

Victor Pankratius

Product Lines for Digital Information Products

Product Lines for
Digital Information Products

by
Victor Pankratius

Universitätsverlag Karlsruhe 2007
Print on Demand

ISBN: 978-3-86644-133-0

Impressum

Universitätsverlag Karlsruhe
c/o Universitätsbibliothek
Straße am Forum 2
D-76131 Karlsruhe
www.uvka.de

Cover design: Victor Pankratius

Dieses Werk ist unter folgender Creative Commons-Lizenz
lizenziert: http://creativecommons.org/licenses/by-nc-nd/2.0/de/

Dissertation,
genehmigt von der Fakultät für Wirtschaftswissenschaften
der Universität Fridericiana zu Karlsruhe, 2007
Referent: Prof. Dr. Wolffried Stucky
Korreferenten: Prof. Dr. Christof Weinhardt
 Prof. Dr. Dieter Rombach

To my wife and my parents.

Preface

Motivated by the ongoing trend of digitization which has fundamental impli-
cations on how we create, use, and deliver information products, this thesis
shows how variants of digital information products can be engineered. Many
people have supported me in various ways to finish this thesis while I was a
research assistant at the Institute of Applied Informatics and Formal Descrip-
tion Methods at the University of Karlsruhe. I would like to thank them all
for their support.

In particular, I would like to thank my advisor, dean of the faculty and
head of the institute, Prof. Dr. Wolffried Stucky, for his continuous support,
for the fruitful collaboration, and for the great opportunities and liberties
he offered me throughout my research. I also thank my secondary advisors,
Prof. Dr. Christof Weinhardt and Prof. Dr. Dieter Rombach, for the helpful
discussions, and the other members of the Ph.D. committee, Prof. Dr. Andreas
Oberweis and Prof. Dr. Hagen Lindstädt, for the time spent reviewing my
thesis. I also thank Prof. Dr. Gottfried Vossen for his constructive comments
and general advice during the early stages of my Ph.D. studies.

Furthermore, I thank my colleagues in our Business Information and Com-
munication Systems group for the cooperation and the pleasant working at-
mosphere, as well as the student assistants and the students of the Software
Engineering Tools lab who contributed with great enthusiasm to the tool de-
veloped for this thesis.

I warmly thank my wife and my parents for their continuous love, support,
and patience.

Finally, I would like to point the readers to the associated Web site where
this book and supplementary material can be downloaded:

http://www.product-lines-for-digital-information-products.com

Karlsruhe, February 2007 Victor Pankratius

Summary

The growth of the Web has spurred the creation and exchange of products
which exist in digital form only, and which are created, distributed, and used
exclusively in digital form. Digital information products are an important
class of widely used digital products, whose core benefit lies in the delivery of
information or education (e.g., electronic books, online newspapers, e-learning
courses).

Variants of digital information products are often created to satisfy dif-
ferent customer needs (e.g., a light/standard/full version). Currently, such
variants are often created in an unsystematic way, and there are hardly any
attempts to systematize the creation of digital information products in this
context. This is especially problematic after their initial creation when up-
dates have to be made and the variability of possible changes is not planned
and limited in advance. In addition, potential commonalities between such
variants are either not exploited at all or not systematically enough, which
typically leads to redundancy and inconsistencies during creation or updates.

This thesis introduces a novel and systematic approach, called Product
Lines for Digital Information Products (PLANT), which is a special ap-
proach focusing on the creation of variants of digital information products
within a product line, and which tackles the aforementioned problems in an
engineering-like way by adapting and extending concepts from the area of
software product lines. Based on a systematic process model consisting of
family engineering, domain engineering, and application engineering, PLANT
allows common product requirements to be defined, commonalities and dif-
ferences of content in product variants to be planned and limited in advance
using a conceptual model, and variants to be created according to a construc-
tion workflow model that can draw upon prepared components. An associated
tool is introduced as well, which handles the product configurations and the
construction workflow model in a novel and integrated way. The feasibility
and advantages of PLANT are finally demonstrated in a case study related
to e-learning.

