency Mappings

In this chapter, we present a language that can be used by developers to
complement the reactions language in symmetric cases, where the direc-
tion of consistency preservation between two metamodels does not matter.
In such cases, the presented mappings language relieves developers from
specifying symmetric reactions that are partly redundant for both pre-
servation directions. Instead of pairs of reactions for both directions, a
developer can specify mappings that abstract away from details of pre-
serving consistency in both directions. With these mappings, it is possible
to declare under which conditions instances of metaclasses of both meta-
models should correspond to each other. It is, however, not necessary to
specify after which changes these conditions have to be checked or how
they have to be enforced. Instead, unidirectional reactions that consider
these details are automatically generated for both preservation directions
by bidirectionalizing the mappings. This is possible because the mappings
language only supports symmetric consistency relations. This means that
enforcing a mapping on one side because of a successful check on the other
side is always equivalent to checking and enforcing it the other way round.
The generated reactions are triggered whenever instances of the specified
metaclasses are created, deleted, or updated. They ensure that the specified
mapping conditions always hold for instances of one metamodel iff they
hold for instances of the other metamodel.

We designed the constructs of the mappings language except for the in-
verters together with Dominik Werle, who also developed a compiler and
generator for the language. Further background information on the real-
ization of the mappings language and additional rationale can be found in
his master’s thesis [Wer16], which was supervised by the author of this
dissertation.

215

7. A Bidirectional Language for Consistency Mappings

7.1. Overview: Mappings, Conditions,
Enforcements

Before we explain the individual language constructs in detail, we provide
an overview on the mappings language. Apart from a header that lists
the two metamodels for which consistency is preserved, the language only
provides two first level constructs for mappings and bootstrap mappings (see
Listing 7.1). A mapping contains two parameter lists in which metaclasses of
both metamodels are specified together with identifiers for their instances.
For every parameter list, developers can specify which conditions have
to be fulfilled by the instances of the list whenever they are mapped to
instances of the other parameter list. These conditions refer, however,
to the metamodel of the parameters in isolation and cannot make any
statements about properties of instances of the other side. Therefore, they
are called single-sided conditions. They can either be defined in a way
that makes it possible to check and to enforce them, or they are defined
with separate checking and enforcement code in order to address the Open
Consistency Specification Language Challenge 1. For statements that relate
elements of both sides, the language provides two possibilities, which
are called bidirectional enforcement specifications and are both optional:
The first possibility is a single block of bidirectionalizable conditions. It
supports only certain operators but relieves developers from considering
the consistency preservation direction as it is enforced in both directions.
The second possibility is a pair of forward and backward enforcement
blocks with arbitrary code. The forward enforcement code is executed if
all mapping conditions for the left metamodel hold after a change in an
instance of the left metamodel. Analogously, the backward enforcement
code is executed if all mapping conditions for the right metamodel hold after
a change in an instance of the right metamodel. Regardless of the direction
in which a mapping was enforced and regardless of what was enforced,
the result is always that the instances of the metaclasses of both parameter
lists are mapped to each other. In this case, we say that the mapping is
instantiated for these model elements. Finally, bootstrap mappings are
very similar to ordinary mappings, but they map an empty set of instances
of metaclasses of one metamodel to instances of metaclasses of the other
metamodel. Therefore, these mappings are bootstrapped for empty models
before consistency has to be preserved after any changes. The central

216

7.1. Overview: Mappings, Conditions, Enforcements

mapping Repository<->Packages {

mappings ConsistentADLFor00 for adl and oo

// mapping conditions for adl and oo ...

bootstrap mapping CreateSimpleDatatypes {

// bootstrap conditions only for adl ...

1

2

3

4 map (...)
5 and (...)
6

7}

8

9

10 create (...)
11

12 }

Listing 7.1: Sketch of a mapping that illustrates the two first class concepts:
mappings for both sides and bootstrap mappings for a single side

0.” | bootstrapMappings
M ‘ leftMetamodel PYiapping
apping -
Specification 1 Metamodel Bootstrap Mapping
- L | nsURL:Identifier 1 name:Identifier
name:Identifier -
rightMetamodel =~ mappedMetamodel
dependsOn
1.¢ | mappings[0.5 Jeftparameters 1." parameters,
Mapping 1 Parameter type Type
name:Identifier L] hame:Identifier
¢ ¢ ¢ ¢ rightParameters rightConditions
leftConditions
0.”|bidirectionalizableConditions 0..1|fallbackExecutionCode 0.*| 0.*
Bidirectionalizable Fallback Single-Sided 0.*
Condition Execution Code Condition -
conditions

Figure 7.1.: Simplified class diagram with central metaclasses for representing map-
pings as an AST

concepts of the mappings language and their relations are also depicted in
Figure 7.1 using a simplified class diagram with metaclasses for representing
mappings in terms of an AST.

217

7. A Bidirectional Language for Consistency Mappings

7.1.1. Example Mapping for Repositories and Packages

Let us reconsider the consistency preservation example for component-
based architectures and object-oriented design, which was introduced in
section 6.3. To explain the general idea of our mappings language, we
present mappings for some of the consistency requirements, for which
we already presented change-driven consistency preservation reactions.
We begin with a mapping that preserves consistency between the compo-
nent repository and packages in the object-oriented design. Based on this,
we show a mapping that preserves consistency between components and
packages and classes in the object-oriented design.

In subsection 6.2.3, we introduced consistency requirements for component
repositories and packages in the object-oriented design. Listing 7.2 shows
how these requirements can be realized using the mappings language. First,
it is declared that mappings will be defined for the two metamodels adl
and oo (line 1), which are also called left and right side. Then, a mapping
between a component repository (line 4) on the left side and four packages
(line 5-6) on the right side is defined. No conditions for the repository
but several conditions for the packages (line 7-13) are specified. These
conditions state that the root package has to have no parent package, that
all other packages have to be in the list of subpackages that are contained
by the root package, and that these subpackages have to be appropriatedly
named. These single-sided conditions for the packages are checked to decide
whether a repository has to be created after a change in the object-oriented
design and enforced when a repository is created in the architectural model.
Finally, the mapping contains a bidirectionalizable condition (line 15), which
states that the name of the repository has to be equal to the name of the
root package.

We will now explain a first part of the semantics of this exemplary mapping
by initially ignoring the bidirectionalizable condition, which will be ex-
plained in the next paragraph. If a repository or package is created, deleted,
or updated, the reactions generated for the declared mapping ensure that
corresponding elements are created, deleted, or updated if the single-sided
mapping conditions for the side that was changed hold. These are the gen-
eral semantics of mappings, and we will explain them more specifically for
our example by discussing every possible case. If a repository is created or

218

7.1. Overview: Mappings, Conditions, Enforcements

mappings ConsistentADLFor00 for adl and oo

1
2
3 mapping Repository<->Packages {

4 map (adl::Repository repository)

5 and (oo::Package rootPkg, oo::Package pkg4interfaces,

6 00: :Package pkg4datatypes, oo:Package pkg4components) with {
7 null equals rootPkg.parent

8 pkgdinterfaces in rootPkg.subpackages

9 pkg4datatypes in rootPkg.subpackages

10 pkg4components in rootPkg.subpackages

11 "interfaces" equals pkg4interfaces.name
12 "datatypes" equals pkg4datatypes.name

13 "components" equals pkg4components.name
14 3}

15 such that { rootPkg.name = repository.name }
16 }

Listing 7.2: Mapping between a repository of an architectural model, a root
package, and three subpackages for interfaces, datatypes, and components in
an object-oriented design

updated, no single-sided conditions have to be checked, so four correspond-
ing packages are always created or updated, and the single-sided conditions
for them are enforced. Similarly, nothing has to be checked if a repository
is deleted and the four corresponding packages are directly deleted as well.
If a package is created or updated, all seven single-sided conditions are
checked. Only if all these single-sided conditions are fulfilled by the created
or updated package and three other packages, this has an effect on the
other side. In these cases a corresponding repository is created or updated
for the four packages. If a package is deleted, it is checked whether all
single-sided conditions were fulfilled by the deleted package and three other
packages before the deletion happened. In such a case, the repository is
deleted as well but the three other packages remain unchanged. The reason
is that a mapping declares that a certain combination of elements on one
side always has to co-occur with a certain combination of elements on the
other side. A mapping does, however, not make any statement about the
co-occurrence of the elements on a single side. Therefore, our example
declares that a repository always has to co-occur with four packages but it
does not declare that some of these packages always have to co-occur with

219

7. A Bidirectional Language for Consistency Mappings

the other packages regardless of occurences of repositories in architectural
models.

Bidirectionalizable mapping conditions only add further enforcement se-
mantics but do not influence how and which conditions are checked to
determine whether elements are currently mapped or have to be mapped.
More specifically, bidirectionalizable conditions are never checked but al-
ways enforced in one or the other direction if all single-sided conditions of
one side are fulfilled after a change on that side. This is again the general
explanation of the semantics of bidirectionalizable mapping conditions. To
illustrate these semantics, we will explain them for the example condition
demanding equality for the names of the repository and the root package.
If a repository is created, then this condition is enforced in forward direc-
tion by setting the name of the root package, which is created to realize
the mapping, to the name of the repository. Similarly, if the name of a
repository is changed, then the name of the root package is also changed to
preserve consistency according to the mapping. In backward direction the
condition for the name of the repository and the name of the root package
is enforced in two similar cases that are slightly more complex because
the single-sided conditions for the packages also have to be fulfilled. If
one of the subpackages of the root package is changed in such a way that
the single-sided conditions are newly fulfilled, then a repository is created
and the name of it is set to the name of the root package. The only cases
in which this can happen are the following: Either a name of one of the
subpackages is newly set respectively updated, or one of the subpackages
is newly added as a subpackage to the root package.

7.1.2. Comparison of Mappings and Reactions

The example mapping for a component repository and four packages in the
object-oriented design already illustrates the two main advantages of the
mappings language compared to the reactions language:

1. With mappings, developers only specify once in a mostly*
direction-agnostic way which elements have to correspond, but the
mappings are automatically enforced in both directions.

! the mappings language provides fallback constructs for separately specifying consistency
preservation for both directions

220

7.1. Overview: Mappings, Conditions, Enforcements

2. Developers declare which mapping conditions have to hold in a
completely change-agnostic way, but if a change can lead to the
fulfillment of these conditions or require that they are fulfilled, this
is automatically checked or enforced.

We designed the mappings language to provide these advantages in or-
der to address the Open Consistency Specification Language Challenge
3. As a result, developers can specify mappings that abstract away from
direction- and change-specific details. To adapt the level of abstraction for
the consistency preservation directions, they can also consider the direction
where this is necessary. This adaptation can be achieved in two ways by
specifying separate check and enforce code for single-sided conditions or by
directly specifying enforcement code for both directions if the abstractions
of bidirectionalizable conditions are not precise enough.

The advantages become even more evident if we compare the example
mapping with the reaction to a creation of a component repository, which
was given as Listing 6.4 on page 183 of subsection 6.4.3. To achieve the same
functionality as the mapping, but using reactions, we would need to specify
two types of further reactions. One the one hand, we would need to specify
reactions to further changes in the architecture model. That is, the reaction
to a change in which a repository is created would have to be completed
with reactions to changes in which a repository is renamed or deleted. On
the other hand, we would need to specify reactions for the opposite direction
to preserve consistency after changes in the object-oriented design. That is,
we would have to react to changes in which packages are initially named,
renamed, or moved.

On the one hand, the fact that developers are in large parts relieved from
considering directions and completely relieved from considering changes
is an advantage. On the other hand, this is also a limitation of mappings
compared to reactions. The reason is that developers have less influence
on how consistency is preserved in a certain direction and no influence
on how consistency is preserved after certain changes. Having restricted
possibilities of specifying how consistency is preserved for a certain di-
rection, can be a disadvantage, for example, if we want to check weaker
conditions in one direction, but enforce stronger conditions in the other
direction. In our running example, we could create all four packages in
the object-oriented design if a repository is created, but only require that a

221

7. A Bidirectional Language for Consistency Mappings

single package is created before we automatically create a repository with
the same name. For more complex consistency preservation scenarios,
such cases with an asymmetric relation between checks and enforcements
can be inevitable and much more complex. In our case study for automotive
software engineering, for example, modules and classes in one model are
both represented as blocks in another model. Therefore, users have to
decide whether a module or a class is to be created when they create a
block but when consistency is checked it is sufficient if either a module
or a class exists. Furthermore, no user change disambiguation is neces-
sary when consistency is preserved in the opposite direction because all
information to create a block is available (see subsubsection 9.4.4.4). To
have no possibility to specify different ways to preserve consistency af-
ter different changes, can be a disadvantage, for example, if we want to
support different ways of achieving consistency for different changes. In
our running example, this could be the case for the consistency relation
between components in the architectural model and component-realization
classes in the object-oriented design (see page 173 and subsection 6.2.3).
If a component is created, we could create a subpackage with the same
name in the package for components and a component-realization class
in the subpackage for which we compute the name by appendix the suffix
“Impl” to the name of the component. If a class is, however, renamed so
that it has exactly the same name as the package in which it is contained,
and this package is a direct subpackage of the package for components,
we could react with a slightly different notion of consistency. To demand
less discipline from developers, we could decide that the class should be
considered a component-realization class even if the suffix “Impl” is missing.
The mappings language provides, however, only restricted possibilities to
take the preservation direction into account, and no possibilities to take
changes into account. This is in stark contrast to the reactions language,
which provides unlimited control in terms of propagation direction and
changes.

7.1.3. Mapping Dependencies and Bidirectionalization
The example mapping for component repositories and packages provided a

first impression of the mappings language. It contained, however, only a
single mapping with a single bidirectional condition that used the equality

222

7.1. Overview: Mappings, Conditions, Enforcements

operator, which can be trivially bidirectionalized. To show that mappings
can depend on other mappings and that more complex conditions can
also be bidirectionalized, we provide two more small mappings. The first
mapping is for our running example and relates a component to a package
and a package-realization class as shown in Listing 7.3. It depends on the
mapping between a repository and corresponding packages, which was
shown in Listing 7.2, and maps a component to a package and a class in
the object-oriented design. This dependency to the repository mapping
is used in two conditions which are specified for the component and the
package. For the component, a condition specifies that it has to be in the
list of components that are contained in the repository that was mapped
using the repository mapping. For the newly mapped package, a condition
specifies that it has to be a subpackage of the package for components that
was mapped using the repository mapping. These two conditions illustrate
that mappings that depend on other mappings do not need to explicitly refer
to correspondences that are established when the other mapping applies.
They only refer to the elements that were mapped. In addition to the two
single-sided conditions that use the dependency to the repository mapping,
the component mapping also contains a third single-sided condition. This
last single-sided condition of the mapping specifies that the mapped class
has to be in the list of classifiers contained by the mapped package.

The mapping between a component, a package, and a package-realization
class also contains two bidirectionalizable conditions to relate the compo-
nent and the packages as well as the component and the class. Similar to the
bidirectionalizable condition in the repository mapping, the first bidirection-
alizable condition of the component mapping simply requires that the name
of the mapped component and the name of the mapped package are equal.
The second bidirectionalizable condition, however, is slightly more complex
as it requires that the sequence that is obtained by appending the suffix
“Impl” to the name of the mapped component and name of the class are
equal. Enforcing this constraint when the name of the component is newly
set or updated is straightforward as the suffix only needs to be appended
to obtain the name for the class. If the constraint needs to be enforced
in the opposite direction, two cases have to be distinguished. Either the
new name of the class ends with the suffix “Impl” and the remaining prefix
is used as new component name. Or the new name does not have such
a suffix and consistency cannot be preserved according to the mapping.

223

7. A Bidirectional Language for Consistency Mappings

1 mapping Component<->PackageAndClass

2 depends on (Repository<->Packages repoPkgs) {

3 map (adl::Component component) with {

4 component in repoPkgs.repository.components

5 }

6 and (oo::Package componentPkg, oo::Class class) with {
7 componentPkg in repoPkgs.pkg4components.subpackages
8 class in componentPkg.classifiers

9 }

10 such that {

11 component.name = componentPkg.name

12 component.name + "Impl" = class.name

13}

14 }

Listing 7.3: Mapping between a component of an architectural model and a
package with a component-realization class in an object-oriented design

This bidirectionalization of the string concatenation operator and of other
operators is explained in more detail in section 7.4. The partly equivalent
reaction to a creation of component was presented in Listing 6.2.

7.2. Mapping Signatures and Conditions

In this section, we present the language constructs for mappings in detail
and explain the rationale behind them. We discuss all possibilities for spec-
ifying a single mapping but skip language constructs for relating mappings
to each other. These inter-mapping dependencies will be explained later
(see section 7.5).

7.2.1. Ordinary Mappings and Bootstrap Mappings

As we already mentioned above, the mappings language provides only two
first-level constructs apart from a header that only lists the metamodels
for which consistency is to be preserved. These two first level constructs
are two types of mappings. The first construct are ordinary mappings,
for which we showed two examples in the previous section. The second

224

7.2. Mapping Signatures and Conditions

construct are bootstrap mappings, which can be used to create metaclass
instances that fulfill certain conditions in a bootstrapping step before any
changes.

Both types of mappings consist of a mapping signature and of conditions.
For ordinary mappings, the signature consists of the name of the mapping
and of a parameter list for both metamodels. The signature of bootstrap
mappings, however, only consists of the name of the mapping and a single
parameter list for one of the two metamodels. Ordinary mappings can
contain single-sided expressions for the instances of both metamodels that
are given in the two parameter lists. These conditions are called single-sided
because they only refer to elements of one side, i.e. they are specified in
isolation from the other metamodel. Bootstrap mappings only have one
parameter list and so they can only contain single-sided conditions for that
list. The single-sided conditions of ordinary mappings are checked if a
change occured on the side for which they are defined. They are enforced
if a change occurred on the other side and all single-sided conditions for
this changed side are fulfilled after the change. Single-sided conditions of
bootstrap mappings, however, are never checked but always enforced. In
addition to single-sided conditions, ordinary mappings can also contain
bidirectionalizable conditions which relate instances of both metamodels.
These conditions are never checked. They are enforced in direction from
one side to another side together with single-sided conditions for the other
side if all single-sided conditions for the first side were successfully checked.
A part of the concrete syntax of ordinary mappings and bootstrap mappings
is given in Listing 7.4. It contains the two main rules of the grammar in
Extended Backus-Naur Form (EBNF) [Int96], which we have introduced in
subsubsection 2.1.2.5. The complete grammar of the mappings language
will be given in Listing 7.10 on page 281 of subsubsection 7.6.1.2.

7.2.2. Single-Sided and Bidirectionalizable Conditions

In the following, we will briefly explain the differences between single-sided
conditions and bidirectionalizable conditions and the rationale behind this
solution. With a mapping, a developer specifies consistency by declaring
which elements always have to exist in models of one metamodel when
certain elements exist in models of another metamodel. To automatically

225

7. A Bidirectional Language for Consistency Mappings

1 ["depends on (" , mapping dependency, ")"1 , "{" ,

2 "map (" , parameters , ")" ,

3 ["with" , "{" , {single-sided condition} - , "}"1 ,

4 "and (" , parameters , ")" ,

5 ["with" , "{" , {single-sided condition} - , "}"] ,

6 ["such that" , "{" , {bidirectionalizable condition} - , "}"]
7 ["forward execute {" , {xbase expression} - , "}" ,

8 "backward execute {" , {xbase expression} - , "}"1 , "}";

9 bootstrap mapping = "bootstrap mapping" , xbase identifier , "{" ,
10 "create (" , parameters , ")" ,

11 ["with" , "{" , {single-sided condition} - , "}"1 , "}";

12 mapping dependency = xbase identifier , {"," , xbase identifier};
13 parameters = typed identifier , {"," , typed identifier};

14 typed identifier = type expression , xbase identifier;

15 type expression = xbase identifier , "::" , xbase identifier;

Listing 7.4: Main rules for ordinary and bootstrap mappings of the grammar of
the mappings language

ensure that this holds for a specific mapping after any change in one of the
models, we have to distinguish different condition sets for this mapping.
We have to preserve consistency on one side after changes on the other side
and the other way round. For each of these two preservation directions, a
developer can specify conditions that need to be checked and conditions
that need to be enforced. The conditions to be checked specify whether
consistency has to be preserved for the mapping and the conditions to be
enforced define how consistency has to be preserved in such cases. This
means that we can have four condition sets for a single mapping:

CHECKLEFT Pre-conditions to be checked on the left side after a change on
that side

ENFORCERIGHT Post-conditions to be enforced on the right side if all condi-
tions in PreLeft are fulfilled

CHECKRIGHT Pre-conditions to be checked on the right side after a change
on that side

ENFORCELEFT Post-conditions to be enforced on the left side if all conditions
in PreRight are fulfilled

226

7.2. Mapping Signatures and Conditions

In the following, we will show how these four condition sets relate to the
single-sided conditions and bidirectionalizable conditions of the mappings
language. For this, we first present three insights into the relations be-
tween the four condition sets. Then, we explain why the single-sided and
bidirectionalizable conditions respect these three insights.

The first insight is about the need to check properties that could also be en-
forced instead of checked. The condition sets CHECKLEFT and CHECKRIGHT
are used to determine whether model elements with certain properties
have to exists on the other side. To ensure that these model elements ex-
ist, we preserve consistency on the other side by creating, deleting, and
updating model elements according to the condition sets ENFORCERIGHT or
ENFORCELEFT. During this preservation we can enforce whatever needs
to be enforced. This means that everything that can be checked on the
other side in CHECKLEFT or CHECKRIGHT can be enforced in ENFORCERIGHT
or ENFORCELEFT. Therefore, it is not necessary to check anything for the
other side in CHECKLEFT and CHECKRIGHT. Let us illustrate this using the
mapping between a repository and four packages of our running example.
Because of the above, a pre-condition for executing this mapping after a
change on the repository should not check whether the root package that
is updated has no parent package because this can also be enforced.

The second insight into the relation between the condition sets is about the
practical dependency between enforcements of one side and properties of
the other side. In many cases, we want to enforce consistency on one side
in a way that depends on properties of model elements on the other side.
Theoretically, it would not be necessary to have such a possibility to define
post-conditions for enforcements in a way that depends on properties of
the side at which pre-conditions were checked. Practically, it is, however,
infeasible to define a separate mapping for every relevant attribute value
or model element on one side just to define an appropriate enforcement on
the other side. Therefore, we allow ENFORCERIGHT to refer to properties
of model elements on the left side and ENFORCELEFT to refer to properties
of model elements on the right side. This can be illustrated using our
example mapping between a repository and four packages. Instead of
having different mappings for every possible name of a repository, we
want to define a single mapping that enforces in its post-condition for the
object-oriented design that the name of the root package corresponding to
the repository has the same name as the repository.

227

7. A Bidirectional Language for Consistency Mappings

The last insight is about the symmetry of pre- and post-conditions in all
cases that are supported by the mappings language. The mappings language
is not only mostly direction-agnostic it is also only intended for completely
symmetric consistency relations. As we already mentioned above, it is
possible to separately define checking code and enforcement code for single-
sided conditions or to define separate forward and backward enforcement
code instead of bidirectionalizable conditions. Nevertheless, these fallback
constructs, which are not direction-agnostic, can only be used to specify
symmetric consistency relations, i.e. symmetric co-occurrences of model
elements that fulfill certain conditions. This means, that it is only possible
to specify mappings for which it is impossible to say whether elements
with certain properties exist on one side because some other elements with
some other properties exists on the other side or the other way round. For
the notion of consistency supported by the mappings language, it is only
relevant that these elements always occur together. Therefore, the condition
set CHECKLEFT has to be equivalent to the condition set ENFORCELEFT and
the condition set ENFORCERIGHT has to be equivalent to the condition set
CHECKRIGHT. For the mapping between a repository and four packages of
our running example this means that we cannot know whether a repository
was created because four packages were created or the other way round.

Together, the insights from the previous two paragraphs state that

I. Pre-conditions do not need to check properties of elements on the
other side.

II. Post-conditions should be able to refer to properties of elements on
the other side.

III. Pre- and post-conditions of the same side have to be equivalent.

We will now use the four general condition sets and the three insights to
explain the rationale for single-sided and bidirectionalizable conditions
in the mappings language. If we ignored insight I. and still allowed pre-
conditions to check properties of the other side, we would only need a single
condition set for each side which contains conditions that serve as pre- and
post-conditions for consistency. It would, however, be complex to check
and enforce such combined pre- and post-conditions because of insight
II.. For every statement about a property of a model element, we would
need to know whether we have to enforce it or whether it is only used

228

7.3. Checking and Enforcing Single-Sided Conditions

for enforcements of elements on the other side. To avoid this unnecessary
complexity, we designed a solution that respects insight I. and II. as well
as insight III., which has to be respected. This solution is the separation of
single-sided conditions and bidirectionalizable conditions that we already
presented above. A single-sided condition for the left side pertains to the
condition sets CHECKLEFT and ENFORCELEFT. By only providing access
to elements of the left side, we account for I.. By using it to check and
to enforce consistency, we account for IIl.. The same holds for single-
sided conditions for the right side and the condition sets ENFORCERIGHT
and CHECKRIGHT. To account for II. we also support bidirectionalizable
conditions. In order not to run into the problems described above we require
that bidirectionalizable conditions always refer to both sides and only use
them in two ways. Either the attribute values or model elements for the
properties on the left side are used to enforce consistency on the right
side or the other way round. Other semantics for such bidirectionalizable
conditions are not necessary because of III..

7.3. Checking and Enforcing Single-Sided
Conditions

A key concept of the mappings language is to relieve developers from always
specifying how a single-sided condition is to be checked and how it is to be
enforced. This is achieved by providing a library of condition operators for
which enforcement code is automatically derived. In the future, we want to
equip the mappings language with further enforceable condition operators
and with a mechanism that allows developer to reuse their own enforceable
condition operators. Currently, it is only possible to either use pre-defined
enforceable condition operators or to specify how a set of conditions is to
be checked and enforced with two code blocks that cannot be reused. In
Figure 7.2, we illustrate how different types of single-sided conditions can
be represented by instantiating metaclasses for an AST but do not show
individual metaclasses for different conditions operators.

Before we explain the enforceable condition operators of the mappings
language individually, we briefly provide an overview on the operators
and the cases in which they can be used. Most operators can be used to

229

7. A Bidirectional Language for Consistency Mappings

Single-Sided
Condition
AF
[l |
Feature Condition Resource Condition Check and
4r Enforce Code
‘ ‘ Degault l
Multi Value Single Value . Empty List
. - Containment -
Condition Condition . Condition
Condition
negated:bool AF
[1 Nlllm
Equals In List At Index Compare
Condition Condition Condition pa
Condition
negated:bool

Figure 7.2.: Simplified class diagram with metaclasses for representing single-sided
conditions of mappings as an AST

formulate conditions for an attribute or a reference of a metaclass with
respect to a single attribute value or model element. Some operators also
accept collections of attribute values or model elements as arguments. One
operator has only one operand because it only checks or enforces that a list
is empty. We present four basic condition operators that can be checked
and enforced on simple-typed attributes and complex-typed references.
For these four operators we also present negated operators, which are
realized according to the principle of least change [Mee98]. All but one
of these negated operators need a default value, which is only defined
for attributes but not for references. Therefore, these negated operators
can only be used for attributes. Additionally, we present an enforceable
condition operator for number inequality conditions, which can be used in
four variants. Furthermore, we explain two containment operators that help
developers to add model elements to containment references of existing
model elements or to a new model resource if needed. Finally, we discuss
two enforceable iterator condition operators, which are only defined for
attributes.

230

7.3. Checking and Enforcing Single-Sided Conditions

The concrete syntax of all enforceable operators for single-sided conditions
and the fallback to a pair of checking and enforcement code blocks is
illustrated using a syntax diagram in Figure 7.3. It shows, that we use the
infix notation for all binary operators and the prefix notation for the unary
empty-list operator. The second operand of all operators except for the
path operator is always a feature expression, which denotes an attribute or
reference of a model element. Therefore, developers only have to remember
that a single-sided condition that is not a path condition or pair of check
and enforce blocks always starts with literals, i.e. with a single or several
attribute values or model elements. All enforceable condition operators
except for the containment and iterator operators are also summarized in
Table 7.1.

7.3.1. General Enforceable Operators

We explain every enforceable operator individually and start with the four
general operators and their negated counterparts. These general operators
can be applied to every attribute or reference but the negated counterparts
are only defined for attributes.

7.3.1.1. Equals Operator

The most fundamental enforceable operator for single-sided conditions is
the equals operator. It can be used to check and enforce equality of a given
list of attribute values or model elements and an attribute or reference. If
the attribute or reference has a upper bound multiplicity greater than 1, the
equality operator only accepts a list of attribute values or references but
this list may of course have only a single entry. Equality is always checked
by calling appropriate implementations of Java’s equals method regardless
of multiplicity. This also means that the order of attribute values or model
elements is ignored during comparison if the attribute or reference of was
defined as unordered in the metamodel. The equals operator is enforced
differently depending on the multiplicity. If the attribute or reference has an
upper bound of 1, equality is enforced by setting the attribute or reference
to the given attribute value or model element. In all other cases the attribute
or reference may list several attribute values or referenced model elements

231

7. A Bidirectional Language for Consistency Mappings

single-sided literal feature checking code enforcement code
condition multi- multi-

operator plicity plicity

equals single single equals set

—7— multi multi —7— clear;addAll

not equals single single lequals if(equals){set(default)}
- — multi multi —7— if(equals){clear}

in single multi containedIn if(!containedIn){add}
—7— multi —7— allContainedIn for each {--"--}

not in single multi IcontainedIn remove

—7— multi —7— IcontainedIn && removeAll

at index i in single multi get(i).equals set(i,...)

not at index i in single multi get(i).'equals set(i,default)

empty - multi isEmpty clear

not empty - multi lisEmpty if(isEmpty){add(default)}
vV <= a single single v <= a if(v>a){a+=v-a}

vV <a single single vV <a if(v>=a){a+=v-a+e}

v >= a single single v >= a if(v<a){a-=a-v}

v >a single single v >a if(v<=a){a-=a-v+e}

Table 7.1.: Overview of enforceable condition operators for single-sided constraints in the mappings language without

containment and iterator operators (—’—denotes repetitions in a subsequent line)

232

7.3. Checking and Enforcing Single-Sided Conditions

single-sided condition:

value expression

=) {f i)

(e)@

—>| element expression |—>@efault contained iID_/
] (empty /

—(default path for)—»i element expression

[@ath of)—>| element expression
expression block expression block

Figure 7.3.: Syntax diagram illustrating all enforceable operators for single-sided
conditions and the fallback to check and enforce code

and therefore equality is enforced by removing all current list entries and
adding all entries that were provided as left argument for the operator.

The mappings language also supports the negated equals operator for
attributes. It is checked by negating the result of the equals operator check
and enforcement depends again on the multiplicity of the attribute. If the
attribute has an upper bound of 1, negated equality is enforced by setting
the default attribute value if the current value equals the given value. As
references have no default model element to which they could refer in such
a case, the negated equals operator is not yet defined for references. In

233

7. A Bidirectional Language for Consistency Mappings

future work, we plan to also support references by setting them to null if
the lower bound is 0 or by referencing a default model element that has to
be provided as an additional argument for the operator. If the attribute has
an upper bound greater than 1, negated equality is enforced by removing
all values from the list if the list contains exactly the given values. Partial
equality is tolerated by the negated equality operator as nothing is changed
if at least one of the given values is currently not in the list. This idea
of enforcing consistency for single-sided conditions only if it cannot be
avoided and to a minimal extend is used for all operators. It can be seen as
an implementation of the principle of least change [Mee98].

7.3.1.2. Entry-In-List Operator

The entry-in-list operator can be used to check or enforce that one or
more given attribute values or model elements are listed for an attribute or
reference of another model element. This operator is checked by simply
calling Java’s contains or containsAll method on the list. As the operator
does not state anything about other elements, enforcement is performed by
adding the given entries to the list if they are not yet in the list.

The negated entry-in-list operator checks also supports left arguments with
different multiplicities. If a single entry is provided, it checks whether this
entry is not contained in the list and enforces this by removing the entry
from the list. If several entries are provided, the operator checks whether
none of the entries is contained in the list and enforces this by removing
all entries from the list. This means the negated entry-in-list operator only
removes entries and does not need a default value. Therefore, it is defined
for attributes and references.

7.3.1.3. At-Index-In-List Operator

We also present an extended entry-in-list operator that checks and enforces
that an entry is listed at a certain index of a list. The operator is checked
by obtaining the list entry for the given index and checking whether this
entry is equal to the given attribute or model element. To enforce this
operator, the list entry for the given index is set to the given attribute or
model element.

234

7.3. Checking and Enforcing Single-Sided Conditions

The negated version of the at-index-in-list operator is also straightforward.
To check it, the result is negated and to enforce it the entry at the given po-
sition is set to the default value. Therefore, the not-at-index-in-list operator
is not defined for references.

7.3.1.4. Empty-List Operator

The only operator that takes only a single argument is the empty-list op-
erator. It is checked by calling Java’s isEmpty method and enforced by
removing all current values from the list. The negated empty-list operator
is checked by negating the result of the check for emptiness and enforced
by adding the default value if the list is empty. Therefore, it is only defined
for attributes.

7.3.2. Special Enforceable Operators

We continue our library of enforceable operators with operators that can
only be applied to attributes or references that have special properties. The
first operator is only defined for numerical attributes, the second operator is
only defined for containment references, the third operator has no feature
operand but requires a path string, and the fourth and fifth operand are
only defined for lists of attribute values.

7.3.2.1. Number-Inequality Operator

We present four variants of an enforceable operator for checking and enforc-
ing inequalities of a single number and an appropriatedly typed attribute
of a model element. These four variants can be used to check and enforce
that a number is greater, less, not greater, or not less than the value of an
attribute. All four variants are checked using the appropriate operators in
Java. Enforcement is, however, performed differently for equalities that
are strict or not strict. The <= variant, for example, enforces that a given
value v is not greater than the attribute a by adding the difference v-a to
the attribute if v is currently greater than a. The result is that v and a are
equal after this enforcement. The < variant, however, also has to add the

235

7. A Bidirectional Language for Consistency Mappings

minimal value that makes a greater than v to enforce that v is strictly less
that a. This minimal value depends on the attribute type and has to be at
least 1 for integers and at least the unit of least precision (ULP) for floating
point numbers. The greater-than and less-than operators can be enforced
with any value that is great enough to fulfill the condition, but using the
minimal value ensures that the enforcement introduces the minimal change
that is necessary. In Table 7.1, we denoted this minimal value with e. It
would also be possible to support further operators for numerical attributes,
for example for checking and enforcing conditions for the maximal ele-
ment, the minimal element, or the sum of all elements. If such operators
should turn out to be necessary when the mappings language is applied in
further consistency preservation scenarios, they can be easily added to the
mappings language.

7.3.2.2. Default Containment Operators

To make it easier for developers to write mappings that result in serializable
models with a proper containment hierarchy, we provide two operators that
enforce containment only if necessary. To decide whether an enforcement
is necessary, both operators check whether a model element is currently
part of the containment hierarchy. This is the case if the model element is
contained in another model element or if it is the root element of a model
resource. If this is not the case, then the operators are used to enforce
that a model element is part of the containment hierarchy. The default-
contained-in operator takes a model element as left argument. It could
also be named “if not contained then add to” operator as the right argument
is a combination of a model element and a containment reference that is
defined for one of the metaclasses that are instantiated by the element. This
operator can be used to define which containment reference should be used
to add the given left model element to the given right model element if the
left model element is not yet contained in any other element and also no
root element of a resource. Similarly, the default-path-for operator can
be used to add a given model element to a new resource which is created
at a given file path if the model element is not yet contained in any model
element or resource. The file path for the resource to be created can either
be given as an absolute path or as a path relative to the path of a resource
of an existing model element. In the first case, the complete path has to

236

7.3. Checking and Enforcing Single-Sided Conditions

be provided as a string. In the second case, an element that is located in a
resource with a path that should be used as a prefix for the new path should
be provided together with a path suffix string.

7.3.2.3. Iterator Condition Operators

Finally, we suggest two enforceable operators forAll and exists to define
conditions for collections of attribute values that should hold for all attribute
values or at least for one attribute value. These iterator operators are not
yet implemented in our language prototype, but we already suggest how
they should be realized in the future. The condition that should hold for all
or for at least one value can simply be checked for every value individually.
Similarly, the forAll operator can also be enforced individually for every
value. The exists operator, however, should add a new element for which
the condition is enforced if no such element is already present.

7.3.3. Manual Checking and Enforcement

If the enforceable condition operators that we presented above are not suf-
ficient, a developer can still specify manually how a single-sided condition
is to be checked and enforced. To this end, the mappings language provides
the possibility to define a single-sided condition with two separate code
blocks for checking and enforcing the condition. These code blocks, are
restricted in the same way as single-sided conditions that are specified
using an enforceable condition operator. This means the code can only
read and write properties of model elements that instantiate metaclasses of
the metamodel for which the single-sided condition is specified. Elements
of the other metamodel cannot be accessed and neither check nor enforce
blocks obtain any other input than the elements of the side that is mapped
with the condition. We already discussed the rationale for these restrictions
in subsection 7.2.2.

In order to correctly check and enforce consistency in both preservation
directions the following requirements can be formulated:

1. every negative check has to lead to an enforcement

237

7. A Bidirectional Language for Consistency Mappings

2. every enforcement has to lead to a positive subsequent check

3. the enforcement behavior after a positive check does not need to be
defined, but if it is defined, then it should not change anything

To meet these requirements, we suggest to start creating a manually en-
forced single-sided condition by developing the check code. Then, all cases
in which the check fails should be determined. The enforcement code has
to take all these cases into account in order to fulfill requirement 1. As
different reasons for a negative check may be treated uniformly in the
enforcement code, it can be beneficial to separate the detection of a case
for which an enforcement is responsible from the update behavior. With
such a separation it is sufficient to ensure that the execution of the update
code always implies a positive subsequent check to fulfill requirement 2.
In contrast to the first two requirements, requirement 3 is optional. It is
possible to correctly check and enforce consistency without fulfilling this
requirement if it is ensured that the enforcement code is only executed
after a negative check. In order not to introduce any faults when a check
or enforcement code block is maintained, it is, however, a good practice to
ensure that even such unecessary invocations of the enforcement code do
no harm.

7.4. Bidirectionalizable Conditions and Inverters

The last language construct of an individual mapping, which we did not
yet explain in detail, are bidirectional enforcement specifications. Such
specifications are only relevant for enforcing consistency and may contain
bidirectionalizable conditions and a pair of forward and backward enforce-
ment code blocks. In the following we will focus on bidirectionalizable
conditions as the syntax and semantics of arbitrary enforcement code for
both directions is straightforward. In order to be bidirectionalizable, a
condition that relates both sides of a mapping has to be expressed as an
equation for an attribute of a mapped metaclass. Conditions for references
do not need to be bidirectionalized as the referenced model elements can
be directly mapped in the signature of a mapping (see subsection 7.2.1).
To eliminate unnecessary variations, the mappings language imposes a
syntactic restriction on bidirectionalizable conditions without limiting the

238

7.4. Bidirectionalizable Conditions and Inverters

expressive power. It is required that a bidirectionalizable condition adheres
to the notational direction of the mapping and that the equation has a single
attribute of a mapped model element on one side. Therefore, a bidirection-
alizable condition can always be read as an assignment but sometimes this
assignment lists the attribute for which a value is to be assigned on the
right side, which may look unfamiliar. We call this attribute of a mapped
element the assignment target and the other side of a bidirectionalizable
equation is called operation to be inverted. This operation to be inverted
may use attribute values of any model element on that side and operands
can in turn be results of operations that can be inverted.

When consistency is preserved from the side with the operation to be in-
verted to the side with the assignment target, then the assignment is simply
executed in this direction, which may also be from left to right. In order
to also preserve consistency in the opposite direction, we bidirectionalize
the assignment by inverting the operation. This yields an inverse condition
that assigns the result of the inverse operation to an attribute of the side
that was not assigned in the original condition. If more than one attribute
of one side is used to express a condition of an attribute on the other side,
then it has to be specified which of these attributes should be assigned
in the inverse condition. Currently, we are able to invert all operations
that are build using 30 basic operators for which we created inverters. If
a consistency relation cannot be expressed in a bidirectionalizable way
using these operators, then a developer can still specify manually how the
condition is to be enforced in forward and backward direction.

In the remainder of this section, we will explain the inversion approach that
we developed for bidirectionalizable conditions of the mappings language.
We present inverters for 30 currently supported operators and explain how
they fulfill important round-trip laws for bidirectional model transforma-
tions. All text, tables, and proofs are based on an article [KR16a] and a
technical report [KR16b]. We published the article and the report in co-
operation with Kirill Rakhman, who implemented prototypical inverters
while working on his master’s thesis [Rak15], which was supervised by the
author of this dissertation.

239

7. A Bidirectional Language for Consistency Mappings

11 component.name = componentPkg.name

12 component.name + "Impl" = class.name
Listing 7.5: Two bidirectionalizable conditions of a mapping for a component, a
package, and a class (complete version in Listing 7.3)

7.4.1. Inversion Examples and Overview

To illustrate how a trivial and more complex condition is bidirectionalized,
we come back to a mapping of our running example. It maps a component
of an architectural model to a package and a class of an object-oriented
design and was introduced in Listing 7.3 on page 224 of subsection 7.1.3. In
addition to three single-sided conditions for the component, the package,
and the class, the mapping also defines two bidirectionalizable conditions
that relate both sides of the mapping (line 10-13). We repeat these two
conditions in Listing 7.5. The first condition demands identical names for
the component and package. Therefore, the equation can be read as an
assignment in both directions and inversion is trivial because the identity
operator is inverse to itself. The second condition, however, can only be
read as an assignment from left to right. It demands that the name of
the class on the right side is identical to the result of appending a suffix
“Impl” to the name of the component on the left side. From left to right
the assignment can be directly executed to obtain a new class name. In
order to also preserve consistency in the opposite direction after the class
name is changed, we have to invert the string concatenation operation. This
inverted operation has to distinguish two cases. If the name of the class ends
with the suffix “Impl”, then the component name is set to the remainder of
the class name. If the name of the class does, however, not have this suffix,
then the inverted operation cannot fulfill the given equation. In order not
to break more than necessary, it sets the name of the component to the
complete class name. If the component name is later changed by a user, the
class name will be updated again according to the specified assignment and
so the class name will end with the suffix “Impl” again.

To show that many non-trivial conditions can also be bidirectionalized
successfully, we introduce a small consistency preservation example and
an appropriate mapping. In this example, we want to preserve consistency

240

7.4. Bidirectionalizable Conditions and Inverters

Rental Car : bidirectional condition requirement: Managed Vehicle

. range = 100 * capacity / consumption
range:int & pacity / P capacity:int

consumption:float

Figure 7.4.: Metaclasses and bidirectionalizable condition requirement for mapping
cars that are modelled for customers to vehicles for internal management

between models for offering and managing rental cars using two meta-
models as shown in Figure 7.4. The metamodel that is used in the system
for customers that rent cars contains a metaclass RentalCar, which has an
attribute range to represent the distance that can be approximately covered
with a full tank or battery. Another metamodel is used to manage the cars
internally. It contains a metaclass ManagedVehicle, which has two attributes
to represent the capacity of the tank or battery and the average consumption.
To keep models of these metamodels consistent, we can define a mapping
with a bidirectionalizable condition that relates the range, the capacity
and the consumption as shown in Listing 7.6. This condition (line 7) as-
signs the result of a multiplication to the range attribute of the left mapped
model element car. The second operand of the multiplication is a division
of the values for two attributes of the right vehicle element. More than
one attribute of the right side is used to calculate the value that has to be
assigned to the range attribute of the left side. Therefore, it is specified that
the consumption attribute is to be updated after changes in the left model
(line 8). Through bidirectionalization for this attribute the given forward
enforcement of the condition is inverted to yield the inverse enforcement

vehicle.consumption = 100 * vehicle.capacity / car.range

If we would specify the attribute capacity to be updated, we would obtain
the inverse enforcement

vehicle.capacity = car.range * vehicle.consumption / 100

For the given example, updating an average consumption based on the
observed range is, however, more reasonable than updating the fixed tank
or battery capacity.

With other approaches for bidirectional transformations, a transformation
developer cannot easily specify conditions as those of the two examples

241

7. A Bidirectional Language for Consistency Mappings

mappings CarOffersAndManagement for carOffers and vehicleMgmt

1

2

3 mapping Car<->Vehicle {

4 map (carOffers::Car car)

5 and (vehicleMgmt::Vehicle vehicle)

6 such that {

7 car.range = 100 * vehicle.capacity / vehicle.consumption
8 update vehicle.consumption

9 }

10 }

Listing 7.6: Mapping between cars of customer models and vehicles of manage-
ment models

above in a bidirectional way. Either the developer is forced to specify sepa-
rate unidirectional operations to calculate the attribute values in forward
and backward direction. Or the condition has to be expressed using con-
straints, e.g. divide(capacity, consumption,tl), multiply(tl, 100, t2),
and floatToInt(range,t2). In the first case the developer has to ensure
manually that both operations together fulfill round-trip properties and
types have to explicitly casted in both directions. This is necessary in order
to correctly preserve consistency without introducing any imprecisions or
inconsistencies that could be avoided. These round-trip properties also have
to be ensured in the second case. To this end, the developer has to learn the
constraint language in order to define appropriate pairs of atomic forward
and backward operations for the basic operations divide, multiply, and
floatToInt. Such a constraint-based approach is inefficient because all
other developers that use the same basic operations in their conditions also
have to provide such pairs of forward and backward operations. Further-
more, it can be error-prone because every new definition of an inversion
for a basic operation can be faulty.

7.4.2. Round-Trip Laws and Inverter Properties

Before we explain how we bidirectionalize mapping conditions using oper-
ator -specific inverters, we discuss important round-trip properties for such
inversions. We already mentioned above, that we use inverters to obtain an
inverse attribute assignment for a bidirectionalizable condition that is given

242

7.4. Bidirectionalizable Conditions and Inverters

in the form of an attribute assignment. Such a derivation of an inverse
operation is not only used for consistency preservation but also for any
other scenarios in which values of a model are to be transformed into values
for another model and the other way round. For such model transforma-
tions in general, it is necessary that forward and backward transformations
meet certain requirement in order to guarantee important properties for
round-trips from one model to another and back again.