Contents

1 Introduction . 1
1.1 Current Problems . 2
1.2 Goals & Approaches of the Thesis . 3
1.3 Outline of the Thesis . 4

Part I Fundamentals

2 Products, Digital Products, Digital Information Products . 9
2.1 Products in General . 9

2.1.1 Definitions . 9
2.1.2 Classifications . 12

2.2 Digital Products and Digital Information Products 13
2.2.1 Definitions . 14
2.2.2 Examples . 16
2.2.3 Characteristics of Digital Products 18
2.2.4 Classification of Digital Products . 20
2.2.5 The Value Chain for Digital Information Products 23

2.3 Summary and Discussion . 25

3 Digital Information Products in the E-Learning Domain . . . 27
3.1 Notion of E-Learning . 27
3.2 Infrastructure and Systems Architecture . 28
3.3 Learning Objects as Digital Information Products 29

3.3.1 Content Creation . 30
3.3.2 Metadata and Packaging . 31
3.3.3 Market Making . 34
3.3.4 Evaluation of the Concepts behind Learning Objects . . . 35

3.4 Summary and Discussion . 39

XII Contents

4 Software Product Lines . 41
4.1 Traditional Approaches to Software Reuse 41
4.2 The Approach of Software Product Lines 43
4.3 Domain Engineering . 47

4.3.1 Domain Analysis . 48
4.3.2 Domain Design . 51
4.3.3 Domain Implementation . 56
4.3.4 Domain Testing . 57

4.4 Application Engineering . 59
4.4.1 Application Analysis . 59
4.4.2 Application Design . 60
4.4.3 Application Implementation . 61
4.4.4 Application Testing . 62

4.5 Family Engineering . 62
4.5.1 Economic Aspects . 63
4.5.2 Organizational Aspects . 66
4.5.3 Evolution . 67

4.6 Deriving a Precise Definition . 68
4.7 Summary and Discussion . 72

Part II Product Lines for Digital Information Products

5 The Product Lines for Digital Information Products
(PLANT) Approach . 75
5.1 Motivation and Goal . 75
5.2 Shortcomings of Existing Approaches . 77
5.3 Requirements on the Approach . 78
5.4 Overview of PLANT . 79

5.4.1 Strategy and Assumptions . 79
5.4.2 A Process Model with Three Sub-Processes 80
5.4.3 Tools and Customization . 86
5.4.4 Parallels between PLANT and Software Product Lines . 88
5.4.5 Examples for Application Areas . 88

5.5 Validation Approach . 90
5.6 Summary and Discussion . 91

6 Family Engineering in PLANT . 93
6.1 Feasibility and Risk Assessment . 94
6.2 Economic, Evolution, Lifecycle Aspects . 96

6.2.1 Estimating Effort with PLANT . 96
6.2.2 Estimating Effort without PLANT 97
6.2.3 Comparison of effort with/without PLANT 97

6.3 Configuration Management . 98
6.3.1 Market-Based View . 98

Contents XIII

6.3.2 Product-Based View . 98
6.3.3 Matching Market-Based and Product-Based View 99

6.4 Organizational Aspects . 99
6.5 Evaluation and Controlling . 100
6.6 Summary and Discussion . 100

7 Domain Engineering in PLANT . 103
7.1 Domain Analysis . 104

7.1.1 Domain Scoping . 104
7.1.2 Capturing Requirements for Information Products 105

7.2 Domain Design . 107
7.2.1 Conceptual Design: Defining Allowed Configurations . . . 108
7.2.2 Logical Design: Preparing Configuration Management . . 115
7.2.3 Physical Design: Defining the Construction Workflow

Model . 118
7.3 Domain Realization . 126

7.3.1 Realization of Content Components 126
7.3.2 Realization of other Construction Artifacts 129
7.3.3 Realization of the Product Map Database 130
7.3.4 Realization of the Construction Workflow Model 131

7.4 Domain Testing . 131
7.4.1 Testing Content Components . 131
7.4.2 Verifying the Construction Workflow Model 132
7.4.3 Integration Testing of Content Components 135

7.5 Summary and Discussion . 136

8 Application Engineering in PLANT . 137
8.1 Application Analysis . 138

8.1.1 Capturing Product-Specific Content Requirements 138
8.2 Application Design . 139

8.2.1 Deriving a Product Model . 139
8.2.2 Creating a Product Map . 141

8.3 Application Realization . 143
8.3.1 Executing the Construction Workflow Model 143

8.4 Application Testing . 144
8.5 Summary and Discussion . 145

Part III Tool Support & Case Study

9 The Desktop Workflow Engine . 149
9.1 Purpose . 149
9.2 User Interface . 150

9.2.1 The Workflow Editor . 150
9.2.2 The Database Editor . 153

XIV Contents

9.2.3 The Workflow Warehouse . 153
9.3 Concepts Supporting Parametrization and the Creation of

Variants . 155
9.3.1 Transition Properties . 155
9.3.2 Helper Programs . 157

9.4 Usage Scenario . 158
9.4.1 Differences from Traditional Workflow Management

Approaches . 159
9.5 Outline of the Internal Architecture . 160
9.6 Summary and Discussion . 162

10 Case Study . 165
10.1 Preparation . 165
10.2 Usage Context and Encountered Problems 166
10.3 Family Engineering . 166
10.4 Domain Engineering . 171
10.5 Application Engineering . 181
10.6 Evaluation . 184

10.6.1 Possibilities for Generalization of the Results 185
10.7 Summary and Discussion . 186

11 Conclusion and Outlook . 187
11.1 New Contributions and Improvements with PLANT 187
11.2 Outlook . 189

Appendix . 193
A.1 Implementation Example for the Product Map Template 193
A.2 Case Study – Additional Details . 194

A.2.1 Database used in the Case Study . 194
A.2.2 Internals of the Workflow Model . 199

References . 201

Index . 219

1

Introduction

Many parts of today’s economy are reshaped by an increasing digitization
which is spurred not only by the ongoing development of hardware and soft-
ware, but also by the diffusion of technology into everyday life. Especially the
growth of the Web has facilitated the creation and distribution of new kinds
of products that are available and distributed in an entirely digital form only
(i.e., their form is not “material” in the traditional sense), like for example,
software, digital music, online publications, online games, or online video, to
name just a few.

An important category of digital products are the digital information prod-
ucts whose core benefit lies in the delivery of information or education. Digital
information products are ubiquitous and can be found in various areas, like
for example: electronic books, electronic user and training manuals, electronic
newspapers, electronic learning content. The content, which actually contains
information, plays an important role for these products and is one of the main
aspects contributing to a competitive advantage. It is therefore of utmost im-
portance for the business success of producers to create such products in an
efficient way and adapt them to the individual needs of particular customers
or market segments. To make the production of digital information products
more efficient, reuse of content is needed. However, numerous problems are
currently associated with reuse in this context, especially from a technical and
organizational point of view, as presented next. Thereafter, the goals and ap-
proaches of this thesis are introduced, which are aimed to tackle the presented
problems, and the structure of the thesis is outlined.

2 1 Introduction

1.1 Current Problems

In the early days of the Web, the amount of information contained in digital
products was small enough to be handled manually. Meanwhile, over 90% of
the currently produced information are estimated to be in digital format, while
the information available in other physical formats is estimated to become in
most parts digitized [Var05]. These changed circumstances have an impact on
several aspects of the creation of digital information products.

In many cases, digital information products are versioned, i.e., a base prod-
uct is created with different levels of quality or slightly differing content or
features [Var97]. This way, digital information products can be tailored to the
needs of different customer groups, and saturation effects in markets – which
can occur due to the indestructibility of digital products in general – can be
compensated (see Chapter 2 for details). The key to the technical realization
of versioning is the modularization of content, so that different modules or
content components can be reused within different configurations of versions
of information products.