7.4.2.1. Round-Trip Laws for Well-Behavedness

There are several definitions of round-trip laws for bidirectional transfor-
mations. We reuse the well-known GETPuT and PUTGET laws that were
formulated for lenses by Foster et al. [Fos+07] (see also subsection 2.2.3 and
3.8.3). The general idea is that we always have to obtain the same value
if we apply an operation and its inverse after each other or the other way
round. In order to be able to prove that inverters meet these laws, we define
them for our special setting of attribute assignment expressions. To keep
the definitions simple, we formulate them for a unary operator op but an
extension to operators with several operands is straightforward. An inverse
operator for an operation op is always denoted by op™ and has to obtain
a target value t and a source value s. The relation between an operator
and its inverse operator and the inputs and outputs is also illustrated in
Figure 7.5. It suggests that the source values s, s’, and s” are different and
that the target values t and ¢’. This is possible but should not be the case as
we will see with the round-trip laws.

Based on this simple notation we define the essential round-trip law GET-
Put:

Definition 44 (GetPut Law)

An operator op and its inverse operator op fulfill the GETPUT law, if
the subsequent application of op (get) and op™ (put) always yields the
same value:

op“(op(s),s) = s, for all source values s (7.1)

243

7. A Bidirectional Language for Consistency Mappings

1]
[=}
=
~

Figure 7.5.: Illustration of an operator and its inverse operator using the lense
analogy (adapted from [Fos10, Figure 2.1, p. 12])

The PuTGET law is symmetric to the GETPUT law except for the different
arities of op and op:

Definition 45 (PutGet Law)

An operator op and its inverse operator op fulfill the PUTGET law, if
the subsequent application of op~ (put) and op (get) always yields the
same value:

op(op(t,s)) = t, for all target values t and all source valuess (7.2)

Both laws are also illustrated in Figure 7.6. The requirements of both laws
are represented by the same closed loop and only the order in which the
operator and inverse operator are applied is different.

7.4.2.2. Best-Possible Behaved Inverters
It is desirable that both round-trip laws, GETPUT and PUTGET, are always

fulfilled. To have a convenient term for this, pairs of operations and inverse
operations that always fulfill the GETPUT and the PuTGET law are called

244

7.4. Bidirectionalizable Conditions and Inverters

s g t
2 op~ 1.
legend:
GetPut
—_
PutGet

Figure 7.6.: Illustration of the GETPUT and PUTGET laws for an operator and its
inverse operator (based on [Fos10, Figure 3.1, p., 39])

well-behaved by Foster et al. For many operations it can, however, not be
avoided that the PuTGEeT law is violated during a round-trip if all possible
target updates are allowed. This means that no inverse operation can be
defined that would make the operation pair well-behaved. The operations
for which this is the case are all operations that are not right-total, i.e.
surjective. For these operations, only updates to target values that are in the
image of the operation can be inverted in a way that fulfills the PUTGET law.
An operation that returns the absolute value of a source value, for example,
cannot be inverted without breaking the PuTrGEeT law if the target may be
updated to a negative value: no matter which value will be put as new source,
the absolute target value that we will get from it will always be positive
and therefore not identical to the negative target value after the update. A
similar problem can be observed for the bidirectionalizable condition of the
mapping for components, which we discussed in subsection 7.4.1. If the
name of the class is changed to a string that does not end with the suffix
“Impl”, then we cannot update the component name to something that will
yield the same class name after a round-trip.

In order to precisely capture cases in which a violation of the PUTGeT law
is inevitable, we introduce a new term of best-possible behavedness:

245

7. A Bidirectional Language for Consistency Mappings

Definition 46 (Best-Possible Behaved)
A pair of an operation and inverse operation is called best-possible
behaved iff

1. the GETPUT law is fulfilled in all cases and

2. the PUTGET law is fulfilled for every target change that can be
inverted without breaking the PUTGET law.

Inverters that yield well-behaved or best-possible behaved transformations
are also called well-behaved respectively best-possible behaved inverters.
All 30 inverters that we present and realized in our prototype are best-
possible behaved inverters and 14 of them are even well-behaved inverters.
Proofs for the well-behavedness of our inverters will be presented in subsub-
section 9.3.5.3. They always have the same structure: for a partition W, B of
the set of possible target values we prove the following three propositions:
1. GETPUT holds for all source values. 2. PUTGET holds for all values in W.
3. For every inverter that would fulfill PUTGET for a target value in B, we
obtain a contradiction.

Best-possible behaved inverters have to deal with target updates for which
a violation of the PUTGET law cannot be avoided. These cases are always
updates to target values that are in the codomain of the function represented
by the forward operator but not in the image of this function. They can,
however, be divided into two categories: For PUTGET violations of the first
category some of the information of the updated target value can be used to
choose a new source value for which the new target after a round-trip will
be closer to the initially updated target value than for all other choices of
source values. For PUTGET violations of the second category no choice for
a new source value yields a target value after a round-trip that is closer to
the initially updated target value than for all other choices of source values.
Therefore, we call the first type of PUTGET violations restrictable PUTGET
violations and the second type desperate PUTGET violations.

A restrictable PUTGET violation occurs, for example, if the target of the
arithmetic abs operator is changed to a negative value: the absolute value
of the negative target is used to choose a new source value that yields a

246

7.4. Bidirectionalizable Conditions and Inverters

target after a round-trip that has the correct absolute value but inevitably an
incorrect algebraic sign. A desperate PUTGET violation occurs, for example,
if the target of the trigonometric sin operator is changed to a value that is
not in the interval [—1, 1]: all choices for a new source value that are of the
form 2n + Z for an n € N, yield the target value +1 after a round-trip and
are as close as possible to the initially updated target value.

In our prototype, we respond to restrictable violations with a handler that
updates the source according to a passed value that is derived from the
updated target value. How the passed value is changed before updating
the source or whether a target update shall be rejected by throwing an
exception can be customized using a callback. The default implementation
directly updates the source to the passed value without any further changes
and rejects no target update. For desperate PUTGET violations, no kind of
exception handling would make any difference so our prototype simply
updates the source to a default value that is independent of the updated
target value.

7.4.3. Bidirectionalization trough Inversion

Before we present our library of operator-specific inverters, we briefly
explain how they are used to bidirectionalize conditions of the mappings
language.

7.4.3.1. Inverting Assignments by Rewriting Equations

Bidirectionalizable conditions are inverted by transforming the equation,
which can be read as an assignment in one direction, according to common
rules for rewriting mathematical equations. The input is the assignment ex-
pression that has a single attribute of a mapped model element on one side
and possibly several attributes of mapped model elements of the other side.
From this input the bidirectionalization computes an inverse assignment ex-
pression for the opposite transformation direction as output. The metaclass
instances for which attribute values are read and updated, are managed
in the reaction part that is generated for a mapping. Therefore, their at-
tribute values can directly be manipulated by the forward and backward
operation.

247

7. A Bidirectional Language for Consistency Mappings

The input assignment represents an initial equation and the output assign-
ment represents the equation that results from solving the initial equation
for the variable that corresponds to the attribute that is updated when
the inverse operation is executed. The output assignment is obtained by
transforming the abstract syntax tree (AST) of the input assignment: every
operation node on the way from the root to the leaf node for the attribute
to be updated is replaced with an inverse operation. All other nodes remain
unchanged. Each operation is inverted independently using an inverter
for the used operator. Only the result of the previously inverted parent
operation is passed in form of a temporary variable and the final result is
the result of the last inversion.

The inversion approach has a semantic restriction in addition to the syntacti-
cal restrictions for bidirectionalizable conditions that we already mentioned.
In total, the operation to be inverted and all operations that are directly or
indirectly used as operands may only refer to every attribute of a model
element at most once. This property is called linear [Wad88] or affine
[Mat+07] and guarantees straightforward inversion. In the following we
will use simpler terms for the side with the assignment target and for the
side with the operation to be inverted in order to ease the discussion. To
stick with the common syntax of assignments, we call the first side target
side and the second side the source side of an assignment. We also call the
direction in which the assignment can directly be executed the forward
direction and the direction in which the inverted operation is executed the
backward direction (see also page 78). Nevertheless, inversion can be used
for bidirectionalizable conditions that assign values from the left side to
the right side or the other way round, as explained at the beginning of this
chapter.

We already mentioned that one attribute has to be marked as the one to be
updated in the backward direction if more than one attribute of the source
metaclass is mentioned. The reason is that we currently do not support
operators that can only be inverted by updating more than one operand.
Operations that operate directly or indirectly on the attribute according
to which the expression is inverted have to use operators for which an
inverter is defined. In the AST these operations correspond to nodes that are
direct or indirect parents of the attribute leaf. All other operations can use
arbitrary operators as they do not have to be inverted. The expression of our
initial car rental example range = 100 * capacity / consumption is an

248

7.4. Bidirectionalizable Conditions and Inverters

assignment expression for the attribute range of the metaclass RentalCar
of the metamodel that acts as target in in the forward transformation
direction. The source side is a multiplication operation of a constant literal
operand and a division operation that mentions the two attributes capacity
and consumption of the source metaclass ManagedVehicle. To enable an
inversion of this expression both of these source attributes could be marked
as the one to be updated in the backward direction. We already explained,
however, that an inversion according to the consumption would probably
be chosen to respond to a change of the monitored range. The reason is
that a changed observed range indirectly reflects a change of the average
consumption and not of the fixed tank or battery size.

7.4.3.2. Technical Inversion and Code Generation

The inversion procedure for an attribute assignment expression consists of
three steps. First, the AST of the expression is statically checked to ensure
that the assignment fulfills the above requirements. Then, a copy of the AST
is transformed: first the root and then every node on the way to the leaf
for the attribute according to which the expression is inverted. Finally, the
source code for the inverted assignment is generated from the transformed
AST copy in form of a method. This method returns the result of the last
inversion and has a parameter for the target attribute and for every source
attribute.

It is possible to invert every operation individually because they only de-
pend on the value of the operands and not on the internal structure of the
operands. This can be illustrated using the expression of our car rental exam-
ple range = 100 * capacity / consumption. It is inverted in two steps to
capacity / consumption = range / 100 =: tmp and then to capacity
= tmp * consumption which yields (range / 100) * consumption. The
temporary variables, which we use during the code generation in our proto-
type, are not necessary as they could be inlined, but they make the generated
code more readable.

249

7. A Bidirectional Language for Consistency Mappings

7.4.4. Inverter Classification and Overview

We briefly present all inverters for the currently supported 30 common
operators and classify them with respect to the round-trip laws that we
presented above. Afterwards, we define and explain each inverse operator
in detail.

In the previous section, we have introduced the notion of well-behaved
and best-possible behaved inverters and distinguished restrictable and
desperate PUTGET violations. There are two further properties that can be
used to classify inverters: The first property deals with the role of different
operands during inversion. Operators with more than one operand that
realize a commutative function can be inverted identically for all operands.
Therefore, we call such inverters operand-agnostic. For operators that have
no operand-agnostic inverter, we define individual inverse operators for
inversion according to each operand and call these inverters operand-specific.
The second property is concerned with the way inverters can be defined
for different target values. Some operators can be inverted in way that
fulfills the GETPUT law with a single definition that holds for all possible
target values. We call such inverters target-agnostic. All operators that
have no target-agnostic inverter are inverted with separate definitions for
target values with different properties. These inverters are called target-
sensitive.

We write op(s; : Ty, sz : T) : Ts to denote an operator with the name “op”,
two operands named “s;” and “s,” of type T; and T,, and a return type Ts.
An operand-agnostic inverse operator of this operator is denoted by op.
op;~ denotes an inverse operator for inversion according to the operand
with 1-based index i. All inverse operators have at least one parameter to
obtain the updated target value and may have additional parameters for
the values of the operands of the operator to be inverted.

We group the 30 operators for which we define inverse operations in five
categories: primitive casts, boolean logical operators, basic and advanced
arithmetic operators, and string operators. Table 7.2 lists properties of
the operators and their inverse operators. The 14 well-behaved inverters
are those that neither have restrictable nor desperate PUTGET violations.
All operators for which we present inverters operate on single values not
on collections of values and can be inverted by updating a single source

250

7.4. Bidirectionalizable Conditions and Inverters

attribute. Inverters for collection operators and for operators that require
updates of more than one source attribute in backward direction are part
of our future work.

For some operations, the presented inverters are just one out of several
possibilities to invert the operation. In many cases there are, however,
only a few different ways to define a best-possible behaved inverter that
updates only a single source attribute. This is different for inverters that
update more than one source attribute, which we plan to examine in future
work. Such inverters have an important additional degree of freedom:
the difference between the old and the updated target value A can now
be split in different ways on several source attributes. An inverter for
binary arithmetic operators may, for example, apply the inverse arithmetic
operation using % to both source attributes or using A to one of both source
attributes.

The presented extensible library of inverters for basic operations is restricted
to inverters that update only one attribute and to an incomplete set of
common operations. For many cases, this is, however, sufficient as we
discovered by analyzing all 103 transformations of a well-know repository
for model transformations?. We discovered that 55% of the logical lines of
code (LLOC) of all attribute transformation expressions (including the trivial
identity operator) and 26% of the LLOC of all non-trivial transformation
expressions in these transformations only use operations for which we
present inverters. Many inverters for operations that we did not address
can, however, reuse some of the presented inverters or can be defined in a
similar way. A new inverter for a string concatenation operator with more
than two operands, for example, could easily be defined even if more than
operand shall be updated in the inverse transformation.

In the following definitions, we use a helper restrictPGV(p:T):T to encap-
sulate the handling of restrictable violations of the PuTGET law based on
the value of the parameter p. In our prototype, the default implementation
always returns the passed value, but it can be customized to react differently
depending on the value and / or operator that was inverted. For desper-
ate violations of the PUTGET law, a helper reportPGV(p:T):T updates the
source to the given fixed value and reports the violation.

2 ATL Transformations Zoo: eclipse.org/atl/atlTransformations

251

http://www.eclipse.org/atl/atlTransformations

7. A Bidirectional Language for Consistency Mappings

Operator to Invert OR OA TA rPGv dPGv

Primitive Casts

v

narrowing cast numeric -

falN
falN

widening cast numeric -

Boolean Logical Operators

N
N
N

not, xor boolean -

Basic Arithmetic Operators

unary minus numeric - Ve Ve v
addition, multiplication numeric \/ / \/ v/
float division floats X v / v
int division integers X X v v

Advanced Arithmetic Operators

absolute value numeric - X X v
rounding floats - X v v
floor, ceil double - X X v
floor modulus integers X X X X

exponentiation b:num.,e:int. X X X v
sin, cos floats - X v X

tan floats - X v v
asin, acos, atan floats X X v

String Operators

parse bool.,num. - v \/ v/
num printing numeric - X v X

bool printing boolean - X v v
length strings - X v v
concat strings X X X v
suffix strings - v / v
substring (fixed indices) strings - X X v
toUpper/LowerCase strings - X X v

Table 7.2.: Overview on all operators for which we developed inverters with their
argument types and inverter properties (where - stands for not applicable, X for no,
and v for yes)

Legend: OT = Operand Types, OA = Operand-Agnostic, TA = Target-Agnostic,
rPGv = no restrictable PutGet violations, dPGv = no desperate PutGet violations

252

7.4. Bidirectionalizable Conditions and Inverters

7.4.5. Operator and Inverter Composition

A key characteristic of our approach is that bidirectionalizable conditions
may compose several operations with different operator because the operator-
specific inversion is compositional. Therefore, we briefly explain how we
invert composed operations using the inverters of individual operators
before we present operator-specific inverters. Let op{(t, s) and op, (¢, s)
be two inverters for two operators op;(s) and opz(s). For the composition
operator opi.2(s) := op;(op2(s)) we define the inverse composition operator
as follows:
OP1oz(t,$) := op; (opy (£, 0pa(s)), 5)

This relation between the individual operators, their inverse operators,
the composition operator, and its inverse is illustrated in Figure 7.7 using
the lense analogy. A proof that this composition operator and its inverse
operator respect the round-trip laws GETPUT and PUTGET will be given in
section 9.3.5.3.

7.4.6. Operator-Specific Inverters

In the following, we present all individual inverters that we developed for
the mappings language. We ordered them according to the purpose and
operand types of the operations. If an inverter for an operation is defined
based on an inverter for another operation, we made this dependency
explicit and present both inverters in the appropriate order.

7.4.6.1. Primitive Casts

Type conversions and a notion of type-compatibility are necessary for some
arithmetic operators. Therefore, we start by defining inverse operators for
primitive type casts. These are the only possible casts that can appear
in attribute mapping expressions. Casts of complex-typed references to
metaclass instances are usually not necessary in the mappings language
because the signatures can directly specify a desired subtype.

If a numeric type T, can be converted without information loss to a numeric
type Ty, we call T} wider than T, and write T; > T,. For our prototype we

253

7. A Bidirectional Language for Consistency Mappings

Figure 7.7.: [llustration of the composition and inversion of two operators and their
inverse operators using the lense analogy

use the relation that is defined by the widening primitive conversion int
the Java language specification®: double > float > long > int > short > byte.
Consider a floating-point value x that is equal to another floating-point
value y with a relative tolerance of ¢, i.e.

=Y <,
max(x, y)

In this case, we call x and y e-equal and write x = y. In our prototype val-
ues are ¢-equal if a call to org.apache.commons.math3.util.Precision. -
equalsWithRelativeTolerance using the IEEE 754 machine epsilon 273
returns true, but the epsilon can be configured differently and the compari-

3 Conversions: docs.oracle.com/javase/specs/jls/se8/html/jls-5.html#jls-5.1.2

254

http://commons.apache.org/proper/commons-math/apidocs/org/apache/commons/math3/util/Precision.html#equalsWithRelativeTolerance%28double,%20double,%20double%29
http://commons.apache.org/proper/commons-math/apidocs/org/apache/commons/math3/util/Precision.html#equalsWithRelativeTolerance%28double,%20double,%20double%29
http://docs.oracle.com/javase/specs/jls/se8/html/jls-5.html#jls-5.1.2

7.4. Bidirectionalizable Conditions and Inverters

son could be replaced with a comparison based on the units in the last place
(ulp).

To invert a narrowing cast, we perform an appropriate widening cast and the
other way round. More formally, this leads to the following two inverters.
For two numeric types Ty > T, and the narrowing primitive cast operator
ncastr, T,(source : Ty) : T,, we define the inverse operator

ncasty p (target : Tp) : Ty := weastr, 1, (target)

For two numeric types T, > T; and the widening primitive cast operator
weastr, T,(source : Ty) : T,, we define the inverse operator

weasty p,(t:Tz) : Ty =

ncastr, T, (t) if weastr, 1, (ncastr, 1,(1)) =
restrictPGV(ncastr, 1,(t)) otherwise

To invert all implicit casts in expressions, which are called “widening prim-
itive conversions” for Java, we replace them with explicit widening casts
before inverting an expression and use the inverse operator wcast™ as de-
fined above. As a result, all explicit and implicit widening casts are inverted
using a narrowing cast without violating the PuTGET-law whenever the
target value can be cast with a relative error smaller than ¢. In all other
cases a PUTGET violation cannot be avoided but its effect can be restricted
by choosing the cast target value as new source value.

7.4.6.2. Boolean Logical Operators

The next group of operators with inverters consists only of the not and
the xor operator, because conjunctions and disjunctions cannot always be
inverted by updating only a single source attribute: If a target value is
changed from 1 to 0 an inverter for the and operator has to update both
source values and an inverter for the or operator has to do this if both
source values were 1.

255

7. A Bidirectional Language for Consistency Mappings

Not For the operator not(source : bool) : bool, we define the trivial inverse
operator
not“ (target : bool) : bool := not(target)

Xor For the operator xor(s; : bool, s, : bool) : bool, we define the inverse
operator
xory (target : bool, s, : bool) : bool := xor(target, s;)
for inversion according to the first operand s; and the inverse operator
xory (target : bool,s; : bool) : bool := xor(target, s;)

for inversion according to the second operand s;.

7.4.6.3. Basic Arithmetic Operators

This group of operators realizes the four basic arithmetic operations on
integer and floating-point types.

Unary Minus For all numeric types T and the arithmetic operator

unaryminus(source : T) : T, we define the trivial inverse operator
unaryminus® (target : T) : T := unaryminus(farget)

Addition As we invert implicit casts separately, it is sufficient to define,

for example, the addition operator only once for two operands of identical

type. For all numeric types T and the arithmetic operator addition(s; : T, s; :
T) : T, we define the inverse operator

addition™ (target : T,s : T) : T := addition(target, unaryminus(s))

We support the subtraction operator in bidirectionalizable conditions indi-
rectly by reusing the unary minus. That is, we replace the syntactic sugar
s1 — $; with the expression addition(s;, unaryminus(s,)). This allows us

256

7.4. Bidirectionalizable Conditions and Inverters

to reuse the inversion of the unary minus operator for the inversion of
subtraction operations.

Multiplication For all numeric types T and the arithmetic operator

multiplication(s; : T,s; : T) : T, we define the inverse operator
multiplication™ (target : T,s : T) : T := xdivision(target, s)

where the operator xdivision uses the operator floatdivision if T is a floating-

point type and otherwise uses the operator intdivision.

Division For two floating-point types T; > T, or T; = T; and the arithmetic

operator floatdivision(s; : Ty, s : Tz) : T;, we define the inverse operator
floatdivisionj (target : Ty, s; : Tp) : Ty := multiplication(t, s;)

for inversion according to the dividend s; and the inverse operator
floatdivisiony (target : Ty, s; : Ty) : Ty := floatdivision(s, £)

for inversion according to the divisor s,.

The float divison inverter is the first of many inverters that are operand-
specific (see subsection 7.4.4). So far, the commutative addition and multi-
plication were the only binary operators for which we defined inverters.
The next inverter is not only operand-specific but also target-sensitive.

For two integer types T; > T, or T} = T, and the IEEE 754 round-toward-0
operator intdivision(s; : Ty, s : Tz) : Ty, we define the inverse operator

intdivisiony (¢ : Ty, 51 : Ty, 52 : Tp) : Ty :=

S if intdivision(s;, s3) = t
multiplication(t, s;) otherwise

257

7. A Bidirectional Language for Consistency Mappings

for inversion according to the dividend s;, and the inverse operator

intdivisiony (¢ : Ty, 51 : Ty, 52 : Tp) : Ty :=

Sy if intdivision(s;, s) = ¢
intdivision(s;,t) otherwise

for inversion according to the divisor s,.

Integer division is an operator that is not left-unique, i.e. not injective.
Therefore, it cannot be inverted in a way that fulfills the GETPUT law
without inspecting the original target value. Thus, the presented inverse
operators for intdivision are both target-sensitive (see subsection 7.4.4).
They avoid a violation of the GETPUT law by checking whether the target
was changed to another value than the one that we would get from the
source values using the original operator. If this is the case, they return the
original source value for the operand according to which the operation is
inverted in order to fulfill the GETPuT law. In all other cases, it does not
matter which of the values that would fulfill the GETPUT law is chosen.
Therefore, the common division inversion by multiplication with the divisor
respectively division by the dividend is enough.

7.4.6.4. Advanced Arithmetic Operators

To simplify the definition of inverse operators for advanced arithmetic
operators, we will use a helper, which returns the algebraic sign for uses in
multiplications and is defined for numeric types T as

1 ifp>0

—1 otherwise

signdmult(p : T) : T := {

258

7.4. Bidirectionalizable Conditions and Inverters

Absolute Value For a numeric type T and the absolute value operator
abs(source : T) : T, we define the inverse operator
abs™ (target : T,source : T): T :=

signd4mult(source) - target if target > 0
restrictPGV(signdmult(source) - |target|) otherwise

With this inverter we can sustain the information about the absolute value
of an updated target and restrict the loss of information to the algebraic sign
of it, which cannot be avoided for the abs operator. For numeric x and y, we
briefly write |x| to denote abs(x) and x - y to denote multiplication(x, y).

Round to Nearest For a floating-point type T and the IEEE 754 round-to-
nearest operator round(source : T) : int, we define the inverse operator

round® (target : int,source : T) : T :=

source if round(source) = target
wecastin T(target) otherwise

Round toward Infinity For the IEEE 754 round-toward-—co operator
floor(source : double) : double, we define the inverse operator
floor™ (target : double, source : double) : double :=

source if floor(source) = target
target if floor(target) = target
restrictPGV(target) otherwise

For the IEEE 754 round-toward-co operator ceil the inverse operator ceil ™
is defined completely analog to floor and floor—.

259

7. A Bidirectional Language for Consistency Mappings

Modulus Instead of defining an inverter for the modulus operator with
round-to-zero division, which is denoted by a % b in Java, we present an
inverter for the floor modulus operator?. It is defined as

floormod(divisor, dividend) :=
divisor — (floordiv(divisor, dividend) - dividend)

where floordiv is the round-toward-—oo floor division operator and “returns
the largest [...] integer value that is less than or equal to the algebraic
quotient™. This operator yields a modulus with the same sign as the
divisor, which is helpful for example for array index arithmetic.

For an integer type T and the modulus or remainder operator floormod(s; :
T,sy: T): T, we define the inverse operator

floormod; (¢t : T,s1 : T,85:T): T :=

51 if floormod(sy, s3) = ¢
floordiv(sy, sp) - sp + ¢ if floormod(t,s,) = ¢
restrictPGV(t) otherwise

for inversion according to the dividend s, and the inverse operator

floormod; (¢t : T,s1 : T,s5:T): T :=

Sy if floormod(sy, s3) = ¢
t + s, - signdmult(t) ifs; =t

|s — t| - signdmult(t) =: s; if floormod(sy,s;) =t
reportPGV(1) otherwise

for inversion according to the divisor s,.

In the case of floormod(target, s;) = target we could also make

floormod;~ (target, s1, sz) return simply target for the inversion according
to the dividend. For every n € N, returning n - s; + target would fulfill
PuTGET. Our choice of n = floordiv(sy, s;) preserves information about the
old range of the divisor s; before the update of the target: For example, if

4 Java floor mod: docs.oracle.com/javase/8/docs/api/java/lang/Math html#floorMod

260

https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#floorMod-int-int-

7.4. Bidirectionalizable Conditions and Inverters

dividend
floormod
—-13| -6 | -5|5]| 6| 13
. -9 -3 | —4 3 4
divisor
9 -4 | -3 41| 3

Table 7.3.: lllustration of the inversion of the floor mod operator with all old and
new operand values after target updates from +3 to +4

the target for a divisor of 5 and a dividend of 3 is changed from 2 to 1, our
inversion of the remainder operator would update the divisor to 4 instead
of 1.

In the case of s; = target the inversion according to the divisor

floormod; (target, s1, s;) fulfills PUTGET if it returns target +n-sign4mult(t)
for an n € Nyy}. Our choice of n = s, preserves information about the
old value of the dividend s, before the update of the target: For example,
if the target for a divisor of 5 and a dividend of 3 is changed from 2 to 5,
our inversion of the remainder operator would update the divisor to 8 to
indicate that the divisor was 8 — 5 = 3 before the update.

An example for which all four possible target changes from +t to +¢' can
be inverted is given in Table 7.3. For the divisor values +9 and the dividend
values +6, the floormod operation always yields +3.

Exponentiation For a numeric type Ty, a floating-point type T,, and the
exponentiation operator pow(b : Ty, e : T) : double, we define the inverse
operator

powy (t : double,b :Ty,e:Tp) : T; :=

signdmult(b) - Vt ift >0 o
if e is even
restrictPGV(sign4mult(b) - {/m) otherwise
signdmult(t) - \e/m otherwise

261

7. A Bidirectional Language for Consistency Mappings

for inversion according to the base b, and the inverse operator

pow, (t : double,b:Ti,e:Tp): T, :=
e if b€ =1t
weasty 1, | 1ogis([t]) if plogwi(lth £ 4

restrictPGV(logp|(|t])) otherwise

for inversion according to the exponent e.

Trigonometric Operators For the fundamental trigonometric sine operator
sin(source : double) : double, we define the inverse operator
sin“ (¢ : double, source : double) : double :=

source if sin(source) = t
asin(t) if —1<t<1
reportPGV(signdmult(t) - 7) otherwise

For the trigonometric operator cos the inverse operator cos is defined
completely analog to sin and sin": only sign4mult(t) - 7 has to be replaced
with 7 — sign4mult() - 7 for cos.

For the trigonometric operator tan(source : double) : double, we define the
inverse operator

tan (target : double, source : double) : double :=

source if tan(source) = target
atan(target) otherwise

262

7.4. Bidirectionalizable Conditions and Inverters

Inverse Trigonometric Operators For the inverse trigonometric operator
asin(double) : double, we define the inverse operator

asin“ (target : double, source : double) : double :=
b

{sin(target) if |target| < 5

restrictPGV(sin(target)) otherwise

For the inverse trigonometric operators acos and atan the inverse operators
acos” and atan are defined analog to sin and sin: only |target| < %
has to be replaced with 0 < target < 7 for acos™.

7.4.6.5. String Operators

The last group of operators for which we define inverters operates on
character strings.

Parsing, Printing and Length For all types T and the operator
parse(source : string) : T, we define the trivial inverse operator

parse” (target : T) : string := print(target)

For all numeric types T and the operator numprint(s : T) : string, we define
the inverse operator

numprint™ (¢ : string,s : T) : T :=

parse(t) if t represents a number of type T
reportPGV(0) otherwise

263

7. A Bidirectional Language for Consistency Mappings

For the operator boolprint(source : bool) : string, we define the inverse
operator

boolprint™ (target : string, source : bool) : bool :=

{true if target = “true” (case insensitive)

false otherwise

We define a helper pad(source : string, length : integer), which appends
as many underscore characters to a given string source as are needed to
obtain a string with length characters. We also define a helper to obtain
prefixes that are automatically padded to a desired length using the pad
helper:

prefix(source : string,end : int) : T :=

substring(source, 0, end) if end < length(source)

pad(source, end) otherwise

It uses the substring operator substring(s : string, b : int, e : int), which
returns e — b subsequent characters of s including the character at index
b and excluding the character at index e. For the operator length(source :
string) : int, for which we briefly write |source|, we can now define the
inverse operator

length™ (target : int, source : string) : string :=

prefix(source, target)

Concatenation and Substrings For the string concatenation operator
concat(s; : string, s, : string) : string, for which we briefly write s; " s,, we
define the inverse operator

concat] (target : string, s, : string) : string :=

s] if target = s; "5,
restrictPGV(target) otherwise

264

7.4. Bidirectionalizable Conditions and Inverters

to invert according to the first operand s;, and the inverse operator

concat, (target : string,s; : string) : string :=
S5 if target = 51" s,
restrictPGV(target) otherwise
for inversion according to the second operand s;.
We define a specialized substring operator:

substring(s, b, |s|) if b < |s]

2

suffix(s : string, b : int) : T :=]
otherwise

where “” denotes the empty string. Its inverse operator is

suffix ™ (¢ : string, s : string, b : int) : string := prefix(s,b) "t

We define a helper that concatenates a circumfix ¢ and an infix i by prepend-
ing the first e characters of the circumfix to the infix while appending the
last |c| — b characters of the circumfix:

circumcat(c : string, e : int,i : string, b : int) :=
prefix(c, e) i~ suffix(c, b)

Now we can define an inverse operator for the substring operator
substring(s : string, b : int, e : int) : string. This inverse operator fixes the
indices b and e at which the substring begins and ends. It uses the helpers
pad and circumcat:

substring™ (¢ : string, s : string, b : int, e : int) : string :=

circumcat(s, b, t, e) if|t|]=b—e
restrictPGV(circumcat(s, b, t, €)) if|t| >b—e
restrictPGV(circumecat(s, b, pad(t, b — e),e)) otherwise

265

7. A Bidirectional Language for Consistency Mappings

We illustrate the inversion of the substring operator with fixed indices using
the example input s =“inverse”, b = 2, and e = 6: If the target “vers” is
changed to “plac”, then the first case applies because |“plac”| =4 = 6 — 2
and the source is changed to “in”™ “plac” ™ “e”. If the target is changed to
“carnat”, then the second case applies because |“carnat”| = 6 > 6 — 2 and
the source is changed to “in »Ce”

”~«

carnat” ™ “e”. If the target is changed to “di”,
then the third case applies because |“di”| = 2 < 6 — 2 and the source is
changed to “in”™“di__”"“e”. Without the third case, a target change to “di”
would yield “indie” for which an application of substring with b = 2 and
e = 6 would not be possible because e = 6 > 5 = |“indie”|. Therefore, we
have to ensure that the source string has at least the length of the target

string.

Letter Case To invert letter case conversions, we define a helper that
returns the index of the first occurrence of a pattern p in a string s if such
an occurrence exists and otherwise returns the length of s:

firstindex(s : string,p : string) : int :=
min({i € Ny | substring(s, i,i + [p|) = p} U {[s|})

Furthermore, we define two shorthands for the next definition. The first
occurrence of the pattern t in the base string tUC(s) is defined as i :=
firstindex(¢tUC(s), t). For the other shorthand ¢ and tUC(s) switch the roles
of pattern and base string. The first occurrence of the pattern tUC(s) in the
base string t is defined as j := firstIndex(t, tUC(s)).

For the to-upper-case-conversion operator tUC(s : string) : string, we
define the inverse operator

tUCT (¢ : string, s : string) : string :=

restrictPGV(tUC— (tUC(t), s)) if t # tUC(t)
substring(s, i, i + [t|) if [t] < |[s|Ai<]s]|
tLC(prefix(t, j)) ™ s tLC(suffix(t,j + |s|)) if [t] > |s| Aj < |t]
tLC(¢) otherwise

266

7.4. Bidirectionalizable Conditions and Inverters

We illustrate the inversion of the upper-case conversion operator based on
the example input s =“CamelCase”: If the target “CAMELCASE” is changed
to “Cas”, the first case of the definition applies because “Cas” # “CAS” =
tUC(“Cas”). The inverse operator is recursively called with the new tar-
get “CAS” and the obtained string will be used as default value during the
handling of the PUTGET violation. This recursive call has the same effect
as if the target would have been directly changed to “CAS”. For such a
target, the second case of the definition applies because |“CAS”| = 3 <
9 = |“CamelCase”| and firstIndex(tUC(“CamelCase”), “CAS”) = 5 < 9.
Therefore, “Cas” is returned. If the target is changed to “NOCAMEL-
CASED?”, the third case applies because |“‘NOCAMELCASED”| = 12 > 9
and firstindex(“NOCAMELCASED”, tUC(“CamelCase”)) = 2 < 12. There-
fore, “no”~ “CamelCase”™“d” is returned. If the target is changed to
“DROMEDAR?”, the last case applies and “dromedar” is returned.

The inverse operator tLC for the to-lower-case-conversion operator tLC
is defined completely analogously. That is, all occurrences of tUC and tUC™
in the above definition have to be replaced with tLC and tLC*". Furthermore,
all original occurrences of tLC in the definition have to be replaced with
tUC.

7.4.7. Limitations of the Approach and the Inverters

Currently our approach is bound to one limitation and the presented invert-
ers to two restrictions. As we already stated in subsubsection 7.4.3.1, our
approach can only be used for operations in which every source attribute
appears at most once. Furthermore, we currently only defined inverters for
operators that can be inverted by updating a single source attribute (see sub-
section 7.4.4). Finally, all supported operators only operate on single-valued
attributes not on collections or sequences.

The limitation to linear or affine expressions is common but not relevant in
many practical use cases. The restriction to operators that can be inverted
with a single update limits the applicability of our approach but it is only
temporary: the conceptual framework and implementation prototype can
easily be adapted in the future to support inverters that update several
source attributes. Even defining inverters for operators on collections or
sequences should not be conceptually more difficult: If the source value

267

7. A Bidirectional Language for Consistency Mappings

collections before an update of the target collection are given, then the
inversion of a collection operator is often similar to the inversion of single-
element operators. The technical realization and static analysis e.g. of
higher-order functions would, however, probably be challenging.

7.4.8. Fall Back to Unidirectional Enforcement

If a condition that relates both sides of a mapping cannot be expressed
by composing operations that only involve the operators for which we
developed inverters, then the developer can directly specify code to enforce
the condition in both propagation directions. In such cases, the developer
is responsible for fulfilling the above mentioned round-trip laws during
consistency preservations whenever this is possible. Tests are, however,
in many cases no sufficient strategy to ensure this because the number of
possible value changes is too large. Therefore, it can be beneficial to also
express the code for both directions in a formal way and to prove that the
code meets the requirements if it implements the formal representation
correctly. In order to make it possible that such effort can be reused, lan-
guage constructs for extending our library of inverters could be provided by
the mappings language. This would give developers the possibility to use
newly developed inverters in several bidirectionalizable conditions instead
of writing partly redundant pairs of forward and backward enforcement
code.

7.5. Dependencies and Multi-Parameter Mappings

We have presented all possibilities to define an isolated mapping in the previ-
ous sections but the mappings language also provides a possibility to define
mappings that depend on other mappings. Such inter-mapping dependen-
cies can be used to structure a set of mappings, for example, according
to the parts of the metamodels that are kept consistent with individual
mappings. Furthermore, developers can choose from different possibilities
for mapping instances of a certain metaclass at different locations in a chain
of dependent mappings. In this way, the desired consistency preservation

268

7.5. Dependencies and Multi-Parameter Mappings

consequences can be fine-tuned and many different scenarios can be cov-
ered with a simple language construct. We also experimented with another
way to relate mappings by nesting them but explicit dependencies turned
out to be more flexible. In this section, we explain how dependencies can
be expressed, discuss the consequences of different possibilities to define
mappings with dependencies, and present nested mappings as a discarded
alternative to explicit dependencies.

7.5.1. Inter-Mapping Dependencies

In the signature of a mapping it is possible to declare a dependency to
another mapping. An example of such an inter-mapping dependency was
already given in the mapping between a component, a package, and a class
in Listing 7.3 on page 224. This mapping depends on the mapping between
a component repository and four packages in the object-oriented design,
which we presented in Listing 7.2 on page 219. The dependency is used to
put the subpackage that corresponds to a component into one of the four
packages that corresponds to the repository (Listing 7.3, line 7). Together,
both mappings specify that this package will always contain a package for
each component in the repository. Instead of declaring a dependency to the
repository mapping, we could also write code that finds this package for all
components. This code would need to be put in a check block of a single-
sided condition of the component mapping. Additionally, we would have
to specify in the enforce block of this condition how the subpackage for
an individual component is to be put into the package for all components.
This enforce code would be similar to the single-sided condition that refers
to the package on which it depends using the identifier repoPkgs. The
check code would, however, almost be identical to the two conditions of the
package for all components in the repository mapping (Listing 7.2, line 10-
13). This means, we have to copy a part of this mapping if we do not declare
a dependency to it. Such copied conditions are an unnecessary source for
errors and for avoidable maintenance effort, especially if mappings are
more complex and have several direct or indirect dependencies.

In general, an inter-mapping dependency from a mapping to another map-
ping means that the first mapping is only instantiated (see page 216) if the

269

7. A Bidirectional Language for Consistency Mappings

other mapping was already instantiated. That is, instances of the meta-
classes that are mentioned in the signature of the depending mapping are
only mapped if instances of the metaclasses mentioned in the signature of
the other mapping are already mapped. If some or all of the metaclasses in
both signatures are the same, then the dependency does not require that
the same instances are mapped. To further restrict the meaning of an
inter-mapping dependency in such a way, a single-sided condition has to
be specified. In it, the appropriate parameters of both mappings have to
be related using the equals operator. This need to explicitly specify that
elements that were mapped in both mappings are equal, gives developers
full control over the extent of an inter-mapping dependency.

All dependency relations between all mappings for two metamodels can be
represented as a directed acyclic graph. In this dependency graph, nodes
represent mappings and a directed edge from one node to another node
means that the mapping of the first node depends on the mappings of the
second node. The graph may not have any cycles because none of the
mappings that are on a dependency cycle could ever be instantiated so
all these mappings would be useless. In general, the dependency graph
does not need to be an oriented tree because several paths between two
nodes are possible. The reason for this is that a mapping may indirectly
depend on another mapping multiple times when it depends on several
mappings that finally depend on the same mapping. If it is necessary in
such a case, then it can be ensured that the same mapping instantiation
is used on several paths by defining single-sided conditions that ensure
that the same elements are mapped. We suggest, however, to avoid indirect
dependencies to the same mapping along different paths. In most cases,
it should be sufficient if developers only specify mappings for which the
dependency graph is an oriented tree, probably also with a low height.

7.5.2. Mapping Possibilities and Consequences

If instances of several metaclasses are mapped on one side, developers
have many different possibilities to design appropriate mappings and the
dependencies between them. With this degree of freedom, developers can
determine which model information shall be kept consistent for different
possible model states. By defining a single mapping or multiple mappings

270

7.5. Dependencies and Multi-Parameter Mappings

with dependencies, a developer can control which conditions have to be
fulfilled together and which conditions may but do not need to be fulfilled
simultaneously.

The effect of a mapping dependency can be explained using the model
states for which a mapping is instantiated and its conditions are enforced.
In the previous sections, we already explained that all single-sided condi-
tions of one side have to be fulfilled before a mapping is instantiated. We
also explained that a mapping that depends on another mapping is only
instantiated if the other mapping is already instantiated. Broadly speak-
ing, this means that the conditions of the other mapping are added to the
dependent mapping. Thus, we can distinguish three kinds of model states
for a inter-mapping dependency between two mappings. The first kind of
model states are those in which the conditions of none of the two mappings
are fulfilled. The second kind, are model states in which the conditions of
the independent mapping are fulfilled but the conditions of the dependent
mapping are not. The third and last kind of model states are those in which
the conditions of both mappings are fulfilled.

To illustrate the different possibilities for designing mappings and their
dependencies, we present an example consistency preservation scenario
and three mapping strategies for it. For a first metamodel, we are only
concerned about a single metaclass for expressing mailing addresses in
terms of a number, street, and zip code. Instances of this metaclass are
to be kept consistent with instances of a second metamodel in which the
information for an address is distributed over three metaclasses. A first
metaclass to model a location in terms of a number and a street, and second
metaclass to model a city in terms of a zip code, and a third metaclass to
model a recipient at a location in a city. These metaclasses are also depicted
in the class diagram that is shown in Figure 7.8. Real metamodels would
contain much more metaclasses and metaclass features, but to explain
different mapping strategies this simple snippet is already sufficient. The
distribution of street and zip code information to instances of two separate
metaclasses that are related by a third recipient metaclass is representative
for a constellation that can appear in many variants in other consistency
preservation scenarios. As only this information distribution is necessary
for our subsequent illustration of different mapping strategies, we will even
ignore the number of a location in the following.

271

7. A Bidirectional Language for Consistency Mappings

Address Recipient

number:Integer

street:String
zipCode:String locatedAt " 1 1\ locatedIn

Location City

number:Integer zipCode:String
street:String

Figure 7.8.: Class diagram for two example metamodels for mailing addresses, which
are used to explain different mapping strategies

For this simple consistency preservation scenario we explain three ex-
emplary mapping strategy and discuss their effect for both preservation
directions:

all-or-nothing map instances of all three metaclasses of the second meta-
model in a single mapping with two bidirectionalizable conditions for the
street and the zip code (Listing 7.7). The effect of this mapping is that
address information is only kept consistent if it is complete.

step-by-step define three individual mappings to map the complete address
to a recipient, a location, and a city (Listing 7.8). The effect is that the
address container, its street, and its zip code are individually kept consistent
in possibly separate steps.

containers-then-content create separate mappings for the metaclasses and
their features (Listing 7.9). This last strategy has the effect that model
elements that act as containers for the information that is kept consistent
are created independent of this content.

All three possibilities to define mappings for the address example scenario
represent general mapping strategies that can be applied whenever a variant
of the described information distribution occurs. We explain the detailed
effect on the behavior of the consistency preservation reactions that are
generated in all three cases using a concrete mapping example. This ex-
ample is based on a more general example from Dominik Werle’s master’s
thesis [Wer16, pp. 53-57]. First, we show in Table 7.4 three different model
states that are obtained after changing a model of the metamodel for bun-
dled address information. For each of these states and each of the three

272

7.5. Dependencies and Multi-Parameter Mappings

1 mapping Address<->RecipientLocationCity {
2 map (Address a)

3 and (Recipient r, Location 1, City c)
4 such that {

5 a.number = 1.number

6 a.street = l.street

7 a.zipCode = c.zipCode

8 1}

9}

Listing 7.7: Example mapping for mailing addresses according to the all-or-
nothing strategy for mapping dependencies (metamodel prefixes omitted)

mapping Address<->Recipient {
map (Address a)
and (Recipient r)

mapping Address<->Location

depends on (Address<->Recipient arm) {
map (Address a) with { a equals arm.a }
and (Location 1)

10 such that {

11 a.number = 1.number

12 a.street = l.street

16 mapping Address<->City

17 depends on (Address<->Recipient arm) {
18 map (Address a) with { a equals arm.a }
19 and (City c)

20 such that {

21 a.zipCode = c.zipCode

23 '}

Listing 7.8: Example mappings for mailing addresses according to the step-by-
step strategy for mapping dependencies (metamodel prefixes omitted)

273

7. A Bidirectional Language for Consistency Mappings

mapping Address<->RecipientAndContainers {
map (Address a)
and (Recipient r, Location 1, City c)

mapping Address<->LocationCityContent

depends on (Address<->RecipientAndContainers aracm) {
map (Address a) with { a equals aracm.a }

9 and (Location 1, City c) with {

10 1 equals aracm.l

11 c equals aracm.c

12 }

13 such that {

14 a.number = l.number
15 a.street = l.street
16 a.zipCode = c.zipCode
17 }

18 }

Listing 7.9: Example mappings for addresses according to the containers-then-
content strategy for mapping dependencies (metamodel prefixes omitted)

mapping possibilities discussed above, we present the corresponding model
with the distributed address information that is obtained after the appropri-
ate reactions for the mappings are executed. Then, we provide analogue
information for the opposite consistency preservation direction and for
four different model states in Table 7.5. These states are reached after a
change in a model of the metamodel for distributed address information.
This time, the columns contain the corresponding model with bundled
address information that is obtained after the appropriate reactions for
the mappings are executed. Together, both consistency preservation di-
rections demonstrate that different mapping possibilities or strategies that
realize the same consistency if all information is provided can nevertheless
preserve consistency very differently for intermediate states.