Although modularization and reuse of content may seem easy to real-
ize, there are currently several technical and organizational problems. The
reuse of content components is often not planned in advance, but done ad-
hoc. Therefore, components found in repositories often have different underly-
ing assumptions with respect to file types, layout, structure, or presentation.
Reusing such components for the creation of information products may re-
quire modifications which can be just as tedious as a re-creation from scratch.
The chosen component models, which define a logical structure for a compo-
nent, may diverge as well. In addition, there are many different standards,
especially for metadata (see Chapter 3), which also differ depending on the
chosen application area. Especially when several concurrent standards exist,
exchange and reuse of content is complicated. Another neglected aspect is
that content is often not reused in isolation, but in a certain reuse context, for
example with some other related content; such a reuse context is typically not
planned in advance. In many cases, too much individualization makes reuse
more difficult, and only certain variants of an information product are really
needed, in which for example only a few predefined content configurations of
a base product are offered. In such scenarios, different versions of information
products may have commonalities that should be modeled in an explicit way
in order to simplify updates for common parts.

The presented problems are discussed in more detail for the example area
of e-learning in Chapter 3. Examples from e-learning are also offered through-
out the thesis, as the concentration on a certain area allows the presentation
of more subtle details than a more general treatment.

1.2 Goals & Approaches of the Thesis 3

1.2 Goals & Approaches of the Thesis

From the aforementioned problems, it becomes obvious that the availability
of standards is not a sufficient solution for reuse. A structured, engineering-
like approach is needed to tackle the reuse problem for digital content from a
technical as well as organizational point of view.

The thesis introduces such an approach, called Product Lines for Digital
Information Products (PLANT), that transfers and adapts concepts from the
area of software product lines (Chapter 4) to that of digital information prod-
ucts (described in Chapters 2 and 3). The PLANT approach is an integrated
“package” that is able to handle technical and organizational aspects, and
consists of a strategy, a process model, and an associated tool. The thesis
is interdisciplinary and draws upon insights from a variety of fields, such as
software engineering, information systems, workflow management, databases,
economics, management, and e-learning.

The reason to adapt and extend software product lines to this context
is that they represent a solution to similar reuse problems that were expe-
rienced for software components in software engineering. Software product
lines focus on reuse within sets of related programs by first evaluating pos-
sible commonalities and variabilities (i.e., differences), and creating a set of
parameterizable core assets that are exclusively used thereafter to create soft-
ware products in a predominantly generative manner. The main differences
to other approaches (e.g. [HSI05]) are that product lines proactively prepare
reuse and define the reuse context from the beginning, and impose restrictions
on the allowed configurations (i.e., realizable product variants) in the reuse
context. This procedure in fact establishes an additional layer of standardiza-
tion, whose scope is only the set of products that belong to one product line.
Additional details are discussed in Chapter 4.

Similar to software product lines, PLANT focuses on the creation of sim-
ilar digital information products that are part of one product line, which can
be created in a generative manner using predefined core assets (e.g., content
components, layout specifications). For example, an e-learning course in In-
formation Systems can have a different configuration of topics, depending on
the targeted audience (e.g., beginners/experts or database-centric/workflow-
centric), and the content for these topics is prepared in advance, while a
specific course is generated only upon request. However, PLANT also defines
and restricts in advance the possible content configurations for information
products, and imposes uniform specifications for all content components. Al-
though this may sound negative at first, it actually simplifies and improves
reuse in several respects:

• the reuse context is made explicit, and content developers now know from
the beginning in which setting the developed context will be used;

• since all content components have the same underlying assumptions, a
developer can be sure that a composition of core assets belonging to one

4 1 Introduction

product line will finally work, without encountering the aforementioned
problems; this is also true for public repositories.

• an explicit design of parts that are common to several information products
makes updates easier and reduces potential inconsistencies.

• product lines support standardization as well as individualization for in-
formation products.

PLANT makes a tradeoff and tries to find a balance between individu-
alization and standardization of information products, with the aim that a
content composition approach becomes feasible under realistic circumstances,
and reuse more efficient. PLANT is introduced in Chapter 5, and other details
on it in the Chapters 6–10.

1.3 Outline of the Thesis

The thesis is structured into three parts (see Fig. 1.1).

• Part I introduces in the Chapters 2–4 the fundamentals needed for part
II and part III.

• Part II presents in the Chapters 5–8 the concepts of the Product Lines
for Digital Information Products (PLANT) Approach.

• Part III shows in Chapters 9–10 available tool support to develop in-
formation products with PLANT, and a case study with a concrete case
where PLANT has been applied to show the feasibility of the approach.

In particular, the chapters discuss the following topics:

• Chapter 2: discusses the notion of a product, digital product, and digital
information product. The typical characteristics and classifications of dig-
ital products are used to point out the differences to traditional products,
and why versioning is needed for digital products. Special characteristics
are also discussed in a value chain context.

• Chapter 3: focuses on e-learning as an example area where digital in-
formation products occur in a form of so-called learning objects. For this
area, the typical infrastructure and systems architecture are outlined. This
area is used as a concrete example to show existing problems with content
reuse for information products.

• Chapter 4: introduces the software product line concept, which is a spe-
cial reuse concept for the creation of variants of software products.

• Chapter 5: introduces the Product Lines for Digital Information Prod-
ucts (PLANT) Approach, which transfers and adapts the key concepts
from software product lines (Chapter 4) to the context of digital infor-
mation products (Chapter 2 and 3). The development process in PLANT

1.3 Outline of the Thesis 5

Chapter 2
Products, Digital Products,
Digital Information Products

Part I: Fundamentals

Part II: Product Lines for
 Digital Information Products

Part III: Tool Support and Case Study

Chapter 3
Digital Information Products
in the E-Learning Domain

Chapter 4
Software Product Lines

Chapter 1
Introduction

Chapter 5
The Product Lines for Digital Information Products (PLANT) Approach

Chapter 6
Family Engineering

in PLANT

Chapter 7
Domain Engineering

in PLANT

Chapter 8
Application Engineering

in PLANT

Chapter 9
The Desktop Workflow Engine

Chapter 10
Case Study

Chapter 11
Conclusion and Outlook

Fig. 1.1. Structure of the thesis.

is divided into the sub-processes family engineering, domain engineering,
and application engineering.

• Chapter 6: presents the details of the family engineering sub-process
which focuses on the product line as such and deals with management and
organizational issues.

• Chapter 7: presents the details of the domain engineering sub-process
which focuses on all information products in one product line and on prepa-
rations for the reuse of content.

• Chapter 8: presents the details of the application engineering sub-process
which focuses on the generation of a single information product, based on
the preparations made in domain engineering.

6 1 Introduction

• Chapter 9: describes the Desktop Workflow Engine which is a tool that
supports the creation of digital information products in domain engineer-
ing and application engineering.

• Chapter 10: shows a case study where PLANT has been applied in an
e-learning context, to show the feasibility in a concrete application context.

• Chapter 11: summarizes the main insights and shows potential extensions
and other development directions for the PLANT Approach.

Part I

Fundamentals

2

Products, Digital Products, Digital
Information Products

This Chapter introduces and defines the basic notions of products, digital
products, and digital information products, which will be used throughout this
work. Firstly, the notion of a product is surveyed in the literature and relevant
product classifications are presented. The results are then contrasted with the
notions of digital products in the literature, and the main aspects are distilled
in a working definition for digital products. As a further refinement, digital
information products are identified as a special type of digital products. The
typical characteristics of digital products – which are different from physical
products – are worked out to demonstrate that they influence the economic
viability of digital products in a competitive marketplace. A classification
scheme for digital products describes relevant criteria for a comparison of
digital products, and helps derive strategic decisions. Thereafter, a value chain
model for digital information products is introduced, which offers a general
perspective on relevant activity areas. Finally, based on the insights gained in
this Chapter, some critical points are identified which motivate the approach
taken in the Chapters to follow.

2.1 Products in General

Although the word “product” is frequently used in everyday life, the exact
notion of a product is fairly complex and difficult to delimit, especially with
respect to physical and non-physical properties. There are several approaches
to define products, which are presented next. Thereafter, some widely known
classifications are introduced.