7.5.3. Nesting as a Discarded Alternative to Dependencies

Nested mappings could be a more concise language construct for relating
mappings than explicit dependencies. This would make it unnecessary to

274

7.5. Dependencies and Multi-Parameter Mappings

([9s "d ‘91191] UO paseq)
sardarens Surddewr Juaragrp 103 saSueyd juanbasqns 193Je pue [9poOwW SSAIPPE [EIIIUI 10J S[opow Jualdioar Sunnsay :*p°L ajqeL

Js a8eg =1901s 1S 98eq, =190ms [[Mu=1291s
NAPdIMS,,=2poDdiz Zh=Ioquinu [mu=apo)drz Zh=Ioquinu [mu=apo)drz 0=IoquInu L3 v
. ; . - . - 6L SUnSIT
Ao UOT}edOTT: Shioth) UOT}edOTT[Siio] UOT}edOTT:] £Soyens
JUJU0D-UY}
-SIdUTRIUOD
JS a8ed =190118 S 98e g, =19018
NAPAIMS, =2po)diz Zh=Toquinu Zh=Toquinu
A UOT}edOT| UOTJBIO (g Su
-sT]) ASejenms
Juardroay:x Juardroay:x days-£q-dags
JS a8ed =1901m18
NAPAIMS, =2po)diz Zh=Toquinu
A1) UOT}edOT: (1 S
-sr]) ASejens
- - Suryjou-10-re
NaPdIMS,=opo0drz [mu=apoodrz [mu=apoodrz
S 98eg, =1991s S 98e g, =1991s [Mu=322138
Zh=Ioquinu Zh=Ioquinu O=Ioqunu woneoy
SSaIppY:® SSaIppy:®e SS2Ippy:® -ads Surddew
210p
-dn aatfo japow
ua

a3ueyp pug I9)Je [9POUT SSIIPPE 93ueyDd 1ST I9)J€ [9POUT SSIIPPE [opow ssaIppe [enIut 11024 Suiggnsad

275

resulting recipi- initial recipient recipient model after recipient model after 2nd change recipient model after 3rd change

ent model after model 1st change
update
mapping speci- r:Recipient r:Recipient r:Recipient r:Recipient
fication
I:Location l:Location c:City I:Location c:City
number=42 number=42 zipCode=null number=42 zipCode=“SW1P4EN"
street="Page St” street="Page St” street="Page St”
" all-or-nothing - - a:Address a:Address
@ strategy number=42 number=42
2 (Listing 7.7) street="Page St” street="Page St”
an.. zipCode=null zipCode="SW1P4EN”
&
£ step-by-step a:Address a:Address a:Address a:Address
K] strategy (List- number=0 number=42 number=42 number=42
a ing 7.8) street=null street="Page St” street="Page St” street="Page St”
S zipCode=null zipCode=null zipCode=null zipCode=“SW1P4EN”
-
it
g, containers- - - a:Address a:Address
w then-content i number=42 number=42
0 strategy (List- street="Page St” street="Page St”
3 ing 7.9) zipCode=null zipCode="SW1P4EN”
=
g
£ Table 7.5.: Resulting address models for initial recipient model and after subsequent changes for different mapping strategies
& (based on [Wer16, p. 57])
=]
A
<
~

276

7.5. Dependencies and Multi-Parameter Mappings

name mappings, because they would no longer be referenced from other
mappings. Furthermore, mappings could be nested in a similar way model
elements are contained in other model elements. Despite these apparent
advantages, we also discovered disadvantages when we experimented with
nested mappings in an early prototype of the mappings language. During
these experiments we observed that nested mappings are less flexible than
inter-mapping dependencies and implicit matches can be more complex to
understand than such explicit dependencies.

Nesting instead of explicit dependencies is less flexible because an individ-
ual mapping can only be nested in a single parent mapping but may depend
on several other mappings. For many cases a single direct dependency is
sufficient and therefore nested mappings would be an alternative for these
cases. Other cases with several direct dependencies should, however, not be
neglected. Such a case can be found, for example, in the original consistency
preservation scenario on which our running example for component-based
architectures and object-oriented design scenarios is based. When compo-
nents of a component repository are used in a concrete system, they are
assembled with other components using connectors. The mapping for such
a connector depends on a mapping for a component and on a mapping for
an architectural interface. Therefore, the connector could not be nested in
one of the two mappings without an additional dependency to the other

mapping.

Nested mappings can be more complex to understand than mappings with
explicit dependencies because of the scoping of metaclass parameters in
mapping signatures. This scoping can be realized in two ways. Either
identical names for parameters in nested mappings are disallowed. In
this case, it has to be explicitly specified if the same element should be
mapped in a parent and a nested mapping as it is necessary for inter-
mapping dependencies. Or identical names are allowed to express exactly
this behavior. In both cases, it can be difficult for developers to trace which
model element are influenced by which conditions, especially if mappings
are nested over several layers.

277

7. A Bidirectional Language for Consistency Mappings

7.6. Realizing a Compiler for the Mappings
Language

In this section, we provide further information on the concrete and abstract
syntax of the mappings language and briefly describe how we realized it in
terms of a prototypical compiler.

7.6.1. Mappings Language Syntax

So far, we described the concrete and abstract syntax of the mappings
language only for special language parts and mostly using examples and
diagrams. In the following, we will provide a complete view on the abstract
syntax in terms of a class diagram with metaclasses that can be instantiated
to represent mappings as an AST. Furthermore, we will describe the concrete
syntax of the mappings language using grammar rules.

7.6.1.1. Complete Abstract Syntax

Most of the abstract syntax of the mappings language has already been
graphically illustrated in Figure 7.1 in section 7.1 and Figure 7.2 in section 7.3
and textually described in this chapter. A more compact and complete
overview over the abstract syntax of mappings is given in Figure 7.9. This
class diagram also contains concrete subclasses for the different operators
that can currently be used in single-sided conditions that specify properties
that have to be checked and enforced for a referenced feature of a metaclass
and multiple values or a single value. References to metamodel elements,
such as metaclasses or features, and to technical artifacts, such as model
resources, are still omitted.

7.6.1.2. Concrete Syntax for Mappings and Single-Sided Conditions
We have already illustrated a part of the concrete syntax of the mappings

language in terms of a syntax diagram in Figure 7.3 in section 7.3. Further-
more, we provided several listings of exemplary mapping code that also

278

7.6. Realizing a Compiler for the Mappings Language

0.* | bootstrapMappings
M ‘ leftMetamodel PYapping
apping ;
Specification 1 Metamodel Bootstrap Mapping
- L | nsURL:Identifier 1 name:Identifier
name:Identifier -
I J— rightMetamodel ~ mappedMetamodel ?
dependsOn
1.* | mappings[0¥ |eftParameters 1.* parameters1
Mapping L Parameter type Type
name:Identifier L"| name:Identifier
? rightParameters rightConditions
leftConditions
0.*|bidirectionalizableConditions 0..1|fallbackExecutionCode 0.*| 0.*
Bidirectionalizable Fallback Single-Sided 0.*
Condition Execution Code Condition -
conditions
AF
[l l
Feature Condition Resource Condition Check and
‘r Enforce Code
l ‘ Degault l
Multi Value Single Value . Empty List
. . Containment .
Condition Condition i Condition
Condition
negated:bool AF
Equals In List At Index c I\Emr
Condition Condition Condition ompare
Condition
negated:bool

Figure 7.9.: Simplified class diagram with metaclasses for completely representing
mappings as an AST

demonstrate which concrete syntax is used for the mappings language. In
order to complete this partial and distributed information on the concrete
mappings syntax, we show a simplified version of the complete grammar
in Listing 7.10. The rules are again presented in EBNF, which we have

279

7. A Bidirectional Language for Consistency Mappings

introduced on page 197 of section 6.6.1.2. In the grammar and in our
current compiler prototype, bidirectionalizable conditions are realized as
expressions of the reused expression language. Instead of having special
grammar rules for bidirectionalizable conditions with different operators,
we parse arbitrary expressions and validate that they correctly compose
only operations with operators for which we realized inverters.

7.6.2. Editing, Compiling, and Executing Mappings

The editor and the compiler for the mappings language are realized anal-
ogous to the editor and the compiler of the reactions language (see sub-
section 6.6.2). Again, the Xtext language workbench [Eff+12] was used
to realize an editor with, for example, auto-completion and quick-fixes
that are suggested in case of common compilation errors. Code validation
and code generation are, however, not realized as a transformation to Java
models, but as a model-to-text transformation using template expressions.
The current prototype does not yet use the change-driven constructs of
the reactions language as it only generates a single reaction to arbitrary
changes. In the future, we are planning to refine the code generation part
of the compiler so that a single mapping is realized by several reactions
that are triggered for changes that directly reflect which metaclasses and
features are mapped.

We addressed the Open Consistency Specification Language Challenge 4 by
wrapping calls to general platform code in classes and methods that provide
typesafe and properly named access to model elements and correspondences.
For both sides of a mapping, a class MappedSideWrapper is generated. It
provides access to mapped parameters and wraps calls to platform code
for creating, updating, and deleting instances of the mapped metaclasses.
Furthermore, a class CorrespondingElementsWrapper is generated for ev-
ery mapping. It uses both wrappers for mapped parameter instances and
provides additional methods with appropriate types and names for adding
and removing correspondences. Finally, a class MappingInstantiation is
generated for every mapping. It provides functionality for establishing
mapping instantiations by creating instances of mapped metaclasses and
correspondences for them. Additionally, it provides methods for updat-
ing corresponding elements and for destroying mapping instantiations by

280

7.6. Realizing a Compiler for the Mappings Language

1 mappings header = "mappings" , xbase identifier ,
2 "for" , xbase namespace , "and" xbase namespace;
3 mapping = "mapping" , xbase identifier ,

4 ["depends on (" , mapping dependency, ")"1 , "{" ,
5 "map (" , parameters , ")" ,
6
7
8
9

["with" , "{" , {single-sided condition} - , "}"1 ,
"and (" , parameters , ")" ,
["with" , "{" , {single-sided condition} - , "}"]
["such that" , "{" , {bidirectionalizable condition} - , "}"] ,
10 ["forward execute {" , {xbase expression} - , "}" ,
11 "backward execute {" , {xbase expression} - , "}"1 , "}";
12 bootstrap mapping = "bootstrap mapping" , xbase identifier , "{"
13 "create (" , parameters , ")" ,
14 ["with" , "{" , {single-sided condition} - , "}"] , "}";
15 mapping dependency = xbase identifier , {"," , xbase identifier};
16 parameters = typed identifier , {"," , typed identifier};
17 typed identifier = type expression , xbase identifier;
18 type expression = xbase identifier , "::" , xbase identifier;

19 single-sided condition = feature condition | resource condition |

20 check and enforce code;

21 feature condition = (multi value condition | single value condition |
22 element condition | ["not"] , “empty") ,

23 feature expression;

24 multi value condition = {value expression} - ,

25 ["not"] , ("equals" | "in");

26 value expression = xbase expression;

27 single value condition = value expression ,

28 (index expression | num compare expression);

29 index expression = ["not"] , "at index" , xbase expression , "in";
30 num compare expression = "<=" | "<" | ">=" | ">";
31 element condition = element expression , "default contained in";

32 element expression = xbase expression;
33 feature expression = xbase identifier ,

, Xbase identifier;

34 resource condition = "default path for" , element expression ,
35 "=", ["path of" , element expression , "+"] , xbase string;
36 check and enforce code = "check " , xbase expression block

37 "“enforce " , xbase expression block;

38 bidirectionalizable condition = xbase expression;

Listing 7.10: Simplified grammar of the mappings language in EBNF, which
reuses grammar rules of the Xbase language

281

7. A Bidirectional Language for Consistency Mappings

deleting corresponding elements and their correspondences. This class,
only uses methods of the wrapper classes and no platform code is directly
called. Therefore, this mapping instantiation code can be directly traced
to the mappings specification code. Moreover, no casts or parameterized
types have to be used in this code, which may be debugged by developers
that use the mappings language. Additional details on the code that is cur-
rently generated for mappings can be found in Dominik Werle’s master’s
thesis [Wer16, pp. 75-83].

For all single-sided conditions of one side of a mapping, two methods for
checking and enforcing the conditions are generated in the mapping instan-
tiation class. The realization of bidirectionalizable conditions is currently
separated from the remainder of the code generator. It works with ar-
bitrary expressions of the reused expression language Xbase [EV06] but
validates whether only bidirectionalizable operators are used in these ex-
pressions. As before, the names and the type information of the mapping
specification is used in the generated code of the inverse operations that
are created for bidirectionalizable conditions. Only methods of the platform
code with semantics that are well-known or can be easily derived, such as
special equals methods, are called in the generated code. The goal is that
developers can directly relate the structure and behavior of a generated
inverted operation to the operation they specified. Further information on
the bidirectionalization process can be found in subsubsection 7.4.3.1.

7.7. Semantics of Consistency Mappings based on
Reactions

In the previous sections, we have illustrated the semantics of the mappings
language for individual language constructs and examples. To complete
this information, we will present the complete semantics of the mappings
language based on the reactions language. In this way, the provided map-
pings semantics rely on the formal semantics for reactions, which we have
already presented in section 6.7. Therefore, the discussion does not always
need to be as formal as the discussion of the reactions semantics. Neverthe-
less, we aim to achieve the same precision indirectly via the more formal

282

7.7. Semantics of Consistency Mappings based on Reactions

reactions semantics. First, we will present fundamental algorithms for cre-
ating, updating and deleting mapping instantiations, which can be realized
as reaction routines. Then, we will explain why and how we distinguish
between mappings that are realized with exhaustive checks after every
change and mappings that can be realized with more specific reactions. Fi-
nally, we describe both realizations in detail and show that the execution of
mappings preserves consistency according to the mappings specification.

7.7.1. Fundamental Algorithms for Mapping Instantiations

To realize mappings, three fundamental algorithms for creating, updating,
and deleting a concrete instantiation of a mapping are necessary. These
algorithms have to be carried out after it was determined that all mapping
conditions newly apply, still apply, or no longer apply for objects that in-
stantiate the mapped metaclasses. Here, we will only present the algorithms
and later we will explain in detail under which circumstances they have
to be carried out. For every mapping six separate reaction routines can be
generated to realize these algorithms for the specific mapping and both
consistency preservation directions. In order to not repeat explanations for
both directions, we ignore whether a mapping was defined for a metamodel
A and a metamodel B or for B and A. This means we use the fact that
mappings are direction-agnostic (see page 220 in subsection 7.1.2). As the
realization of mappings is not direction-agnostic but symmetric, we will
use the terms of a change source side and an execution target side, which
we have introduced on page 174 in section 6.3.

The first fundamental algorithm creates a new mapping instantiation for
a mapping and for a tuple of objects of the change source side for which
the mapping conditions are newly fulfilled. Therefore, we briefly call it
create algorithm. This tuple is an instance tuple {os) := (os,, . . ., 0s,) (see
Definition 16) of the metaclass tuple (Cs) := (Cs,, . . ., Cs,) (see Definition 14)
that can be constructed for the list of mapping parameters of the change
source side. Similarly, the appropriate metaclass tuple for the execution
target side is denoted by (Ct). The algorithm consists of four steps:

1. Create an instance of every metaclass that is listed as a parameter of
the target execution side of the mapping, i.e. for every

283

7. A Bidirectional Language for Consistency Mappings

Cs, € (Cy,,...,Cs,), and call these new model elements
(04, ..,0s,) =: {0y) parameter instances.

2. Add a correspondence between all pairs of existing mapped
elements of the change source side and the newly created parameter
instances, i.e. for all (os,, o,j).

3. Enforce every single-sided condition on the target execution side by
updating the appropriate reference links and attribute values of the
new parameter instances.

4. If the mapping contains a bidirectional enforcement specification,
i.e. bidirectionalizable conditions, a pair of forward and backward
enforcement code blocks, or both, then execute this enforcement
specification in the current consistency preservation direction.

If a mapping was already instantiated previously and the conditions still ap-
ply, then the second fundamental algorithm, which we call update algorithm,
has to be carried out:

I. Enforce every single-sided condition on the target execution side
(identical to step 3 of the create algorithm).

II. If the mapping contains a bidirectional enforcement specification,
then execute it in the current direction (identical to step 4 of the
create algorithm).

When the conditions of a mapping apply no longer for a mapping instanti-
ation, then the last fundamental algorithm, which we call delete algorithm,
has to be carried out:

a. Remove all correspondences that were added in step 2 of the first
algorithm.

b. Delete every parameter instance that was created in step 1 of the
first algorithm.

As a mapping specifies that instances of the mapped metaclasses that fulfill
the mapping conditions always have to co-occur, it is not possible to define
any other deletion semantics for mappings. Nevertheless, it may be desirable
in many consistency preservation scenarios to ask the user to confirm the
consequence of deleting corresponding elements. The reason is, that a user
may not always be aware of information that may have been manually added

284

7.7. Semantics of Consistency Mappings based on Reactions

to corresponding elements but for which no corresponding information is
available in the model in which the mapping conditions were violated by
the user change.

7.7.2. Distinguishing Pure from Impure Mappings

In order to preserve consistency according to a mappings specification the
three fundamental algorithms that we presented in the previous section
have to be carried out whenever mapping conditions newly apply, still
apply, or no longer apply. This can be done by checking all conditions for
all objects that instantiate metaclasses that are used as mapping parameters
and therefore could be part of a mapping instantiation (see page 216). A po-
tential problem of such an approach is, however, that developers may have
to inspect general check code that is not necessary to preserve consistency
and superfluous invocations of checks. Therefore, we suggest to restrict
reevaluations of mapping conditions to certain changes and to reduce the
number of model elements for which such reevaluations are performed
based on the information in the mappings specification. This would relieve
a developer of a mapping specification from considering such unnecessary
reevaluations. The goal of such a change-driven realization of mappings is
not to improve the performance but to address the Open Consistency Spec-
ification Language Challenge 4. Furthermore, a mapping realization using
specific reactions is an important prerequisite for future improvements of
the integration of mappings and reactions. If the consistency preservation
behavior that is implied by a mapping shall be overridden or extended for
certain changes, then a realization of mappings with fine-grained reactions
can be necessary to achieve a good integration of mappings and reactions.

To realize mappings in a change-driven way, it has to be possible to de-
termine after which changes conditions of a mapping have to be checked.
After these checks the previously presented algorithms can be carried out
to create, update, or delete mapping instantiations. In order to perform the
checks only after certain changes, it has to be determined which changes
can lead to cases in which conditions are newly or no longer fulfilled. This
is not precisely possible if mappings contain arbitrary imperative code with
while loops. Therefore, we will introduce terms that allow us to distinguish

285

7. A Bidirectional Language for Consistency Mappings

between mappings that will be realized with exhaustive checks after every
change and mappings that will be realized in change-driven way.

To determine which changes have to lead to which checks for a mapping,
we have to analyze expressions that are used in single-sided conditions. De-
pending on the operator used in a single-sided condition, these expressions
to be analyzed are value expressions, element expressions, and feature ex-
pressions (see Figure 7.3 in section 7.3). If such an expression only accesses
model elements via mapping parameters, calls pure getters for references or
attributes on them, or lists fixed value literals, then we call it a purely navi-
gational expression. As a consequence, all purely navigational expressions
have no side-effects but not all expressions without side-effects are purely
navigational. Bidirectionalizable conditions do not need to be checked as
they are always enforced (see also page 220 of section 7.1.1).

In order to be able to identify mappings that we will realize with specific
reactions, we have to distinguish three different kinds of single-sided con-
ditions:

pure elements conditions are single-sided conditions that use a default con-
tainment operator and only have purely navigational element expressions,

pure feature conditions are single-sided conditions that use an operator
with a feature expression—i.e. the equals, in, at index, or number-inequality
operator—and only have purely navigational value and feature expressions,

impure conditions are single-sided conditions with a check and an enforce
block and single-sided conditions that use an operator with a feature ex-
pression but have at least one expression that is not purely navigational.

Both, pure elements conditions and pure feature conditions are briefly called
pure conditions. In contrast to all other single-sided conditions, default
containment conditions, i.e. conditions with a default-contained-in operator
or a default-path-for operator, are never used to check whether the condi-
tions of a mapping hold. These conditions are only enforced, but whether
they have to be enforced does not depend on the consistency preservation
direction but on a containment check (see subsubsection 7.3.2.2).

In the following, we transfer this notion of purity and impurity from single-
sided conditions to mappings. A mapping that specifies only pure conditions
for both sides is called a pure mapping. Similarly, all other mappings, which

286

7.7. Semantics of Consistency Mappings based on Reactions

have at least on impure condition, are called pure mappings. Roughly speak-
ing, the purity of a mapping denotes whether only declarative language
constructs are used in conditions that have to be checked to decide whether
mapping instantiations have to be created, updated, or deleted.

7.7.3. AReaction for All Impure Mappings

In the following, we will present how mappings can be realized using a
single reaction that is triggered after every change. Although this realization
is correct for all mappings, we suggest to only use it for impure mappings.
A more fine-grained realization for pure mappings will be presented in the
next section.

Mappings can be realized with a single reaction that exhaustively recom-
putes cartesian products. This reaction has to be triggered after any arbi-
trary change and has to keep track of all current mapping instantiations for
all mappings. After every change, we can determine for every mapping and
for every combination of model elements that could instantiate a mapping
whether this is or was the case. That is, we always have to determine
whether the mapping has to be newly instantiated or no longer instantiated
and whether an existing instantiation has to be preserved. To obtain these
model elements, we can iterate over all tuples in the cartesian product of all
sets that contain all instances of the metaclasses that are listed as parameters
for the mapping. All these tuples are candidates for instantiations of the
mapping (see page 216). For each of these mapping instantiation candidates,
we can check whether all single-sided conditions are fulfilled and whether
a mapping instantiation is currently registered for them. Then, we have to
distinguish three cases for every mapping instantiation candidate:

new instantiation If the conditions are newly fulfilled, i.e. no mapping in-
stantiation is currently registered for the candidate, then we have to register
a new mapping instantiation and execute the create algorithm, which was
presented on page 283.

preserve instantiation If a mapping instantiation is currently registered for
the candidate and the conditions are still fulfilled, then we have to execute
the update algorithm (see page 284).

287

7. A Bidirectional Language for Consistency Mappings

delete instantiation If a mapping instantiation is still registered for the can-
didate but the conditions are no longer fulfilled, then we have to deregister
the mapping instantiation and execute the delete algorithm (see page 284).

As we have already mentioned above, this exhaustive realization strategy
for mappings has the disadvantage that it may lead to many unnecessary
checks. After every change, all single-sided conditions are checked for all
elements in the cartesian product of all mapping signatures. For large mod-
els, the vast majority of these checks is often unnecessary because a single
change usually leads to a low number of mapping instantiations that have
to be created, preserved, or deleted. If a developer wants to test or debug a
mapping specification, it may be beneficial if fewer checks are performed
on fewer mapping instantiation candidates and only after certain changes.
To achieve this at least for pure mappings, we propose to use another real-
ization strategy with more fine-grained reactions. The compiler prototype
for the mappings language, currently uses the exhaustive strategy for all
mappings but we will extend it in future work to realize pure mappings
according to the strategy that is presented in the next section.

7.7.4. Reactions and Data for Pure Mappings

We propose a strategy for realizing pure mappings with reactions that use
the available mapping information to restrict the number of cases in which
single-sided conditions are reevaluated. As all single-sided conditions of a
pure mapping are pure and bidirectionalizable conditions do not need to
be checked, we will omit the descriptors “single-sided” and “pure” in the
following and briefly write condition. For the exhaustive strategy, it was
sufficient to manage mapping instantiations for every mapping during the
process of consistency preservation. To realize mappings with fine-grained
reactions, we propose to maintain further data to represent the results of
checks that were performed when consistency was preserved according to a
mapping specification after changes. For each mapping in the specification,
we keep track of mapping instantiation candidates, of conditions that are
currently fulfilled or unfulfilled, and of parameter instance candidates. To
keep the discussion concise, we define a special notation for this data: For
a mapping m, we briefly write MIC,,, to denote the set of all mapping
instantiation candidates of m. Furthermore, we write F; to denote the

288

7.7. Semantics of Consistency Mappings based on Reactions

set of all conditions that are currently fulfilled for a candidate i € MIC,,.
Analogue, we write U; to denote the set of all conditions that are currently
unfulfilled for a candidate i € MIC,,. Finally, for a parameter p of a mapping
m, we write PIC, to denote the set of all parameter instance candidates of
p. These are all model elements that directly or indirectly instantiate the
metaclass that is specified for p. For every mapping m, these sets MICp,, F;,,
woos Fipgepnis Uins o5 Uige 15 PIC, ..., PIC,, have to be dynamically managed
during the consistency preservation process.

In addition to the dynamic sets, there is also static data that can be precom-
puted when the consistency specification is complete. We use this static
data to express the realization of mappings in terms of reactions that update
the dynamic data and execute the fundamental algorithms, which we have
presented in subsection 7.7.1. For the complete mapping specification, we
write MMC to denote the set of all mapped metaclasses, i.e. all metaclasses
that are used as a parameter in at least one mapping. For every mapping m
we write P, to denote the set of all parameters of m. If a mapping m has
to be newly instantiated or if an existing instantiation has to be preserved,
then every condition of a mapping has to be fulfilled. Therefore, we write
r to denote such a required condition of m and R,, to denote the set of all
required conditions of m. In a pure condition, apart from value literals, only
model elements and values that are obtained for references or attributes
can be accessed. Therefore, we inspect which conditions access a reference
or attribute, which are both called a feature of a metaclass. For every such
feature f of a metaclass ¢ € MMC, we write FACs to denote the set of
feature accessing conditions. These are all conditions in which a getter for
f is invoked. This is necessary, because a condition may indirectly access
features of metaclasses that are not listed as a parameter of the mapping by
navigating references on parameter instances.

The static and dynamic data can be used in all reactions that realize pure
mappings. We suggest to create three different groups of reactions for
pure mappings. The first group of reactions, will react to creations of new
model elements. For every parameter of every mapping, an individual
reaction can be created to handle creations of elements that instantiate the
metaclass of the parameter directly or indirectly. This means, if different
mappings list the same metaclass as a parameter, then different reactions
for the different parameters will be created but they will react to creations
of the same model elements. The second group of reactions, will react

289

7. A Bidirectional Language for Consistency Mappings

to feature updates of existing model elements. We propose to create an
individual reaction for every pair that combines a metaclass feature that
may be updated with a mapping that accesses this feature in at least one
of its conditions. Such reactions will determine whether the result of a
feature update is that conditions of the mapping are newly, still, or no
longer fulfilled for instantiation candidates of the mapping. This means,
for a given feature of a metaclass, several reactions can be created if the
feature is accessed in several mappings but for every mapping at most one
reaction will be created for the given feature. The third and last group of
reactions, will react to deletions of existing model elements. Analogue to
element creation reactions, an individual reaction can be created for every
parameter of every mapping.

The group of element creation reactions, will contain an individual reac-
tion for every parameter of every mapping. They react to creations of all
model elements that instantiate the metaclass of the parameter directly or
indirectly. That is, for a mapping m and a parameter p € P,, that maps
the metaclass ¢ € MMC, such a reaction is triggered after the creation
of a model element e iff e is an instance of C or an instance of a direct or
indirect subclass of c. If this is the case, the reaction executes the procedure
PARAMETERINSTANCECREATED as shown in Algorithm 1.

Algorithm 1 React for parameter p of mapping m to creation of element e

1: procedure PARAMETERINSTANCECREATED(e, p, m)
2: | PICy « PIC, U {e} > register parameter instance candidate
3: | forallp; € Py, \ {p} do > for all other parameters of m ...
4 ‘ compute PICPj > ...compute parameter instance candidates
5: | foralli € {e} X; PICy; do > X is |Pm|-ary cartesian product
6 MICy, «— MICp, U {i} > register mapping instance candidate
7 for all conditions r; of m do > check every condition ...
8 if r; is fulfilled for i then > ... for the current candidate
9 ‘ F; « F; U {r;} > remember fulfillment for later
10: else
11: ‘ Ui < Ui U {rj} > or remember unfulfillment
12: if U; = 0 then > all conditions fulfilled fori?
13: execute create algorithm (p. 283) > enforce consistency

To react to updates of existing model elements, we propose to create a
reaction for every pair that combines a feature with a mapping that accesses

290

7.7. Semantics of Consistency Mappings based on Reactions

this feature in a condition. To create these reactions, it has to be determined
for every mapping m, which features are accessed in at least one required
condition r € R,,. Those are all features f, for which the intersection
of the set of conditions that access f and the set of conditions of m is
not emtpy. The conditions in the result set of this intersection are the
conditions to be checked for m after every update of f. Therefore, we briefly
write CTCs,,,, := FACt N Ry,. For every mapping m and every feature f
such that CTC¢,, # 0, we propose to create a separate reaction. This
reaction is triggered to check conditions in CTCs ,, after a change in which
f was updated for an existing model element e. The element for which f
is updated has to instantiate the metaclass ¢ for which f is defined or a
direct or indirect subclass S of C. As conditions may access features of all
metaclasses, it is possible that C, S, or both are not mapped, i.e. neither ¢
nor S has to be in MMC. If the reaction is triggered, then it executes the
procedure FEATUREUPDATED as shown in Algorithm 2.

The last group of reactions handles deletions of existing model elements
and can be created analogue to creation reactions. For every mapping m
and every parameter p € P,,, which maps a metaclass ¢ € MMC, we create
a separate reaction. It is triggered after the deletion of a model element e iff
e instantiates C directly or indirectly. In such a case, the reaction executes
the procedure PARAMETERINSTANCEDELETED as shown in Algorithm 3.

A single change that is performed by a user may involve several creations,
updates, and deletions. Therefore, several reactions for the same or different
mappings may be triggered to react to a single user change. Let us consider,
for example, the deletion of a model element that is contained in another
model element. To achieve such a deletion, a user often performs only a
single change operation in a model editor. For the model, this operation
induces, however, two changes in which the containment link from the
container object to the contained object is removed before this object is
deleted. The affected feature f of the update before the deletion is a con-
tainment reference that is defined for the metaclass of the container object
or for a direct or indirect superclass of it. If f is accessed by a condition of a
mapping m;, then the reaction that is defined for f and m; will be triggered.
It executes the procedure FEATUREUPDATED and rechecks every condition
that accesses the feature (Algorithm 2, line 4) to decide whether one of the
fundamental algorithms for the creation, update, or deletion of a mapping
instantiation has to be executed (see pages 283-284). It is also possible,

291

7. A Bidirectional Language for Consistency Mappings

Algorithm 2 React for mapping m to update of feature f for element e

1: procedure FEATUREUPDATED(F, e, m, CTCs, p,)
2: | foralli € MICy, do > for every instantiation candidate of m
3 for all r € CTCs p, do > and every condition that accesses f
4: if r is fulfilled for i then > check condition for candidate
5: if r € U; then > not fulfilled before change?
6: Fi «— F; U {r} > add to fulfilled conditions
7 Ui < U; \ {r} > remove from unfulfilled conditions
8 newlyFulfilled — T > at least r is newly fulfilled
9: else > 1 is not fulfilled for i
10: if r is a default containment condition then
11: ‘ enforce r for i > containment always fulfilled
12: else
13: if r € F; then > fulfilled before change?
14: Fi «— Fi \ {r} > remove from fulfilled conditions
15: U; « U; U{r} > add to unfulfilled conditions
16: newlyUnfulfilled — T > at least r is newly unfulfilled
17: if U; = 0 then > all conditions fulfilled fori?
18: if newlyFulfilled = T then > overall newly fulfilled?
19: ‘ execute create algorithm (p. 283) > new instantiation of m
20: else > all conditions still fulfilled for i
21: ‘ execute update algorithm (p. 284) > update instantiation of m
22: else if F; = 0 then > no condition fulfilled fori?
23: if newlyUnfulfilled = T then > overall newly unnfulfilled?
24: ‘ execute delete algorithm (p. 284) > remove instantiation of m

Algorithm 3 React for parameter p of mapping m to deletion of element e

1:
2
3
4:
5
6
7

procedure PARAMETERINSTANCEDELETED(e, p, m)
PIC, « PICp \ {e} > deregister parameter instance candidate
foralli = (o1,...,0/p,|) € MICy, do > instance candidates of m
if 3j € {1, |Pm|} such that 0; = e then > deleted e involved?

MICp, «— MIC, \ {i} > deregister mapping instance candidate
if U; = 0 then > conditions fulfilled before deletion?
‘ execute delete algorithm (p. 284) > enforce consistency

that other model elements link to the object to be deleted before the user
performs the deletion. In this case, the user change induces further feature
updates for all incoming links. As an element is always only contained in
one container, these links are defined for other reference features than f. If

292

7.7. Semantics of Consistency Mappings based on Reactions

these other features are accessed in mappings, then the FEATUREUPDATED
procedure is also executed for these feature updates and mappings. Only
after all feature changes that are induced by the user change are handled,
the deletion itself is handled. If the deleted element instantiates a metaclass
C that is mapped in a mapping m, using a parameter p or instantiates a
subclass of ¢, then the reaction for p and m is triggered by the change. It
executes the PARAMETERINSTANCEDELETED procedure to deregister obso-
lete instance candidates for parameters and mappings and to execute the
fundamental delete algorithm for all mapping instantiations that involved
the deleted element.

7.7.5. Consistency Preserving by Construction

We will now briefly discuss why both mappings realizations of the previous
sections preserve consistency by construction. As we have explained above,
a mapping declares that a certain combination of model elements that
fulfill certain conditions on one side always has to co-occur with a certain
combination of model elements that fulfill certain conditions on the other
side. In this way, an individual mapping specifies that two models are
consistent iff an occurence of the left element combinations exists for every
occurrence of the right element combination and the other way round. For
such a co-occurence of elements for a given mapping, we have introduced
the term mapping instantiation on page 216. To preserve consistency
according to a mapping, it has to be ensured that the requirement of co-
occurence is always fulfilled after changes. That is, a mapping has to be
realized in such a way that the elements that are demanded for one side are
always created, updated, or deleted according to the mapping conditions
on this side iff elements on the other side are created, updated, or deleted in
such a way that the mapping conditions for that side are newly or no longer
fulfilled. This is exactly what the single reaction that we have described
in subsection 7.7.3 does by executing the fundamental create, update, and
delete algorithms (see subsection 7.7.1). Furthermore, this is also what the
fine-grained reactions that we have described in subsection 7.7.4 do by
executing the three procedures presented in Algorithm 1-3. Altogether,
consistency according to specification with several mappings is preserved
if the co-occurrence requirement is always fulfilled for every mapping.

293

7. A Bidirectional Language for Consistency Mappings

Consistency according to mappings can be preserved by construction and
in such a direct way because the consistency to be preserved is prescribed in
terms of mappings. Furthermore, the language was specifically designed for
declarative consistency specifications and restricted to those consistency
relations for which such declarations are sufficient. Broadly speaking, a
mapping only consists of two lists of metaclasses for two metamodels and
two sets of conditions that have to be fulfilled by instances of the metaclasses
of one metamodel whenever instances of the remaining metaclasses of the
other metamodel fulfill the other set of conditions. The conditions are
directly given. To enforce a condition it is necessary to derive enforcement
code from check code or inverse enforcement code for one direction from
code for enforcement in the other direction. These automated derivation
processes can, however, be performed in isolation and has no influence on
the overall consistency preservation process. Therefore, this preservation
process is simple even if complex conditions and complex derivations can
be used. If the mappings language would provide further constructs that are
not directly expressed in terms of conditions to be fulfilled, then it would be
much more difficult to preserve consistency. With such constructs, it would
not only be more difficult to show that mappings preserve consistency but
it would already be more difficult to define how the consistency conditions
to be preserved can be obtained from a mapping.

7.8. Conclusions and Future Work

In this chapter, we have presented a bidirectional language for consistency
mappings. We have compared it to the reactions language to demonstrate
that it abstracts away from many details of consistency preservation direc-
tions and that it is completely change-agnostic in order to address OCSLC 3.
In this context, we have also discussed how we addressed OCSLC 1 with fall-
back constructs for direction-specific checks or enforcements. Furthermore,
we have explained why two different kinds of conditions are necessary and
sufficient to check conditions on one of two sides and to enforce them for
both sides. For both kinds of conditions, we have presented all operators
that are currently provided in detail. Furthermore, we have discussed how
enforcement code can be derived from checks for the first kind of condi-
tions and how the second kind of conditions can be bidirectionalized using

294

7.8. Conclusions and Future Work

composable, operator-specific inverters. To illustrate how several mappings
can be combined to preserve consistency in more complex situations, we
have explained which possibilities are offered by mapping dependencies
and multi-parameter mappings. Moreover, we have described the syntax
and how we addressed OCSLC 4 with a prototypical compiler, for example,
by indirectly calling generic platform code via mapping-specific wrappers.
Finally, we have explained the semantics of the mappings language by
describing how reactions can be created to check and enforce consistency
according to a mappings specifications in reaction to user changes.

Similar to the previous chapter on the reactions language, we have also
provided answers to the subquestions 2.1, 2.3, and 2.4 of research ques-
tion 2 as they correspond to the Open Consistency Specification Language
Challenges 1, 3, and 4. We have showed how bidirectional constructs of
the mapping language can be used if consistency can be expressed with
checks for which enforcement can be derived and with conditions that
relate both mapping sides using operations that can be inverted. In such
cases, the mappings language relieves developers from explicitly specifying
when and how conditions have to be checked or enforced after changes on
one or another side. Moreover, we have described how these bidirectional
constructs are realized in a way that gives developers the possibility to
foresee how consistency will be preserved according to a mappings speci-
fication by either studying the explanations of the language semantics or
by inspecting the generated code, which directly reproduces all type and
naming information provided in a mapping. Nevertheless, the mappings
language can also be applied if these concerns have to be considered and
controlled as it provides powerful fallback constructs.

Future work on the mappings language can be arranged in three groups
for detailed improvements, operator reuse, and fine-grained reaction re-
alization. To improve details of the mappings language, several existing
language constructs could be extended and new language construct could be
introduced. The negated equals operator, for example, could be extended to
also support references. Furthermore, a new possibility could be introduced
to specify a concrete metaclass that is instantiated for a mapped abstract su-
perclass. Additionally, inverters that update more than one source attribute
could be provided. An important area of future work, could be a reuse
mechanism for developer-defined operators that are not yet supported in
single-sided conditions or bidirectionalizable conditions. Such a mechanism

295

7. A Bidirectional Language for Consistency Mappings

could give developers the possibility to define new reusable operators for
which enforcement-derivation or inversion code only needs to be provided
once. These operators could then be directly reused in future mappings and
would no longer need to be realized as two separate helper methods that
can be called from check and enforce code blocks or forward and backward
enforcement blocks. Last but not least, we plan to completely implement
the proposed realization strategy for impure mappings so that developers
that want to debug their mappings code have to consider fewer unnecessary
reevaluations of mapping conditions.

296

8. A Normative Language for
Parametrized Consistency
Invariants

In this chapter, we present our last and smallest language for consistency
specifications. It gives developers the possibility to define constraints that
always have to hold when models of two modelling languages are kept con-
sistent. Therefore, these constraints are called invariants and the language
is simply named invariants language. With this language, developers can
specify consistency conditions that have to be successfully checked but they
have to use the reactions or the mappings language in order to specify how
consistency is to be enforced. This means, with the invariants language it is
possible to specify consistency but not consistency preservation, neither in
an imperative way nor in a declarative way. Therefore, we call it a normative
language that complements the reactions and mappings languages.

To support developers in preserving consistency when an invariant is vio-
lated, the compiler of the language automatically derives queries that return
the model elements that violate an invariant. This automation relieves the
developer from manually writing code that searches for model elements
that have to be updated because they are responsible for the invariant
violation. Instead of repeating parts of the constraint code in a manual
query, developers only have to expose iterator variables for which invariant
violating elements shall be computed. Such exposed iterator variables are
called invariant parameters. For every invariant parameter, the compiler
generates a query by transforming an expression tree representation of the
original constraint. If an invariant is violated at a model context, then these
queries can be called for such a context. They return all those elements
that are responsible for the violation and that were accessed during the
evaluation via the iterator variable that matches the invariant parameter.

297

8. A Normative Language for Consistency Invariants

This way, these invariant violating elements can directly be accessed in
reactions, mappings and in Java code to preserve consistency.

The invariants language is built on top of the Xbase expression language,
which can be seen as an extensible dialect for Java method body expression
(see subsubsection 2.1.2.5 and 5.4.2). Furthermore, it reuses our expressions
extension that provides equivalent methods for collection operators and
iterators of the Object Constraint Language (OCL) (see subsection 5.4.3). We
developed the automated derivation of queries and the invariants language
together with Sebastian Fiss, who developed a prototypical compiler that
generates the queries. He also wrote his bachelor’s thesis on this topic
[Fis15], which was supervised by the author of this dissertation. Texts,
figures and tables of this chapter are based on a joint article [FKL16].

8.1. Invariants for Consistency Preservation

Before we explain how queries for elements that violate an invariant are au-
tomatically derived from the constraints, we briefly introduce the invariants
language and motivate the query derivation.

8.1.1. Normative Inter-Language Invariants

Some constraints that have to be enforced when models of two modelling
languages are kept consistent are already defined for one of the two lan-
guages, for example in terms of OCL invariants that are added to the
metamodel of the language. Other constraints are, however, specific for the
combination of the two languages or for the notion of consistency that is
to be preserved. In many cases, such constraint always have to hold for
all models and at all times so that they are often called invariants. The
invariants language presented in this chapter gives developer the possibility
to specify such inter-language constraints for consistency preservation.

We will explain and illustrate the structure of the invariants language
using an initial example invariant that is provided in Listing 8.1. This
example invariant is defined for a library metamodel and also used later
on in the chapter to explain the automated query derivation. It specifies in

298

8.1. Invariants for Consistency Preservation

1 context ReadingRoom

2 invariant AtLeast3ReferenceCopies(Book b)
3 constraint self.books.forAll[Book b |

4 b.referenceCopy implies (b.copies >= 3)]

Listing 8.1: Initial example of an invariant with a simplified constraint for the
number of reference copies of books in a reading room of a library

Book

referenceCopy:boolean
copies:int

Reading Room | books

Figure 8.1.: Minimal library metamodel for the metaclasses, attributes, and the
reference used in the introductory example invariant

the context of a reading room that all those books in a reading room that
are used as reference copies have to have at least three copies. A minimal
metamodel for the metaclasses used in this example invariant is shown in
Figure 8.1. We chose this example in order to keep the discussion of the
query derivation algorithm concise. Furthermore, we demonstrate with
this example that the approach can also be used in other contexts where
invariant violating elements are needed regardless of a consistency relation
to models of another metamodel.

Every invariant that is defined with the invariants language consists of
three first-level elements:

« a context declaration, to specify for which elements the invariant
has to hold

» asignature with a unique name and optional parameters for the
query derivation

« a constraint expression that has to yield a boolean result

An invariant definition starts with the declaration of the context in terms
of a name of a metaclass. All direct and indirect instances of the metaclass
with this name have to fulfill the invariant at all times to be considered
consistent. The name has to be preceded by the keyword context and
in our example this context metaclass is named ReadingRoom (line 1). An

299

8. A Normative Language for Consistency Invariants

evaluation of an invariant is always performed for a specific instance of the
context metaclass. These instances are called context elements. Furthermore,
the context metaclass is treated as an implicit first parameter during query
derivation.

The context metaclass has to be followed by an invariant signature in an
invariant definition. This signature starts with a unique name for the in-
variant, which has to be preceded by the keyword invariant. The name
is used to refer to the invariant when it is evaluated or when queries for
invariant violating elements are executed. Our example invariant is named
AtLeast3ReferenceCopies (line 2). After the name the signature may con-
tain optional invariant parameters, which have to be given in parentheses
and have to be separated by a comma. Each parameter declaration consists
of a metaclass name and an identifier for the parameter. In our introductory
example, we only specify a single parameter for the metaclass Book with
the identifier b (line 2). During the generation of queries for an invariant,
each parameter declaration is bound to an iterator variable in the invariant
expressions. This iterator variable has to have a compatible type and the
same identifier.

Finally, an invariant definition ends with the invariant constraint. Such
a constraint is an arbitrary Xbase expression that returns a boolean. In
particular, the constraint expression can use the collection operators and
iterators of our OCL-aligned expressions extension (see subsection 5.4.3).
To use the automated query derivation, the constraint expression of an
invariant has to contain iterator expressions with iterator variables that
match the type and identifier of an invariant parameter. In the constraint
expression, the context element at which the invariant is currently eval-
uated can be accessed via the keyword self. The constraint expression
has to be preceded by the keyword constraint. In our example the con-
straint expression starts with a context element of type ReadingRoom, calls
the getter for the reference books, and invokes the iterator forAll on the
resulting collection. This iterator has an iterator variable of type Book that
is identified with the variable name b. It contains an implication for every
element in the collection that is iterated. This implication demands that the
value of the integer attribute copies has to be at least 3 when the boolean
attribute referenceCopy is set to true.

300

8.1. Invariants for Consistency Preservation

To ease the usage of the invariants language for developers that are already
familiar with OCL invariants, we adopted the abstract syntax of OCL and
aligned the concrete syntax of the invariants language to OCL where this
was possible. More specifically, the abstract syntax of an invariant is identi-
cal to that of an OCL invariant except for two differences: Invariant names
in OCL are optional and invariant parameters can only be provided in the
invariants language.

There are small differences between the concrete syntax of the invariants
language and the concrete syntax of OCL. These differences mostly result
from the Java-based expression language Xbase, which we reused to build
the invariants language (see subsection 5.4.3). Model elements as well as
their attributes and references are accessed in the invariants language in
the same way they are accessed in OCL. In contrast to OCL, the invariants
language also sticks to the dot notation of Java to access fields of collections
and to invoke methods on them instead of using the arrow notation (->).
Furthermore, square brackets [...] instead of parentheses (...) have to
be used for collection operators and iterators in the invariants language.
The reason is that they are realized using lambda expressions of Xbase.
Furthermore, the types that are provided by Java and the metamodel for
which invariants are defined have to be used in the invariants language, for
example for collections and primitive types, instead of OCL counterparts.
For most language constructs, such as enumerations, null values, arithmetic
expressions, and logical expressions there are, however, no remarkable
differences between OCL and Xbase and therefore also not between OCL
and the invariants language. Finally, OCL methods starting with the prefix
ocl, such as oclAsType or oclIsTypeOf, have equivalent counterparts in
Java or Xbase, which can be used in the invariants language.

8.1.2. Invariant Violating Elements

To preserve consistency when an invariant is no longer fulfilled after a user
change, consistency preservation actions have to update models in such a
way that the invariant is fulfilled again. Especially for complex models or
invariants these model elements to be updated are not necessarily those
model elements that were changed by the user. In such cases, it is necessary

301

8. A Normative Language for Consistency Invariants

to obtain the right model elements on which consistency preservation
actions are to be performed.

One possibility to find elements to be updated, for example in case of
OCL invariants, is to start at the context element at which the invariant
evaluation started and finally failed. As in the invariants language, this
context is only an element of a given type which is provided in addition to
the boolean constraint expression and the name of the invariant. Many OCL
invariants inspect, however, not only this context element but numerous
different elements that are directly or indirectly related to the context
element at which the evaluation started. Therefore, the context element of
an OCL invariant often does not directly indicate where, how, and why a
model violates the constraints.

Another possibility to find those elements that are responsible for an invari-
ant violation and that have to be updated, is to compute the set of elements
that were accessed during the failed evaluation of the invariant (see sub-
section 10.2.3). The elements to be updated have to be responsible for the
invariant violation and updating them has to lead to a new fulfillment of
the invariant. Therefore, these elements to be updated have to be in the
set of elements that were accessed during the evaluation. We mentioned,
however, already that it is common that many model elements are accessed
during invariant evaluation, for example because all instances of a meta-
class are checked. Thus, it can be difficult to find the elements on which
actions are to be performed in this possibly large set of elements. Therefore,
developers often write query code that searches for elements that caused
an invariant violation in addition to the code for the invariant constraint.
The invariant constraint and such queries often share many redundant
parts. Model navigation statements and condition checks, for example,
often have to be repeated. Even in cases where only a few statements are
redundant for a single invariant, the amount of duplicated code can grow
to a considerable size for metamodels with hundreds of invariants, such as
the Unified Modeling Language (UML) [ISO12b]. This code duplication can
be a source for costly errors and can lead to unnecessary development and
maintenance effort.

302

8.1. Invariants for Consistency Preservation

8.1.3. Parameters for Query Derivation

Redundant invariant constraints and queries for invariant violating ele-
ments are not necessary if the elements that are to be updated can be
extracted from the set of invariant violating elements. This set of all ele-
ments that are responsible for a violation is always indirectly but completely
specified by the constraint. In order to obtain only those elements on which
a particular consistency preservation action is to be performed, the invari-
ants language gives developers the possibility to expose iterator variables as
parameters. For these parameters, queries are automatically derived to yield
those elements that violate the constraint and that were accessed during
the evaluation via the iterator variable. Additionally, the context metaclass
is used as an implicit first parameter of an invariant to also provide access
to the context element of an invariant violation.

8.1.4. Automated Deriviation of Queries for Parameters

For every explicit parameter of an invariant, the compiler of the invariants
language generates a query. These queries are obtained by transforming an
expression tree representation of the original invariant constraint. Broadly
speaking, these queries perform the same computation as the constraint
until the collection of model elements is obtained for which an iteration
with an iterator variable that matches the parameter is specified. This
collection of model elements is then filtered to obtain those elements that
contribute to the fact that the invariant constraint is not fulfilled. Our
example invariant, which we have presented in Listing 8.1, only has a single
invariant parameter Book b. This parameter matches the only iterator of
the invariant constraint. The resulting query for this parameter and iterator
variable is almost identical to the constraint because the example invariant
constraint is not complex: It specified that all books in a reading room that
are used as reference copies have to have at least three copies. Therefore,
the query only has to select those books in the reading room that are used
as reference copies but have less than three copies:

self.books.select[Book b | !(b.referenceCopy implies (b.copies >= 3))]

This query is derived from the constraint by replacing the forAll iterator
with a select iterator for which the iterator expression is negated. It would

303

8. A Normative Language for Consistency Invariants

not be difficult for a developer to manually specify this query. It is, however,
an unnecessary source for errors, especially when numerous and more
complex constraints with several iterators are used.

8.2. Iterator Variable Queries for Violating
Elements

After this introduction and motivation for the invariants language, we will
now explain the automated process of deriving iterator variable queries for
violating elements. First, we give an overview on the complete process and
mention current limitations. Then, we introduce a more complex invariant
based on our initial example. Next, we explain the individual steps of
creating an expression tree, matching the parameter, and transforming the
nodes of the expression tree. Finally, we illustrate these steps using the
extended example.

8.2.1. Transformation Overview and Limitations

As we already stated above, we present a process for transforming an
invariant constraint to a query that yields model elements that violate the
invariant. This process is performed in four steps. First, an expression tree
is created to represent the invariant constraint in a format that is suitable for
the necessary transformations. Then, every invariant parameter is matched
to the unique iterator expression node in the tree that uses a compatible type
and the same identifier for the iterator variable as the parameter. For every
invariant parameter, a copy of the constraint expression tree is transformed
to a query expression tree according to rules for the individual node types
of the tree. Finally, for each query expression tree a method is generated
that can be called from reactions, mappings, or Java code to obtain elements
that violate the constraint at a given context.

The presented approach has two syntactical and a semantical limitation:
Currently, only invariant parameters that match an iterator variable can
be specified. Attributes and references of model elements can be accessed
in invariant constraints in an equivalent way to OCL but these accesses

304

8.2. Iterator Variable Queries for Violating Elements

cannot yet be bound to invariant parameters. Furthermore, local variables
can be used to simplify constraint expressions but they cannot be bound to
invariant parameters. The effect of such feature accesses and local variables
can also be expressed with additional iterator expressions. Therefore, the
restriction to iterator variables is currently an inconvenience for developers
but it does not limit the number of cases in which our query derivation
approach can be applied. As let expressions and definition constraints for
local variables are a commonly-used feature of OCL, this limitation of the
invariants language should be addressed in future work.

Furthermore, our approach is limited to constraints in which the matched
iterator variable is only followed by operations for which we defined trans-
formation rules. Currently, these operations are not, and, or, select, map,
forAll, and exists. That is, nested parameters an certain operators, such
as collection size comparisons, are not yet supported. For other operators,
such as the operator one, an automated derivation of elements that violate
the constraint would, however, not be enough because the set of elements
cannot be filtered appropriatedly. More specifically, different elements are
responsible for different ways in which a one constraint can be violated so
that the queried elements have to be checked again. The restriction to cer-
tain operator only applies to expressions after a matched iterator variable.
All expressions prior to it may perform arbitrary operations. In future work,
nested parameters could be supported by transforming non-nested and
nested expressions separately and combining them afterwards. Moreover,
transformation rules for the mentioned collection size comparisons opera-
tors and the operators includes and excludes could be added to complete
the query derivation support.

8.2.2. Extended Example Invariant

In order to be able to explain more transformation rules we extend our
initial example invariant, which we have presented in Listing 8.1. Books
of the intial metamodel directly belong to a reading room and have a
boolean attribute referenceCopy as well as an integer attribute copies (see
Figure 8.1). For our extended example invariant, we use a slightly more
detailed metamodel, which is shown in Figure 8.2. Now, books do not
belong to a fixed reading room but to a library and they are stored in stacks

305

8. A Normative Language for Consistency Invariants

Lib

ibrary |
\
1.*\ books

Stack tack 1 diti Book
ac stac editions
" Book | - - referenceCopy:boolean
closed:boolean | 1 1. 1.2 .
copies:int

Figure 8.2.: Library metamodel for the complete version of the example invariant

which may be open to the public or not. Furthermore, the attribute that
marks reference copies and the attribute for the number of copies are no
longer specified for a book but for a specific edition of a book. Therefore,
the requirement that at least three references copies have to be available
can no longer be specified as before.

The extended invariant for the more detailed library metamodel takes
the concept of open stacks and book editions into account as shown in
Listing 8.2. It specifies that the sum of copies for all editions of a book
in an open stack must be more than three (line 3-7). If the constraint is
violated, there are several possibilities to retrieve the model elements that
are responsible for the violation and therefore may need to be updated.
A trivial solution would be to return the library context element (line 1).
This solution ignores, however, the book, stack, and edition elements that
are inspected during a check and does not determine a precise cause for
an invariant violation, especially if the library contains many books. The
model elements that are directly responsible for a violation of this invariant
are either those lists of editions for which the sum of copies does not
satisfy the constraint or the books to which these editions belong. With
our approach, both possibilities are supported. Lists of editions can be
retrieved by specifying an invariant parameter List<Edition> editions
and the books can be retrieved by specifying an invariant parameter Book
b (line 2). To illustrate the query deriviation, the book iterator variable is
chosen as it is followed by further expressions that have to be transformed
accordingly. We will use this invariant and the book parameter in the
remainder of this chapter to explain the query derivation rules in detail.

To directly illustrate the result of query derivation before we explain the
detailed steps, we present the query for the book parameter of the extended

306

8.2. Iterator Variable Queries for Violating Elements

1 context Library
2 invariant AtLeast30OpenReferenceCopies (Book b, List<Edition> editions)

3 constraint self.books.select[Book b | !b.stack.closed]
4 .map[it.editions.filter[it.referenceCopy]]

5 .forAll[List<Edition> editions |

6 editions.reduce[el,e2 | el.copies + e2.copies] >= 3
7 1

Listing 8.2: Extended example invariant ensuring that at least three copies of
any edition have to be present for reference books in an open stack

example invariant in Listing 8.3. Like the constraint, it iterates over all
books that are referenced by the library context element. In this iteration
the query does, however, not simply select all books that are in an open
stack to demand a lower bound for the number of reference copies that exist
for all editions of the book. Instead, it directly adds another condition to the
iterator expression that selects only books in open stacks. This condition is
similar to the expression of the constraint in which the editions that are
used as reference copies are filtered and in which a lower bound for the sum
of copies for these editions is formulated. There are only two differences.
First, the lower bound is not demanded for every sum of reference copies
of every book but for the book of the current iteration. Second, the lower
bound requirement is negated to obtain exactly those books that violate
the constraint.

Both, the initial and the extended version of the example invariant illustrate
why elements that are accessed for iterator variables can be helpful in addi-
tion to context elements. The initial version of the invariant demonstrates
a general case in which a constraint only has to hold for instances with
incoming references from the context element: It does not need to hold for
books that are not in the reading room. Nevertheless, the reading room
itself is not the element that needs to be updated to fulfill the invariant
again. The extended version of the invariant illustrates another general case
in which a single context element is not sufficient because a combination
of elements is responsible for an invariant violation: Violations of this
invariant cannot be resolved by updating a libary element or a stack but by
updating books respectively the number of copies only in those editions
that are used as a reference copy.

307

8. A Normative Language for Consistency Invariants

1 context Library

2 query Books4AtLeast30penReferenceCopies

3 self.books.select[Book b | !'b.stack.closed &&

4 !'(b.editions.filter[it.referenceCopy].

5 reducef[el,e2 | el.copies + e2.copies] >= 3)

6]

Listing 8.3: A query for the extened invariant example returning open reference
books with less than three copies

8.2.3. Expression Trees for Constraint Transformation

The grammar of the invariants language specifies that invariant constraints
can be arbitrary Xbase expressions. Therefore, we can obtain an Abstract
Syntax Tree (AST) that consists of instances of the metaclass XExpression
from the parser for the invariants language, which we generated using
Xtext. The subclasses for different types of expressions that are defined by
the Xbase grammar were created to support the development of a parser,
validator, and code generator for Xbase. On the one hand, the structure
of such an AST and the available information in it reflects many case
distinctions that are not needed to transform a constraint into a query. On
the other hand, there are also expressions that can be treated the same
way in the Xbase compiler but that have to be differentiated during query
derivation. All method calls, for example, are represented in terms of a
XMemberFeatureCall in Xbase, but they have to be transformed in a way
that depends on the specific method that is called. Calls to the methods
select or forAll, for instance, have to be transformed in another way than
other method calls. Therefore, we created a expression tree metamodel that
differentiates exactly between those node types that have to be transformed
differently and unifies node types that can be treated identically. This
made it possible to define transformation rules exactly for the appropriate
node types and to only consider those properties that are relevant for the
transformation.

A simplified class diagram that depicts our metamodel for expression trees
is shown in Figure 8.3. It also shows some of the references, which link
nodes of our transformation-specific expression trees to parent nodes and
child notes. These references are essential because the transformation is

308

8.2. Iterator Variable Queries for Violating Elements

Metaclass for ~ Example invariant constraint ~ Corresponding

transformation expressions subclass of XExpression

Forall forAll[...] XMemberFeatureCall

Exists exists[...] XMemberFeatureCall

Select select[...] XMemberFeatureCall

Map map[...] XMemberFeatureCall

Operation self.getBooks(), XMemberFeatureCall
el.copies

And && XBinaryOperation

Or | XBinaryOperation

Binary <, +, /, ... XBinaryOperation

Not ! XUnaryOperation

Feature self, editions, b, it, 3 XFeatureCall or Literal

Function [alexpression(a)] XClosure

Block {...} XBlockExpression

Table 8.1.: The classification of nodes that are used to build the expression tree

realized in terms of tree traversal. To obtain an instance of this expression
tree metamodel for a particular invariant constraint, nodes of the AST
provided by the parser are transformed to nodes of our expression tree. The
metaclasses that are instantiated for a particular AST subclass of XExpression
are given together with some exemplare invariant constraint expresssions
in Table 8.1. With the current compiler of the invariants language, the
following expressions cannot be transformed because the appropriate node
types and transformation rules are not defined yet: type casts, control flow
expressions, and variable declarations. As a workaround, the language
provides extension methods to transform equivalent constraints that use
these extension methods instead of the unsupported expressions. In future
work, the necessary node types and transformation rules will be added to
replace these extension methods.

To illustrate the transformation-specific representation of constraint expres-
sions, we present the expression tree for the extended example invariant
in Figure 8.4. The part of the concrete syntax belonging to a node of the
expression tree is listed in a separate line in square brackets. To obtain the
pretty-printed expression shown in Listing 8.2, an in-order traversal has to
be performed on the tree.

309

8. A Normative Language for Consistency Invariants

_*9 parent

children
Node
1.*
1 1
1 0..*
1 D _TEE
1 1_—"left |right 7" [n [arguments |1 1| target
BlockNode AbstractBinaryNode NotNode FeatureNode AbstractOperationNode
operation:String feature:String operation:String
[[1 [1
BinaryNode OrNode AndNode 1| OperationNode IterateNode
expression 11 functionNode
FunctionNode TerminallterateNode IntermediatelterateNode
parameters:Map<String,JvmReferenceType>
ForallNode ExistsNode MapNode SelectNode

Figure 8.3.: Simplified class diagram for the expression tree metamodel that facilitates transformations from constraints to
queries

310

8.2. Iterator Variable Queries for Violating Elements

ForAll
[forAll]
Map Function
[map] [editions]
Select Function Binary
[select] [it] [>=]
Operation Function Operation Operation Feature
[books] [Book b] [filter] [reduce] (3]
Feature Not Operation Function Feature Function
[self] [[editions] [it] [editions] [el,e2]
Operation Feature Operation Binary
[closed] [it] [referenceCopy] [+]
Operation Feature Operation Operation
[stack] [it] [copies] [copies]

Feature Feature Feature

[b] [e1] [e2]

Figure 8.4.: Illustration of the custom expression tree obtained for the complete
example invariant (matched iterator printed in bold, parents of it in italics)

8.2.4. Matching Parameters to Iterator Nodes

To prepare the transformation of the invariant constraint for each specified
invariant parameter, every invariant parameter has to be matched to a
unique node of an iterator that uses a compatible type and identifier for
the iterator variable. More precisely, the expression tree is traversed with
in-order depth-first search to find all nodes of type IterateNode. If the
lambda function of an iterator node specifies an iterator variable that has

311

8. A Normative Language for Consistency Invariants

the same identifier as the invariant parameter, the node is a name match
candidate. In order to provide only unambiguous matches, both invariant
parameter names and iterator variable names have to be unique within
the complete invariant constraint even if their types are different. A name
match candidate is only matched to a parameter if the type of the iterator
variable is assignment-compatible to the type of the invariant parameter.
This ensures that the derived query only retrieves elements that can be
bound to the return type that is defined by the invariant parameter type.
In the running example (Listing 8.2), the name of the invariant parameter
b (line 2) matches the iterator variable of the select operation (line 3).
Therefore, they form a name match candidate. As the iterator variable
and the parameter have the same type they are successfully matched to
each other. To prepare the transformation to a query, a matching iterator
node for each invariant parameter is computed and a separate copy of
the expression tree is created for it. The rules for this transformation are
presented in the next section.

8.2.5. Parent-Dependent Top-Down Transformation

After generating an expression tree and matching an iterator node for every
invariant parameter, a copy of the constraint expression tree is transformed
to obtain an expression tree for a query that selects the desired elements. A
transformation algorithm is executed independently for every invariant pa-
rameter. Given the constraint expression tree and an iterator node matching
an invariant parameter, this algorithm recursively applies transformation
rules to nodes of the tree. It starts top-down at the root node of the tree
and transforms all nodes on the path to the matched iterator node, which is
always converted into a SelectNode. Recall that the textual representation
of the constraint expression corresponds to an in-order traversal of the
expression tree. Therefore, the root node represents the last operation of a
chain of operations that starts at the context element. The algorithm first
transforms this node, which is a direct or indirect parent of the matched
iterator and then transforms all other parents. In the textual representation
this corresponds to transforming the constraint expression from right to

left.

312

8.2. Iterator Variable Queries for Violating Elements

So far, we have only explained in which order the nodes of the constraint
expression tree are transformed to yield the query expression tree. Now, we
will briefly explain why the nodes are not transformed in isolation before we
explain the transformation rules for individual nodes. To create the needed
selection restrictions for the query, each node is transformed in a way that
takes the parent node, which was already transformed, into account. In the
textual representation this means that an expression part to the right of the
current expression part is considered. At the end of the transformation, a
SelectNode is at the former position of the matched iterator node and all
former parent nodes have been transformed accordingly. For the textual
representation this means that beginning with the matched iterator the
remaining right part of the constraint expression was transformed.

8.2.6. Node Transformation Rules for Queries

We will now briefly describe the transformation rules for all nodes that are
currently supported.

For NotNodes DeMorgan’s laws are applied: Negated conjunctions and
disjunctions are replaced through their counterparts with negated inner
expressions. A negated universal quantification is replaced with an exis-
tential quantification for the negated predicate, and vice versa. The node
metaclasses affected by these rules are AndNode, OrNode, ForAllNode, and
ExistsNode.

A ForallNode specifies that all elements in the target collection have to
satisfy a given predicate. Therefore, the resulting query has to select all
elements that do not satisfy the predicate and thus violate the constraint:

coll.forAll[e | predicate(e)]

coll.select[e | !predicate(e)]

An ExistsNode specifies a predicate that has to be satisfied by at least one
element in the target collection. If the constraint is violated, then all ele-
ments in the target collection are responsible as none of them satisfies the
predicate. If at least one element satisfies the predicate, then no elements

313

8. A Normative Language for Consistency Invariants

have to be retrieved. Both can be achieved with the same query by restrict-
ing the select operation in such a way that it returns all elements in the
first case and no elements in the second case:

coll.exists[e | predicate(e)]

coll.select[!coll.exists[e | predicate(e)]]

As we do not yet support nested parameters, a SelectNode can only occur
with a parent node or as the result of a prior transformation. The transfor-
mation of such nodes is performed in three steps: First, the parent node
is transformed by applying the appropriate transformation rule to it. The
result of this step is a SelectNode for the parent. Then, the predicate of this
parental SelectNode is combined with the predicate of the current SelectN-
ode in a conjunction. Last, the iterator variables are substituted to form a
single resulting SelectNode:

coll.select[e | predicate(e)].select[p | parentPredicate(p)]

coll.select[e | predicate(e) && parentPredicate(e)]

A MapNode applies a function to each element of the target collection. Fur-
ther iterate operations may be performed on the resulting collection of
function values. These operations are represented as parent nodes. Al-
toghether, a MapNode is transformed in three steps: First, the parent opera-
tions are transformed into a SelectNode. Then, the MapNode is inlined into
this SelectNode by replacing all occurrences of the iterator variable with
appropriate calls to the function specified in the map expression:

coll.map[e | function(e)].select[p | predicate(p)]

self.select[e | predicate(function(e))]

An AndNode combines an expression that contains the unique iterator
variable that matches the invariant parameter with another expression.
For the resulting query, elements referenced by this iterator variable have
to be retrieved if the expression with the matched variable evaluates to
false. Whether the other expression without the matched variable also
evaluates to false has no influence on the elements to be retrieved. Therefore,

314

8.2. Iterator Variable Queries for Violating Elements

the transformation removes the expression without the matched variable
and only transforms the expression with the matched variable. For this
transformation, the order of the expressions does not matter. A swapped
invariant otherExpression && self...e... is transformed analogue, but
we only provide the definition once:

coll.forAll/exists[e | predicate(e)] && otherExpression

coll.select[e | predicate(e)]

An OrNode combines an expression that contains the matched iterator
variable and another predicate similar to an AndNode. In contrast to the
transformation for the conjunction, the other predicate of the disjunction
cannot be ignored. If the expression evaluates to false but the other predicate
holds, then the constraint is not violated. Therefore, the retrieved elements
of the child expression have to be selected by the query only if the other
predicate is violated. This is achieved by adding a conjunction with a
negated predicate to the transformation result of the other expression:

coll.forAll/exists[e | predicate(e)] || otherPredicate

coll.select[e | predicate(e) && !otherPredicate]

8.2.7. Transformation Example

To illustrate the overall transformation algorithm and the individual trans-
formation rules, we explain the transformation of the extended example
shown in Listing 8.2 on page 307 and Figure 8.4 on page 311. The node
that is matched to the invariant parameter Book b is the Select node, which
is printed in bold. To obtain a query for this parameter and node, the
algorithm transforms the parent nodes of the matched node, which are
printed in italics. It starts at the most distant parent node ForAll, which
represents the following constraint part (except for the omitted type of the
iterator variable, which is inferred by the compiler):

.forAll[editions |
editions.reduce[el,e2 | el.copies + e2.copies] >= 3]

315

8. A Normative Language for Consistency Invariants

After applying the rule for forAll, which we have presented in the previous
section, the node is a Select that can be textually represented as:

.select[editions |
!(editions.reduce[el,e2 | el.copies + e2.copies] >= 3)]

The algorithm continues by transforming the Map node, which is the next
child of the transformed parent node on the way to the matched iterator
node. Before the transformation, this node can be textually represented
as:

.map[it.editions.filter[it.referenceCopy]]

After applying the transformation rule for map, the previously obtained Se-
lect node contains the inlined call to the function filter of the transformed
map expression:

.select[!(it.editions.filter[it.referenceCopy].
reducel[el,e2 | el.copies + e2.copies] >= 3)]

Last, the Select node with the invariant parameter is transformed by incorpo-
rating the parent node’s predicate and substituting the iterator variable:

.select[Book b |
Ib.stack.closed &&!(b.editions.filter[it.referenceCopy].
reducefel,e2 | el.copies + e2.copies] >= 3)]

The final result is the query that we have already presented in Listing 8.3
on page 308. It retrieves all books that violate the constraint because the are
in an open stack and their total number of presence copies for all editions
is less than 3.

8.3. Conclusions and Future Work

We have presented a language for parameterized invariants with an auto-
mated derivation of queries for model elements that violate an invariant.
It is closely aligned to OCL, provides equivalent collection operators and
iterators and additional invariant parameters. We have discussed different
ways for obtaining elements that are responsible for an invariant violation

316

8.3. Conclusions and Future Work

and have motivated why constraint code should not be manually duplicated
in queries for such elements. Moreover, we have explained how iterator
variables can be used to explicitly declare which elements that cause an
invariant shall be retrieved. We have presented an automated derivation
of queries that return those elements that were accessed for an iterator
variable and that are responsible for an invariant violation. For expressions
that may occur in iterators, we have presented transformation rules that are
applied to a special tree representation of the invariant constraint to obtain
the appropriate queries. Furthermore, we have illustrated the invariants
language and its query derivation using a running example.

In future work, support for local variables and further operators, such as
collection size comparators, should be added to the query derivation. These
constructs can currently only be used in invariant constraints before an iter-
ator that is matched to a parameter occurs. The effect of the local variables
and the operators can also be expressed with additional iterator expressions.
This is, however, inconvenient and local variables are a commonly-used
feature of OCL which should also be supported by the invariants language
during query derivation. Furthermore, the derivation algorithm should
be extended in future work to also support nested parameters. For this,
we suggest to transform non-nested and nested expressions separately to
combine the results afterwards.

317

Part1V.

Evaluating and Relating the
Languages

9. Evaluation and Discussion

9.1. Evaluation Overview

In this chapter, we explain how we evaluated theoretical and practical
properties of the languages we presented in this thesis. Before we present
an overview of our evaluation, we briefly introduce the four properties that
we evaluated:

Completeness was evaluated as the extent to which a language supports
all use cases that are theoretically possible

Correctness was evaluated differently for each language but altogether it
is the theoretical property of yielding the intended and claimed results in all
possible cases

Applicability was evaluated by examining whether the languages can be
applied in practice to realize realistic consistency requirements by creating
specifications that lead to the expected results

Benefit was evaluated by analyzing whether applications of the languages
demonstrate advantages in comparison to other languages

The two practical properties applicability and benefit are based on proper-
ties with the same name that were originally introduced for the evaluation
of metrics for prediction models by B6hme and Reussner [BRO08, p. 15]. As
programming languages and prediction metrics have different character-
istics, these properties are, however, not identical. Bbhme and Reussner
state that applicability is evaluated by checking “whether the input data
can be acquired reliably and whether the results of the metric can be in-
terpreted meaningfully”. For our formulation of applicability, we replaced
the check that metric results can be interpreted meaningfully with a check
for expected results. Furthermore, we added the restriction to evaluate

321

9. Evaluation and Discussion

applications in which realistic requirements are realized. For evaluations of
benefit, Bohme and Reussner require that an “approach has to demonstrate
its benefits over other competing approaches”. This can be regarded as
equivalent to our formulation, but the subsequent explanations of Bohme
and Reussner illustrate that evaluations of benefit can be performed very
differently and can be very costly. We cannot define in advance for all
approaches how often they have to be applied together with one or more
competing approaches and under which conditions. Similarly, we cannot
precisely define upfront what will be considered a “benefit”. Both, the
conditions of the comparison and the benefit to be compared have to be
defined and discussed individually for every evaluation.

To outline how we evaluated each property individually for each language,
we provide two tables. Table 9.1 presents an overview on our evaluation of
theoretical properties and Table 9.2 summarizes the evaluation of practical
properties. We do not yet explain the evaluation parts but provide refer-
ences to the sections that discuss them. The evaluation parts are structured
according to the evaluated property so that, for example, all evaluations
of completeness are described in a common section. When discussing the
evaluation of an individual property, we almost never refer to evaluations
of the same property for other languages, except for the change and ex-
pression languages, which were designed for reuse. Therefore, the two
tables can also be used to read the discussion of all evaluated properties
for a specific language independent of the other languages by following all
section references in the appropriate row in both tables.

By evaluating all languages presented in this thesis, we also evaluated all
contributions except for the identified and classified challenges to consis-
tency preservation (chapter 3). We did not perform an evaluation for this
contribution in order to focus on the languages that address the identified
challenges and on their evaluation. One possibility to evaluate this contri-
bution in the future is to analyze which of the identified challenges are not
only claimed to be addressed by other approaches but are demonstrably
successfully addressed by them. For this, it would be necessary to find or
create exemplary consistency preservation scenarios in which the identified
challenges occur. Furthermore, it would be a risk that specific languages
and consistency preservation tools are misjudged if not all features that
address a challenge are known or if they are not used correctly. Therefore,
we are convinced that the effort for such an evaluation would not outweigh

322

9.1. Evaluation Overview

evaluation of theoretical properties

completeness correctness
formal « EMOF complete « exhibits main model
language « consistency complete characteristics [Sta73]
(chapter 4) « change complete & (representation, reduction,
update complete pragmatics)

(subsection 9.2.1) (subsection 9.3.1)
change « EMOF complete « exhibits main model
language (subsection 9.2.2) characteristics [Sta73]

(subsec- (representation, reduction,
tion 5.4.1) pragmatics)

(subsection 9.3.2)

OCL-aligned

« 27 out of 28 collection

- tested against

expressions operators and iterators OCL-counterparts
(subsec- (subsection 9.2.3) (subsection 9.3.3)
tion 5.4.3)
reactions « Turing-complete - semantics based on
language reactions formal language
(chapter 6) « triggers & matching (section 6.7)
change complete « correct by construction
« matching & actions (subsection 6.7.4)
correspondence complete (subsection 9.3.4)
(subsection 9.2.4)
mappings « reduction sketch TGG «« .« semantics via reactions
language mappings & formal language
(chapter 7) « partial enforcement & « correctness by
inversion derivation construction
(subsection 9.2.5) (subsection 7.7.5)
« correct enforcement for
check operators
« correct inversion
according to round-trip
laws
(subsection 9.3.5)
invariants « primitive-recursive (like « correct query derivation
language OCL) (subsection 9.3.6)
(chapter 8) (subsection 9.2.6)

Table 9.1.: Overview on the evaluation of theoretical properties for the languages of
this thesis with references to presentation and evaluation sections

323

9. Evaluation and Discussion

evaluation of practical properties

applicability

benefit

formal language
(chapter 4)

« explains semantics of
reactions language
(subsection 9.4.1)

- (not evaluated)

change language
(subsection 5.4.1)

« triggers generated
reactions code
(subsection 9.4.2)

» argument:
intermediate models for
monitors

(subsection 9.5.1)

OCL-aligned
expressions
(subsection 5.4.3)

« UML invariants
« used in reactions case
studies

(subsection 9.4.3)

« argument: integrated
and analyzable
(subsection 9.5.2)

reactions language

e component

« code size in

(chapter 6) architecture case study comparison with Java or
« component code case Xtend
study « relative reduction of
« integration of source lines of code
object-oriented code (subsection 9.5.3)
+ automotive software
case study
(subsection 9.4.4)
mappings « Leitner learning box « comparison with a
language example TGG-based tool
(chapter 7) expressions of ATL (subsection 9.5.4)
transformation zoo
(subsection 9.4.5)
invariants « UML invariants « argument: fewer input
language (subsection 9.4.3) for derived queries
(chapter 8) (subsection 9.5.5)

Table 9.2.: Overview on the evaluation of practical properties for the languages of

this thesis with references to presentation and evaluation sections

324

9.2. Evaluation of Theoretical Completeness

the benefits. Instead, it would be favorable to create benchmarks for consis-
tency preservation scenarios together with developers of other consistency
preservation approaches. An evaluation of whether these approaches suc-
cessfully address the challenges we identified, could then be performed by
the developers based on the common benchmark. Such an idea of a common
benchmark is not new and has already been pursued by many researchers,
for example, especially for bidirectional transformations [Anj+14a; Che+14].
So far, no common consistency preservation benchmark that is realistic
because it exhibits substantial requirements and challenges of modelling
languages that are widely used in practice, is, however, publicly available.
Nevertheless, the challenges that we identified and classified in this thesis,
can be used to create such a benchmark in the future.

9.2. Evaluation of Theoretical Completeness

For each language presented in this thesis, we discuss the property of
completeness, which denotes whether the language supports all use cases
that are theoretically possible and intended. As the languages and their
intended ranges of use vary strongly, we also have to discuss different
notions of completeness for each language. Most languages are intended
for a general range of use, for example, for all models that conform to EMOF-
based metamodels, or for preservation behavior that can be described with a
Turing complete language. Some languages have, however, a more restricted
range of use, such as to act as a replacement for the collection operators and
iterators of operation body expressions of the Object Constraint Language
(OCL).

9.2.1. Completeness of the Formal Language
For the formal language, which we have described in chapter 4, we discuss
four notions of completeness:

Model completeness denotes the ability to represent all models that conform
to metamodels that are defined using the metamodelling language standard
Essential Meta-Object Facility (EMOF)

325

9. Evaluation and Discussion

Consistency completeness is the ability to express arbitrary co-occurring
consistency conditions based on correspondences that witness consistency

Change completeness denotes whether all model changes can be repre-
sented in such a way that it can always be analyzed whether they break
consistency or not

Update completeness is the ability to express all theoretically possible up-
dates on models and correspondences in such a way that it can be analyzed
whether they preserve consistency or not

9.2.1.1. Completeness of Model and Consistency Representation

The formal language abstracts away from many details and has some limita-
tions (see page 33 of section 2.3.1.2). Most of these limitations are, however,
only syntactical as they do not restrict the set of models that can be rep-
resented but the way how models are represented. An example for such
a syntactical limitation of the formal language is that it is currently not
possible to represent references to metaclasses of other metamodels (lim-
itation 1). If we would extend the formal language to also support such
cases, this would not conceptually change the way in which consistency
can be expressed and has no semantic influence on consistency preserva-
tion because metamodel boundaries have no effect on it. Therefore, it is
only a syntactical limitation of the formal language. The same argument
applies to the syntactical limitation that it is not possible to express several
models with links to objects of other models (limitation 2). Again, the
necessary language extension would only have syntactical implications as
model boundaries have no semantic influence on consistency preservation.
We did not extend the language to overcome both limitations because we
are convinced that the risk to decline the understandability is much higher
than the gained benefit of demonstrating syntactical completeness.

In addition to syntactical limitations, there are, however, also three lim-
itations that restrict the set of models or consistency relations that can
be represented. They limit the formal language to cases in which no link
points to the same object more than once (limit 6), no value is labeled more
than once per object and attribute (7), and links and labels are unordered (8).
This restricts the formal language because reappearence of links and values

326

9.2. Evaluation of Theoretical Completeness

as well as the order of links and values could be analyzed in consistency
conditions. If a consistency preservation scenario is encountered in which
these multiplicities or the order make a difference, a few changes would be
necessary to extend the formal language to take these concerns also into
account.

The remaining limitations 3-5, which we have presented in subsubsec-
tion 2.3.1.2, do not restrict the completeness of the formal language. They
neither limit the syntactical variations to which the language can be ap-
plied nor do they limit the models or consistency relations that can be
semantically expressed. The reason for this is that they only limit the
language-internal representation and not to the represented models them-
selves.

In addition to the limitations 6-8, we have imposed a last restriction on the
formal language by making serializability a prerequisite for consistency
(see Definition 13). This restriction could be overcome if consistency would
also be defined for models that are not serializable. The only effect of such
an extension is that serializability had to be taken into account in all defini-
tions that involve updates. For these updates it had to be considered that
this extension makes it possible that updates break serializability without
breaking consistency.

Altogether, we discussed two limitations that are only syntactical, three
limitations for multiplicities and ordering that could be overcome if the
language is extended accordingly, and the restriction that we made serializ-
ability a prerequisite for consistency. This shows that the formal language
could be used to represent all EMOF-based models if it would be extended
so that links and labels for a single object and feature could be ordered and
could point more than once to the same object or value.

9.2.1.2. Completeness of Correspondence-Based Consistency

The definition of conditions in the formal language covers all possible
conditions as it simply represents conditions as a list of objects fulfilling
the condition (see Definition 18 in subsection 2.3.3). Therefore, this simple
representation of conditions is complete. If the formal language would,
however, be used for something else than for general explanations of the

327

9. Evaluation and Discussion

semantics of the other languages, then this representation of conditions
would also make it very impractical to use the language for specific model
instances and conditions.

The fact that our consistency definition is correspondence-based does not
restrict its usage (see Definition 24 in subsection 4.1.2). On the contrary,
it provides a way to configure how consistency has to be preserved for
models by selecting appropriate correspondences. If no correspondences
are necessary because every fulfillment on one side has to co-occur with
a fulfillment on the other side, then it is still possible to simply add all
these co-occurrences to the set of correspondences to achieve the desired
behavior.

9.2.1.3. Change Complete and Update Complete

The last two notions of completeness that we discuss for the formal language
concern changes that are performed by users and that can break consistency
as well as updates that are performed to restore consistency. Changes of
arbitrary type for arbitrary elements on one model side are supported by
the formal language (see Definition 34 in subsection 4.3.1). The definitions
of consistency preservation after such changes are, however, limited to
changes that break consistency for at most one consistency rule. This means,
that all theoretically possible changes can be expressed with the formal
language but we can oonly analyze whether an update after such a change
preserves consistency or not for those changes that break a single rule.
Therefore, the language is change complete but preservation is restricted
to isolated consistency breaks.

Any theoretically possible updates in reaction to changes can be expressed
with the language to describe how model elements on the other side and
correspondences are updated (see Definition 30 in subsection 4.2.1). Thus,
we call the formal language update complete.

9.2.2. Change Language is EMOF Complete

The change modelling language, which we have presented in subsec-
tion 5.4.1, can be used to describe all changes that can occur in models

328

9.2. Evaluation of Theoretical Completeness

that conform to EMOF-based metamodels. This completeness is achieved
in two steps. First, the language supports all changes in such models that
can be represented as a single atomic change of a model element or of
a model element’s property. Second, it supports all changes that can be
represented as a combination of atomic change representations. As no
other changes are possible in models conforming to EMOF-based meta-
models, the language can be used to represent any change in such models.
Therefore, we call it EMOF complete. The reason why this completeness
can be achieved by only supporting element and property changes is that
all characteristics of EMOF-based models are realized in terms of objects
and object values for properties defined in an EMOF-based metamodel.
Every possible change that can be performed on such objects and values
can be described in the same way for any metamodel because EMOF is the
fixed meta-metamodel for these metamodels. This way, everything that can
be changed in EMOF-based models can be described without the need to
consider which particular modelling language is used.

9.2.3. Completeness of OCL-Aligned Expressions

In subsection 5.4.3, we have presented an OCL-aligned extension for the
reused expression language Xbase (see subsection 5.4.2). This extension
is used to support OCL-aligned expressions for collections in the reac-
tions, invariants, and mappings language. It is, however, not complete.
It does not cover the complete OCL language, The expressions extension
supports all 14 collection operators and 13 out of all 14 iterators! that can
be used in OCL operation body expressions [ISO12c, pp. 156-174]. Col-
lection operators and iterators are characteristic for OCL. They make it
possible to specify constraints in a declarative way in terms of operations
that mostly correspond to well-known mathematical operations, such as
universal quantification for elements of sets. Furthermore, we analyzed
that these operations represent a big part of the OCL expressions that are
used to restrict instances of metamodels: More than 80% of the invariants
in the metamodel of the Unified Modeling Language (UML), for example,
consist of such collection operator expressions, iterator expressions, or of

1 The closure iterator is not yet supported.

329

9. Evaluation and Discussion

expressions that only invoke a getter on a model element for a feature of a
metaclass [Fis15, p.40][FKL16, p.13].

9.2.4. Reactions Language Completeness

For the reactions language, which we have presented in chapter 6, we
discuss different notions of completeness for entire reactions, change trig-
gers, correspondence matching, and for actions. First, we explain how we
achieved Turing completeness for the reactions language. Broadly speaking,
the result is that everything that may be necessary to preserve consistency
can be expressed with the reactions language. This computational complete-
ness is sufficient but it is achieved using a fallback action for imperative
code that should only be used if other update actions cannot be used. Such
a fallback is, however, not necessary for tasks that fall into the responsi-
bility of other parts of the language. These parts provide constructs for
defining change triggers and matching corresponding elements that cover
all necessary and possible cases. Therefore, we also show that the trigger
and matching part of the reactions language are complete in the sense that
no other language constructs are necessary to express after which changes
a reaction should be executed. Finally, we demonstrate that the language
constructs for retrieving and managing correspondences are complete, be-
cause all types of correspondences and operations on correspondences can
be expressed with them.

9.2.4.1. Reactions are Turing Complete

The reaction language is Turing complete as arbitrary Java code can be
executed in response to arbitrary changes. If it is not possible to express
the intended consistency preservation behavior using particular constructs
of the reactions language, a developer could theoretically decide to express
all update behavior in a single execute action block (see subsection 6.5.5).
In this block arbitrary Java code can be specified. To execute this code
after arbitrary changes, it is necessary to define a reaction and a reaction
routine (see Listing 9.1). In the reaction routine the simplest trigger has
to be specified using the change type any change (line 2) and a call to the
reaction routine has to be added (line 3). This routine (line 6-12) only

330

9.2. Evaluation of Theoretical Completeness

reaction {
after any change
call simulateTuringMachine(change)

}

routine simulateTuringMachine(EChange change) {
action {
execute {
9 // arbitrary code in a Java dialect, e.g. to simulate Turing machine
10 }
11 }
12 }

1
2
3
4
5
6
7
8

Listing 9.1: Exemplary reaction and reaction routine to execute Java code or
simulate a Turing-machine in an execute action block

contains an execution action block with the arbitrary Java code (line 9). As
the Java language is Turing complete, this simple reduction shows that the
reactions language is also Turing complete.

In the next sections, we will show that such a minimalistic use of the reac-
tions language is, however, not necessary. The reason is that the first two of
the three main steps of consistency preservation reactions (see section 6.1)
can always be expressed with appropriate language constructs. We will
demonstrate that even if some actions can only be expressed in terms of
execute action blocks, it is always possible to use constructs of the reac-
tions language to express after which changes and on which corresponding
elements these actions shall be performed.

9.2.4.2. Triggers and Matching are EMOF-Change Complete

After the computational completeness of the previous section, we will now
show a notion of completeness for those constructs of the reactions lan-
guage that make it possible to specify after which changes a reaction is to
be executed. These constructs give developers the possibility to restrict
the execution of reactions to changes that fulfill conditions of a change
trigger as well as conditions of retrieval conditions and match checks (see
subsection 6.4.1, 6.4.2, 6.5.1, and 6.5.2). Together, these language constructs

331

9. Evaluation and Discussion

make it possible to fulfill any requirements that specify under which condi-
tions actions shall be performed after a change in arbitrary models of an
EMOF-based metamodel.

The change type of a trigger can be defined based on the change modelling
language, for which we explained in subsection 9.2.2 why it is EMOF com-
plete. Currently, reactions are implemented in such a way that compound
change descriptions are decomposed before they are processed, because we
do not yet provide keywords for different compound change types. There-
fore, it is not directly possible to restrict a reaction to certain compound
changes. A trigger may, however, also specify a change properties check in
terms of arbitrary code that has no side-effects. As a workaround, such
a check can be used to manually encode any conditions for compound
changes, if the decomposition of changes in the underlying framework
is deactivated before. This way, the trigger part can be made complete
also with respect to compound representations of changes in EMOF-based
models.

Model elements that are not explicitly related to changed model elements
cannot be accessed in a trigger definition (see subsection 6.4.2). This means
that this part of the reactions language can only be used to define change-
related reaction conditions, which can be checked if all change information
but no further information on the changed model is provided. Arbitrary
conditions for the execution of consistency preserving updates cannot be
expressed with it. For this, conditions based on arbitrary model information
can be expressed using retrieve properties checks and match checks in a
match block of a reaction routine. Such model-related reaction conditions
can be expressed in terms of code that may access any model elements
but may not cause any side-effects. Together, change-related conditions
of trigger definitions and model-related conditions of match blocks make
it possible to realize arbitrary conditions that have to be fulfilled before
update actions shall be applied. Therefore, triggers and match blocks make
the reactions language complete with respect to changes in EMOF-based
models.

332

9.2. Evaluation of Theoretical Completeness

9.2.4.3. Matching and Actions are Correspondence Complete

The third and last notion of completeness that we discuss for the reactions
language is about the possibilities for retrieving and managing correspon-
dences between consistent elements of models that conform to two meta-
models. Together, the retrieve and update constructs make the reactions
language correspondence complete in the sense that every requirement
for retrieving, creating, updating, or deleting a correspondence can be
expressed with them.

The reactions language only supports tagged correspondences between
two model elements but as several such correspondences may exists with
different tags, this simple approach is as expressive as correspondences
that directly relate more than two model elements. More specifically, such
correspondences can be emulated by using a tag to mark all correspon-
dences between two elements that realize a many-to-many correspondence.
Furthermore, we rely on identifiers that only need to be temporarily unique
to realize such correspondences (see subsubsection 5.5.1.1). Therefore, the
used correspondence representation is sufficient to express any type of
correspondence between any types of elements for which a temporarily
unique identifier can be calculated.

In order to be correspondence complete, it is not sufficient to be able to
represent every correspondence but it also has to be possible ti retrieve
and manipulate such correspondences. The reactions language provides
specific constructs for retrieving model elements. With such constructs
it is possible to obtain model elements on the side where reactions are
executed. These elements correspond to model elements on the side that
was changed by a user or the other way round (see subsection 6.5.1). Only a
single element can be retrieved at once but every retrieval can be restricted
using arbitrary side-effect free code (see subsection 6.5.2). Therefore, any
theoretically possible correspondence retrieval can be expressed.

The reactions language provides specific actions for creating and deleting
correspondences. A new correspondence can be added with an optional tag
and deletions of existing correspondences can be restricted using optional
tags and arbitrary conditions (see subsection 6.5.3). Correspondences have
no own identity because they can be identified using the identifiers of the
corresponding elements and the tag of the correspondence. Therefore, no

333

9. Evaluation and Discussion

correspondences need to be updated in order to express that other elements
should correspond. More specifically, deleting an existing correspondence
for formerly corresponding elements and creating a new correspondence
for newly corresponding elements is equivalent to an update. Thus, the
reactions language is correspondence complete although no explicit corre-
spondence update construct is provided.

9.2.5. Mappings Language Completeness

For the mappings language, which we have presented in chapter 7, we
discuss the completeness of the entire language as well as completeness
of the automated derivation of enforcements from checks and complete-
ness of inverse enforcements from bidirectionalizable conditions. First,
we will sketch a reduction to show that the mappings language can be
used to express anything that can be expressed with ordinary triple-graph
grammars. Second, we will explain that the derivation of enforcements
from condition checks and the derivation of inverse enforcements are not
complete. This incomplete automation does, however, not restrict the cases
in which the mappings language can be applied, as it is possible to manually
specify check and enforce code or code for both enforcement directions if
the supported operators are insufficient.

9.2.5.1. Triple-Graph Grammars as Mappings

The powerful graph transformation concept of a Triple-Graph Grammar
(TGG) was originally defined for directed graphs [Sch95] and extended
in many different ways, for example, to also support attributes and types
for vertices and edges. A TGG consist of rules that combine a left graph
L = (Vi,Er) and a right graph R = (Vg, Eg) with an intermediary corre-
spondence graph C = (V¢, Ec) by relating them using graph morphisms
re.: C = Land r, : C — R. This means all edge relations have to be
preserved by the functions 7, y and r, g for the vertices and the functions
T, v, ho, g for the edges. More specifically, for all (c;, ¢;) € E¢ it has to hold
that

(rH,E(cS’ ct) = (Us’ Ut)) = (rH,V(Cs) = Us A r<—<,V(ct) =0t)

334

9.2. Evaluation of Theoretical Completeness

and analogue for 7, g and 1, y.