2.1.1 Definitions

As a starting point of the analysis of existing product definitions, dictionary
entries for the word “product” point to its latin origin. It is derived from
the latin word “producere” which means “to bring out” [Bro92, Uni07]. The

10 2 Products, Digital Products, Digital Information Products

Oxford Dictionary of International Business characterizes a product as “thing
or substance produced, esp. by manufacture” [Oxf98], and [Gab04] defines a
product as the result of the production and the aims of a company, as well
as a means to satisfy needs. Products are understood as outputs or results
of a production process which combines or transforms inputs or production
factors (for details, esp. on production factors, see [WD05]). According to the
German Product Liability Law, every movable thing can be a product, even
if it is a part of another movable thing. This purely physical understanding is
extended by explicitly defining electricity as a product [Pro06].

In the marketing literature, the product notion defined by Kotler and
Armstrong has gained substantial influence and considers products as [KA05]:
“anything that can be offered to a market for attention, acquisition, use, or
consumption that might satisfy a want or need. Products include more than
just tangible goods. Broadly defined, products include physical objects, ser-
vices, events, persons, places, organizations, ideas, or mixes of these entities”.
The authors intend to broaden the concept of a product. Persons (e.g., politi-
cians, entertainers, sports teams) are seen as products in a sense that activities
can be undertaken to create, maintain, or change public attitudes or behav-
ior towards them. During image advertising campaigns, organizations can be
presented like products. Similarly, places or touristic regions may compete to
attract tourists.

On a closer examination, Kotler and Armstrong’s product notion distin-
guishes between three conceptual levels, as depicted in Fig. 2.1. At the center,
it is assumed that each product has some form of core benefit which provides
problem-solving capabilities. The second level turns the core benefit into the
actual product : product quality determines the degree at which a product is
able to perform its functions; features are used to distinguish between various
models of a product, as well as to distinguish the product from the competi-
tion; design contributes to the looks of a product, but also to its usefulness;
a brand, which can be a name, term, sign, symbol, or a combination thereof,
can add value by providing a means for identification, quality expectation and
differentiation; the package acts as a container or wrapper for the product.
At the third level, the augmented product, additional value is generated by
services and benefits related to delivery and credit, installation, warranty, or
after-sale service. Kotler and Armstrong regard services as a special form of
products [KA05], which consist of “activities, benefits, or satisfactions offered
for sale that are essentially intangible and do not result in the ownership of
anything”. However, services have some special characteristics, like intangi-
bility (i.e., they cannot be felt, heard, tasted, or seen before purchase), insep-
arability (they cannot be separated from the providers), perishability (they
cannot be stored for later use), and variability (their quality depends on who
provides them when, where, and how).
The product model assumes that each of the conceptual levels contributes
additional value to the product. From a practical point of view, the value in
each layer of a product is created in the value chain of a company [Por80],

2.1 Products in General 11

Core
benefit

Actual product

Augmented product

Brand
name

Quality
level

Packaging

Design

Features

After-
 sale
service

WarrantyInstallation

 Delivery
and
credit

Fig. 2.1. Product model with three conceptual levels [KA05].

which consists of activities and processes that contribute to the profit margin
and add value for the customer. The value chain of a company is also linked
to the value chains of its suppliers and customers. Moreover, it has to be
critically remarked that the characteristics presented in the three layers seem
more closely related to physical products and do not always match the broad
product definition without adaptation. For example, “features” may describe
the features of a physical product, but for a person they should be understood
as the abilities which characterize the person. Another critical point is that,
for a given product, it can be difficult to clearly demarcate the boundaries
between the three levels.

A similar product model has been developed by Vershofen [Ver40]. The
model describes a product as having a basic benefit and an additional benefit.
The basic benefit is derived from its physical, chemical, or technical properties
and has problem-solving capabilities, similar to the core benefit of Kotler and
Armstrong. The additional benefit of a product is assumed to be on a “mental”
level. It is influenced by an esthetic design, the package, or the brand prestige.
For example, a very expensive pen has the basic benefit that one can take
notes, but the extended benefit that one can demonstrate the membership in
a particular group. However, the distinction of basic and additional benefit in
this approach is subjective and highly dependent on the view of a particular
customer.