Unfortunately, a formal reduction from TGGs to mappings is out of scope
for this thesis, but we will sketch how such a reduction can be performed.
For this, we will show how to reduce every TGG rule to one or several
mappings. Before we can start, we have to briefly mention how graphs
can be used to represent models. Vertices in a left or right graph of a TGG
rule are used to represent instances of metaclasses and edges represent
links of these instances which are defined for references of the instantiated
metaclass. The first step of the reduction is to determine which metaclasses
have to be mapped by computing all tuples of vertices that are related via
the correspondence graph and the morphisms:

(({0hs- o0} {0200, }) € POVL) X P(Vi) | e € C
Vie{l,...,m}: v, =r(c)
A(Vje{l,....n}: ru(c) =v,)}

For each of these tuples a separate mapping has to be created. Each mapping
has to list the metaclasses for the vertices in the left set and in the right set
of the tuple as left and right parameters of the mapping. All constraints
that are defined for attributes and links of a vertex have to be expressed in
all mappings for tuples that contain the vertex. If the constraint does not
relate attributes of vertices of the left and the right graph, then we have to
create an appropriate single-sided condition in the mapping. Otherwise, a
bidirectionalizable condition has to be created. To our knowledge, there is
no TGG-based tool that supports declarative constraints for operators for
which we did not define automated enforcement derivation (see section 7.3)
or automated inversion (see subsection 7.4.6). Therefore, all attribute and
reference constraints that can be directly written in a TGG can also be
expressed using single-sided or bidirectionalizable conditions. Additional
constraints may be added to a TGG rule, for example, by providing three Java
methods for checking a constraint and for enforcing it in both directions.
With the mappings language, such constraints can always be expressed
as a single-sided condition that consists of two code blocks for checking
and enforcing the condition (see subsection 7.3.3) or as a bidirectionalizable

335

9. Evaluation and Discussion

condition with two code blocks for enforcing the constraint in both direc-
tions (see subsection 7.4.8). Advanced concepts such as negative application
conditions or context nodes that are not in the image of the functions of the
morphism can be translated back to the fundamental concepts of vertices,
edges, and constraints. Thus, even for such concepts a reduction can be
performed as explained above. The result of such a reduction would be that
every consistency relation that can be expressed in terms of a TGG can also
be expressed in terms of a mapping specification with several mappings for
each TGG rule. Therefore, the mappings language is at least as complete as
TGGs with respect to the expressable consistency relations.

With the above reduction, one or several isolated mappings are created
for a single TGG rule. This is, however, not the only way to reduce TGGs
to mappings. It would, for example, also be possible to avoid the repeti-
tion of constraints for vertices that occur in several of the tuples that we
used to determine which mappings have to be created. For this, explicit
dependencies could be used during the reduction process.

9.2.5.2. Incomplete Enforcement and Inversion Derivation

The second and last discussion of completeness for the mappings language is
concerned with the automated derivation of enforcements from checks and
from opposite enforcements. As we have already stated before, the sets of
supported operators for which enforcements or inverse enforcements can be
derived are not complete. There are, however, language constructs to cope
with this incompleteness: It can be manually specified how a check is to be
enforced and how a condition that relates both sides is to be enforced using
two unidirectional enforcements. These constructs only have to be used
if the provided operators are not sufficient. Other languages and tools for
consistency preservation either always require such manual specifications
or only support basic operators, such as addition, subtraction, division,
multiplication, (in)-equality, and numerical comparisons but no advanced
operators such as those presented in subsection 7.4.6.

336

9.3. Evaluation of Theoretical Correctness

9.2.6. Invariants Language Completeness

The invariants language, which we have presented in chapter 8, can be
used to specify invariants using the expressions language Xbase (see sub-
section 5.4.2) and the extension for OCL-aligned collection operations (see
subsection 5.4.3). We have already discussed the completeness of these
collection operator and iterator extensions in subsection 9.2.3. Therefore,
the only additional notion of completeness that we discuss for the invariants
language is computational completeness.

In terms of computational power, the invariants language is at least as
complete as OCL. More specifically, the completeness of the invariants
language can be judged differently if calls to helper methods that are written
in Java or Xbase are counted as part of the language or not. If invariant
conditions do not contain any such calls, then they can contain expressions
that represent loops that always iterate over all elements of a collection but
no interruptible while-loops. This means, without such calls, all loops that
are executed in an invariant always either perform a number of iterations
that is fixed before the loop is entered or they do not terminate if the
collection is infinite. Therefore, such invariants without calls to helper
methods can only express primitive recursive functions, as it is the case
for OCL [MC99; CK03]. If calls to helper methods are, however, counted as
part of the invariants language, then it inherits the Turing completeness
from the Java language.

9.3. Evaluation of Theoretical Correctness

For each language presented in this thesis, we will evaluate notions of
correctness in this section. As we designed these languages for different
purposes, the evaluated notions of correctness are also different. The goal
of the formal language and of the change modelling language is to create
representations that support explanations and realizations of the other
languages. Therefore, we will evaluate for these two languages whether
they correctly model consistency preservation and changes according to
the main characteristics of a model as defined by Stachowiak [Sta73, pp.
131-133]. For the OCL-aligned expression language, we will discuss why

337

9. Evaluation and Discussion

the provided operators correctly realize the same functionality as their OCL-
counterparts. The goal of the mappings, reactions, and invariants language
is to allow developers to specify consistency preservation in different ways
for different consistency scenarios and relations. For these languages, we
will evaluate whether they are correct in the sense that they preserve
consistency as we defined it and claimed it in the previous chapters.

9.3.1. Formal Language Correctly Models Consistency

In this section, we will show that the formal language, which we presented
in chapter 4, correctly models the notion of consistency that is supported
by the reactions, mappings, and invariants language and the way in which
consistency can be preserved with these languages. For this, we will explain
why the formal language fulfills three main characteristics of models, which
we have already presented in subsection 2.1.1. These characteristics are
representation, reduction, and pragmatics.

9.3.1.1. Representation of Consistency for EMOF-Based Models

The formal language represents models of EMOF-based metamodels and
consistency specifications that are expressed using the reactions language.
As per the general model theory of Stachowiak [Sta73], the model entities of
the formal language are the sets of the definitions in section 2.3 and chapter 4.
The originals represented by these entities are EMOF-based models and
consistency specifications. More specifically, the represented originals of
the first part of the formal language are elements of models for which
consistency is to be preserved. The represented originals of the second part
are conceptual conditions and updates of consistency specifications that are
expressed in terms of reactions. Altogether, the formal language contains
no entities that do not represent such originals and it models no properties
that cannot be mapped to properties of the originals. Therefore, the formal
language fulfills the representation characteristic.

338

9.3. Evaluation of Theoretical Correctness

9.3.1.2. Reduction of Model and Consistency Details

Only a few of the properties of models and consistency specifications are
represented using the definitions of the formal language. For the first part of
the language, which represents models, we have already provided a detailed
list of the properties that are abstracted away in subsubsection 2.3.1.2.
We have, however, not explicitly mentioned the properties of consistency
specifications that are abstracted away in the second part of the formal
language. Entities and properties of consistency specifications that are
implied by reactions but not represented in the formal language are, for
example

» descriptions of how it is decided whether objects fulfill a
consistency condition,

« properties of correspondences in addition to the elements that
correspond, or

« instructions that are executed and cases that are distinguished to
obtain a consistency-preserving model update.

Therefore, the reduction characteristic is fulfilled by the formal language.

9.3.1.3. Pragmatic Utility for Explaining Semantics

The purpose of the formal language is to facilitate explanations of the se-
mantics of the other language of this thesis. We have directly provided such
explanations for the reactions language in section 6.7. The mappings lan-
guage and the invariants language are, however, also indirectly explained
using the formal language, because the semantics of mappings are explained
in terms of reactions (section 7.7) and because conditions for reactions and
mappings can be expressed as invariants. In the explanations of reactions
semantics, the formal language replaces the models and consistency speci-
fications in order to relieve the reader from considering all modeling and
specification details. The supported functions are that relevant parts of mod-
els and consistency preservation behavior can be explained and illustrated.
This means, the formal language is a pragmatic utility for both the author
and the readers of this thesis and therefore the last main characteristic of a
model according to Stachowiak [Sta73] is also fulfilled.

339

9. Evaluation and Discussion

9.3.2. Change Modelling Language Correctness

In this section, we will show that the change modelling language, which
we have presented in subsection 5.4.1, correctly models changes in EMOF-
based models. As for the correctness of the formal language, we will explain
why the three main characteristics of models—representation, reduction,
and pragmatics—are fulfilled.

9.3.2.1. Representation of Changes in EMOF-Based Models

The change modelling language can be used to represent changes in models
that conform to metamodels that were defined using EMOF or using Ecore
(see subsubsection 2.1.3.1 and 2.1.3.2). All change properties that can be
represented using the language are properties of the original change. No
properties that cannot be mapped to properties of the modelled originals can
be expressed with the language. Therefore, the representation characteristic

is fulfilled.

9.3.2.2. Reduction of Derived and Context Information

All models that are created using the change modelling language only
provide essential information on the original changes and edit operations.
Information that can be derived or that describes irrelevant details of the
context of a change is abstracted away. If an editor provides, for example,
different ways of performing the same change using different commands
that execute the same edit operation, then it is not modelled which of these
commands was used. Moreover, no information about the used editor is
modelled. This means that two changes that perform the same edit opera-
tion for the same elements and values are represented in the same way even
if different editors, for example, with textual and graphical representations
are used. Thus, the reduction characteristic is fulfilled.

9.3.2.3. Pragmatic Usage for Triggering Reactions

The models created with the change modelling language replace the orig-
inal change during the execution of consistency preservation reactions.

340

9.3. Evaluation of Theoretical Correctness

Developers that specify change types in triggers of reactions can use these
replacements to restrict the actions that they define to be only executed
before or after certain changes (see subsection 6.4.1). The purpose of this re-
placement is that both the developers using the reactions language and the
developers of the reactions language only have to consider those properties
of a change that are relevant for consistency preservation. Furthermore,
developers of monitored editors, which provide change information, can
specify how change models are created in order to give users of the editor
the possibility that the models they are changing can be kept consistent
using reactions and mappings (see subsection 5.5.2). This means, the change
modelling language is a pragmatic means for three different kinds of de-
velopers to represent and retrieve change information for change-driven
consistency preservation and the last main characteristic of a model is
fulfilled.

9.3.3. Correctness of OCL-Aligned Expressions

We have presented our OCL-aligned language expressions extension in
subsection 5.4.3 and we will briefly describe how OCL constraints are auto-
matically converted to expressions of it in subsection 9.4.3. The extension
does not introduce any new operators but only realizes operators that were
defined in the OCL and for which precise semantics were given in the ac-
cording ISO standard [ISO12c, pp. 156—174]. To show that the operators of
our OCL-aligned extension are correct, one could formally verify that they
fulfill the given preconditions and postconditions. As we generate Java code
for all languages and the OCL-aligned expression, it would be possible to
apply existing code verification tools for Java, such as KeY [BHS07]. As all
operators have well-known counterparts in set theory and therefore a low
conceptual complexity, we decided, however, to only test these operators.
We performed unit tests in which we validated that the operators yield
the same results as their OCL counterparts (see subsection 9.4.3) and we
performed integration tests in which the provided operators were used in
reactions code (see subsection 9.4.4).

341

9. Evaluation and Discussion

9.3.4. Reactions Correctly Preserve Consistency

To show that the reactions language is correct, we have to show that the
reactions that can be created with it correctly preserve consistency. For this,
it is necessary to have conditions that have to be fulfilled by two models of
two modelling languages whenever these two models shall be considered
consistent. Such conditions can, however, not be given and fixed for all
usages of all pairs of modelling languages in all development contexts. This
is why the languages presented in this thesis were designed for prescriptive
consistency specifications (see subsection 3.1.2 and 4.1.2). More precisely, a
reactions specification for two modelling languages indirectly prescribes
under which conditions models of these two modelling languages are con-
sistent. Therefore, we can only show that the reactions language is correct
by showing that the execution of reactions always leads to the fulfillment
of the consistency conditions that are indirectly given by the reactions.

At the end of our chapter on reactions, in section 6.7, we have shown how
consistency rules and update functions as defined in our formal language
(see chapter 4) can be constructed for reactions. After this construction, we
have also explained which fundamental properties have to be fulfilled by
reactions in order to be consistency preserving by construction (see page
210 of section 6.7.4). For such reactions, we have shown that they preserve
consistency after a single change that breaks consistency according to a
single rule. Broadly speaking, this is only possible because of the prescrip-
tive nature of reactions. We have explained which consistency conditions
correspond to a reaction and only had to argue that the execution of the
update function that corresponds to the reaction leads to the fulfillment of
these conditions. In general, this explains why the execution of reactions
that fulfill certain requirements preserves the specific notion of consistency
that is indirectly defined using these reactions.

In practice, developers of reactions should not solely rely on our explana-
tions of the semantics of reactions and on their ability to assess which notion
of consistency they indirectly specified and whether the reactions meet
the formal requirements. They should rather apply well-known techniques
such as unit and integration tests or formal verification to validate that
the reactions they develop preserve consistency. As the reactions compiler

342

9.3. Evaluation of Theoretical Correctness

generates Java code, all existing tools and methods for this target language
can also be applied to validate the execution of reactions.

9.3.5. Mappings Language Correctness

For the mappings language we will discuss three notions of correctness.
First, we will mention again why the execution of mappings correctly
preserves the conditions that are explicitly defined with it. Then, we will
show that enforcement code is correctly derived from checking code of
single-sided conditions. Last, we will prove that inverters for operations of
bidirectionalizable conditions are generally composed in such a way that
round-trip laws are sustained and that exemplary inverters fulfill these
laws.

9.3.5.1. Mappings Correctly Preserve Consistency

In section 7.7, we have explained the semantics of the mappings language by
describing a transformation from mappings to reactions. For pure and im-
pure mappings we have presented algorithms and procedures for creating,
updating, and deleting model elements in such a way that the fulfillment
of mapping conditions for and on one side always co-occurs with the ful-
fillment of mapping conditions for and on the other side. Furthermore,
we have described after which changes these algorithms and procedures
have to be executed using reactions. Finally, we have also explained in
subsection 7.7.5 why consistency is preserved according to the conditions
that are explicitly prescribed with mappings. This argumentation could
either be formally proven for the presented mapping realization algorithms
or the code that is generated for a mapping could be formally verified. As
the consistency conditions are, however, already directly provided in a map-
ping, the overall preservation process is not complex. How an individual
consistency condition has to be preserved is, however, less clear if complex
condition operators are used. Therefore, we argue that it is more important
to prove that enforcement code is correctly derived from checking code or
from enforcement code for the opposite direction than to prove that such
enforcement code is invoked whenever it is necessary.

343

9. Evaluation and Discussion

9.3.5.2. Enforcement Correctly Derived from Checks

After this discussion of the overall correctness of mappings, we will now
explain why the automated derivation of enforcement code for operators
in single-sided conditions is correct. We have provided requirements for
correct check and enforcement code of single-sided conditions in subsec-
tion 7.3.3. These requirements only state that every negative check has
to lead to an enforcement that ensures that a check after the enforcement
yields a positive result. That is, those parts of a model for which the check
fails have to be fixed using the enforcement code. Furthermore, it is sug-
gested that enforcement after a positive check should not change anything.
It is especially important to ensure that these requirements are fulfilled for
manually specified pairs of check and enforcement code. The predefined
operators for single-sided conditions, however, also have to fulfill them.
Therefore, we will briefly show for each of these operators that they meet
these requirements.

We have provided code snippets for the enforcement behavior of the pre-
defined operators for single-sided conditions in Table 7.1 on page 232 of
section 7.3. For these operators, we will now briefly show that the given
enforcement code is correct. As the model state changes that are caused
during enforcement are not complex, we refrain from formally proving the
requirements, for example, using Hoare logic. Instead, we employ a more
concise notation and structure the argument for every operator as follows:
First, we show that a negative check result is always fixed by the enforce-
ment code (requirement 1 and 2 on page 237). We provide code snippets to
represent a negative check for an initial model state, the enforcement behav-
ior, and the positive check for the resulting model state. To link the negative
check and the enforcement, we use the leads-to arrow (~~) and to indicate
that the enforcement yields the positive check, we use the implication arrow
(=). We employ the set and list syntax of the reused expression language
Xbase to denote unordered collections using curly braces preceded by a
hash sign (#{...}) and denote ordered collections using square brackets
preceded by a hash sign (#[. ..1). Furthermore, we also use e.a as a short
hand for the result of an invocation of a getter method for the feature f
on the model element e. Moreover, we use the placeholders default to
denote the default value of an attribute and ¢ to denote the type-dependent
minimal value that makes a numerical value greater or less than another

344

9.3. Evaluation of Theoretical Correctness

numerical value (see subsubsection 7.3.2.1). We do not explain for every
operator that it also fulfills the optional requirement that an enforcement
after a positive check should have no effect. This can directly be seen from

the enforcement code snippet.

Equals operator for a single-valued feature:

given: x equals e.f == false
~ 1if (x not equals e.f) { e.f.set(x) }
= x equals e.f == true

Equals operator for a multi-valued feature:
given: #{x,y} equals e.f == false
~ 1if (#{x,y} not equals e.f) {
e.f.clear()
e.f.addAll(#{x,y})
}
= #{x,y} equals e.f == true

Negated equals operator for a single-valued attribute (non-null):
given: x not equals e.a == false
~» if (x equals e.a) {
if (x equals default) { e.a.set(null) }
else { e.a.set(default) }
}

= x not equals e.a == true

Negated equals operator for a multi-valued attribute:

given: #{x,y} not equals e.a == false
~ 1if (#{x,y} equals e.a) {
e.a.clear()
}
= #{x,y} not equals e.a == true

Entry-in-list operator for a multi-valued feature:
given: #{x,y} in e.f == false
~ for (z : #{x,y}) {
if (#{z} not in e.f) { e.f.add(z) }
}
= #{x,y} in e.f == true

Negated entry-in-list operator for a multi-valued feature:

345

9. Evaluation and Discussion

given: #{x,y} not in e.f == false
~ for (z : #{x,y}) {
if (#{z} in e.f) { e.f.remove(z) }
}
= #{x,y} not in e.f == true

At-index-in-list operator for a multi-valued feature:

given: x at index i in e.f == false
~» 1if (x not at index i in e.f) { e.f.set(i,x) }
= x at index i in e.f == true

Negated at-index-in-list operator for a multi-valued attribute:

given: x not at index i in e.a == false
~» 1if (x at index i in e.a) { e.f.set(i,default) }
= x not at index i in e.a == true

Empty-list operator for a multi-valued feature:
given: empty e.f == false
~» 1if (not empty e.f) { e.f.clear() }
= empty e.f == true

Negated empty-list operator for a multi-valued attribute:

given: not empty e.a == false
~» 1if (empty e.a) { e.a.add(default) }
= not empty e.a == true

Not-greater-than operator for single-valued numerical attributes:

given: x <= e.a == false
~» if (x > e.a) { e.a += x-e.a }
= X <= e.a == true

Less-than operator for single-valued numerical attributes:

given: x < e.a == false
~» if (x >= e.a) { e.a += x-e.a+e }
= X < e.a == true

Not-less-than operator for single-valued numerical attributes:

given: x >= e.a == false
~» if (x < e.a) { e.a -=e.a-v }
= X >= e.a == true

Greater-than operator for single-valued numerical attributes:

346

9.3. Evaluation of Theoretical Correctness

given: x > e.a == false
~» 1if (x <= e.a) { e.a -= e.a-v+¢ }
= X > e.a == true

This shows that all pre-defined operators for single-sided conditions of the
mappings language are correctly enforced.

9.3.5.3. Correct Inversion According to Round-Trip Laws

The last notion of correctness that we discuss for the mappings language,
is the correctness of the automated derivation of inverse enforcement.
To show this correctness, we formally prove well-behavedness and best-
possible behavedness for our generic composition inverter and for exem-
plary individual inverters of our operator categories. These proofs and the
text of the remaining section are based on an article [KR16a] and a technical
report [KR16b].

Best-Possible Behavedness with Respect to a Partition In order to be pre-
cise enough for the proofs, we first refine our notion of best-possible be-
havedness, which we have presented in subsubsection 7.4.2.2. To this end,
we define best-possible behavedness with respect to a partition of target val-
ues based on the definition of best-possible behavedness (Definition 46):

Definition 47 (Best-Possible Behaved w.r.t. a Partition)

A pair of an operation and inverse operation (op, op) is best-possible
behaved with respect to a partition W, B of the set of possible target
values iff

1. (op,op) is best-possible behaved such that
2. the PUTGET law holds for all values in W and

3. the PUTGET cannot hold for any value in B.

Based on this refined notion, our proofs for best-possible behavedness
always have the same structure: for the partition W, B of the set of possible
target values, we show that

347

9. Evaluation and Discussion

I. the GeETPuUT law holds for all source values,
II. the PutrGeT law holds for all target values in W, and

[I. a contradiction is obtained for every inverter that would fulfill the
PutGeT law for a target value in B.

Best-Possible Behavedness is Compositional We have already mentioned
in subsection 7.4.5 that our inversion approach is compositional. Now, we
will formally proof that the composition operator and its inverse operator
sustain best-possible behavedness as this also implies that they sustain well-
behavedness. More precisely, we will show that best-possible behavedness
is compositional by showing the following: if two inverters are best-possible
behaved, then the composed inverter that combines these two inverters is
also best-possible behaved.

Lemma 1 (Best-Possible Behavedness is Compositional)

Let opi (¢, s) and op; (2, s) be two inverters for two operators op;(s)
and op,(s) such that op;~ is best-possible behaved with respect to
the partition Wi, B; and op;~ is best-possible behaved with respect
to the partition W,, B,. Furthermore, let W, include the image of
Wi under op;” and let S denote the set of all source values. More-
over, let op; [W;, S] denote the image of W; and S under op;~, then
op; [W, S] € Wa.

The composed inverter op;_,(t,s) := opy (opi (¢, opz(s)), s) for the com-
position operator opi.2(s) = opi(opz(s)) is best-possible behaved with
respect to the partition Wy, B;.

The requirements of the round-trip laws GETPUT and PUTGET for the
composition operator and its inverse are illustrated in Figure 9.1 and 9.2.
In these figures, we relate individual steps and arrows to usages of the
best-possible behavedness of op;~ and op;~ by referencing the numbers of
the appropriate equations in the proof.

Proof 3
(7' »

348

9.3. Evaluation of Theoretical Correctness

OP102
9.4 9.2
@/A\Hopz (—')) s ("2 Op1 =+~ (9‘2)
2. \rx L S~
. NS Z S~
' S| Se<l oy SR
(9.4) o ~JY t
I V74BN 7
9, 2. SN P
@ Sy]2
3 op;~ ~lopy 7T I
OPio2
GETPUT equations and steps:
(9.4) (9.4) (9.4)
1 2. 3.
(9.2) (9.2) (9.2)
=== —===y ===
L 1L I
92 002 (2 049 09
Y o———o> ——=y ——
L 2. 3.

. 09
©52 —— -
1 L 1L

Figure 9.1.: [llustration of the GETPUT part of the proof of well-behavedness for the

composition operator using the lenses analogy

First, we show that the composed inverter always fulfills the GETPUT law: Let

s be a source value. Then
0P102(0P102(5), 8) = 0pjoy(0p1(0p2(s)), 5)

by the definition of composition. The definition of inverse composition yields
(9.1)

0p1oy(0p1e2(s),) = op, (opy (op1(0pz(s)), 0pa(s)). s)

349

9. Evaluation and Discussion

i 1.

PutGet equations and steps:

(9.9) (9.9) (9.9)
IS AN it
1 2. 3,
9.7) 9.7) 9.7)
L 1L III.
(9.9) 9.9) 5. 9.7) 9.7) (9.7) o (9.9) (9.9)
(9.10)= —=77> ——-=> b Hy -oTy oD
2. LT I IL Jii8 3 2. 3.

Figure 9.2.: Illustration of the PUTGET part of the proof of well-behavedness for the

composition operator using the lenses analogy

Because op;~ is best-possible behaved, it fulfills the GETPUT law for the source

value's := op,(s). This means,

op; (0pi(5),'s) = opy (op1(0p2(s)), 0pa(s)) ='s = opa(s)

With this, we obtain from (9.1) and (9.2)

0P102(0P102(8), 5) = op5 (op2(s), s)

350

©.2)

(9.3)

9.3. Evaluation of Theoretical Correctness

Because op;~ is best-possible behaved, it fulfills the GETPUT law for s:
op; (opa(s),s) =s (9.4)
With this, we finally obtain from (9.3) and (9.4)
OP102(0P102($), 8) = 5 9.5

This shows that the GETPUT law holds for the composed inverter opy_, and all
source values s.

“qr”

Second, we show that the composed inverter fulfills the PUTGET law for all
values in Wy: Let w be a target value in W and let s be an arbitrary source
value. Then

0P102(0P1oy (W, 5)) = 0p1o2(0pz (0p; (W, 0p2(s)), 5))

by the definition of the inverse composition. The definition of composition
yields

0P102(0P1ox(W, 5)) = op1(opz(op; (op; (w, opz(s)), 5)))
We define t := op;~(w, opy(s)) and obtain
0p102(0P1ay(W. 8)) = opi(opz(op; (£,)) (9.6)

We chose w to be in Wy. Therefore, t is in opy [W4, S] and also in W;. Thus,
ops fulfills the PurGET law for t, which means

opz(opy (£,5)) =1t 9.7)
With this, we obtain from (9.6)

Oploz(OP;z(Wv S)) = OPI(E)

, which stands for

0P102(0P1op(W. 5)) = opi(op; (w. opz(s))) (9:8)

351

9. Evaluation and Discussion

For w in Wy and’s := op(s), the first operator op; fulfills the PUTGET law,
which means

opi(opy (w,5)) = w (9.9)
With (9.8) this yields
0P102(0P1o(W, §)) = W (9.10)

Thus the PUTGET law holds for all w in W;.

I

Last, we show that the PUTGET law cannot hold for any value in B;: Assume
opy., fulfills the PUTGET law for an arbitrary target value b in By and all
source values. We indirectly define s through b := op1c2(s). Then op;,, fulfills
the PutrGET law for b and s:

op102(0p1o2(b, 5)) = b

By the definition of the inverse composition this yields

op1o2(0p; (0py (b, 0p2(s)),5)) = b
The definition of composition yields

opi(opz(op; (op; (b, 0p2(s)).5))) = b
By applying the definition of b on both sides we obtain
opi(opz(op; (0p1 (0p1c2(s), 0p2(5)), 5))) = 0p1a(s)
Then, the definition of composition yields
op1(op2(op; (op; (0p1(opa(s)), opa(s)). 5))) = opi(op2(s))

Removing the application of op1.2 on both sides yields

op; (op; (opi(opa(s)), opa(s)). s) = s

352

9.3. Evaluation of Theoretical Correctness

Because opy~ fulfills the GETPUT law for s, we can replace s on the right side
and obtain

op; (op; (op1(opa(s)), op2(s)). s) = op; (opa(s). s)

We remove the application of opy (.. .,s) on both sides, which yields

op; (op1(op2(s)), opz(s)) = opz(s)

Then, we apply op; on both sides and obtain

op1(op; (op1(op(s)), 0p2(s))) = op1(opa(s))
The definition of composition yields

op1(0p; (0p102(s), 0P2(s))) = 0p1oz(s)

Finally, using the definition of b, we obtain

op1(opy (b), opz(s))) = b

This is a contradiction to the requirement that op;~ does not fulfill the PUTGET
law for b. Therefore, our assumption is wrong, which shows that the PUTGET
law cannot hold for any value in B;.

Altogether, the GETPUT law holds for all s, the PUTGET law holds for all values
in Wy and cannot hold for any value in B;. Therefore, we conclude that op{,
is best-possible behaved with respect to the partition Wy, B;. ™

Proofs for Individual Inverters Now that we have proven that composed
operations are correctly inverted, we present proofs for some exemplary
operator-specific inverters. All inverters, which we presented in subsec-
tion 7.4.6, are best-possible behaved and the proofs for this best-possible
behavedness are mostly straightforward applications of the definitions of
the operators and their inverters. Therefore, we do not present proofs for
all inverters but only for three exemplary operators. With these exemplary
proofs, we illustrate how the general proof template is used for opera-
tors with different properties, e.g. floating-point involvement or several
operands influencing the fulfillment of round-trip laws.

353

9. Evaluation and Discussion

Lemma 2 (Inversion of pow is Best-Possible Behaved)
The inverter of the abs operator (see page 258 of section 7.4.6.4) is best-
possible behaved with respect to the partition

W:={teNum|t>0},B:={t €Num|t <0}

Proof 4
Let s be a source value. Then

abs ™ (abs(s), s) = abs™(]s|, s) = signd4mult(s) - |s|

Ifs > 0, this yields

Otherwise s < 0, which yields
-1--1-s=s
Thus, the GETPUT law holds for all s.
Let w be a target value w in W and let s be an arbitrary source value. Then
abs(abs™ (w, s)) = abs(sign4mult(s) - w)

Ifs > 0, this yields
abs(1-w) = abs(w) = w

because w > 0. Otherwise s < 0, which yields
abs(—1-w) = abs(-w) = w

Thus, the PUTGET law holds for allw in W .

Assume abs™"" is an inverse operator for abs that fulfills the PUTGET law for a
target value b in B and an arbitrary source value s. Then

abs(abs ™ (b,s)) = b

354

9.3. Evaluation of Theoretical Correctness

This yields
labs™" ' (b,s)| = b < 0

which is a contradiction to the definition of the absolute value operator because
|x| > 0 for all x.

Altogether, the GETPUT law holds for all s, the PUTGET law holds for all w in
W and cannot hold for any inverse operator abs™" and b in B. Therefore, we
conclude that abs is a best-possible behaved inverter. ™

Lemma 3 (Base-Inversion of pow is Best-Possible Behaved)

For the exponentiation operator pow (see page 261 of section 7.4.6.4), the
inverter pow; for inversion according to the base is best-possible behaved
with respect to the partition Wy, P; such that

W; :={(t,e) € Num X Double | t > 0 A e is even} U
{(t,e) € Num X Double | e is not even}, and
P; :={(t,e) € Num X Double | t <0 A e is even}

Before we prove this lemma we briefly explain the used partition W;, P; The
exponentiation operator pow is one of the operators with more than one
operand for which it is not sufficient to partition the space of possible target
values to prove best-possible behavedness. Instead, we have to partition
the space of tuples that contains a possible target value and a source value
for every additional operand that influences the fulfillment of the rount-
trip laws (except —of course— for the operand according to which we are
inverting).

Proof 5
Let b be a base source value and e be an exponent source value. If e is not even,
then

pow| (pow(b, e), b, e) = signdmult(b®) - V|b¢| = sign4mult(d) - v/|b¢|

because signdmult(b®) = signdmult(b) for all e that are not even. Ifb > 0,

we obtain
Vbe = b

355

9. Evaluation and Discussion

Otherwise b < 0 and we obtain

—1-|b¢| = b
Ife is even, then

pow; (pow(b, e), b, e) = signdmult(b) - be
because pow(b, e) = b® > 0 for all b and all even e. Ifb > 0, we obtain
Voe =b

Otherwise b < 0 and we obtain

~1-Vbe =b
because e is even. Altogether, we obtain

pow; (pow(b,e),b,e) = b

for all possible b and e. Thus the GETPUT law holds for all base values b and
exponent values e.

Let (t,,,) be a tuple of target and exponent source value in Wy and let b be
an arbitrary base source value. If e is not even, then

pow(pow; (t,, b, e),e) = pow(signdmult(t,,) - Vl|tw], €)

Ift,, > 0, we obtain

pow(Vt,.e) = V8, = t,,

Otherwise t,, < 0 and we obtain

pow(=1- V|t €) = (=1t)¢ = t.,

Ife is even, then t,, > 0 by construction of W; and

pow(pow! (., b,), e) = pow(signdmult(b) - Vt,,,) =
— (signtmult(b) - YEw)° = VA’ = b

356

9.3. Evaluation of Theoretical Correctness

because |signdmult(b)| = 1 for all b and x¢ = 1 for all even e and x such that
|x| = 1. Thus the PUTGET law holds for all (t,,,) in W;.

Assume pow;" inverts pow according to the base and fulfills the PUTGET law
for a target value t,, an exponent source value e, such that (tp, ep) in Py, and
an arbitrary base source value b. Then

-1
pow(pow; " (tp,b,ep),e,) = t,
This yields
(pow; ! (tp,b,ep))* =t, <0
which is a contradiction to the definition of exponentiation because e, is even
by the construction of P; and it holds that x® > 0 for all even e and all x.

Altogether, the GETPUT law holds for all base values b and exponent values
e, the PUTGET law holds for all (t,,, €) in Wy and cannot hold for any inverse
operator pow;" and (t,,ep) in P;. Therefore, we conclude that pow{” is a
best-possible behaved inverter. ™

Lemma 4 (Exponent-Inversion of pow is Best-Possible Behaved)

For the exponentiation operator pow (see page 261 of section 7.4.6.4), the
inverter pow, for inversion according to the exponent is best-possible
behaved with respect to the partition W,, P, such that

W, :={(t,b) € Num x Num | p"°91tD) £ 1} and
P, :={(t,b) € Num x Num | p*°901(1!D % 1}

Proof 6
Let b be a base source value and e be an exponent source value. Then

pow, (pow(b,e),b,e) =e

by definition of pow;~ because pow(b, e) = b¢. Thus, the GETPUT law holds
for all base values b and exponent values e.

357

9. Evaluation and Discussion

Let (t,,, b,,) be a tuple of target and base source value in W, and let e be an
arbitrary exponent source value. If (b,,)¢ = t,,, then

pow (b, powy (tiy, by, €)) = pow(by,, €) = (by)° = £,

If (by)® # ty,, then
(bw)logu;w\(“h") £ tw

by the definition of W,. This yields

pow(by, pow; (t, bu, €)) = pow(bu, logps,, (1)) =
= (bw)' 0gjp, (Itw]) = £
Thus, the PUTGET law holds for all (t,,, b,,) in Wy, except for negligible floating-
point inaccuracies.

Assume pow, " inverts pow according to the exponent and fulfills the PUTGET
law for a target value t,,, a base source value b, such that (t,, bp) in Py, and
an arbitrary exponent source value e. Then

pow(bp, powglr(tp5 bp’ e)) = tp

This yields
(bp)powz-l'(t[,,b[,,e) — tp ;fé (bp)log‘bf"(ltl’l)

which is a contradiction to the definition of the logarithm operator because
x¥ = x19918D for all x and y.

Altogether, the GETPUT law holds for all base values b and exponent values e,
the PUTGET law holds for all (t,,, b,,) in W, and cannot hold for any inverse
operator pow, " and (t,,e,) in P,. Therefore, we conclude that pows is a
best-possible behaved inverter. ™

358

9.3. Evaluation of Theoretical Correctness

Lemma 5 (Inversion of sin is Best-Possible Behaved)

The inverter of the trigonometric sin operator (see page 262 of section
7.4.6.4) is best-possible behaved with respect to the partition W, B such
that

W :={t € Double | —1 <t < 1}, and
B :={t € Double | |t| > 1}

Proof 7
Let s be a source value. Then

sin” (sin(s),s) = s

by definition of sin~ because sin(source) = sin(source). Thus the GETPUT
law holds for all s.

Let w be a target value w in W and let s be an arbitrary source value. If
sin(s) = w, then
sin(sin”(w, s)) = sin(s) = w
Otherwise
sin(sin” (w, s)) = sin(asin(w)) = w
by the definition of asin. Thus the PUTGET law holds for all w in W, except
for negligible floating-point inaccuracies.

Assume sin™" is an inverse operator for sin that fulfills the PUTGET law for a

target value b in B and an arbitrary source value s. Then
sin(sin™'(b,s)) = b

This is a contradiction to the definition of the sine operator because |sin(x)| < 1

for all x.

Altogether, the GETPUT law holds for all s, the PUTGET law holds for all w in
W and cannot hold for any inverse operator sin™" and b in B. Therefore, we
conclude that sin is a best-possible behaved inverter. ™

359

9. Evaluation and Discussion

9.3.6. Invariants Correctly Transformed to Queries

In this last section on theoretical properties of the languages presented
in this thesis, we discuss the correctness of the invariant-to-query trans-
formation of the invariants language (see section 8.2). The input for this
transformation is a context metaclass and a constraint of an invariant as
well as an explicit invariant parameter that has the same identifier as an
iterator variable of an iterator expression in the constraint and a compatible
type. In order to be correct, the output of this transformation has to be
a query that fulfills the following properties with respect to an arbitrary
instance of the context metaclass, which is briefly called context element:

1. The query has to yield an empty collection of elements for a context
element iff the constraint evaluates to false for the context element.

2. In all other cases, the query has to yield a non-empty result
collection of elements such that

a) every element of the result collection is bound to the iterator
variable in at least one iteration of the iterator expression
when the invariant constraint is evaluated for the context
element

b) for every element of the result collection, the following
implication has to hold for the collection that is iterated for
the iterator expression when the invariant constraint is
evaluated for the context element: if the original collection is
replaced with a collection that only contains the element in
question of the result collection, then an evaluation of the
iterator expression on this replacement collection yields
false if the result type of the iterator expression is boolean
and otherwise it yields the replacement collection

These conditions specify precisely what it means for a query to yield ele-
ments “that are responsible for the violation and that were accessed during
the evaluation via the iterator variable”. To show that our query deriva-
tion approach is correct, one would have to show that these properties
are fulfilled for the intermediate results of each transformation rule that
we have presented in subsection 8.2.6. In order to show the correctness of
a specific query that is generated by the invariants language, one would

360

9.4. Evaluation of Practical Applicability

have to prove that these properties are fulfilled for it. As the generated
Xtend query compiles to Java code, existing code verification tools for Java,
such as KeY [BHSO07], could again be applied. The transformation rules
are, however, just applications of fundamental inference rules of first-order
predicate logic. Therefore, we expect that the interest of proving correct-
ness of the transformation rules or correctness for a particular query is in
many contexts probably not considered worth the effort.

9.4. Evaluation of Practical Applicability

To evaluate the practical applicability of the languages presented in this
thesis, we have examined whether they can be applied in practice to realize
realistic consistency requirements and whether the results obtained from
the created specifications are as expected. The most important expectations
for the results of such practical applications are the theoretically guaranteed
properties, which we discussed in detail in the previous sections. This
means by having evaluated the applicability of the languages we have also
indirectly evaluated whether the languages were realized in such a way
that theoretically guaranteed completeness and correctness are not lost
during realization.

9.4.1. Application of the Formal Language

The formal language is the only language presented in this thesis that cannot
be processed in an automated way because it is not realized as software but
only formally described in chapter 4 of this thesis. All other languages are
realized in terms of a compiler except for the change modelling language,
for which instances are obtained in an automated transformation from
monitor-specific change descriptions.

Because of the missing technical realization for the formal language, the
only practical application of it is its use to explain the semantics of the
reactions language (see section 6.7) and thus also indirectly the semantics of
the mappings language (see section 7.7). We consider this application of the
formal language successful, because it helped us to write the explanations
of the semantics of the reactions language. This was also achieved by

361

9. Evaluation and Discussion

adapting the definitions of the formal language in several iterations to cover
everything that we deemed necessary for the explanations but nothing
more. The expected result of the application of the formal language is,
however, also that it becomes easier to understand the semantics of the
reactions language. We did, however, not perform an empirical evaluation
of this claim in order to focus on evaluating the other languages and other
properties.

9.4.2. Application of the Change Modelling Language

We have indirectly evaluated whether the change modelling language,
which was presented in subsection 5.4.1, can be applied in practice by using
it as an intermediate language for triggering consistency preservation code
that is generated for reactions. The change modelling language is used as a
target in two model transformations in order to enable reactions to changes
in editors. In the first transformation, instances of the change modelling
language are created for changes that are performed in the Java code editor
of the Eclipse Integrated Development Environment (IDE). The second
transformation also creates instances of the change modelling language
but it is not bound to a specific editor: It can be used for any models that
are created based on the Eclipse Modeling Framework (EMF) and therefore
conform to a metamodel that was created using the EMOF-variant Ecore
(see subsubsection 2.1.3.2). We have used it for all case studies in which
we applied the reactions and mappings language. If consistency shall be
preserved for models that are changed with editors that are not built using
EMEF, then further transformations are necessary to express the changes
as instances of the change modelling language. This means, the change
modelling language is used as an intermediate language in the current trans-
formations and can also be used by future transformations to represent
changes for which consistency shall be preserved using reactions. The Java
code that is generated by the reactions compiler uses the editor-agnostic
change representations to determine which code for which reactions has
to be executed based on the trigger definitions of the reactions. For all
changes that occurred in the different applications of the reactions lan-
guage the expected change representations were created using the change
modelling language and further processed by reactions. This demonstrates
the practical applicability of the change modelling language.

362

9.4. Evaluation of Practical Applicability

9.4.3. Application of OCL-Aligned Expressions and Invariants

In subsection 5.4.3, we presented 27 collection operators and iterators that
form an OCL-aligned extension for the reused expressions language. To
evaluate this expressions extension and the invariants language, we have
applied them to those invariants of the UML metamodel? that can be ex-
pressed with it [Fis15, p.40][FKL16, p.201]. The metamodel contained 420
OCL invariants. We skipped 175 syntactically trivial invariants that only
contain direct comparisons of results by calling getters and simple operators
such as implies or not. Out of the 245 remaining invariants, 88 contained
the supported collection operators and iterators but no unsupported lan-
guage constructs such as nested definitions of temporary variables. We
successfully applied the invariants language and the OCL-aligned expres-
sion extension to manually create equivalent invariants for each of these 88
UML invariants. In addition, we have also successfully translated more than
330 out of the 420 OCL invariants automatically to invariants that use the
collection operators and iterators and other operators that are provided by
the reused expression language. For this, we extracted all invariants from
the Ecore-based metamodel of the UML and parsed them using Eclipse’s
OCL parser. We obtained an AST for every invariant and performed a model-
to-text transformation on it to output functionally equivalent constraints for
the invariants language. Together, the manual re-implementation and the
automated translation of UML invariants show the practical applicability of
the invariants language and of the OCL-aligned expressions extension.

9.4.4. Applications of Reactions

To evaluate the practical applicability of the reactions language we have
used it in four case studies to develop tools that preserve consistency be-
tween models of different languages. In the first case study, the reactions
language was used to support the coevolution of architectural models and
object-oriented source code during the development of component-based
software [Kra+15]. Reactions were developed to keep object-oriented code
consistent after changes in architectural models.In the second case study, we
have kept architectural models consistent after changes in component-based

2 http://www.eclipse.org/uml2/5.0.0/UML metamodel revision from 2014-12-14

363

https://git.eclipse.org/c/uml2/org.eclipse.uml2.git/tree/plugins/org.eclipse.uml2.uml/model/UML.ecore?id=57c76de64a8925e897c2a2ef0a898ea6c153816d

9. Evaluation and Discussion

1400
1200
1000

800
600 [SLOC

400 282 294 272
7
0
EJB2PCM SysML2ASEM
PCM2JAVA Javalntegration

Figure 9.3.: Source lines of code (SLOC) for reactions in different case studies

source-code. The third case study was concerned with the preservation of
consistency between architectural models and object-oriented code that
that was integrated from an existing code base and does not fulfill the
original consistency constraints. In the last case study, consistency was
preserved for two modelling languages that are used in the automotive do-
main. Software models for embedded microcontrollers were kept consistent
to model changes for block diagram of the Systems Modeling Language
(SysML) [Obj15].

In Figure 9.3, we illustrate the amount of reactions code that was developed
in the case studies. We measured the Source Lines of Code (SLOC) by
counting all lines in the source code files that are not empty and that
contain something else than code comments. This means, we exclude only
those lines that are also ignored by compilers because they never influence
the program behavior.

9.4.4.1. Component-Based Architectures and Object-Oriented Code
In the first case study, the reactions language was used to preserve consis-

tency between models of an Architectural Description Language (ADL) and
object-oriented Java code. We will briefly introduce the involved languages

364

9.4. Evaluation of Practical Applicability

and the realized consistency requirements, which are discussed in detail by
Langhammer [Lan17].

To represent software-components and the relations between them, the
Palladio Component Model (PCM) [Reu+11] was used in the first case study
for the reactions language. It is an ADL that models reusable components as
well as the interfaces that they provide and require in a system-independent
repository. Concrete systems are expressed in terms of so-called assembly
contexts to instantiate components. The roles for their provided and re-
quired interfaces are linked using assembly connectors. To illustrate the
reactions language, we used a running example that is inspired from this
case study (see section 6.2). This example discussed only a small part of
the PCM in a simplified way, but it introduced the main concepts. As the
PCM is part of the Palladio Approach [RHK16] for architectural simula-
tions and analyses, it provides much more concepts, for example, to model
resource-demands of services for performance predictions.

To obtain a model representation of Java source code, we used the Java
Model Printer and Parser (JaMoPP) [Hei+10]. This made it possible to
define reactions that process instances of an Ecore-based metamodel for
Java and not source code in a textual format. As a result, the reactions code
in this case study did not need to consider the fact that source code changes
were processed or produced. Furthermore, changes that are performed in
the common Java editor of the Eclipse IDE were represented as changes of
the Java model by transforming the involved change representations (see
subsection 9.4.2).

The main challenge of co-evolving architectural models and object-oriented
code for software that is developed in terms of components is to represent
components in a suitable way in the code. Langhammer [Lan17] presents
different ways to achieve this in his dissertation. We have evaluated the
practical applicability of the reactions language, only for two of these
alternatives. In this first case study, reactions were developed to ensure
that code for Plain Old Java Objects (POJOs) is co-evolved in a consistent
way with PCM-based models (see subsection 6.2.3). For this, components
are realized in terms of so-called component realization classes with an
appropriate package structure. Such a component-realization class contains,
for example, methods for all provided services of the component. Another

365

9. Evaluation and Discussion

alternative for relating component models and code was evaluated in the
second case study, which we describe in the following.

9.4.4.2. Component-Based Code and Architectures

In the second case study for the reactions language, PCM-based software
architecture models are kept consistent after changes in source code with
an explicit notion of components. For this, the Enterprise Java Bean (EJB)
standard was used [Sak09]. It gives developers the possibility to designate,
for example, Java classes as component classes by marking them with
annotations for different types of so-called beans. Furthermore, component
interfaces can be realized as Java interfaces with appropriate annotations
so that the ordinary implements-relation between classes and interfaces
can also be used to express that a component respectively bean realizes an
interface. Such annotations are inspected by the reactions that keep the
corresponding architectural models consistent for Palladio [Lan17].

9.4.4.3. Coevolution Integration of Object-Oriented Code

The reactions of the third case study have been developed in order to keep
architectural models consistent after changes in legacy code. These archi-
tectural models are reverse engineered from the code base [Lan17]. The
obtained model and the legacy code can be integrated into the ViTrRUVIUS
framework for consistent co-evolution. Object-oriented code that was devel-
oped without the automated consistency preservation for component-based
models does, however, usually not have an appropriate structure to be co-
evolved afterwards. Therefore, particular consistency preservation logic
is needed in order to support as much edit operations on the legacy code
as possible during the co-evolution with the architectural models. This
particular logic was specified with reactions. The consistency preservation
rules for newly created code, however, were defined before the reactions
language was developed and therefore written in Xtend. The other preser-
vation direction for keeping code consistent with changes in architectural
models was, however, realized with reactions and is the first case study,
which we have described above.

366

9.4. Evaluation of Practical Applicability

9.4.4.4. Automotive Software Models and SysML

The third and last case study in which we have evaluated the applicability
of the reactions language was performed in the context of automotive
software engineering. This case study was performed in cooperation with
an industrial partner in order to obtain realistic consistency requirements
for this special domain. The partner uses a proprietary language to model
software for Electronic Control Units (ECU) and to generate C code from
it. For the case study, we have developed a modelling language that is
structurally equivalent to a subset of this property language and called it
Automotive Software Engineering Metamodel (ASEM). It mainly covers
modules and classes that communicate using messages and methods. The
goal of the case study was to preserve consistency between such domain-
specific models and models that were created using the general-purpose
Systems Modeling Language (SysML) [Obj15]. SysML uses and extends a
subset of the UML for systems engineering and supports 9 diagram types
that are categorized in three different types for requirements, structural, and
behavioral modelling. The consistency requirements that have been realized
using the reactions language are concerned with ASEM models and with
structural block diagrams of the SysML. Changes that are applied to blocks
and their ports in SysML models are kept consistent with corresponding
modules, classes, messages, and methods in ASEM models. Development
of the consistency preservation tools for the automotive case study was
not finished at the time of writing this thesis. Therefore, all results that we
present for this case study are preliminary.

9.4.5. Applications of Mappings

We have evaluated the applicability of the mappings language by realizing
mappings that are equivalent to TGG rules of an example case and by
analyzing attribute expressions in the ATL transformation zoo. The TGG
example for which we successfully realized mappings is concerned with
keeping cards of a Leitner learning card system consistent with entries in a
dictionary [AVS12]. To this end, the different partitions, in which cards of
a Leitner box are stored, are mapped to levels of the dictionary. The goal
of this application of the mappings language was to compare the attribute
mapping capabilities of it with a TGG-based tool. Furthermore, we used

367

9. Evaluation and Discussion

this example to inspect the size of the involved mappings and TGG rules as
well as the code that is generated for both approaches.

To evaluate the applicability of the automated bidirectionalization for unidi-
rectional enforcement conditions of the mappings language, we inspected
103 transformations of the so-called ATL Transformations Zoo®. We have
analyzed how much of the expressions that appear in available model
transformations transform attributes using operators for which we defined
inverters [KR16a]. The goal of this analysis was to obtain an indicator for
the share of common attribute transformations that can be inverted with the
currently available inverters. To this end, we have classified all operators
of all transformations in the zoo using the following categories: identity
operator, arithmetic operators, parsing or printing, other string operators,
sequence operators, list operators. The result of this categorization was
that 26% of the lines of code in the ATL transformations used only attribute
operators expressions for which we defined inverters.

9.5. Discussion of Practical Benefit

The second practical property, which we evaluated for all languages ex-
cept for the formal language, is the benefit of applying the languages. It
is also the property that is most costly to evaluate [BR08, p. 15]. To thor-
oughly evaluate the benefit for every language, one would have to take
a notion of total cost of ownership into account. This means, to clearly
demonstrate that the presented languages are beneficial, it would not be
sufficient to compare the effort for applying these languages in represen-
tative case studies. Additionally, one would have to consider the effort
for learning these languages and probably even the effort for developing
and maintaining both the languages and the consistency preservation tools
written with them. Finally, such a thorough evaluation of the benefit of
using the presented languages would mean to plan, to perform, and to
analyze a family of empirical experiments with appropriately competent
software developers for each language. Such experiments could provide
enough data to reliably answer the question whether using these languages
is altogether beneficial. Similar data for answering the same question for

3 ATL Transformations Zoo: eclipse.org/atl/atlTransformations

368

http://www.eclipse.org/atl/atlTransformations

9.5. Discussion of Practical Benefit

widely used programming languages is, however, still not published because
such families of experiments that consider the whole lifecycle of software
are very costly. Furthermore, such results can always be put in doubt by
questioning whether the developed applications and the subjects that were
tested are representative for all or certain contexts of software development.
Therefore, we do not provide such evidence for the overall benefit of using
all presented languages. Instead, we present arguments for the change
modelling language, the expression extension, the mappings language, and
the invariants language, which suggest that applying these languages is
beneficial. To demonstrate potential benefits of the reactions language, we
also compare consistency preservation tools that were realized with the
reactions language to functionally equivalent tools that were written in
Java or the Java dialect Xtend. This comparison shows that those tools that
were developed using the reactions language require on average 40% less
source lines of code than their Java or Xtend counterparts.

9.5.1. Intermediary Change Models for Editors

A potential benefit of the change modelling language is that consistency
preservation code can be decoupled from the format that is used to de-
scribe changes after which consistency is to be preserved. Without an
intermediary change modelling language, there would be two alternatives
for representing changes for consistency preservation. Either reactions
code would have to be manually tailored to the changes that are observed
in an editor for a specific modelling language. Or the compiler of the re-
actions language would have to be customized so that the code that is
generated for reactions is able to deal with different change representations
of different editors. If many different modelling languages and editors have
to be supported, such manually adaptations of reactions to these editors
or appropriate extensions of the compiler can result in high development
effort. In such cases, it can be beneficial to use a generic change modelling
language, such as the one we have presented in subsection 5.4.1 as inter-
mediate representation. With such a language, it is sufficient to develop a
transformation from specific change representations to the generic change
format. As a result, neither manually developed reactions code nor the
reactions compiler have to consider the fact that changes may be observed
in different editors and for different modelling languages.

369

9. Evaluation and Discussion

9.5.2. Integration and Code Generation for OCL-Aligned
Expressions

A practical benefit of the OCL-aligned expression extension, which we have
presented in subsection 5.4.3, is its integration into other languages. This
integration applies to the languages presented in this thesis as well as to the
Java language. The provided extension methods for collection operators and
iterators can be used in the reactions, mappings, and invariants language.
As a result, developers that use these languages do not need to learn a new
language and have the flexibility to express constraints in different ways.
They can either use lambda expressions and the operators and iterators
of our extension to write constraints that are almost identical to OCL
constraints (see also subsection 5.4.2 and 8.1.1). Or they can use Java to
write helper methods if they are more familiar with this language. In
both cases, developers also benefit from the integration of our Xtext-based
languages into the Eclipse IDE and its editors. Developers are always
supported, for example, in terms of auto-completion, and they do not need
to use different editors or compilers when writing, for example, reactions,
OCL-aligned expressions, and Java code.

The other potential integration benefit stems from the fact that we also
generate Java code for the OCL-aligned expressions. This makes it possible
to also perform static code analyses on reactions, mappings, or invariants
code that involves such expressions. Such analyses can be helpful, for
example, when refactoring steps are performed. Furthermore, the direct
generation of Java code means that the execution of expressions code that
was written with our extension can directly be debugged with established
Java tooling. OCL, however, provides some features that complicate direct
code generation and static analyses, such as unlimited integers or access
to all instances of a metaclass. Therefore, many approaches that gener-
ate code instead of interpreting OCL expression only support a subset of
OCL [Wil12].

9.5.3. Code Size Comparison for Reactions

We have evaluated whether using the reactions language instead of a
General-Purpose Programming Language (GPPL) has an effect on the

370

9.5. Discussion of Practical Benefit

amount of code to be written. The goal of this comparison was to obtain
an indicator for a potential benefit of the reactions language. By Gyimothy
et al. [GFSO05, p. 907], for example, it has been shown that an increasing
amount of lines of code correlates with an increasing number of faults. To
analyze this code size, we compared functionally equivalent realizations of
consistency preservation tools for two of the case studies, which we have al-
ready described for the evaluation of practical applicability subsection 9.4.4.
For both case studies, the same consistency requirements were realized
twice and the same test cases were successfully passed by both variants.
In the first case study, Java source-code was kept consistent according to
changes in corresponding architectural models that conform to the PCM.
For this case study a realization with the reactions language was compared
to a realization that was developed using the Java dialect Xtend [Lan17]. In
terms of code size, the differences between Xtend and Java should, however,
be negligible (see also subsubsection 2.1.2.5). The alternative realization of
the second case study was developed with Java. In order to avoid a potential
bias, all four implementations for this comparison have been developed by
graduate students or colleagues but not by the author of this dissertation.

We compared the SLOC excluding empty and comment lines (see subsec-
tion 9.4.4) of functionally equivalent consistency preservation tools that
were developed with the reactions language, Java, or the Java dialect Xtend.
For this comparison, we exploit the fact that the reactions language and
both Java and Xtend are very similar in terms of concrete syntax, especially
with respect to the question where new lines are necessary or common. It
can always be questioned whether SLOC comparisons alone are sufficient
to show that some piece some language provides a practical benefit. Thus,
the goal of this code size comparison was not to obtain precise results
that can be used to perform statistical tests on hypotheses, for example, to
correlate the SLOC with the number of faults. Instead, we provide this com-
parison only to provide a rough estimate for the code size reductions that
can be achieved with the reactions language. Therefore, potential minor
differences in the usage of new lines in the case studies are acceptable.

For all four realizations of both case studies, we computed four different
numbers for the SLOC including and excluding imports and helper methods.
The current prototype of the reactions language provides limited support
for distributing reactions across several compilation units. Thus, code
from Java compilation units is only imported once in reactions whereas the

371

9. Evaluation and Discussion

alternative realizations in Java and Xtend are split over several classes which
have to repeat import statements. To account for this, we always compute
the SLOC with and without such lines that import code. We also analyzed
the effect on the SLOC of helper methods in order to be independent of a
potentially different tendency to outsource such code. When we compare
the SLOC for both case studies in the following, we always provide four
measurements for all combinations of including and excluding helpers and
methods. Excluding the imports should avoid a potential bias towards
a lower SLOC for reactions. Similarly, by including helper methods we
ensure that all code that is needed for consistency preservation is taken
into account even if it is not defined as a reaction but as a helper method.
Therefore, we argue that the measurements that include helpers and exclude
imports should represent the fairest comparison of all four measures.

In future work, we are planning to also compare the average McCabe
complexity per thousand SLOC [GK91]. Furthermore, we plan to define
which expressions in the reactions language can be regarded as a statement
to compare the Total Number of Statements (TNOS). The TNOS metric is
often also called Logical Lines of Code (LLOC) and it has been shown that it
is a good predictor for maintainability, for example by Dagpinar and Jahnke
[DJ03, p. 7].

9.5.3.1. Comparison for Component-Based Case Study

In Figure 9.4, we provide the results of the code size comparison for the
case study in which Java code is kept consistent to changes in architectural
models conforming to the PCM. As we have motivated above, we present
four different measurements for the SLOC with and without helper methods
and imports. The results show, that less code was written with the reactions
language than with the GPPL Xtend. The biggest difference in size can be
observed when the code of helper methods and imports is also counted.
Analogue, the smallest difference is obtained when both helper method and
imports are excluded.

372

9.5. Discussion of Practical Benefit

3000
2706

2500 2247

2000 1769

1500 1436 1355 1431

7 & Xtend
992 959 A reactions

1000

500

incl helpers incl helpers excl helpers excl helpers
incl imports excl imports incl imports excl Imports

Figure 9.4.: SLOC for reactions and Xtend code for consistency preservation from
PCM instances to Java code

9.5.3.2. Comparison for Automotive Case Study

In Figure 9.5, we provide the results for the code size comparison of the
automotive case study in which ASEM models are kept consistent to changes
in SysML block diagrams. These results for this second case study also
show that fewer reactions code than GGPL code was written. Furthermore,
the biggest and smallest difference between the code size of the functionally
equivalent consistency preservation tools is again observed when helper
methods and imports are both excluded or both included. The tool that
has been implemented in Java contains more import lines than SLOC for
helpers. Therefore, the number of SLOC in the second measurement, which
includes helper methods but excludes imports, is lower than the number
of SLOC in the third measurement, which excludes helper methods but
includes imports. As we have already mentioned in subsubsection 9.4.4.4,
the development of both tools in this case study is not yet finished so the
results are preliminary and the SLOC will increase in the future.

373

9. Evaluation and Discussion

800
709

700 629

600 558
493
500

400 & Java

300 272 240 A reactions

200 182 167

100

incl helpers incl helpers excl helpers excl helpers
incl. imports excl imports incl imports excl Imports

Figure 9.5.: Source lines of code (SLOC) for reactions and Java code for preserving
consisteny in ASEM models after changes in SysML block diagrams

9.5.3.3. Relative Reduction of Source Lines of Code

In order to provide a relative indicator for the amount of code that is written
using reactions and using a GPPL, we computed the relation between the
SLOC of reactions and the SLOC of GPPL code for both case studies. The
results for this relation are shown in Figure 9.6. Depending on the different
possibilities for counting the SLOC with and without helper methods and
imports, both case studies yield a reduction of the SLOC from GPPL code
to reactions code that ranges between 33% and 71% of the SLOC for the
GPPL code. The average reduction for both measurement that includes
helper methods but excludes imports is 48%. As the absolute size of both
case studies is, however, relatively small, this relative reduction cannot be
used, for example, to predict how much code would be necessary in a third
case study. Nevertheless, these results allows us to expect that the reactions
code that will be developed in future case studies will also have noticeably
fewer SLOC than functionally equivalent GPPL code.

374

9.5. Discussion of Practical Benefit

80
66

\

70
60
50
40 # PCM2Java

30 SysML2ASEM

20

10

incl helpers incl helpers excl helpers excl helpers
incl imports excl imports incl imports excl Imports

Figure 9.6.: Relative reduction of SLOC from GPPL code to reactions in percent
for consistency preservation from PCM models to Java code and SysML models to
ASEM models

9.5.4. Discussion of Benefits of the Mappings Language

We have developed the mappings language, which we have presented in
chapter 7, in order to support developers in writing bidirectional consistency
specifications. One of the goals was to combine automated support for
preserving consistency for common relations between model elements
and attributes with unlimited expressive power. In subsection 9.3.5, we
have shown that the automated approaches for deriving enforcement code
from checks and for deriving inverse enforcement code from unidirectional
conditions are correct. We have, however, not analyzed, whether the gain in
productivity that can be achieved using this automation is bigger than the
loss of productivity by introducing our language in development projects
of consistency preservation tools. For such comparisons it would, however,
be important to have an appropriate baseline, in this case another language
for bidirectional consistency specifications. Such languages have been
presented by researchers but applications in industry are rare and limited
to explorative case studies (see subsection 10.3.2 and subsection 10.3.3).

375

9. Evaluation and Discussion

To obtain a preliminary indicator for potential benefits of the mappings
language we have performed an exemplary comparison with the TGG-
based tool eMoflon [Anj+11]. For the Leitner box example, which we have
already mentioned in subsection 9.4.5, we compared, for instance, the pos-
sibility to realize complex attribute relations and the code generated by
both approaches. A complex attribute relation that had to be realized is,
for example, the relation between the content text of a dictionary entry
and the two texts on the front and back side of a Leitner card. Further-
more, the partition in which a card of a Leitner box is stored had to be
mapped to a level for the entry of the dictionary and vice versa. In the
TGG-based approach such attribute mappings have to be realized in terms
of a constraint satisfaction problem and using three operations for forward
enforcement, backward enforcement, and condition checking [AVS12, p.
9]. Our pre-defined inverters, for which only a single condition expres-
sion has to be given, cannot be used for all complex attribute relations of
this example. In such cases, forward and backward enforcement has to
be specified separately in terms of Java code. Our comparison of the two
approaches showed that even in such cases developers have to write less
mappings code. Furthermore, the compiler of the mappings language gen-
erates less code than eMoflon and the gap between the generated code and
the specified rules is smaller [Wer16, pp. 113-116]. In future work, further
comparisons should, however, be performed in order to obtain enough data
for quantitative analyses of mappings code.

9.5.5. Discussion of Automated Query Derivation

In section 8.2, we have presented an automated approach to obtain a query
that returns model elements that violate the constraint of an invariant
that was specified using our invariants language. To automatically obtain
such a query that returns invariant-violating model elements, only one
additional input in the form of an invariant parameter is necessary. It
would even be possible to automatically expose all iterator variables of an
invariant constraint as invariant parameters and to generate queries for all
of them. As a result, the additional effort for using our automated query
derivation approach is very small. Thus, we argue that our approach has a
positive influence even in cases in which using a generated query instead
of manually developing code for retrieving invariant-violating elements

376

9.6. Future Evaluations

yields only a relative small productivity improvement. Therefore, we are
convinced that an isolated evaluation of the benefit of this approach in some
small case studies would not lead to many insights. Instead, we suggest to
focus in future work on evaluations that compare a usage of the invariants
language and its query derivation approach to the usage of OCL. Such
comparisons should also analyze the effort needed to train developers in
using OCL and in using the invariants language.

9.6. Future Evaluations

In future work, further evaluations, especially of the practical benefit of the
presented languages, should be performed. Extensions and improvements
of the evaluations of theoretical correctness and completeness are possible,
but should not be in the focus of future work.

9.6.1. Further Case Studies and Comparisons

We suggest performing future evaluations of the practical applicability and
benefit, for example, using a case study that also involves contracts written
using the Java Modeling Language (JML) [LBR99]. We have already realized
a consistency preservation tool for such a case study with an early pro-
totype of the ViTruvius framework and therefore without the languages
presented in this thesis [Kra+15]. Consistency between source code and,
for example component-based models or abstract non-functional specifi-
cations, is especially crucial when the code is verified to ensure security
properties, such as confidentiality of data. Therefore, we are convinced
that a reimplementation and extension of this initial case study with the
reactions, mappings, and invariants language would provide many inter-
esting insights. Furthermore, this case study yields important challenges
of consistency preservations as, for example, JML contracts are specified
in terms of code comments, which are insufficiently supported by many
co-evolution approaches and code models. Despite these particularities, any
additional case studies could be used to further analyze potential benefits
of the presented languages in different contexts.

377

9. Evaluation and Discussion

As we have discussed above, we suggest to also perform further case stud-
ies, for example to obtain data for quantitative analyses of mappings code.
Additionally, we have already mentioned in subsection 9.5.3 that measure-
ments for additional metrics could be performed, for example to compare
the complexity density and the TNOS.

9.6.2. Planned Experiment on Program Comprehension

We have planned and prepared a controlled experiment to evaluate the
influence of the reactions language on code comprehension [Kra+16]. Unfor-
tunately, we were not able to perform the experiment before we completed
this thesis. Therefore, we briefly present this experiment as future work.

The goal of the experiment is to evaluate whether consistency preservation
code that is written with the reactions language can be understood better
or faster than consistency preservation code that is written in Java. To
this end, we planned a within-participants experiment in which developers
obtain multiple-choice questions that assess the ability to understand what
the consistency preservation code does. In addition to a questionnaire
with such questions, the developers will obtain code printouts. They will
inspect reactions code and Java code of different consistency preservation
tools in several sessions of a counterbalanced setup. For every session, we
will record the number of correctly answered questions and the time that
the developers needed for this. Based on these records, we will evaluate
whether the fact that developers were inspecting reactions or Java code
had a significant influence on the quality or speed of code comprehension.
To this end, we will perform a statistical test that checks an appropriate
null-hypothesis for all individual differences of the quality of code compre-
hension. This test will analyze whether subjects answered more questions
on the functionality of the consistency preservation code correctly when
they inspected reactions code. If this is the case and the obtained p-value is
small enough to allow for a second statistical test on the same data, then
we will also test the individual differences for the speed of code compre-
hension. We have described the detailed setup of this experiment in an
article [Kra+16].

378

9.7. Conclusions

9.7. Conclusions

In this chapter, we have discussed how we have evaluated theoretical and
practical properties of the languages presented in this thesis. First, we have
discussed theoretical completeness with respect to the intended range of
use. We have shown that the reactions language is Turing complete and
reduced TGG rules to mappings to demonstrate the expressive power of
the mappings language. Furthermore, we have discussed the theoretical
correctness of every language. To show the correctness of the automated
bidirectionalization of enforcement code, for example, we have introduced
a new notion of best-possible behaved round-trips based on the notion of
well-behaved transformations [Fos+07]. This new notion guarantees that
the GETPuUT law is always fulfilled and that the PuTrGeT law is fulfilled
whenever this is possible. Furthermore, we have illustrated the applicability
of the languages using case studies in which consistency was successfully
preserved with tools that were written using the presented languages.
Finally, we have discussed potential benefits of the presented languages.
We have compared, for example, consistency preservation tools that were
realized with the reactions language to functionally equivalent tools that
were written in Java or the Java dialect Xtend. Those tools that were
developed using the reactions language had between 33% and 71% less
source lines of code than their GPPL counterparts.

379

10. Related Work

In this chapter, we provide an overview on work that has been published
so far in the context of consistency preservation for models of different
languages. To structure the discussion, we focus on different concerns while
describing the literature. First, we present work in the general context of
updating models or views. Then, we discuss approaches that describe how
consistency can be checked and formalized. Finally, we review related
work on automated consistency preservation. The discussed concerns are
not orthogonal so that many approaches could be discussed several times
with different foci. As too many cross-references would, however, limit the
clarity of the discussion, we only mention approaches in several sections
if they have a strong focus on the discussed concern. Parts of this chapter
are based on corresponding sections of articles that we have published
previously [KBL13; Kra15; KR16a; FKL16].

10.1. Consistency between Models, Views, and
after Updates

The goal of consistent representations of a system under development was
subject of many publications in software engineering and related fields of
computer science. In this thesis, we have presented languages for preserving
consistency between models of modelling languages that comply to the
Essential Meta-Object Facility (EMOF) standard [ISO14]. Before we limit
the discussion to related work that is concerned with similar representation
formats for development artifacts, we briefly describe the more general
context of consistency preservation.

381

10. Related Work

10.1.1. The View Update Problem

The problem of keeping information that is part of several representations
consistent after changes has been discussed as the view-update problem
in many publications and for several application contexts. Bancilhon and
Spyratos [BS81] and Codd [Cod90], for example, discussed it for relational
databases. Other researchers, such as Foster et al. [Fos+05], transferred it to
the field of programming languages. The general problem is that an update
in a view that is derived from a database has to be translated to an appropri-
ate update in the database if the view and its source shall be kept consistent.
Such update translations can be realized using a complement view that
contains all information of the database that is not in the view that shall be
updated. More precisely, a complement of a function is another function,
such that the tupled combination of both functions is injective. A backward
transformation can be obtained from such a complement by inverting this
tupled combination of the original function and its complement. There can
be several complements for a view and the question whether an update can
be translated back to the database depends on them: A view is updatable
if it can be translated to the database with a constant complement [BS81].
This is, however, not always the case and Buff [Buf88] has shown that
the question whether a unique translation exists is in general undecidable.
Therefore, consistency can only be preserved if views and complements for
translating updates are designed accordingly.

10.1.2. Models, Databases, and Ontologies

Models that conform to EMOF-based metamodels are a way to repre-
sent data in a format that is equivalent to attributed, typed graphs with
inheritance (see subsubsection 2.3.1.3). Such models are used in many
software engineering projects and different application domains. Often,
various domain-specific languages are used [Whi+13; Whi+15], so that
consistency has to be preserved between models of different languages.
Consistency problems can, however, arise independent of the technologi-
cal space [KBA02] and also when different technological spaces are com-
bined and bridged [Hen11]. In the field of databases, for example, meth-
ods for integrating schemas that represent data in a partially redundant
way were proposed [BLN86]. Such schema integration methods can also

382

10.1. Consistency between Models, Views, and after Updates

support developers in integrating existing data that was persisted using
different schemas [Red+94]. Other approaches create federations of co-
operating databases [SL90] or focus on semantic challenges of schema
integration [HGO01; DHO05]. To preserve consistency while a database is
used, active database systems can be used [PD99]. They provide developers
the possibility to define rules for specifying which updates should lead to
further database updates. Such rules are often expressed in terms of an
event, a condition, and an action. This overall structure of so-called ECA
rules is also similar to the structure of reactions (see section 6.1). Further-
more, mapping languages have already been discussed for schemas of the
EXPRESS data modelling language [VLA95].

Ontologies can be regarded as a special form of descriptive models [AZW06]
and foundational ontologies can be used in a similar way like metamod-
els [Hen11]. To better deal with very large ontologies, strategies for ontology
modularization have been proposed [PS09]. An issue that has to be ad-
dressed in this context is overlapping knowledge [PS09, p. 12], for which in-
consistencies can be prevented using update propagation mechanisms [PS09,
p- 20]. In order to combine individual ontologies, languages for ontology
mapping can be used. Brockmans et al. [Bro+09] discuss extensional and
intensional interpretations of mappings and three different kinds of map-
ping relations: equivalence, containment, and overlap. An overlap mapping,
for example, “states that some objects described by the element in the one
ontology may also be described by the connected element in the other
ontology” [Bro+09, p. 270]. Furthermore, Brockmans et al. showed that
the reviewed ontology mapping languages have fundamentally different
semantics.

10.1.3. Synthetic and Projective Multi-View Approaches

The ISO 42010 standard distinguishes between two approaches for con-
structing views on software architectures [ISO11], but this distinction can
be applied to views of arbitrary kind: In a synthetic construction, views
are integrated and thus have to be kept consistent to each other in a peer-
to-peer manner. A problem with such approaches is that the number of
inter-view relations, which may have to be kept consistent, grows exponen-
tially with the number of used views. This can be avoided in a projective

383

10. Related Work

construction, in which views are projected from a central representation so
that they only have to be kept consistent with this central representation
in a hub-and-spoke manner. With such an approach it can, however, be
challenging to create such a central representation without redundancies
and to define editable projections. An example for a projective approach to
programming is the Meta Programming System (MPS)!. Both approaches
can also be combined in a hybrid manner to project some views from other
views that are kept consistent with each other.

Orthographic Software Modeling (OSM) [ASB10] is a projective approach
that strongly influenced the development of the ViTruvIUS framework,
which we extended with the languages presented in this thesis. It trans-
ferred the principle of orthographic projections to component-based soft-
ware development and introduced the concept of a Single Underlying Model
(SUM). Furthermore, it defined the role of a methodologist, which we also
use for the development of consistency specifications. Moreover, OSM sup-
ports extensible, dimension-based navigation between views and dynamic
view generation.

In order to categorize approaches for creating multiple views, Atkinson et al.
[ATM15] presented five dichotomies. First, they discuss whether views and
consistency rules are defined in a rigorous or in a relaxed way. Then, they
distinguish between synthetic and projective approaches. Next, Atkinson et
al. oppose explicit inter-view correspondences to implicit correspondences.
Furthermore, they distinguish extensional definitions of correspondences
on the instance level from intensional definitions of correspondences on
the type level. Finally, they oppose approaches that use a redundancy-free
model for projective views to so-called pragmatic approaches that use inter-
related models with partially redundant information for their projections.
Atkinson et al. illustrate how these dichotomies can be used to categorize
multi-view approaches by classifying the viewpoint modeling approach of
the Reference Model of Open Distributed Processing (RM-ODP) [ISO09].
They classify it as a rigorous, synthetic approach with intensionally defined
explicit correspondences between pragmatically inter-related models. The
VITRUVIUS approach, which we extended with the languages presented in
this thesis, can be categorized in almost the same way. The only difference
is that it is not purely synthetic but a hybrid approach as it also supports

1 Meta Programming System (MPS): jetbrains.com/mps

384

http://jetbrains.com/mps

10.1. Consistency between Models, Views, and after Updates

the definition of projective views [Bur14] and the integration of code and
models that were not created with it [Lan17].

10.1.4. Tolerating Inconsistency

In the last subsection of this section on fundamental problems and notions
of multi-view consistency, we briefly discuss related work that explored
whether, why, and to which extent inconsistencies can and should be toler-
ated. Balzer [Bal91], for example, suggests to mark inconsistent constraints
and to store the affected values for a later resolution of the inconsistency.
He described an approach for tolerating inconsistencies in data that is
processed while a software system is executed but the approach can—of
course—also be used in tools for software development. His idea of marking
inconsistencies can be useful to postpone or delegate resolution of incon-
sistency, especially in contexts of cooperative or concurrent modifications.
In the ViTrRUVIUS framework, such delayed consistency preservation can
be realized by adding tasks to a list via the interactive interface for user
change disambiguation (see subsection 6.5.6). Another approach for deal-
ing with inconsistencies was suggested by Finkelstein et al. [Fin+94]. To
address the problem that anything follows from contradictions (principle of
explosion), they suggest that developers should specify how the database
should respond to inconsistencies depending on the context. Therefore, they
present an “action-based meta-language based on linear-time temporal
logic” [Fin+94, p.574]. Nuseibeh et al. [NER01] state that inconsistency
does not always need to be addressed immediately because inconsistencies
can serve a purpose. Furthermore, they emphasize that inconsistencies on
itself are not always problematic but “undetected inconsistencies can be
dangerous” Nuseibeh et al. [NERO1, p.176]. They mention, for example,
that inconsistencies “may indicate deviations from a process model”, that
they “facilitate flexible collaborative working”, and that they “can be used to
identify areas of uncertainty” [NERO1, p.173]. Thus, they present a general
framework for managing inconsistency based on a loop with four steps, in
which inconsistencies are monitored, diagnosed, and handled. Moreover,
they suggest that the consequences of this inconsistency handling should
be monitored as well. Finally, Nohrer et al. [NBE12] also suggest to allow
inconsistencies but they also suggest to eliminate resulting reasoning errors

385

10. Related Work

by isolating assumptions that lead to the inconsistency, i.e. the unsatisfi-
ability. This approach yields slightly less complete reasoning and can be
applied to any satisfiability solving.

10.2. Challenges, Formalizations, and Consistency
Checking

So far, we have discussed the fundamental view-update problem in different
technological spaces. In the following sections, we restrict the discussion
to approaches of the modelling space. That is, the discussed approaches
directly support representations that can be considered equivalent to the
EMOF standard [ISO14] or indirectly support them via graph transforma-
tions.

10.2.1. Challenges to Consistency Preservation

Several authors reviewed approaches for model transformation in general
and discussed problems that arise in this context. These surveys, for exam-
ple by Czarnecki and Helsen [CHO03] and Biehl [Bie10], can also be used to
classify approaches for consistency preservation. According to Biehl, ap-
proaches for preserving consistency between models of different languages
can be classified as exogenous transformations that preserve semantics.
These transformations can be executed as batch transformations as well as
in source- and target-incremental ways.

Unfortunately, challenges that are particular to consistency preservation
for different modelling languages are so far only partially discussed in
surveys and other articles, even if they are restricted to incremental trans-
formations [Kus+13]. Tratt [Tra08], for example, discusses several decisions
that have to be taken when change propagating model transformations
are developed as well as some challenges in this context. Some of these
change propagation challenges also apply to consistency preservation. The
degree of automation and the question whether updates are only checked
or also propagated, for example, is also discussed in subsubsection 3.6.3.1.
Egyed et al. [Egy+11] discusses challenges of change propagation with a

386

10.2. Challenges, Formalizations, and Consistency Checking

special focus on how humans can be guided in semi-automated transfor-
mations. They propose partial transformations to address bidirectionality
problems and discuss, for example, the problem of propagating changes
until no further differences would be introduced, which is also mentioned
in section 3.9.

Ivkovic and Kontogiannis [IK04] describe requirements for model syn-
chronization transformations that are based on tracing information. They
discuss the need for unique identifiers and present a model synchronization
concept based on a graph formalism. Furthermore, they present a synchro-
nization algorithm that is based on tracing and translating source model
changes to target models. Moreover, they introduce a process for instantiat-
ing their methodology. They discuss, however, no realization of their ideas
and state that an implementation of their synchronization algorithm is an
“implementation problem” that “is out of the scope” [IK04, p. 9]. Similarly,
Sendall and Kiister [SK04] describe properties that are desirable for model
round-trip engineering but do not present in detail how such properties
can be achieved. For example, they require “the ability to precisely define
the meaning of consistency between model” and “assistance when multiple
solutions are possible” [SK04, pp. 9-10].

10.2.2. Formal Consistency Checking and Synchronization

Some of the literature that we mentioned in the previous section already
demonstrated that the problem of keeping information consistent is suited
for formal approaches. In this section, we briefly discuss some further
publications that use formal methods to describe consistency checking and
synchronization.

An algebraic approach that reduces the problem of checking consistency
between models of different languages (heterogeneous) to checking consis-
tency between models of the same language (homogeneous) was presented
by Diskin et al. [DXC10]. This approach is based on category theory and
therefore could be applied to all models that can be represented accordingly.
More specifically, Diskin et al. present a merge procedure to transform
heterogeneous models into homogeneous models. This merge is based on
explicit instance-level mappings, which have to be defined manually. After
this reduction, existing techniques for correspondence spans can be applied.

387

10. Related Work

These spans are similar to the mappings of the language that we have
presented in chapter 7. Furthermore, the approach can treat indirect model
overlap and can check constraints that are not part of an involved meta-
model. This is similar to invariants that can be defined with the language
that we have presented in chapter 8. According to Diskin et al., “the main
question is how effectively a multimodelling tool based on the framework
could be implemented” [DXC10, p. 51].

There are further formal descriptions of how consistency can be checked
and enforced based on category theory. Three families of algebras for
modeling synchronization were, for example, presented by Diskin [Dis08].
Furthermore, a diagrammatic “notation for specifying synchronization
procedures” was presented [Dis11]. It is based on tiles, which represent
matches between different models and updates between different model
versions. In two related publications, a symmetric and an asymmetric case
of delta-based model transformations are introduced. The symmetric case
is given if neither of the two models to be synchronized “fully determines
the other” [Dis+11, p. 304]. For this case, synchronization is described as a
transformation of a horizontal delta to a vertical delta. In this thesis, we refer
to the former as user change and to the latter as a consistency preservation
update. The asymmetric case is also described in terms of delta-based model
transformations [DXC11]. In this case, one model can be derived from the
other and update propagation exhibits functorial properties of category
theory. Moreover, delta lenses are presented to overcome problems of state-
based synchronization, for example, during the sequential composition of
transformations. In this line of work, Diskin et al. [DMC12] also describe
how maintenance of intermodel relationships can be specified using monads
and Kleisli categories. Finally, a threedimensional taxonomy based on
organizational symmetry, and informational symmetry, and incrementality
is presented [Dis+14]. The first dimension describes whether a model
dominates the other in case of an update or conflict, whereas the second
dimension describes whether the information in a model is a refinement,
abstraction, or subset of the information in the other model. For the last
dimension of incrementality, Diskin et al. emphasize that all approaches
can be implemented incrementally regardless of their organizational and
informational symmetry. How this incrementality is realized depends,
however, on these two other dimensions.

388

10.2. Challenges, Formalizations, and Consistency Checking

10.2.3. Determining Inconsistencies and their Causes

Various approaches for specifying and checking consistency constraints
have been presented in the literature. As this thesis focused not on checking
but on enforcing consistency, we do not present such approaches in detail.
We discuss, however, an approach that is particularly interesting because
it is independent of the language that is used to specify consistency con-
straints. This approach by Egyed [Egy11] profiles executions of consistency
checks to determine which model changes invalidate which constraint. It
was developed with a strong focus on performance. In section 8.2, we have
presented an automated derivation of queries from invariants to obtain
model elements that cause an invariant violation. These queries can be
used to restore consistency after an invariant violation. Thus, we will only
discuss approaches with a similar focus on constraint violation causes or on
constraint-based inconsistency repairs in the remainder of this section.

Sigma [KC12] is a hybrid approach for declarative transformation rules and
imperative validation and transformation code. It is provided as a model
transformation library for Scala and therefore it can also be regarded as
an “internal” domain-specific language, which reuses the concrete syntax
of Scala. Sigma groups constraints in validation contexts and provides
facilities to specify severity levels for invariant violations, as well as er-
ror messages and repair actions. In case of an invariant violation, Sigma
provides, however, no possibility to obtain elements that lead to the vio-
lation. Therefore, code that computes these elements has to be explicitly
defined in addition to the definition of the invariant check if a repair action
should be based on it [KCF14, p. 1613, 1l. 19-22]. To avoid some of the
resulting code duplication, parts of the checking of an invariant can be
factored out in order to be reused for retrieving model elements. We expect,
however, that for most invariants such a manual refactoring step is more
complex than specifying parameters for invariants as we have described it
in subsection 8.1.3.

The Epsilon Validation Language (EVL) [KPP09] of the Epsilon framework
is similar to the Object Constraint Language (OCL) but overcomes several
shortcomings of it. Similar to Sigma’s repair actions and our reactions
language, it supports the definition of fix procedures for invariants. These
fixes are, however, bound to a constraint. Therefore, it is not possible

389

10. Related Work

to write a fix that preserves consistency after different ways of violating
different constraints without duplicating code. Furthermore, parameters
that are defined in invariant checks cannot be reused directly in fixes, in
contrast to our approach. Instead, they have to be defined and computed
again in fixes [KPP09, p. 215, 1I. 47-63].

Both Sigma and EVL do not separate the definition of invariant checks from
fixes. This can be a problem if violations of invariants that are defined for a
metamodel regardless of its usage have to be fixed in different ways, for
example for different editors, transformations, or development projects.
Such cases are supported by our approach as there is no such dependency
between reactions and invariants.

Reder and Egyed presented an approach that computes a so-called valida-
tion tree whenever a consistency constraint is violated. Such a validation
tree represents the computations that are performed when a constraint is
evaluated in a particular context. This interpretative approach is used in
three ways. First, validation trees are used to incrementally reevaluate only
those constraints after a change for which a result change is possible in
order to speed up consistency checking [RE12b]. This incremental consis-
tency checking approach is based on a previously published approach that
monitors constraint evaluation to obtain a bounded scope for the constraints
that have to be reevaluated after a change [Egy06]. Second, possible incon-
sistency repairs are computed by traversing validation trees in a process
that also eliminates wrong and non-minimal repairs to reduce the number
of repair alternatives [RE12a]. This approach for suggesting changes that
lead to satisfied constraints is based on previous work in which shared fixes
and a reduced number of fixes are computed [Egy07]. Last, another way
of traversing a validation tree is used to determine the causes of inconsis-
tencies [RE13]. This approach for determining model elements that are
responsible for a constraint violation is similar to our approach of query
derivation for invariants, which we have presented in section 8.2. The main
difference is, however, the way in which it is decided whether an element
causes a violation. Reder and Egyed [RE13] compare the current evaluation
of constraint expressions with the expected result. If an unexpected result
is obtained for a subexpression, then the model elements that cause this
unexpected result are identified based on the operator of the subexpression.
The queries that are generated by our compiler of the invariant language,
however, rely on explicit parameters. On the one hand, these parameters

390

10.2. Challenges, Formalizations, and Consistency Checking

are an additional input that has to be provided. On the other hand, different
parameters can be chosen for invariants with several iterator expressions
if a consistency preservation action needs particular elements and not all
elements that could be causing the inconsitency.

10.2.4. Finding Consistent Models using Checks

Consistency checks cannot only be used for finding inconsistencies but
also for indirectly deriving consistent models. This is especially beneficial
for round-trip engineering when partial and non-injective transformations
do not provide enough information to specify backward consistency in
an unambiguous way [HLROS, p. 44]. Therefore, several approaches use
constraints that are indirectly provided in forward transformations or addi-
tional constraints in order to invert the transformation by finding consistent
source models. In case of ambiguities, such approaches usually present
developers various consistent models to choose from.

Hettel et al. [HLR09] presented an approach for inverting model transfor-
mations that are written in Tefkat by abduction [Het10]. It can be used to
compute those source changes that can be interpreted as the best explana-
tion for a target model change according to the forward transformation.
Starting from the observed change, the approach inspects only those parts
of a transformation and of the models that need to be changed in order
to yield the observed change after executing the forward transformation.
The approach also takes into account that an execution of the forward
transformation on the proposed source changes can imply further changes
in addition to the observed target change.

The Janus Transformation Language (JTL) can be used to find all source
models for changed target models according to non-bijective transforma-
tions [Cic+11]. It provides a QVT-R like syntax for specifying transfor-
mations, which are automatically translated into search problems via an
ATL transformation. The search problems are expressed using a special
form of logical programming, called Answer Set Programming (ASP). JTL
also supports transformations that are not total by approximating source
models if a target model was changed in such a way that no source model
could lead to the target model if the forward transformation was applied

391

10. Related Work

on it. The language also supports change propagations but no incremental
execution of transformation rules.

Another approach finds consistent models for transformations that are
written using QVT-R [MC13; MGC13]. It starts from an old model to find a
new consistent model by applying deltas of increasing size until a model that
fulfills all constraints is found. The approach uses the model finder of Alloy,
which is based on a SAT-solver, and the search for consistent models can
be restricted using a upper bound for the deltas. Which consistent models
should be found can be controlled in two ways: Either by minimizing an
edit distance that counts additions and deletions of nodes and edges, or
by calculating a specific distance from user-provided edit-operations. The
approach was also extended in order to support Alloy-based verification of
UML models by validating OCL constraints with Alloy [CGR15].

10.3. Automated Consistency Preservation

Some of the approaches discussed so far can also be used to preserve
consistency, but most of them rather focus on fundamental consistency
problems or on checking consistency than on preserving consistency in an
automated way. In the following, we will now discuss approaches with a
strong emphasis on automated consistency preservation.

10.3.1. Focused on Tool Integration

Many approaches for automated consistency preservation do not provide
dedicated concepts and languages for consistency specifications but focus
on integrating and improving existing tools. Xiong et al. [Xio+07], for
example, presented an approach or propagating changes in a model that is
the target of an ATL transformation back to a source model by extending
the virtual machine that is used to execute ATL transformations. Another
approach for bidirectionalizing the ATL language uses a graph query lan-
guage [Sas+11]. Both approaches do, however, not improve or extend the
ATL language in order to better support bidirectional specifications. Ex-
isting modelling tools can be coupled with the ModelBus approach using
a communication bus [HRW09]. For every tool, a specific adapter has to

392

10.3. Automated Consistency Preservation

developed in order to connect it to the bus, which can also be used for
change notifications and for merging model versions. Similar notification
and merging features are also provided, for example, by Eclipse projects,
such as Sphinx [Ebe12] or Connected Data Objects (CDO) and its Dawn sub-
component for collaborative modeling. These tools are, however, focused
on different versions of the same model and not on models of different
modelling languages and their semantic overlap.

10.3.2. Based on Triple-Graph Grammars

Many approaches for consistency preservation are based on Triple-Graph
Grammars (TGGs), which were introduced by Schiirr [Sch95]. A rule of
a TGG is a triple that combines a left graph and a right graph with an
intermediary correspondence graph using graph morphisms (see also sub-
subsection 9.2.5.1). Therefore, TGG rules are similar to the mappings for
which we presented a language in this thesis. They have, however, a very
different focus. On the one hand, TGG-based approaches often focus on
formal properties and guarantees that cannot be shown for our mappings
language. On the other hand, TGGs were initially designed for batch trans-
formations and only a restricted set of attribute relations, e.g. equivalence
relations, can be expressed with most TGG-based approaches. Furthermore,
TGG-based transformation specifications cannot always be extended with
unidirectional code. An overview on TGG-based tools was provided by
Hildebrandt et al. [Hil+13] and complemented with another survey that
focuses on incrementality [Leb+14].

The original concept of TGGs has been extended in many different way
to support, for example, deletions of elements, move operations, negative
application conditions [Kla+10; Kla12] or different incremental synchroniza-
tion algorithms [GW06; Lau+12]. Further extensions introduced restricted
TGGs for optimized view-update propagation [Anj+14b] and added support
for transforming a flexible number of model elements [Leb+15, pp.92ff] (see
also subsection 3.4.3).

Various tools have been developed to realize TGGs in different ways. MoTE,
for example, was optimized for performance and applied in an industrial
case study to synchronize SysML and AUTOSAR models in a fully bidi-
rectional way [GHN10]. It supports two modes: a transformation mode,

393

10. Related Work

which applies rules as long as matches are located, and a synchronization
mode, which transforms only nodes that were flagged by a change listener.
Furthermore, an in-depth comparison of the formal semantics of TGGs with
the semantics implemented in the tool was provided [GHL14]. Another
TGG-based tool is eMoflon [Anj+11], which also provides a textual syntax
for TGG rules. It provides many advanced features such as rule refine-
ment [Anj14] and supports attribute manipulations for which a forward
operation, a backward operation, and a check operation have to be pro-
vided [AVS12]. Recently, a library of bidirectional realizations of attribute
operators was added to support basic arithmetic operators, string concate-
nation, and number comparisons. The mappings language that we have
presented in this thesis supports additional operators (see section 7.3 and
7.4.6) that were published previously [KR16a; KR16b]. Other extensions
and tools for TGGs are able to synchronize concurrent model changes and
support semi-automatic conflict resolution [Her+12] which was used, for
example, to realize safety-critical source code translations [Her+14]. For
other applications it was, however, reported that not all requirements could
be realized appropriately with TGGs [PKL15].

10.3.3. Focused on Bidirectionality

After the dedicated section for approaches based on Triple-Graph Gram-
mars, we will now discuss further approaches with a strong focus on bidi-
rectionality. Several overviews on this area were published with different
foci. Stevens [Ste08], for example, reviewed motivations for bidirectionality
and different notions of it. Czarnecki et al. [Cza+09] described different
communities and disciplines interested in bidirectional transformations.
Hidaka et al. [Hid+15] discussed design choices and resulting features of
bidirectional transformation languages and tools. Altogether, this field of
research is very diverse and no dominating solution has emerged so far.

The QVT-R language is probably the most renown language with support
for bidirectional model transformations even if the bidirectional semantics
are in some points unclear and problematic [Ste10]. Therefore, we briefly
compare the mappings language, which we have presented in chapter 7, to
it. In contrast to QVT-R, the mappings language clearly separates the ques-
tion whether conditions have to be checked or enforced from the execution

394

10.3. Automated Consistency Preservation

direction. More specifically, QVT-R provides when- and where-conditions
with direction-dependent semantics. The mappings language, however,
differentiates between single-sided conditions that are checked in one direc-
tion and enforced in the other direction and bidirectionalizable conditions
that are always enforced (see subsection 7.2.2). Therefore, it is not necessary
that developers specify which conditions should only be checked and which
conditions should also be enforced. Furthermore, the mappings language
does not distinguish between top-level and helper mappings. Moreover,
it does not support explicit keys for element identification but relies on a
mechanism for temporarily unique identifiers (see subsubsection 5.5.1.1).
Finally, it combines direction-specific and direction-agnostic code in a sin-
gle specification, for example using dedicated containment operators (see
subsubsection 7.3.2.2).

In general, bidirectionalization can be performed in three different ways
[FMV12]: Syntactic bidirectionalization approaches analyze transformations
in order to synthesize PuT definitions from restricted GET definitions. Mat-
suda et al. [Mat+07], for example, presented an approach for inverting
lambda-based programs that operate on tree structures. Their approach au-
tomatically derives and minimizes complements and inverts them together
with a view function. In contrast, semantic bidirectionalization approaches
are based on the observable transformation behavior and create a single, pa-
rameterized PuT definition that invokes GET as a black box operation [V0i09;
Voi+10]. Last, bidirectional transformation lenses do not need to derive
Put definitions from GET definitions as they give developers the possibility
to directly specify both transformations together [Fos+05]. In addition,
bidirectionalization can also be avoided by realizing two ordinary unidi-
rectional transformations for which appropriate round-trip properties are
shown. Poskitt et al. [Pos+14], for example, described how bidirectionality
can be faked by verifying that a pair of unidirectional transformations
cannot be distinguished from a bidirectional transformation. To this end,
they translate transformations that were specified using the Epsilon Wiz-
ard Language (EWL) and constraints that were written with the Epsilon
Verification Language (EVL) to graph rewrite rules that can be verified.

The concept of combining a forward and a backward function in a single
bidirectional specification called lense, for which strong round-trip laws are
demanded, was initially introduced in this particular way by Foster et al.
[Fos+05; Fos+07]. They provided several generic lense combinators that

395

10. Related Work

can be used to combine lenses on arbitrary data and specific combinators
for tree-structured data. This original framework was used and extended in
many ways in the literature. Foster et al. [FPP08], for example, presented
so-called quotient lenses which relaxed some of the requirements to demand
fulfillment of round-trip laws “only modulo insignificant details”. Barbosa
et al. [Bar+10a] introduced matching lenses that realign sources to reflect
target changes in ordered structures [Bar+10b]. Incremental lenses with
change-based Put functions were introduced by Wang et al. [WGW11].
They guarantee round-trip laws for change-based lenses if the correspond-
ing state-based lense version guarantees them. Furthermore, least-change
lenses that can be sequentially composed in a deterministic or in a nonde-
terministic way and that are based on relational algebra were introduced
by Macedo et al. [Mac+13]. The conceptual framework of lenses was also
realized in many transformation approaches and languages. Schmidt et al.
[Sch+13], for example, use lenses to realize refactorings during language
development. In their approach, a refactoring that is performed on an Xtext
grammar leads to appropriate changes in the corresponding Ecore meta-
model and the Xtend-based code generator that encapsulates the execution
semantics of the developed language. Wider [Wid14] presented Focal, an
internal DSL for Scala using state-based tree lenses [Wid15].

10.3.4. Based on Model Differences

Consistency can either be preserved based on model differences that are
computed for an old and a new version or based on descriptions of model
deltas, which directly express which elements and values were changed or
even which edit operations were used for it. Model differences have the
advantage that they can always be computed without the need to modify
existing model editors or tools. The disadvantage of such approaches is,
however, that such differences do not always provide enough information
on how corresponding model elements should be changed. That is, even if
different edit operations lead to the same difference between the original
and the changed model, a user may want to accomplish different effects on
further models by invoking particular edit operations [LK14]. Therefore, the
question of differences or deltas is fundamental and most of the approaches
discussed so far are indirectly or directly influenced by it. In this section,

396

10.3. Automated Consistency Preservation

we discuss some approaches to consistency preservation that are especially
influenced by their decision to use model differences.

Cicchetti et al. [CCL11], for example, presented a hybrid approach for
incrementally synchronizing a central metamodel using higher-order trans-
formations, which are based on model differences. In this approach, views
can be user-defined and they always display a subset of the central model.
Difference computation and change propagation profit from this subset
relationship. Furthermore, differences are calculated by matching elements
based on identifiers that are marked as unique by the user. .

The CoWolf approach also determines changes from differences be-
tween two model states, but this difference computation can be influ-
enced [Get+15]. Manual difference computation rules can be written and
the SiLift approach can be used to semantically lift syntactic differences to
edit operations [KKT11]. The obtained changes are then used to preserve
consistency based on rules for the TGG-based henshin tool.

Tunjic and Atkinson [TA15] presented an approach for computing differ-
ences between two versions of a view or betwen two versions of a central
model in a projective multi-view approach. They use unidirectional trans-
formations that relate elements of the central model to elements of views
and propagate changes using these relations. Both, the difference compu-
tation and the change propagation mechanism were applied to the OSM
approach, which we briefly introduced in subsection 10.1.3.

10.3.5. Based on Model Deltas or Edit Operations

Approaches for automated consistency preservation can monitor edit op-
erations or compute differences in order to determine where and how
consistency has to be preserved. Wimmer et al. [WMV12], for example,
presented an approach for detecting coarse grained changes based on graph
transformation patterns. They propagate changes to dependent viewpoints
using coupled transformations that exploit explicit correspondence links.

The pattern-based transformation language Viatra uses EMF-IncQuery and
a complex event processing framework to preserve consistency [Ber+15]. It
is based on an event-driven virtual machine and supports real-time change
propagation for which it relies on temporal logic and automation theory. If

397

10. Related Work

constraints are violated an internal DSL can be used, for example, to execute
queries on the Viatra Query Engine. EMF-IncQuery [Ber+12; Ujh+15] exe-
cutes declarative model queries by performing incremental graph pattern
matching based on Rete networks. It provides a live validation service,
which can report constraints validations directly after the modification that
lead to it. Furthermore, annotations can be used to turn an ordinary graph
pattern into constraints and to define severity levels or error messages for
it. Parameters of a constraint pattern can be designated as keys to identify
a violation which is a pattern match. These constraint keys are equivalent
to the invariant parameters of the approach that we have presented in
section 8.2. This way, EMF-IncQuery also provides elements that lead to a
violation based on explicit constraint parameters and does not force devel-
opers to repeat parts of the constraint checking logic in order to obtain these
elements. The main difference to our approach is, however, the relation to
OCL: If elements that cause an invariant violation shall be computed for
pre-existing OCL invariants, these invariants have to be reformulated for
EMF-IncQuery, whereas our approach supports an automated translation
of OCL constraints. There is, however, a translation from OCL queries to
graph patterns that can be queried using EMF-IncQuery [Ber14]. With this
approach, it would be possible to modify the patterns that result from an
OCL invariant in order to obtain wanted elements that violate the invariant.
The goal of the translation was, however, better performance. Therefore, a
conceptual mapping from the resulting patterns to the initial OCL invariant
may not always be straightforward.

Other approaches for event-driven or reactive programming can be found
in a survey by Bainomugisha et al. [Bai+13]. Hinkel [Hin16] presented
a transformation language that supports implicit incrementalization of
lambda expression in the .NET framework based on category theory. It of-
fers various synchronization and propagation modes, supports implicit and
explicit bidirectionalization, and is realized as an internal DSL [Hin15].

10.3.6. Domain-Specific Consistency Preservation

Some approaches for automated consistency preservation were presented
with a focus on consistency for a particular domain. In this section, we

398

10.3. Automated Consistency Preservation

will briefly discuss such approaches even if they may also be mentioned in
another category or could also be used in a generic way.

Romero et al. [RJV09], for example, presented an approach for preserving
consistency for UML models of enterprise architecture frameworks with
bidirectional transformations. With this approach, correspondences are
defined between the viewpoint languages, i.e. in a peer-to-peer manner.

Malavolta et al. [Mal+10] presented the DUALLy approach that preserves
consistency between Architectural Description Languages (ADLs). It uses
the bidirectional Janus Transformation Language, which is based on ASP
as we have explained above [Era+12]. DUALLy uses Higher-Order Trans-
formations (HOTs) and can be classified as a projective approach because
all ADLs are kept consistent with a central model. If multiple notations
are used, kernel extensions can be applied to avoid losing information that
cannot be represented with the central ADL [Di +12].

399

PartV.

Epilogue

11. Conclusions and Future Work

To conclude this thesis, we summarize its content and contributions, briefly
recapitulate limitations, and provide an overview on possible directions for
future work.

11.1. Summary

In this thesis, we have presented research that investigated how software
developers can be supported in creating a particular kind of software en-
gineering tools. These tools preserve consistency between models that
represent a system under development using different languages. First,
we identified and classified challenges that can occur if such tools have
to preserve consistency after model changes during system design and
development. As there is no universal notion of consistency, we introduced
an approach for preserving consistency according to explicit consistency
specifications. Such specifications prescribe for two modelling languages
under which conditions their instances are to be considered consistent. We
formalized this specification-driven notion of consistency in a way that is
independent of how consistency enforcement is realized. On top of this
formal language, we built three languages for the development of tools
that preserve consistency by following this specification-driven approach.
With these languages we addressed Open Consistency Specification Language
Challenges (OCSLCs) that we have identified before (see section 3.5). The
first language gives developers the possibility to precisely define how mod-
els have to be updated in reaction to specific changes in order to preserve
consistency in a certain direction. In order to relieve developers from writ-
ing repetitive code, this imperative reactions language provides declarative
constructs for common consistency preservation tasks, such as resolving
or creating corresponding elements. Then, we presented a language that

403

11. Conclusions and Future Work

can be used if changes never need to be considered and if preservation
directions are not always relevant. With this bidirectional mappings lan-
guage, developers only have to declare which conditions have to be fulfilled
when elements of different models should be considered consistent to each
other. They do not have to bother about details of checking and enforcing
consistency in one direction or the other. This is possible because enforce-
ment code is automatically derived from checks and because conditions
that are specified for one direction are automatically bidirectionalized us-
ing composable, operator-specific inverters. The third and last language
that we presented can be used to complete both previous languages when
consistency requirements can be specified in terms of invariants. This
normative invariants language is closely aligned with the Object Constraint
Language (OCL) and relieves developers from searching for elements that
violate an invariant as it automatically derives queries that perform this
task. These three presented languages give developers many possibilities
to specify consistency problems instead of providing precise instructions
on how they are to be solved. Finally, we presented how we evaluated
theoretical and practical properties of the presented languages. For every
language, we discussed its theoretical completeness and correctness as well
as its practical applicability and potential benefits based on case studies.
We discussed, for example, case studies in which consistency preservation
tools that were developed using the reactions language had between 33%
and 71% less source lines of code than functionally equivalent tools that
were written in Java or the Java dialect Xtend.

In the first contribution chapter, we have presented a collection and classifi-
cation of consistency preservation challenges (chapter 3). We have classified
them according to the level of abstraction at which they occur so that they
range from conceptual to implementation challenges. For challenges that
occur on several levels, we have discussed which parts should be addressed
on which level. Many enforcement challenges, for example, should be
addressed by tools so that developers can choose from generic options
to enforce consistency for particular modelling languages. Furthermore,
we have presented challenges that are not yet sufficiently addressed by
consistency specification languages. These open challenges are the reason
why we have developed the languages presented in thesis. We have also
presented challenges to bidirectional consistency preservation. Finally, we
have briefly mentioned challenges that will occur when the restriction to

404

11.1. Summary

preserve consistency only for isolated modelling language pairs is dropped
in future work.

In chapter 4, we have presented realization-independent concepts of spe-
cification-driven consistency preservation based on set theory. First, we
have introduced consistency rules and correspondences for witnessing con-
sistency. Then, we have defined model updates for preserving consistency
and the results of such updates. To express when such updates have to be
performed, we have defined consistency-breaking changes. Based on this,
we have introduced functions that yield consistency-preserving updates and
discussed circumstances in which consistency can be preserved inductively
and for all rules if it is preserved for a single change and a single rule.

Before we presented the individual languages for developing consistency
preservation tools, we have briefly discussed what they have in common
in terms of a language framework (chapter 5). We have explained our ap-
proach of preserving consistency in reaction to changes and according to
specifications and we have discussed why we developed new languages and
not libraries for existing languages. Furthermore, we have explained how
the languages complete each other, for example, by supporting problem-
and solution-oriented programming paradigms (Open Consistency Specifi-
cation Language Challenge 2 (OCSLC 2). We have also presented a change
modelling language and an OCL-aligned extension of a reused expressions
language. Finally, we explained how we have realized all languages in terms
of appropriate compilers and editors.

In chapter 6, we have presented a language for change-driven consistency
preservation reactions. First, we have explained how reactions can be
structured along three main steps in which reactions are triggered, cor-
responding elements are retrieved, and actions are performed. Then we
have discussed how the reactions language can be used according to these
steps to structure consistency preservation code and to avoid unwanted
side-effects. For all constructs of the reactions language, we have discussed
how they allow developers to abstract away from details that can be treated
in generated code (OCSLC 3). In addition, we have explained why the
reactions language provides a fallback to arbitrary update code in order to
combine specific support with full expressive power (OCSLC 1). Moreover,
we have discussed how the compiler of the reactions language separates
code that can be directly traced to a reactions specification from repetitive

405

11. Conclusions and Future Work

and generic code in order to clarify the enforcement behavior (OCSLC 4).
Finally, we explained the language semantics using the formal language of
chapter 4.

To further support developers in cases, in which change types do not need
to be differentiated, and the direction of preservation is not always impor-
tant, we have presented a language for abstract consistency mappings in
chapter 7. We have explained how we ensured that this language can also
be applied when preservation direction details cannot always be abstracted
away. This is achieved by providing a fallback to direction-specific enforce-
ment code (OCSLC 1 and 3). Furthermore, we have explained the difference
between consistency conditions that relate to models of one language or
to models of both languages. We have introduced special operators for
both kinds of conditions to automatically generate enforcement code. For
conditions that relate to a single side, enforcement code is automatically
derived from checks. Conditions that relate both sides only need to be
specified in one direction because enforcement code for the opposite direc-
tion is automatically derived using composable, operator-specific inverters.
Moreover, we have presented different possibilities of mapping dependen-
cies and multi-parameter mappings. Additionally, we have explained why
we generate code that calls generic platform code via mapping-specific
wrappers in order to clarify the enforcement behavior (OCSLC 4). Finally,
we have discussed the language semantics by explaining how different
reactions can be created to preserve consistency for mappings if these fulfill
certain restrictions or not.

In chapter 8, we have presented the invariants language, which comple-
ments the reactions and mappings language with constraint-based pro-
gramming. With it invariants can be defined in almost the same way as
with OCL and queries for model elements that violate an invariant can
be automatically derived based on explicit invariant parameters. We have
discussed why invariant-violating model elements are often needed and
explained why constraint code should not be manually duplicated in queries
for such elements. To avoid such code duplications, we have presented an
automated derivation of queries. This query derivation can be configured
with invariant parameters that match iterator variables of the invariant con-
straint. We have explained this automated derivation by presenting rules
that are used to transform a tree representation of the constraint expression.
The result of such a transformation is a query that returns those elements

406

11.2. Current Limitations

that were accessed for an iterator variable and that are responsible for an
invariant violation.

In chapter 9, we have discussed how we have evaluated theoretical and
practical properties of the presented languages. First, we have discussed
theoretical completeness with respect to the intended range of use. We have
shown, for example, Turing-completeness for the reactions language and
sketched a reduction from Triple-Graph Grammar (TGG) rules to mappings
to demonstrate the expressive power of the mappings language. Moreover,
we have discussed theoretical correctness, for example for the automated
bidirectionalization of enforcement code. To this end, we have introduced a
new notion of best-possible behaved round-trips based, which guarantees
that the GETPuUT law is always fulfilled and that the PuTGeT law is fulfilled
whenever this is possible. Finally, we have discussed potential benefits, for
example, for consistency preservation tools that were realized with the reac-
tions language or with a General-Purpose Programming Language (GPPL).
Those tools that were developed using the reactions language had between
33% and 71% less source lines of code than their GPPL counterparts.

In the last chaper before these conclusions, we have reviewed related work
in the context of consistency preservation for models of different languages
(chapter 10). We have discussed work in the a more general context of
updating models or views, for example in databases. Furthermore, we
have described approaches for formalizing or checking consistency. Fi-
nally, we have discussed automated approaches to consistency preserva-
tion, especially work that is based on TGGs or that realizes bidirectional
transformations in a different way.

11.2. Current Limitations

The major limitation of the languages presented in this thesis is that they
are only designed and evaluated for preserving consistency between models
that conform to two different modelling languages. We realized reactions
and mappings in such a way that updates are only performed on models
of one modelling language in reaction to changes in models of another
modelling language. Updates on the change source side cannot be per-
formed (see page 174). Furthermore, updates on the execution target side

407

11. Conclusions and Future Work

are not monitored so that updates can only be performed in reaction to user
changes but not in reaction to update actions of reactions. Nevertheless,
we expect that many of the presented concepts and language features can
be adapted for cases where consistency has to be preserved between mod-
els of the same modelling language or between models of more than two
languages. Intra-language consistency could be approached, for example,
based on a consistency specification that uses the same language as change
source and execution target. Inter-language consistency specifications for
more than two languages could be realized, for example, by combining
several consistency specifications for suitable language pairs. Before such
new uses of the languages can be evaluated, it is, however, necessary to
solve fundamental problems, for example, to avoid reaction cycles or to
manage conflicting updates.

The operator-specific inverters that we use to bidirectionalize mapping
conditions have three limitations as described in subsection 7.4.7: They
can only invert operations in which every source attribute appears at most
once, they update only a single source attribute, and they only operate on
single attribute values. The first limitation is common and the second and
third limitation can be overcome with inverters that update, for example,
several attributes in the same way and with inverters that update collections
element-wise.

11.3. Future Work

The consistency preservation languages presented in this thesis point out
various possibilities for future research. On the one hand, several specific
aspects of the languages can be further explored and improved. On the
other hand, future work can explore how the limitation to isolated pairs of
modelling languages can be dropped.

11.3.1. Short-Term Specification Language Improvements
In short-term future work, the reactions language could be extended by

triggers for compound changes as well as by constructs for reuse and user
change disambiguation (see section 6.8). The current prototype decomposes

408

11.3. Future Work

compound change representations and only supports triggers for atomic
change representations. In the future, both atomic and compound change
representations should be suitable change types of reactions triggers. Then,
compound change representations should only be decomposed if reactions
would be triggered for the change parts but not for the composed change
representation. Furthermore, the presented rules for avoiding unwanted
side-effects in different reaction expressions should be completely enforced
by the compiler. Code in initialization or update actions, for example,
should be restricted so that only the specified model element but no other
related elements are updated. Additionally, new language constructs could
be provided to foster the reuse of reactions and reaction routines within
a single or across several consistency specifications. Access modifiers, for
example, could be added to reaction routines or these could be explicitly
refined or parameterized. Finally, user change disambiguation could be
improved by integrating dialog and options definitions.

The mappings language could be extended in the short term with further
operators, inverters, and instantiation delegations and the compiler could
be improved based on the presented realization strategy for pure mappings
(see section 7.8). For single-sided and bidirectionalizable conditions, new
operators could be added and existing operators could be improved, for
example, to also derive enforcements for negated equality conditions for
references. Furthermore, inverters of a new type could be provided to also
support cases in which more than one source attribute should be updated
for a change of a single attribute on the other side. To reduce the number of
cases were fallback enforcements are necessary, a mechanism for defining
and reusing developer-defined operators for single-sided conditions and
bidirectionalizable conditions could be developed. Moreover, a mechanism
for delegating instantiations of mapped abstract metaclasses to concrete
metaclasses could be added. Finally, the proposed realization strategy for
impure mappings should be completely realized in the compiler so that
developers have to consider fewer unnecessary reevaluations of mapping
conditions when they debug the code that is generated for a mapping.

Short-term future work in the context of the invariants language should
add query derivation support for local variables, nested parameters, and
further operators. Currently, local variables can be defined and used in
invariants to refer to results of reused expression parts. The query derivation
algorithm has, however, to be extended if invariant-violating elements

409

11. Conclusions and Future Work

should not only be bound to iterator variables but also to local variables.
This could be very useful as let expressions and definition constraints for
inline and ordinary local variables are a commonly-used feature of OCL.
Furthermore, the derivation algorithm should be extended to also support
nested parameters by transforming non-nested and nested expressions
separately and combining them afterwards. Moreover, further operators,
such as common collection size comparisons, could be supported during
query derivation.

11.3.2. Long-Term Support Beyond Pairwise Consistency

In the long-term, future work should explore ways to also support cases in
which consistency cannot be preserved successfully if reactions and map-
pings can only be specified pairwise for two modelling languages without
considering other languages (see section 3.9). As we already mentioned
above, consistency can only be preserved between models of three or more
modelling languages at once if several fundamental problems are solved.
First, it has to be ensured that updates that are performed when reactions
or mappings are executed are monitored and processed analogue to user
changes. That is, consistency should be enforced the same way if a model
element was directly changed by a user or indirectly changed in reaction to
a change in a model of another language. A problem in this context is, for
example, that user change disambiguation requests cannot be answered by
an automated update and therefore would have to be forwarded to the user
that performed the change that lead to the indirect reaction. This would,
however, mean that users cannot focus on the modelling language they
are using and only have to consider appropriate parts of directly related
languages as they may have to take all languages that are used into account.
Second, reaction cycles and oscillations have to be avoided which cannot
be done by simply ensuring that consistency preservation stops as soon as
a sequence of updates would not yield any model differences. Instead, it
should be explored whether appropriate detection mechanism that were
developed in other contexts can be transferred. Last, reactions that may
directly or indirectly lead to conflicting updates along different paths have
to be managed, for example, based on precedence rules. Problems that are
similar to the three presented ones are likely to be already addressed in
other contexts. Therefore, an important direction for future research is to

410

11.3. Future Work

perform different practical case studies with several modelling languages.
With such case studies it should be investigated which of these theoretically
possible problems occur in realistic settings and whether well-known solu-
tion strategies can also be used for preserving consistency between models
of different languages in a change-driven way. In this sense, such future
work could pursue the same goal as this thesis by supporting developers in
specifying consistency preservation also for cases where more than two
modelling languages have to be considered at once.

411

Bibliography

[Anj+11]

[Anj+14a]

[Anj+14b]

[Anj14]

[ASB10]

[ATM15]

[AVS12]

A. Anjorin et al. “eMoflon: Leveraging EMF and Professional
CASE Tools”. In: 3. Workshop Methodische Entwicklung von
Modellierungswerkzeugen (MEMWe2011). Lecture Notes in In-
formatics. 2011.

A. Anjorin et al. “BenchmarX”. In: Proceedings of the Work-
shops of the EDBT/ICDT 2014 joint Conference. Vol. 1133. CEUR
Workshop Proceedings. CEUR, 2014, pp. 82-86.

A. Anjorin et al. “Efficient Model Synchronization with View
Triple Graph Grammars”. In: Modelling Foundations and Ap-
plications. Vol. 8569. LNCS. Springer International Publishing,
2014, pp. 1-17.

A. Anjorin. “Synchronization of Models on Different Abstrac-
tion Levels using Triple Graph Grammars”. PhD thesis. Tech-
nische Universitit Darmstadt, 2014.

C. Atkinson, D. Stoll, and P. Bostan. “Orthographic Software
Modeling: A Practical Approach to View-Based Development”.
In: Evaluation of Novel Approaches to Software Engineering.
Vol. 69. Communications in Computer and Information Sci-
ence. Springer, 2010, pp. 206-2109.

C. Atkinson, C. Tunjic, and T. Moller. “Fundamental Realiza-
tion Strategies for Multi-view Specification Environments”. In:
Enterprise Distributed Object Computing Conference (EDOC),
2015 IEEE 19th International. 2015, pp. 40—49.

A. Anjorin, G. Varrd, and A. Schiirr. “Complex Attribute Ma-
nipulation in TGGs with Constraint-Based Programming Tech-
niques”. In: Proceedings of the First International Workshop on
Bidirectional Transformations (BX 2012). Vol. 49. Electronic
Communications of the EASST. 2012.

413

http://dx.doi.org/10.1007/978-3-319-09195-2_1
http://dx.doi.org/10.1007/978-3-319-09195-2_1
http://books.google.com/books?vid=ISBN978-3-642-14819-4
http://books.google.com/books?vid=ISBN978-3-642-14819-4

Bibliography

[AZWO06]

[Bai+13]

[Balo1]

[Bar+10a]

[Bar+10b]

[Ber+11]

[Ber+12]

[Ber+15]

[Ber14]

[BHS07]

[Bie10]

414

U. ABmann, S. Zschaler, and G. Wagner. “Ontologies, Meta-
models, and the Model-Driven Paradigm”. In: Ontologies for
Software Engineering and Software Technology. Springer Berlin
Heidelberg, 2006, pp. 249-273.

E. Bainomugisha et al. “A Survey on Reactive Programming”.
In: ACM Comput. Surv. 45.4 (2013), 52:1-52:34.

R. Balzer. “Tolerating Inconsistency”. In: Proceedings of the
13th International Conference on Software Engineering. IEEE,
1991, pp. 158-165.

D. M. Barbosa et al. “Matching Lenses: Alignment and View
Update”. In: Proceedings of the 15th ACM SIGPLAN International
Conference on Functional Programming. ICFP ’10. ACM, 2010,
pp. 193-204.

D. M. Barbosa et al. Matching Lenses: Alignment and View
Update. Tech. rep. University of Pennsylvania, Department of
Computer and Information Science, 2010.

G.Bergmann et al. “A Graph Query Language for EMF Models”.
In: Theory and Practice of Model Transformations: 4th Interna-
tional Conference, ICMT 2011, Zurich, Switzerland, June 27-28,
2011. Proceedings. Springer Berlin Heidelberg, 2011, pp. 167-
182.

G. Bergmann et al. “Change-driven model transformations”.
In: Software & Systems Modeling 11.3 (2012), pp. 431-461.

G. Bergmann et al. “Viatra 3: A Reactive Model Transforma-
tion Platform”. In: Theory and Practice of Model Transforma-
tions. Vol. 9152. LNCS. Springer International Publishing, 2015,
pp. 101-110.

G. Bergmann. “Translating OCL to graph patterns”. In: Model-
Driven Engineering Languages and Systems. Springer, 2014,
pp. 670-686.

Verification of Object-Oriented Software: The KeY Approach.
LNCS 4334. Springer-Verlag, 2007.

M. Biehl. Literature Study on Model Transformations. Tech. rep.
ISRN/KTH/MMK/R-10/07-SE. Royal Institute of Technology,
2010.

http://dx.doi.org/10.1007/3-540-34518-3_9
http://dx.doi.org/10.1007/3-540-34518-3_9
http://dx.doi.org/10.1145/2501654.2501666
http://dx.doi.org/10.1007/s10270-011-0197-9
http://dx.doi.org/10.1007/978-3-319-21155-8_8
http://dx.doi.org/10.1007/978-3-319-21155-8_8
http://books.google.com/books?vid=ISSN1400-1179

Bibliography

[BLNS6]

[BRO8]

[Bro+09]

[BS81]

[Buf88]

[Bur+14]

[Buri14]

[CCL11]

[CGR15]

[CHO3]

[Che+14]

C. Batini, M. Lenzerini, and S. B. Navathe. “A Comparative
Analysis of Methodologies for Database Schema Integration”.
In: ACM Comput. Surv. 18.4 (1986), pp. 323-364.

R. Béhme and R. Reussner. “Validation of Predictions with
Measurements”. In: Dependability Metrics. Vol. 4909. LNCS.
Springer-Verlag Berlin Heidelberg, 2008. Chap. 3, pp. 14-18.

S.Brockmans et al. “Formal and Conceptual Comparison of On-
tology Mapping Languages”. In: Modular Ontologies. Vol. 5445.
LNCS. Springer Berlin Heidelberg, 2009, pp. 267-291.

F. Bancilhon and N. Spyratos. “Update semantics of relational
views”. In: ACM Trans. Database Syst. 6.4 (1981), pp. 557-575.

H. W. Buff. “Why Codd’s Rule No. 6 Must be Reformulated”.
In: SIGMOD Record 17.4 (1988), pp. 79-380.

E. Burger et al. “View-Based Model-Driven Software Develop-
ment with ModelJoin”. In: Software & Systems Modeling 15.2
(2014), pp. 472-496.

E. Burger. “Flexible Views for View-based Model-driven De-
velopment”. PhD thesis. Karlsruhe Institute of Technology,
2014.

A. Cicchetti, F. Ciccozzi, and T. Leveque. “A hybrid approach
for multi-view modeling”. In: Electronic Communications of
the EASST 50 (2011).

A. Cunha, A. Garis, and D. Riesco. “Translating between Alloy
specifications and UML class diagrams annotated with OCL”.
In: Software & Systems Modeling 14.1 (2015), pp. 5-25.

K. Czarnecki and S. Helsen. “Classification of Model Transfor-
mation Approaches”. In: OOPSLA 2003 Workshop on Generative
Techniques in the context of Model Driven Architecture. Last re-
trieved 2008-01-06. 2003.

J. Cheney et al. “Towards a Repository of Bx Examples”. In:
Proceedings of the Workshops of the EDBT/ICDT 2014 Joint Con-
ference. Vol. 1133. CEUR Workshop Proceedings. CEUR, 2014,
pp- 87-91.

415

http://dx.doi.org/10.1145/27633.27634
http://dx.doi.org/10.1145/27633.27634
http://www.springerlink.com/content/662rn13014r46269/fulltext.pdf
http://www.springerlink.com/content/662rn13014r46269/fulltext.pdf
http://dx.doi.org/10.1007/978-3-642-01907-4_13
http://dx.doi.org/10.1007/978-3-642-01907-4_13
http://dx.doi.org/10.1145/319628.319634
http://dx.doi.org/10.1145/319628.319634
http://dx.doi.org/10.1007/s10270-014-0413-5
http://dx.doi.org/10.1007/s10270-014-0413-5
http://dx.doi.org/10.1007/s10270-013-0353-5
http://dx.doi.org/10.1007/s10270-013-0353-5

Bibliography

[Che+15]

[Cic+11]

[CK03]

[Cod90]

[Cza+09]

[DHO5]

[Di +12]

[Dis+11]

[Dis+14]

[Dis08]

416

J. Cheney et al. “Towards a Principle of Least Surprise for Bidi-
rectional Transformations”. In: 4th International Workshop on
Bidirectional Transformations. CEUR Workshop Proceedings,
2015, pp. 66-380.

A. Cicchetti et al. “JTL: A Bidirectional and Change Propagat-
ing Transformation Language”. In: Software Language Engi-
neering — Third International Conference, SLE 2010, Eindhoven,
The Netherlands, October 12-13, 2010, Revised Selected Papers.
Vol. 6563. LNCS. Springer, 2011, pp. 183-202.

V. M. Cengarle and A. Knapp. “OCL 1.4/5 vs. 2.0 Expressions
Formal semantics and expressiveness”. In: Software and Sys-
tems Modeling 3.1 (2003), pp. 9-30.

E. F. Codd. The relational model for database management:
version 2. Addison-Wesley Longman Publishing Co., Inc., 1990.

K. Czarnecki et al. “Bidirectional Transformations: A Cross-
Discipline Perspective”. In: Theory and Practice of Model Trans-
formations. Vol. 5563. LNCS. Springer Berlin Heidelberg, 2009,
pp. 260—283.

A.Doan and A. Y. Halevy. “Semantic-integration Research in
the Database Community”. In: AI Mag. 26.1 (2005), pp. 83-94.

D. Di Ruscio et al. “Model-Driven Techniques to Enhance
Architectural Languages Interoperability”. In: Fundamental
Approaches to Software Engineering. Vol. 7212. LNCS. Springer
Berlin / Heidelberg, 2012, pp. 26—42.

Z.Diskin et al. “From State- to Delta-Based Bidirectional Model
Transformations: The Symmetric Case”. In: Model Driven En-
gineering Languages and Systems. Vol. 6981. LNCS. Springer
Berlin Heidelberg, 2011, pp. 304-318.

Z.Diskin et al. “Towards a Rational Taxonomy for Increasingly
Symmetric Model Synchronization”. In: Theory and Practice of
Model Transformations. Vol. 8568. LNCS. Springer International
Publishing, 2014, pp. 57-73.

Z. Diskin. “Algebraic Models for Bidirectional Model Synchro-
nization”. In: Model Driven Engineering Languages and Systems.
Vol. 5301. LNCS. Springer Berlin / Heidelberg, 2008, pp. 21-36.

http://dx.doi.org/10.1007/s10270-003-0035-9
http://dx.doi.org/10.1007/s10270-003-0035-9
http://books.google.com/books?vid=ISBN0-201-14192-2
http://books.google.com/books?vid=ISBN0-201-14192-2
http://dx.doi.org/10.1007/978-3-642-02408-5_19
http://dx.doi.org/10.1007/978-3-642-02408-5_19
http://dl.acm.org/citation.cfm?id=1090488.1090497
http://dl.acm.org/citation.cfm?id=1090488.1090497
http://books.google.com/books?vid=ISBN978-3-642-28871-5
http://books.google.com/books?vid=ISBN978-3-642-28871-5
http://dx.doi.org/10.1007/978-3-642-24485-8_22
http://dx.doi.org/10.1007/978-3-642-24485-8_22
http://dx.doi.org/10.1007/978-3-319-08789-4_5
http://dx.doi.org/10.1007/978-3-319-08789-4_5
http://books.google.com/books?vid=ISBN978-3-540-87874-2
http://books.google.com/books?vid=ISBN978-3-540-87874-2

Bibliography

[Dis11]

(DJo3]

[DMC12]

[DXC10]

[DXC11]

[Ebe12]

(Eff+12]

[Egy+11]

[Egy06]

[Egy07]

Z. Diskin. “Model Synchronization: Mappings, Tiles, and Cat-
egories”. In: Generative and Transformational Techniques in
Software Engineering III. Vol. 6491. LNCS. Springer Berlin /
Heidelberg, 2011, pp. 92-165.

M. Dagpinar and J. H. Jahnke. “Predicting maintainability with
object-oriented metrics -an empirical comparison”. In: Reverse
Engineering, 2003. WCRE 2003. Proceedings. 10th Working Con-
ference on. 2003, pp. 155-164.

Z. Diskin, T. Maibaum, and K. Czarnecki. “Intermodeling,
Queries, and Kleisli Categories”. In: Fundamental Approaches
to Software Engineering. Vol. 7212. LNCS. Springer Berlin Hei-
delberg, 2012, pp. 163-177.

Z. Diskin, Y. Xiong, and K. Czarnecki. “Specifying overlaps of
heterogeneous models for global consistency checking”. In:
Proceedings of the First International Workshop on Model-Driven
Interoperability. MDI *10. ACM, 2010, pp. 42-51.

Z. Diskin, Y. Xiong, and K. Czarnecki. “From State- to Delta-
Based Bidirectional Model Transformations: the Asymmetric
Case”. In: Journal of Object Technology 10 (2011), 6:1-25.

S. Eberle. “Using Sphinx to create multi-language multi-view
DSL tool environments”. talk. 2012.

S. Efftinge et al. “Xbase: Implementing Domain-specific Lan-
guages for Java”. In: Proceedings of the 11th International Con-
ference on Generative Programming and Component Engineer-
ing. GPCE "12. ACM, 2012, pp. 112-121.

Fine-Tuning Model Transformation: Change Propagation in
Context of Consistency, Completeness, and Human Guidance.
Springer Berlin Heidelberg, 2011, pp. 1-14.

A. Egyed. “Instant Consistency Checking for the UML”. In:
Proceedings of the 28th International Conference on Software
Engineering. ICSE *06. ACM, 2006, pp. 381-390.

A. Egyed. “Fixing Inconsistencies in UML Design Models”. In:
Software Engineering, 29th International Conference on. 2007,
pp- 292-301.

417

http://books.google.com/books?vid=ISBN978-3-642-18022-4
http://books.google.com/books?vid=ISBN978-3-642-18022-4
http://dx.doi.org/10.1007/978-3-642-28872-2_12
http://dx.doi.org/10.1007/978-3-642-28872-2_12
http://dx.doi.org/10.5381/jot.2011.10.1.a6
http://dx.doi.org/10.5381/jot.2011.10.1.a6
http://dx.doi.org/10.5381/jot.2011.10.1.a6
http://dx.doi.org/10.1007/978-3-642-21732-6_1
http://dx.doi.org/10.1007/978-3-642-21732-6_1

Bibliography

[Egy11]

[Era+12]

[EV06]

[Fin+94]

[Fis15]

[FKL16]

[FMV12]

[Fos+05]

[Fos+07]

[Fos10]

418

A. Egyed. “Automatically Detecting and Tracking Inconsis-
tencies in Software Design Models”. In: Software Engineering,
IEEE Transactions on 37.2 (2011), pp. 188-204.

R. Eramo et al. “A model-driven approach to automate the
propagation of changes among Architecture Description Lan-
guages”. In: Software and Systems Modeling 11 (1 2012), pp. 29—
53.

S. Efftinge and M. Volter. “0AW xText: A framework for textual
DSLs”. In: Eclipsecon Summit Europe 2006. 2006.

A. Finkelstein et al. “Inconsistency Handling in Multiperspec-
tive Specifications”. In: IEEE Transactions on Software Engi-
neering 20.8 (1994), pp. 569-578.

S. Fiss. “Embedding and Transforming Invariants for a Domain-
Specific Language for Multi-Model Consistency”. Bachelor’s
Thesis. Karlsruhe Institute of Technology (KIT), 2015.

S. Fiss, M. E. Kramer, and M. Langhammer. “Automatically
Binding Variables of Invariants to Violating Elements in
an OCL-Aligned XBase-Language”. In: Proceedings of Mod-
ellierung 2016. Vol. P-254. Lecture Notes in Informatics (LNI).
GI eV, 2016, pp. 189-204.

J. N. Foster, K. Matsuda, and J. Voigtlander. “Three Complemen-
tary Approaches to Bidirectional Programming”. In: Generic
and Indexed Programming. Vol. 7470. LNCS. Springer Berlin
Heidelberg, 2012, pp. 1-46.

J. N. Foster et al. “Combinators for bi-directional tree transfor-
mations: a linguistic approach to the view update problem”.
In: SIGPLAN Not. 40.1 (2005), pp. 233-246.

J. N. Foster et al. “Combinators for Bidirectional Tree Transfor-
mations: A Linguistic Approach to the View-update Problem”.
In: ACM Transactions on Programming Languages and Systems
(TOPLAS) 29.3 (2007).

J. N. Foster. “Bidirectional Programming Languages”. PhD
thesis. University of Pennsylvania, Department of Computer
and Information Science, 2010.

http://dx.doi.org/10.1109/TSE.2010.38
http://dx.doi.org/10.1109/TSE.2010.38
http://books.google.com/books?vid=ISSN1619-1366
http://books.google.com/books?vid=ISSN1619-1366
http://books.google.com/books?vid=ISSN1619-1366
http://dx.doi.org/10.1109/32.310667
http://dx.doi.org/10.1109/32.310667
http://dx.doi.org/10.1007/978-3-642-32202-0_1
http://dx.doi.org/10.1007/978-3-642-32202-0_1
http://dx.doi.org/10.1145/1047659.1040325
http://dx.doi.org/10.1145/1047659.1040325
http://dx.doi.org/10.1145/1232420.1232424
http://dx.doi.org/10.1145/1232420.1232424

Bibliography

[FPPO8]

[Get+15]

[GFS05]

[GHL14]

[GHN10]

[GK91]

[GKM11]

[GPR11]

J. N. Foster, A. Pilkiewicz, and B. C. Pierce. “Quotient Lenses”.
In: Proceedings of the 13th ACM SIGPLAN International Confer-
ence on Functional Programming. ICFP *08. ACM, 2008, pp. 383—
396.

S. Getir et al. “Theory and Practice of Model Transforma-
tions: 8th International Conference, ICMT 2015, Held as Part
of STAF 2015, L’Aquila, Italy, July 20-21, 2015. Proceedings”.
In: Springer International Publishing, 2015. Chap. CoWolf - A
Generic Framework for Multi-view Co-evolution and Evalua-
tion of Models, pp. 34-40.

T. Gyimothy, R. Ferenc, and I. Siket. “Empirical validation
of object-oriented metrics on open source software for fault
prediction”. In: IEEE Transactions on Software Engineering 31.10
(2005), pp. 897-910.

H. Giese, S. Hildebrandt, and L. Lambers. “Bridging the gap
between formal semantics and implementation of triple graph
grammars”. In: Software & Systems Modeling 13.1 (2014),
pp. 273-299.

H. Giese, S. Hildebrandt, and S. Neumann. “Model Synchroniza-
tion at Work: Keeping SysML and AUTOSAR Models Consis-
tent”. In: Graph Transformations and Model-Driven Engineering.
Vol. 5765. LNCS. Springer Berlin / Heidelberg, 2010, pp. 555—
579.

G. K. Gill and C. F. Kemerer. “Cyclomatic complexity density
and software maintenance productivity”. In: IEEE Transactions
on Software Engineering 17.12 (1991), pp. 1284-1288.

R. Grenmo, S. Krogdahl, and B. Mgller-Pedersen. “A collection
operator for graph transformation”. In: Software and Systems
Modeling 12.1 (2011), pp. 121-144.

J. Greenyer, S. Pook, and J. Rieke. “Preventing Information Loss
in Incremental Model Synchronization by Reusing Elements”.
In: Modelling Foundations and Applications — 7th European
Conference, ECMFA 2011, Birmingham, UK, June 6 - 9, 2011,
Proceedings. Vol. 6698. LNCS. Springer, 2011, pp. 144-159.

419

http://dx.doi.org/10.1109/TSE.2005.112
http://dx.doi.org/10.1109/TSE.2005.112
http://dx.doi.org/10.1109/TSE.2005.112
http://dx.doi.org/10.1007/s10270-012-0247-y
http://dx.doi.org/10.1007/s10270-012-0247-y
http://dx.doi.org/10.1007/s10270-012-0247-y
http://dx.doi.org/10.1007/978-3-642-17322-6_24
http://dx.doi.org/10.1007/978-3-642-17322-6_24
http://dx.doi.org/10.1007/978-3-642-17322-6_24
http://dx.doi.org/10.1109/32.106988
http://dx.doi.org/10.1109/32.106988
http://dx.doi.org/10.1007/s10270-011-0190-3
http://dx.doi.org/10.1007/s10270-011-0190-3

Bibliography

[GW06]

[Hei+10]

[Hen11]

[Her+12]

[Her+14]

[Het10]

[HGO1]

[Hid+15]

[Hil+13]

420

H. Giese and R. Wagner. “Incremental Model Synchronization
with Triple Graph Grammars”. In: Model Driven Engineering
Languages and Systems. Vol. 4199. LNCS. Springer Berlin /
Heidelberg, 2006, pp. 543-557.

F. Heidenreich et al. “Closing the Gap between Modelling
and Java”. In: Software Language Engineering. Vol. 5969. LNCS.
Springer Berlin Heidelberg, 2010, pp. 374-383.

B. Henderson-Sellers. “Bridging metamodels and ontologies
in software engineering”. In: Journal of Systems and Software
84.2 (2011), pp. 301-313.

F. Hermann et al. “Concurrent Model Synchronization with
Conflict Resolution Based on Triple Graph Grammars”. In:
Fundamental Approaches to Software Engineering. Vol. 7212.
LNCS. Springer Berlin / Heidelberg, 2012, pp. 178-193.

F. Hermann et al. “Triple Graph Grammars in the Large for
Translating Satellite Procedures”. In: Theory and Practice of
Model Transformations: 7th International Conference, ICMT
2014, Held as Part of STAF 2014, York, UK, july 21-22, 2014.
Proceedings. Springer International Publishing, 2014, pp. 122-
137.

T. Hettel. “Model round-trip engineering”. PhD thesis. Queens-
land University of Technology, 2010.

F. Hakimpour and A. Geppert. “Resolving Semantic Hetero-
geneity in Schema Integration”. In: Proceedings of the Interna-
tional Conference on Formal Ontology in Information Systems -
Volume 2001. FOIS °01. ACM, 2001, pp. 297-308.

S. Hidaka et al. “Feature-based classification of bidirectional
transformation approaches”. In: Software & Systems Modeling
(2015), pp. 1-22.

S. Hildebrandt et al. “A survey of triple graph grammar tools”.
In: Electronic Communications of the EASST 57 (2013).

http://books.google.com/books?vid=ISBN978-3-540-45772-5
http://books.google.com/books?vid=ISBN978-3-540-45772-5
http://dx.doi.org/10.1007/978-3-642-12107-4_25
http://dx.doi.org/10.1007/978-3-642-12107-4_25
http://dx.doi.org/http://dx.doi.org/10.1016/j.jss.2010.10.025
http://dx.doi.org/http://dx.doi.org/10.1016/j.jss.2010.10.025
http://books.google.com/books?vid=ISBN978-3-642-28871-5
http://books.google.com/books?vid=ISBN978-3-642-28871-5
http://dx.doi.org/10.1007/s10270-014-0450-0
http://dx.doi.org/10.1007/s10270-014-0450-0

Bibliography

[Hin15]

[Hin16]

[HLRO08]

[HLR09]

[HRW09]

[IK04]

[Int96]

[1SO09]

[1SO11]

G. Hinkel. “Change Propagation in an Internal Model Trans-
formation Language”. In: Theory and Practice of Model Trans-
formations: 8th International Conference, ICMT 2015, Held as
Part of STAF 2015, L’Aquila, Italy, July 20-21, 2015. Proceedings.
Springer International Publishing, 2015, pp. 3-17.

G. Hinkel. NMF: A Modeling Framework for the .NET Platform.
Tech. rep. Karlsruhe Institute of Technology, 2016.

T. Hettel, M. Lawley, and K. Raymond. “Model Synchronisa-
tion: Definitions for Round-Trip Engineering”. In: Theory and
Practice of Model Transformations. Vol. 5063. LNCS. Springer
Berlin / Heidelberg, 2008, pp. 31-45.

T. Hettel, M. Lawley, and K. Raymond. “Towards Model Round-
Trip Engineering: An Abductive Approach”. In: Theory and
Practice of Model Transformations. Vol. 5563. LNCS. Springer
Berlin Heidelberg, 2009, pp. 100-115.

C. Hein, T. Ritter, and M. Wagner. “Model-Driven Tool Inte-
gration with ModelBus”. In: Workshop Future Trends of Model-
Driven Development. 2009.

L. Ivkovic and K. Kontogiannis. “Tracing evolution changes of
software artifacts through model synchronization”. In: Soft-
ware Maintenance, 2004. Proceedings. 20th IEEE International
Conference on. 2004, pp. 252-261.

International Organization for Standardization. ISO/IEC
14977:1996 Information Technology - Syntactic Metalanguage -
Extended BNF. 1996.

ISO/IEC 10746-3:2009. Information technology — Open dis-
tributed processing — Reference model: Architecture. Interna-
tional Organization for Standardization, Geneva, Switzerland,
2009, pp. 1-54.

ISO/IEC/IEEE 42010:2011(E). Systems and software engineer-
ing — Architecture description. International Organization for
Standardization, Geneva, Switzerland, 2011, pp. 1-46.

421

http://nbn-resolving.org/urn:nbn:de:swb:90-537082
http://dx.doi.org/10.1007/978-3-540-69927-9_3
http://dx.doi.org/10.1007/978-3-540-69927-9_3
http://dx.doi.org/10.1007/978-3-642-02408-5_8
http://dx.doi.org/10.1007/978-3-642-02408-5_8
http://dx.doi.org/10.1109/IEEESTD.2011.6129467
http://dx.doi.org/10.1109/IEEESTD.2011.6129467
http://dx.doi.org/10.1109/IEEESTD.2011.6129467
http://dx.doi.org/10.1109/IEEESTD.2011.6129467

Bibliography

[1SO12a]

[1SO12b]

[ISO12c]

[1SO14]

[JR16]

[KBA02]

[KBL13]

[KC12]

[KCF14]

422

ISO/IEC 19505-1:2012(E). Information technology — Object Man-
agement Group Unified Modeling Language (OMG UML), In-
frastructure. International Organization for Standardization,
Geneva, Switzerland, 2012, pp. 1-234.

ISO/IEC 19505-2:2012(E). Information technology — Object Man-
agement Group Unified Modeling Language (OMG UML), Su-
perstructure. International Organization for Standardization,
Geneva, Switzerland, 2012, pp. 1-758.

ISO/IEC 19507:2012(E). Information technology — Object Man-
agement Group Object Constraint Language (OCL). Interna-
tional Organization for Standardization, Geneva, Switzerland,
2012, pp. 1-234.

ISO/IEC 19508:2014(E). Information technology — Object Man-
agement Group Meta Object Facility (MOF) Core. International
Organization for Standardization, Geneva, Switzerland, 2014.

M. Johnson and R. Rosebrugh. “Unifying Set-Based, Delta-
Based and Edit-Based Lenses”. In: Proceedings of the 5th Inter-
national Workshop on Bidirectional Transformations (Bx 2016).
Vol. 1571. CEUR Workshop Proceedings. CEUR-WS.org, 2016,
pp- 1-13.

L Kurtev, J. Bézivin, and M. Aksit. “Technological Spaces:
An Initial Appraisal”. In: International Conference on Coop-

erative Information Systems (CooplS). University of Twente,
2002, pp. 1-6.

M. E. Kramer, E. Burger, and M. Langhammer. “View-Centric
Engineering with Synchronized Heterogeneous Models”. In:
Proceedings of the 1st Workshop on View-Based, Aspect-Oriented
and Orthographic Software Modelling. VAO "13. ACM, 2013, 5:1-
5:6.

F. Ktikava and P. Collet. “On the Use of an Internal DSL for
Enriching EMF Models”. In: Proceedings of the 12th Workshop
on OCL and Textual Modelling. OCL *12. ACM, 2012, pp. 25-30.
F. Ktikava, P. Collet, and R. B. France. “Manipulating Models
Using Internal Domain-specific Languages”. In: Proceedings of
the 29th Annual ACM Symposium on Applied Computing. SAC
’14. ACM, 2014, pp. 1612-1614.

Bibliography

[KKT11]

[Kla+10]

[Kla12]

[Kla16]

[Kle08]

[Koz94]

[KPP09]

[KR164a]

[KR16b]

T. Kehrer, U. Kelter, and G. Taentzer. “A Rule-based Approach
to the Semantic Lifting of Model Differences in the Context of
Model Versioning”. In: Proceedings of the 2011 26th IEEE/ACM
International Conference on Automated Software Engineering.
ASE ’11. IEEE Computer Society, 2011, pp. 163-172.

F. Klar et al. “Extended Triple Graph Grammars with Efficient
and Compatible Graph Translators”. In: Graph Transforma-
tions and Model-Driven Engineering. Vol. 5765. LNCS. Springer
Berlin Heidelberg, 2010, pp. 141-174.

F. Klar. “Efficient and Compatible Bidirectional Formal Lan-
guage Translators based on Extended Triple Graph Grammars”.
PhD thesis. TU Darmstadt, 2012.

H. Klare. “Designing a Change-Driven Language for Model
Consistency Repair Routines”. Master’s Thesis. Karlsruhe In-
stitute of Technology (KIT), 2016.

A. Kleppe. Software Language Engineering: Creating Domain-
Specific Languages Using Metamodels. 1st ed. Addison-Wesley
Professional, 2008.

D. Kozen. “A Completeness Theorem for Kleene Algebras and
the Algebra of Regular Events”. In: Information and Computa-
tion 110.2 (1994), pp. 366—390.

D. S. Kolovos, R. F. Paige, and F. A. Polack. “On the Evolution
of OCL for Capturing Structural Constraints in Modelling
Languages”. In: Rigorous Methods for Software Construction
and Analysis. Vol. 5115. LNCS. Springer Berlin Heidelberg,
2009, pp. 204-218.

M. E. Kramer and K. Rakhman. “Automated Inversion of At-
tribute Mappings in Bidirectional Model Transformations”.
In: Proceedings of the 5th International Workshop on Bidirec-
tional Transformations (Bx 2016). Vol. 1571. CEUR Workshop
Proceedings. CEUR-WS.org, 2016, pp. 61-76.

M. E. Kramer and K. Rakhman. Proofs for the Automated Inver-
sion of Attribute Mappings in Bidirectional Model Transforma-
tions. Tech. rep. Karlsruhe Institute of Technology, Department
of Informatics, 2016.

423

http://dx.doi.org/10.1007/978-3-642-17322-6_8
http://dx.doi.org/10.1007/978-3-642-17322-6_8
http://books.google.com/books?vid=ISBN0321553454, 9780321553454
http://books.google.com/books?vid=ISBN0321553454, 9780321553454
http://dx.doi.org/http://dx.doi.org/10.1006/inco.1994.1037
http://dx.doi.org/http://dx.doi.org/10.1006/inco.1994.1037
http://dx.doi.org/10.1007/978-3-642-11447-2_13
http://dx.doi.org/10.1007/978-3-642-11447-2_13
http://dx.doi.org/10.1007/978-3-642-11447-2_13
http://dx.doi.org/10.5445/IR/1000052702
http://dx.doi.org/10.5445/IR/1000052702
http://dx.doi.org/10.5445/IR/1000052702

Bibliography

[Kra+15]

[Kra+16]

[Kra15]

[Kus+13]

[Lan17]

[Lau+12]

[LBR99]

424

M. E. Kramer et al. “Change-Driven Consistency for Compo-
nent Code, Architectural Models, and Contracts”. In: Proceed-
ings of the 18th International ACM SIGSOFT Symposium on
Component-Based Software Engineering. CBSE *15. ACM, 2015,
pp- 21-26.

M. E. Kramer et al. “A Controlled Experiment Template for
Evaluating the Understandability of Model Transformation
Languages”. In: Proceedings of the Second International Work-
shop on Human Factors in Modeling co-located with ACM/IEEE
19th International Conference on Model Driven Engineering
Languages and Systems (MODELS 2016). (Saint Malo, France).
Vol. 1805. CEUR Workshop Proceedings. CEUR-WS.org, 2016,
pp. 11-18.

M. E. Kramer. “A Generative Approach to Change-Driven Con-
sistency in Multi-View Modeling”. In: Proceedings of the 11th
International ACM SIGSOFT Conference on Quality of Software
Architectures. QoSA ’15. 20th International Doctoral Sympo-
sium on Components and Architecture (WCOP ’15). ACM,
2015, pp. 129-134.

A.Kusel et al. “A Survey on Incremental Model Transformation
Approaches”. In: ME 2013 — Models and Evolution Workshop
Proceedings. 2013, pp. 4-13.

M. Langhammer. “Automated Coevolution of Source Code and
Software Architecture Models”. PhD thesis. Karlsruhe Institute
of Technology (KIT), 2017. 259 pp.

M. Lauder et al. “Efficient Model Synchronization with Prece-
dence Triple Graph Grammars”. In: Graph Transformations.
Vol. 7562. LNCS. Springer Berlin Heidelberg, 2012, pp. 401-
415.

G. T. Leavens, A. L. Baker, and C. Ruby. “JML: A Notation for
Detailed Design”. In: Behavioral Specifications of Businesses
and Systems. Vol. 523. The Springer International Series in En-
gineering and Computer Science. Springer US, 1999, pp. 175—
188.

http://dx.doi.org/10.1007/978-3-642-33654-6_27
http://dx.doi.org/10.1007/978-3-642-33654-6_27
http://dx.doi.org/10.1007/978-1-4615-5229-1_12
http://dx.doi.org/10.1007/978-1-4615-5229-1_12

Bibliography

[Leb+14]

[Leb+15]

[Lin+07]

[Lin+14]

[LK14]

[Mac+13]

[Mal+10]

[Mat+07]

[MC13]

E. Leblebici et al. “A Comparison of Incremental Triple Graph
Grammar Tools”. In: Electronic Communications of the EASST
67 (2014).

E. Leblebici et al. “Multi-amalgamated Triple Graph Gram-
mars”. In: Graph Transformation. Vol. 9151. LNCS. Springer
International Publishing, 2015, pp. 87-103.

J. Lindgvist et al. “A Query Language with the Star Operator”.
In: Proceedings of the 6th International Workshop on Graph
Transformation and Visual Modeling Techniques 2007 (GT-VMT
2007). Vol. 6. Electronic Communications of the EASST. 2007,
pp- 69-80.

T. Lindholm et al. The Java Virtual Machine Specification, Java
SE 8 Edition. 1st ed. Addison-Wesley Professional, 2014.

M. Langhammer and M. E. Kramer. “Determining the Intent
of Code Changes to Sustain Attached Model Information Dur-
ing Code Evolution”. In: Fachgruppenbericht des 2. Workshops
“Modellbasierte und Modellgetriebene Softwaremodernisierung”.
Vol. 34 (2). Softwaretechnik-Trends. GI e.V., 2014.

N. Macedo et al. “Composing least-change lenses”. In: Proc. BX
2 (2013), p. 18.

I. Malavolta et al. “Providing Architectural Languages and
Tools Interoperability through Model Transformation Tech-
nologies”. In: IEEE Transactions of Software Engineering 36.1
(2010), pp. 119-140.

K. Matsuda et al. “Bidirectionalization Transformation Based
on Automatic Derivation of View Complement Functions”. In:
Proceedings of the 12th ACM SIGPLAN International Conference
on Functional Programming. ICFP *07. ACM, 2007, pp. 47-58.

N. Macedo and A. Cunha. “Implementing QVT-R Bidirectional
Model Transformations Using Alloy”. In: Fundamental Ap-
proaches to Software Engineering. Vol. 7793. LNCS. Springer
Berlin Heidelberg, 2013, pp. 297-311.

425

http://dx.doi.org/10.1007/978-3-319-21145-9_6
http://dx.doi.org/10.1007/978-3-319-21145-9_6
http://books.google.com/books?vid=ISBN9780133905908
http://books.google.com/books?vid=ISBN9780133905908
http://pi.informatik.uni-siegen.de/stt/34_2
http://pi.informatik.uni-siegen.de/stt/34_2
http://pi.informatik.uni-siegen.de/stt/34_2
http://books.google.com/books?vid=ISSN0098-5589
http://books.google.com/books?vid=ISSN0098-5589
http://books.google.com/books?vid=ISSN0098-5589
http://dx.doi.org/10.1007/978-3-642-37057-1_22
http://dx.doi.org/10.1007/978-3-642-37057-1_22

Bibliography

[MC99]

[Mee98]

[MGC13]

[MJC17]

[NBE12]

[NER01]

[Obj06]
[Obj14]

[Obj15]

[OMG14]

[PD99]

426

L. Mandel and M. V. Cengarle. “FM’99 — Formal Methods:
World Congress on Formal Methods in the Development of
Computing Systems Toulouse, France, September 20-24, 1999
Proceedings, Volume I”. In: Springer Berlin Heidelberg, 1999.
Chap. On the Expressive Power of OCL, pp. 854-874.

L. Meertens. “Designing Constraint Maintainers for User In-
teraction”. 1998.

N. Macedo, T. Guimaraes, and A. Cunha. “Model Repair and
Transformation with Echo”. In: Automated Software Engineer-
ing (ASE), 2013 IEEE/ACM 28th International Conference on.
2013, pp. 694—697.

N. Macedo, T. Jorge, and A. Cunha. “A Feature-based Classifi-
cation of Model Repair Approaches”. In: IEEE Transactions on
Software Engineering PP.99 (2017), p. 1.

A. Nohrer, A. Biere, and A. Egyed. “A Comparison of Strate-
gies for Tolerating Inconsistencies During Decision-making”.
In: Proceedings of the 16th International Software Product Line
Conference - Volume 1. SPLC ’12. ACM, 2012, pp. 11-20.

B. Nuseibeh, S. M. Easterbrook, and A. Russo. “Making incon-
sistency respectable in software development”. In: Journal of
Systems and Software 58.2 (2001), pp. 171-180.

Object Management Group (OMG). Meta Object Facility (MOF)
Core Specification — Version 2.0. 2006.

Object Management Group (OMG). Object Constraint Language
— Version 2.4. 2014.

Object Management Group (OMG). OMG Sys-
tems Modeling Language (OMG SysML) Version 1.4.
http://www.omg.org/spec/SysML/1.4/. 2015.

O. M. G. (OMG). Model Driven Architecture (MDA) Guide 2.0.
2014.

N. W. Paton and O. Diaz. “Active Database Systems”. In: ACM
Comput. Surv. 31.1 (1999), pp. 63-103.

http://dx.doi.org/10.1109/TSE.2016.2620145
http://dx.doi.org/10.1109/TSE.2016.2620145
http://dx.doi.org/10.1016/S0164-1212(01)00036-X
http://dx.doi.org/10.1016/S0164-1212(01)00036-X
http://www.omg.org/spec/MOF/2.0/PDF/
http://www.omg.org/spec/MOF/2.0/PDF/
http://www.omg.org/spec/OCL/2.4/
http://www.omg.org/spec/OCL/2.4/
http://www.omg.org/cgi-bin/doc?ormsc/14-06-01
http://dx.doi.org/10.1145/311531.311623

Bibliography

[PKL15]

[Pos+14]

[PQY5]

[PS09]

[Rak15]

[RE12a]

[RE12b]

[RE13]

[Red+94]

S. Peldszus, G. Kulcsar, and M. Lochau. “A Solution to the
Java Refactoring Case Study using eMoflon”. In: Proceedings
of the 8th Transformation Tool Contest, a part of the Software
Technologies: Applications and Foundations (STAF) federation
of conferences. Vol. 1524. CEUR Workshop Proceedings. 2015,
pp- 118-122.

C. M. Poskitt et al. “Towards Rigorously Faking Bidirectional
Model Transformations”. In: 3rd Workshop on the Analysis of
Model Transformations (AMT 2014). Vol. 1277. CEUR Workshop
Proceedings. 2014, pp. 70-75.

T.J. Parr and R. W. Quong. “ANTLR: A predicated-LL(k) parser
generator”. In: Software: Practice and Experience 25.7 (1995),
pp. 789-810.

C. Parent and S. Spaccapietra. “An Overview of Modularity”.
In: Modular Ontologies. Vol. 5445. LNCS. Springer Berlin Hei-
delberg, 2009, pp. 5-23.

K. Rakhman. “Automated Inversion of Attribute Mapping Ex-
pressions for Multi-Model Consistency”. MA thesis. Karlsruhe
Institute of Technology (KIT), 2015.

A. Reder and A. Egyed. “Computing repair trees for resolving
inconsistencies in design models”. In: Automated Software En-
gineering (ASE), Proceedings of the 27th IEEE/ACM International
Conference on. 2012, pp. 220-229.

A. Reder and A. Egyed. “Incremental consistency checking for
complex design rules and larger model changes”. In: Model
Driven Engineering Languages and Systems. Springer, 2012,
pp. 202-213.

A. Reder and A. Egyed. “Determining the Cause of a Design
Model Inconsistency”. In: IEEE Transactions on Software Engi-
neering 39.11 (2013), pp. 1531-1548.

M. Reddy et al. “A methodology for integration of heteroge-
neous databases”. In: IEEE Transactions on Knowledge and Data
Engineering 6.6 (1994), pp. 920-933.

427

http://dx.doi.org/10.1002/spe.4380250705
http://dx.doi.org/10.1002/spe.4380250705
http://dx.doi.org/10.1007/978-3-642-01907-4_2
http://dx.doi.org/10.1109/TSE.2013.30
http://dx.doi.org/10.1109/TSE.2013.30
http://dx.doi.org/10.1109/69.334882
http://dx.doi.org/10.1109/69.334882

Bibliography

[Ren15]

[Reu+11]

[Rhi07]

[RHK16]

[RJV09]

[RVV09]

[Sako09]

[Sas+11]

[Sch+13]

[Sch95]

428

A. Rentschler. “Model Transformation Languages with Mod-
ular Information Hiding”. PhD thesis. Karlsruhe Institute of
Technology, 2015.

R. Reussner et al. The Palladio Component Model. Tech. rep.
KIT, Fakultat fur Informatik, 2011.

R. Rhinelander. “Components have no Interfaces!” In: Proceed-
ings of the 12th International Workshop on Component Oriented
Programming (WCOP 2007). Vol. 2007-13. Interne Berichte. Uni-
versitat Karlsruhe, Fakultat fur Informatik, 2007.

R. H. Reussner, J. Henss, and M. Kramer. “Introduction”. In:
Modeling and Simulating Software Architectures — The Palladio
Approach. MIT Press, 2016. Chap. 1, pp. 3-15.

J. R. Romero, J. L. Jaén, and A. Vallecillo. “Realizing Corre-
spondences in Multi-viewpoint Specifications”. In: Enterprise
Distributed Object Computing Conference, 2009. EDOC ’09. IEEE
International. 2009, pp. 163-172.

L. Rath, G. Varrd, and D. Varr6. “Change-Driven Model Trans-
formations”. In: Model Driven Engineering Languages and Sys-
tems. Springer, 2009, pp. 342-356.

K. Saks. JSR 318: Enterprise JavaBeansTM,Version 3.1 EJB Core
Contracts and Requirements. Tech. rep. JCP (Java Community
Process), 2009.

Toward Bidirectionalization of ATL with GRoundTram. Springer
Berlin Heidelberg, 2011, pp. 138-151.

M. Schmidt et al. “Refactorings in Language Development with
Asymmetric Bidirectional Model Transformations”. In: SDL
2013: Model-Driven Dependability Engineering. Vol. 7916. LNCS.
Springer Berlin Heidelberg, 2013, pp. 222-238.

A. Schiirr. “Specification of graph translators with triple graph
grammars”. In: Graph-Theoretic Concepts in Computer Science:
20th International Workshop, WG ’94 Herrsching, Germany,
June 16—18, 1994 Proceedings. Springer Berlin Heidelberg, 1995,
pp. 151-163.

http://digbib.ubka.uni-karlsruhe.de/volltexte/1000022503
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
http://download.oracle.com/otn-pub/jcp/ejb-3.1-pfd-oth-JSpec/ejb-3_1-pfd-spec.pdf
http://download.oracle.com/otn-pub/jcp/ejb-3.1-pfd-oth-JSpec/ejb-3_1-pfd-spec.pdf
http://dx.doi.org/10.1007/978-3-642-21732-6_10
http://dx.doi.org/10.1007/978-3-642-38911-5_13
http://dx.doi.org/10.1007/978-3-642-38911-5_13

Bibliography

[SK04]

[SL90]

[Sta73]

[Ste+08]

[Ste08]

[Ste10]

[TA15]

[Tra08]

[Ujh+15]

[VLA95]

S. Sendall and J. Kiister. “Taming Model Round-Trip Engineer-
ing”. In: Workshop Best Practices for Model-Driven Software
Development. 2004.

A. P. Sheth and J. A. Larson. “Federated database systems
for managing distributed, heterogeneous, and autonomous
databases”. In: ACM Comput. Surv. 22 (3 1990), pp. 183-236.

H. Stachowiak. Allgemeine Modelltheorie. Springer Verlag,
1973.

D. Steinberg et al. EMF: Eclipse Modeling Framework. second
revised. Eclipse series. Addison-Wesley Longman, Amsterdam,
2008.

P. Stevens. “A Landscape of Bidirectional Model Transfor-
mations”. In: Generative and Transformational Techniques in
Software Engineering II. Vol. 5235. LNCS. Springer Berlin Hei-
delberg, 2008, pp. 408—424.

P. Stevens. “Bidirectional model transformations in QVT: se-
mantic issues and open questions”. In: Software & Systems
Modeling 9.1 (2010), pp. 7-20.

C. Tunjic and C. Atkinson. “Synchronization of Projective
Views on a Single-Underlying-Model”. In: Proceedings of the
2015 Joint MORSE/VAO Workshop on Model-Driven Robot
Software Engineering and View-based Software-Engineering.
MORSE/VAO ’15. ACM, 2015, pp. 55-58.

L. Tratt. “A Change Propagating Model Transformation Lan-
guage”. In: Journal of Object Technology 7.3 (2008), pp. 107-
126.

Z. Ujhelyi et al. “EMF-IncQuery: An integrated development
environment for live model queries”. In: Science of Computer
Programming 98, Part 1 (2015), pp. 80-99.

M. Verhoef, T. Liebich, and R. Amor. “A multi-paradigm map-
ping method survey”. In: Workshop on Modeling of Buildings
through their Life-cycle. 1995, pp. 233-247.

429

http://dx.doi.org/10.1145/96602.96604
http://dx.doi.org/10.1145/96602.96604
http://dx.doi.org/10.1145/96602.96604
http://books.google.com/books?vid=ISBN3-211-81106-0
http://books.google.com/books?vid=ISBN978-0321331885
http://dx.doi.org/10.1007/978-3-540-88643-3_10
http://dx.doi.org/10.1007/978-3-540-88643-3_10
http://dx.doi.org/10.1007/s10270-008-0109-9
http://dx.doi.org/10.1007/s10270-008-0109-9
http://dx.doi.org/http://dx.doi.org/10.1016/j.scico.2014.01.004
http://dx.doi.org/http://dx.doi.org/10.1016/j.scico.2014.01.004

Bibliography

[Voi+10]

[Voi09]

[VS06]

[Wad8sg]

[Wag14]

[Wer16]

[WGW11]

[Whi+13]

[Whi+15]

430

J. Voigtlander et al. “Combining Syntactic and Semantic Bidi-
rectionalization”. In: Proceedings of the 15th ACM SIGPLAN
International Conference on Functional Programming. ICFP ’10.
ACM, 2010, pp. 181-192.

J. Voigtlander. “Bidirectionalization for Free! (Pearl)”. In: Pro-
ceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. POPL ’09. ACM, 2009,
pp- 165-176.

M. Vélter and T. Stahl. Model-Driven Software Development —
Technology, Engineering, Management. John Wiley & Sons, Ltd,
2006.

P. Wadler. “Deforestation: Transforming Programs to Elim-
inate Trees”. In: Theoretical Computer Science 73.2 (1988),
pp. 231-248.

D. Wagner. “Symmetric Edit Lenses: A New Foundation For
Bidirectional Languages”. PhD thesis. Faculties of the Univer-
sity of Pennsylvania, Department of Computer and Informa-
tion Science, 2014.

D. Werle. “A Declarative Language for Bidirectional Model
Consistency”. MA thesis. Karlsruhe Institute of Technology
(KIT), 2016.

M. Wang, J. Gibbons, and N. Wu. “Incremental Updates for
Efficient Bidirectional Transformations”. In: Proceedings of the
16th ACM SIGPLAN International Conference on Functional
Programming. ICFP ’11. ACM, 2011, pp. 392-403.

J. Whittle et al. “Industrial Adoption of Model-Driven Engi-
neering: Are the Tools Really the Problem?” In: Model-Driven
Engineering Languages and Systems. Vol. 8107. LNCS. Springer
Berlin Heidelberg, 2013, pp. 1-17.

J. Whittle et al. “A taxonomy of tool-related issues affecting
the adoption of model-driven engineering”. In: Software &
Systems Modeling (2015), pp. 1-19.

http://books.google.com/books?vid=ISBN978-0-470-02570-3
http://books.google.com/books?vid=ISBN978-0-470-02570-3
http://dx.doi.org/10.1016/0304-3975(90)90147-A
http://dx.doi.org/10.1016/0304-3975(90)90147-A
http://dx.doi.org/10.1007/978-3-642-41533-3_1
http://dx.doi.org/10.1007/978-3-642-41533-3_1
http://dx.doi.org/10.1007/s10270-015-0487-8
http://dx.doi.org/10.1007/s10270-015-0487-8

Bibliography

[Wid14]

[Wid15]

[Wil12]

[WMV12]

[Xio+07]

[Xio+11]

A. Wider. “Implementing a Bidirectional Model Transforma-
tion Language as an Internal DSL in Scala”. In: Proceedings
of the Workshops of the EDBT/ICDT 2014 joint Conference.
Vol. 1133. CEUR Workshop Proceedings. CEUR, 2014, pp. 63—
70.

A. Wider. “Model Transformation Languages for Domain-
Specific Workbenches”. PhD thesis. Humboldt-Universitét zu
Berlin, 2015.

E. D. Willink. “An Extensible OCL Virtual Machine and Code
Generator”. In: Proceedings of the 12th Workshop on OCL and
Textual Modelling. ACM, 2012, pp. 13-18.

M. Wimmer, N. Moreno, and A. Vallecillo. “Viewpoint Co-
evolution through Coarse-Grained Changes and Coupled
Transformations”. In: Objects, Models, Components, Patterns.
Vol. 7304. LNCS. Springer Berlin Heidelberg, 2012, pp. 336—
352.

Y. Xiong et al. “Towards Automatic Model Synchronization
from Model Transformations”. In: Proceedings of the twenty-
second IEEE/ACM international conference on Automated soft-
ware engineering. ASE *07. ACM, 2007, pp. 164-173.

Y. Xiong et al. “Synchronizing concurrent model updates based
on bidirectional transformation”. In: Software and Systems
Modeling 12.1 (2011), pp. 89-104.

431

http://dx.doi.org/10.1007/978-3-642-30561-0_23
http://dx.doi.org/10.1007/978-3-642-30561-0_23
http://dx.doi.org/10.1007/978-3-642-30561-0_23
http://dx.doi.org/10.1007/s10270-010-0187-3
http://dx.doi.org/10.1007/s10270-010-0187-3

Figures

1.1.

2.1.

2.2.

2.3.

24.

3.1.

3.2.

5.1.

5.2.

5.3.

Parts, research questions, and contribution chapters of this thesis 13

Process for the development of a DSL based on an application

code that was developed without the DSL, adapted from [VS06, p.

15] oo 22
Simplified class diagram showing central metaclasses of the

EMOF metamodelling language [ISO14, p.27] (dotted lines denote
indirect inheritance) 26
Simplified class diagram showing central metaclasses of the

Ecore metamodelling language according to [Ste+08, pp.97] and
[Burld, p.25] . . . o oo 28
Hierarchy of models that instantiate a metamodel, conform to a
metamodel, conform to type restrictions, or fulfill additional
serializability constraints and invariants 52

Classes of challenges to consistency preservation with their level

of abstraction, their dependence on challenges of other classes,

and the orthogonal dimension of directionality 56
Increasing degrees of achievable consistency enforcement
automation with their relation to a decreasing number of
ambiguities in the consistency specification 90

Process for writing consistency specifications using a language

of the framework and for updating models according to these
specifications to preserve consistency 141
Feature model for all changes in EMOF-based models that require
different information or information of different types 151
Feature model for all changes in Ecore-based models that require
different information or information of different types 153

433

Figures

5.4.

5.5.

6.1.

6.2.

6.3.

6.4.

6.5.

6.6.

6.7.

6.8.

7.1.

7.2.

7.3.

7.4.

7.5.

7.6.

7.7.

434

Metaclasses of the change modelling language that are not
abstract with all features directly and indirectly declared for

them (simplified names and types, no permutation changes) . . 155
Process for executing consistency preservation updates based on
change descriptions and correspondences 164

Class diagram showing a simplified metamodel for models of

component-based software architectures 171
Class diagram showing a metamodel for object-oriented designs

that is simplified as needed for our running example 172
Simplified class diagram with central metaclasses for

representing consistency preservation reactions in an AST . . . 174
Syntax diagram showing all possible change types that can be

given in a trigger definition and additional validation constraints 180
Syntax diagram showing all possible correspondence retrievals

that can be given in amatchblock 189
Simplified class diagram for metaclasses for representing actions

of the consistency preservation reactions language in an AST . 190
Syntax diagram showing all possible actions that can be given in

an action block of a reaction routine definition. 194
Simplified class diagram with metaclasses for completely
representing reactions in terms of an AST 198
Simplified class diagram with central metaclasses for

representing mappingsasan AST 217
Simplified class diagram with metaclasses for representing
single-sided conditions of mappings asan AST 230
Syntax diagram illustrating all enforceable operators for

single-sided conditions and the fallback to check and enforce code 233
Metaclasses and bidirectionalizable condition requirement for
mapping cars that are modelled for customers to vehicles for
internal management Lo oL 241
Illustration of an operator and its inverse operator using the

lense analogy (adapted from [Fos10, Figure 2.1, p. 12]) 244
Mlustration of the GETPUT and PUTGET laws for an operator and

its inverse operator (based on [Fos10, Figure 3.1, p.,39]) 245
lustration of the composition and inversion of two operators

and their inverse operators using the lense analogy 254

Figures

7.8.

7.9.

8.1.

8.2.

8.3.

8.4.

9.1.

9.2.

9.3.
9.4.

9.5.

9.6.

Class diagram for two example metamodels for mailing

addresses, which are used to explain different mapping strategies 272
Simplified class diagram with metaclasses for completely
representing mappingsasan AST 279

Minimal library metamodel for the metaclasses, attributes, and

the reference used in the introductory example invariant 299
Library metamodel for the complete version of the example
invariant 306
Simplified class diagram for the expression tree metamodel that
facilitates transformations from constraints to queries 310

Ilustration of the custom expression tree obtained for the
complete example invariant (matched iterator printed in bold,
parents of it initalics) L. 311

lustration of the GETPUT part of the proof of well-behavedness

for the composition operator using the lenses analogy 349
Mlustration of the PUTGET part of the proof of well-behavedness
for the composition operator using the lenses analogy 350

Source lines of code (SLOC) for reactions in different case studies 364
SLOC for reactions and Xtend code for consistency preservation
from PCM instances to Javacode 373
Source lines of code (SLOC) for reactions and Java code for
preserving consisteny in ASEM models after changes in SysML
block diagrams 374
Relative reduction of SLOC from GPPL code to reactions in

percent for consistency preservation from PCM models to Java

code and SysML models to ASEM models 375

435

Tables

5.1.

5.2.

7.1.

7.2.

7.3.

7.4.

7.5.

8.1.

9.1.

OCL collection operators and corresponding methods of the

reused Xbase language and our OCL-aligned extension 158
OCL iterators and corresponding methods of of the reused Xbase
language and our OCL-aligned extension 159

Overview of enforceable condition operators for single-sided
constraints in the mappings language without containment and
iterator operators (—”—denotes repetitions in a subsequent line) 232
Overview on all operators for which we developed inverters with
their argument types and inverter properties (where — stands for

not applicable, X for no, and v for yes) Legend: OT = Operand
Types, OA = Operand-Agnostic, TA = Target-Agnostic, rPGv =

no restrictable PutGet violations, dPGv = no desperate PutGet

violations L L 252
Mlustration of the inversion of the floor mod operator with all old
and new operand values after target updates from +3 to +4. . . 261

Resulting recipient models for initial address model and after
subsequent changes for different mapping strategies (based on
[Werl6,p.56]) o o o 275
Resulting address models for initial recipient model and after
subsequent changes for different mapping strategies (based on
[Werl6, p.57]) . .« o o o o e 276

The classification of nodes that are used to build the expression
tree L e 309

Overview on the evaluation of theoretical properties for the

languages of this thesis with references to presentation and
evaluation sections L L. 323

437

Tables

9.2. Overview on the evaluation of practical properties for the
languages of this thesis with references to presentation and
evaluation sections,

438

Listings

6.1.

6.2.

6.3.

6.4.

6.5.

6.6.

6.7.

7.1.

7.2.

7.3.

7.4.

Stub of a reaction illustrating the main language constructs and
three steps of change-driven consistency preservation 169
Reaction to the creation of a component in an architecture

model by creating a package and a class in the object-oriented
design. 176
Reaction routines that create a package and a class in the
object-oriented design in correspondence with a named element

of the architectural model 177
Reaction to the creation of a repository in an architecture model

by creating packages in the object-oriented design 183
Reaction to the deletion of a composite data type in an

architecture model by deleting the corresponding class 184
listings/reactionToComponentCreation.pseudo 187

Part of the grammar of the reactions language with rules for
reaction definitions in EBNF (without rules for change types) . 197
Part of the grammar of the reactions language with rules for
routine definitions in EBNF (without rules for 199

Sketch of a mapping that illustrates the two first class concepts:
mappings for both sides and bootstrap mappings for a single side 217
Mapping between a repository of an architectural model, a root
package, and three subpackages for interfaces, datatypes, and
components in an object-oriented design 219
Mapping between a component of an architectural model and a
package with a component-realization class in an

object-oriented design L L L. 224
Main rules for ordinary and bootstrap mappings of the grammar
of the mappings language 226

439

Listings

7.5.

7.6.

7.7.

7.8.

7.9.

7.10.

8.1.

8.2.

8.3.

9.1.

440

Two bidirectionalizable conditions of a mapping for a
component, a package, and a class (complete version in
Listing 7.3)
Mapping between cars of customer models and vehicles of
managementmodels. L L L L.
Example mapping for mailing addresses according to the
all-or-nothing strategy for mapping dependencies (metamodel
prefixesomitted) L L oL
Example mappings for mailing addresses according to the
step-by-step strategy for mapping dependencies (metamodel
prefixesomitted) Lo L
Example mappings for addresses according to the
containers-then-content strategy for mapping dependencies
(metamodel prefixes omitted) L.
Simplified grammar of the mappings language in EBNF, which
reuses grammar rules of the Xbase language

Initial example of an invariant with a simplified constraint for
the number of reference copies of books in a reading room of a
library
Extended example invariant ensuring that at least three copies
of any edition have to be present for reference books in an open
stack
A query for the extened invariant example returning open
reference books with less than three copies

Exemplary reaction and reaction routine to execute Java code or
simulate a Turing-machine in an execute action block

273

273

274

281

299

307

308

The Karlsruhe Series on
Software Design and Quality

Edited by Prof. Dr. Ralf Reussner // ISSN 1867-0067

Band 1 Steffen Becker
Coupled Model Transformations for QoS Enabled
Component-Based Software Design.
ISBN 978-3-86644-271-9

Band 2 Heiko Koziolek
Parameter Dependencies for Reusable Performance
Specifications of Software Components.
ISBN 978-3-86644-272-6

Band 3 Jens Happe
Predicting Software Performance in Symmetric
Multi-core and Multiprocessor Environments.
ISBN 978-3-86644-381-5

Band 4 Klaus Krogmann
Reconstruction of Software Component Architectures and
Behaviour Models using Static and Dynamic Analysis.
ISBN 978-3-86644-804-9

Band 5 Michael Kuperberg
Quantifying and Predicting the Influence of Execution Platform
on Software Component Performance.
ISBN 978-3-86644-741-7

Band 6 Thomas Goldschmidt
View-Based Textual Modelling.
ISBN 978-3-86644-642-7

Band 7 Anne Koziolek
Automated Improvement of Software Architecture Models
for Performance and Other Quality Attributes.
ISBN 978-3-86644-973-2

Die Bande sind unter www.ksp.kit.edu als PDF frei verfiigbar oder als Druckausgabe bestellbar.

Band 8

Band 9

Band 10

Band 11

Band 12

Band 13

Band 14

Band 15

Lucia Happe

Configurable Software Performance Completions through
Higher-Order Model Transformations.

ISBN 978-3-86644-990-9

Franz Brosch

Integrated Software Architecture-Based Reliability
Prediction for IT Systems.

ISBN 978-3-86644-859-9

Christoph Rathfelder

Modelling Event-Based Interactions in Component-Based
Architectures for Quantitative System Evaluation.

ISBN 978-3-86644-969-5

Henning Groenda

Certifying Software Component
Performance Specifications.
ISBN 978-3-7315-0080-3

Dennis Westermann

Deriving Goal-oriented Performance Models
by Systematic Experimentation.

ISBN 978-3-7315-0165-7

Michael Hauck

Automated Experiments for Deriving Performance-relevant
Properties of Software Execution Environments.

ISBN 978-3-7315-0138-1

Zoya Durdik

Architectural Design Decision Documentation through
Reuse of Design Patterns.

ISBN 978-3-7315-0292-0

Erik Burger
Flexible Views for View-based Model-driven Development.
ISBN 978-3-7315-0276-0

Die Bande sind unter www.ksp.kit.edu als PDF frei verfugbar oder als Druckausgabe bestellbar.

Band 16

Band 17

Band 18

Band 19

Band 20

Band 21

Band 22

Band 23

Benjamin Klatt

Consolidation of Customized Product Copies
into Software Product Lines.

ISBN 978-3-7315-0368-2

Andreas Rentschler

Model Transformation Languages with
Modular Information Hiding.

ISBN 978-3-7315-0346-0

Omar-Qais Noorshams

Modeling and Prediction of I/O Performance
in Virtualized Environments.

ISBN 978-3-7315-0359-0

Johannes Josef Stammel
Architekturbasierte Bewertung und Planung
von Anderungsanfragen.

ISBN 978-3-7315-0524-2

Alexander Wert
Performance Problem Diagnostics by Systematic Experimentation.
ISBN 978-3-7315-0677-5

Christoph Heger

An Approach for Guiding Developers to
Performance and Scalability Solutions.
ISBN 978-3-7315-0698-0

Fouad ben Nasr Omri

Weighted Statistical Testing based on Active Learning and Formal
Verification Techniques for Software Reliability Assessment.

ISBN 978-3-7315-0472-6

Michael Langhammer

Automated Coevolution of Source Code and
Software Architecture Models.

ISBN 978-3-7315-0783-3

Die Bande sind unter www.ksp.kit.edu als PDF frei verfiigbar oder als Druckausgabe bestellbar.

Band 24 Max Emanuel Kramer
Specification Languages for Preserving Consistency between
Models of Different Languages.
ISBN 978-3-7315-0784-0

Die Bande sind unter www.ksp.kit.edu als PDF frei verfugbar oder als Druckausgabe bestellbar.

When complex IT systems are being developed, several programming and model-
ling languages are used. Redundant modelling of information in these languages
can lead to inconsistencies that yield faulty designs and implementations.
This work makes the following contributions to this problem: First, we present
a collection and classification of consistency preservation challenges. Second,
we introduce an approach for preserving consistency according to abstract
specifications and formalize it using set theory. This formalization is independ-
ent of how consistency enforcement is finally realized. With the presented
approach, consistency is always preserved according to monitored edit opera-
tions in order to avoid well-known matching and diffing problems. Last, we
contribute three new languages for the development of tools that follow this
specification-driven approach.

ISSN 1867-0067
ISBN 978-3-7315-0784-0

ISBN 978-3-7315-0784-
Gedruckt auf FSC-zertifiziertem Papier 9

783731 50784OH>

	Abstract
	Zusammenfassung
	Prologue
	Introduction
	Motivation
	Problem Statement
	Goals and Questions
	Identify Challenges and Define Consistency
	Support through Specification Languages

	Contributions
	Consistency Challenges and Definitions
	Specification Languages for Preserving Consistency

	Outline

	Foundations
	Models and Languages
	Model Theory
	Model-Driven Software Development
	Meta-Modelling Languages

	Multi-View Modelling
	Orthographic Software Modeling
	The Vitruvius Framework
	The View-Update Problem

	Formal Foundations
	Notation, Conventions and Abstractions
	Metamodels and Models
	Conditions and Valid Models

	Consistency Preservation Challenges and Formalization
	Challenges to Consistency Preservation
	Classification and Terminology
	Classification According to Origin and Abstraction
	Fundamental Terms of Consistency Preservation

	Conceptual Challenges
	Diverse Consistency
	Tolerating and Wanted Inconsistency
	Evolving Consistency
	Totality of Consistency
	Dependencies between Consistency Relations
	Identification of Elements
	Determining Corresponding Elements

	Modelling Language Challenges
	Consistency-Enabling Abstraction
	Different Roles for Models
	Different Usage of Types and Identity
	Other Representation Variations

	Specification Challenges
	Unspecifiable Consistency
	Complex Consistency Relations
	Consistency for a Flexible Number of Elements
	Consistency for Specific Instances
	Abstract Consistency Specifications
	Redundancy in Specifications
	Reuse in Specifications
	Scope of Consistency Relations
	Referring to Changes and States

	Specification Language Challenges
	Enforcement Challenges
	Enforcement Time and Granularity
	Enforcement Space and Boundaries
	Automated Enforcement

	Implementation Challenges
	Consistency between Checks and Enforcements
	Debugging Consistency Preservation
	Keeping Associated Information
	Retrieving the Right Correspondence
	Partial Evaluation and Execution

	Orthogonal Bidirectionality Challenges
	Bidirectionality without Bijectivity
	Single or Double Specification
	Well-Behaved Roundtrip Enforcement

	Future Challenges
	Propagating Propagations without Cycles
	Order of Multi-Directional Propagations

	Conclusions

	A Formal Language for Change-Driven Model Consistency
	Consistency Rules and Specifications
	Rules and Correspondences
	Prescriptive Consistency

	Consistency Updates and Preservation
	Updates of Links, Labels, and Models
	Results and Consistency Preservation

	Change-Driven Consistency Preservation
	Consistency-Breaking Model Changes
	Model Updates After a Change
	Update Functions for Consistency Rules
	Consistency-Preserving Update Specifications

	Conclusions

	Languages for Consistency Preservation
	A Language Framework for Consistency Specifications
	Consistency Preservation Specifications
	Preserving Consistency
	Specifying Consistency

	Change-Driven Languages
	Change-Driven Consistency Preservation
	Languages Providing Reusable Solutions

	Usage of the Language Framework
	Complementary Languages
	Supported Programming Paradigms
	Expressive Power and Restrictions

	Language Integration and Alignment
	A Language for Representing Model Changes
	Reusing a Java-Based Expression Language
	An OCL-Aligned Expression Extension

	Technical Realization and Code Generation
	Retrieving Model Elements and Correspondences
	Generating and Executing Preservation Code

	Conclusions and Future Work

	An Imperative Language for Consistency Reactions
	Overview: Triggers, Retrievals, and Actions
	Running Example: Component Models and OO Design
	Component-Based Architecture Models
	Object-Oriented Design
	Consistency Requirements

	Reactions and Separate Reaction Routines
	Change Triggers, Restrictions, and Routine Calls
	Triggering Reactions based on Changes
	Restricting Reactions based on Changes
	Calling Reaction Routines

	Encapsulating Matching and Actions in Routines
	Retrieving Corresponding Elements
	Retrieval and Match Restrictions
	Add and Remove Actions for Correspondences
	Create, Delete, and Update Element Actions
	Executing Arbitrary Code and Routines
	User Change Disambiguation

	Realizing a Compiler for the Reactions Language
	Reactions Language Syntax
	Editing, Compiling, and Executing Reactions

	Semantics of Consistency Preservation Reactions
	An Explanatory On-Demand Construction
	From Reactions to Consistency Rules
	Constructing an Update Function for a Reaction
	Consistency Preserving by Construction

	Conclusions and Future Work

	A Bidirectional Language for Consistency Mappings
	Overview: Mappings, Conditions, Enforcements
	Example Mapping for Repositories and Packages
	Comparison of Mappings and Reactions
	Mapping Dependencies and Bidirectionalization

	Mapping Signatures and Conditions
	Ordinary Mappings and Bootstrap Mappings
	Single-Sided and Bidirectionalizable Conditions

	Checking and Enforcing Single-Sided Conditions
	General Enforceable Operators
	Special Enforceable Operators
	Manual Checking and Enforcement

	Bidirectionalizable Conditions and Inverters
	Inversion Examples and Overview
	Round-Trip Laws and Inverter Properties
	Bidirectionalization trough Inversion
	Inverter Classification and Overview
	Operator and Inverter Composition
	Operator-Specific Inverters
	Limitations of the Approach and the Inverters
	Fall Back to Unidirectional Enforcement

	Dependencies and Multi-Parameter Mappings
	Inter-Mapping Dependencies
	Mapping Possibilities and Consequences
	Nesting as a Discarded Alternative to Dependencies

	Realizing a Compiler for the Mappings Language
	Mappings Language Syntax
	Editing, Compiling, and Executing Mappings

	Semantics of Consistency Mappings based on Reactions
	Algorithms for Mapping Instantiations
	Distinguishing Pure from Impure Mappings
	A Reaction for All Impure Mappings
	Reactions and Data for Pure Mappings
	Consistency Preserving by Construction

	Conclusions and Future Work

	A Normative Language for Consistency Invariants
	Invariants for Consistency Preservation
	Normative Inter-Language Invariants
	Invariant Violating Elements
	Parameters for Query Derivation
	Automated Deriviation of Queries for Parameters

	Iterator Variable Queries for Violating Elements
	Transformation Overview and Limitations
	Extended Example Invariant
	Expression Trees for Constraint Transformation
	Matching Parameters to Iterator Nodes
	Parent-Dependent Top-Down Transformation
	Node Transformation Rules for Queries
	Transformation Example

	Conclusions and Future Work

	Evaluating and Relating the Languages
	Evaluation and Discussion
	Evaluation Overview
	Evaluation of Theoretical Completeness
	Completeness of the Formal Language
	Change Language is EMOF Complete
	Completeness of OCL-Aligned Expressions
	Reactions Language Completeness
	Mappings Language Completeness
	Invariants Language Completeness

	Evaluation of Theoretical Correctness
	Formal Language Correctly Models Consistency
	Change Modelling Language Correctness
	Correctness of OCL-Aligned Expressions
	Reactions Correctly Preserve Consistency
	Mappings Language Correctness
	Invariants Correctly Transformed to Queries

	Evaluation of Practical Applicability
	Application of the Formal Language
	Application of the Change Modelling Language
	Application of OCL-Aligned Expressions and Invariants
	Applications of Reactions
	Applications of Mappings

	Discussion of Practical Benefit
	Intermediary Change Models for Editors
	Integration and Code Generation for OCL-Aligned Expressions
	Code Size Comparison for Reactions
	Discussion of Benefits of the Mappings Language
	Discussion of Automated Query Derivation

	Future Evaluations
	Further Case Studies and Comparisons
	Planned Experiment on Program Comprehension

	Conclusions

	Related Work
	Consistency between Models, Views, and after Updates
	The View Update Problem
	Models, Databases, and Ontologies
	Synthetic and Projective Multi-View Approaches
	Tolerating Inconsistency

	Challenges, Formalizations, and Consistency Checking
	Challenges to Consistency Preservation
	Formal Consistency Checking and Synchronization
	Determining Inconsistencies and their Causes
	Finding Consistent Models using Checks

	Automated Consistency Preservation
	Focused on Tool Integration
	Based on Triple-Graph Grammars
	Focused on Bidirectionality
	Based on Model Differences
	Based on Model Deltas or Edit Operations
	Domain-Specific Consistency Preservation

	Epilogue
	Conclusions and Future Work
	Summary
	Current Limitations
	Future Work
	Short-Term Specification Language Improvements
	Long-Term Support Beyond Pairwise Consistency

	Bibliography
	Figures
	Tables
	Listings