Brokhoff touches some additional aspects in his product definition [Bro99].
From his point of view, a product consists of a bundled, indivisible set of prop-
erties that need not be restricted to physical artifacts (i.e., a property can be
immaterial). The bundling of this set of properties is tailored to a prospective
(known or unknown) user and is intended to be exchanged, and through the
return of the exchange, fulfill the goals of the supplier. For example, the fea-

12 2 Products, Digital Products, Digital Information Products

tures of a particular car (engine and seat type, color), as well as other benefits
like those delivered by services (free repair during warranty period), consti-
tute the bundle characterizing the product “car”. However, in some cases it
might be difficult to exactly define the properties which constitute a product.
The view that products have material and immaterial parts which implement
a product’s functions is also shared by [Gab04].

In the following, the notion of a product will be used in a sense that incor-
porates the main aspects presented previously. Building upon the definition
by Brokhoff, a product will be understood as a bundle of tangible or intan-
gible properties, features, or services, which is offered by a supplier with the
intention to fulfil his goals. Furthermore, the bundle can be tailored to a user.
Each of the product properties is assumed to belong to one of the three layers
of core benefit, actual product, and augmented product, as understood by
Kotler and Armstrong. It is not contradictory to assume that properties con-
tribute to the basic product benefit or to the additional benefit as proposed
by Vershofen.

2.1.2 Classifications

In the literature, a considerable number of classifications for products has
been developed. Therefore, only the ones considered most important for the
following examinations are discussed (cf.Fig. 2.2). For other classifications,
the reader is referred to [Zan02, Gab04, WD05].

Criterion: target group

Criterion: way of gaining

information about product

Criterion: physical nature

consumer products

industrial products

search goods

experience goods

tangible / material products

intangible / immaterial products

Fig. 2.2. Some important product classification schemes

In general, based on the target group who uses the products, two broad
classes are distinguished [KA05]: consumer products and industrial products.
Consumer products are bought by final customers for personal consumption,
whereas industrial products are bought by individuals or organizations for
business purposes.

The classification introduced by Nelson is based on how consumers gain in-
formation about products [Nel70]. It distinguishes between search goods and
experience goods. Search goods are products whose quality can be assessed

2.2 Digital Products and Digital Information Products 13

without experiencing them. Usually, a visual inspection of the product or its
characteristic information suffices to asses all relevant properties prior to pur-
chase (e.g., a TV set). By contrast, the perceived value of experience goods
builds upon the actual experience and the accumulated knowledge using the
product (e.g., a dinner in a restaurant). Therefore, branding, previewing, cus-
tomer reviews, or reputation play an important role for experience goods,
and may help transform experience goods into search goods. For example,
information, as found in a newspaper, is considered to be an experience good
[SV99] – its value can only be assessed after reading it. However, if a consumer
knows a certain newspaper to have high-quality articles, he or she will simply
search for that particular newspaper using its brand name. Some drawbacks
of this classification are that it assumes the consumer to be able to gain and
assess the relevant information, measure the relevant criteria, as well as be-
ing conscious about the experience. For example, the effect of taking vitamin
products may not be directly experienced. Other authors propose additional
dimensions or categories, like credence [DK73]. For example, legal advice as
an experience good may be additionally characterized by the level of trust in
the skills of the advisor [Mef00].

Finally, a classification based on the physical/non-physical or material/
immaterial nature of a product, already mentioned in the context of ser-
vices, distinguishes between tangible and intangible products [Lev81]. In gen-
eral, tangible products have a physical appearance and can be touched, seen,
smelled, or heard, whereas intangible products are not physical in nature. In
practice, however, tangible products can also have intangible properties, as
demonstrated by the example of the expensive pen (see Sect. 2.1.1). Software
is considered as a typical example for an intangible or immaterial product
[Bro95, KRS04]. Although software may produce outputs with physical prop-
erties on a screen or a printer, one has to bear in mind that such outputs are
only different representations generated by the underlying software product.

2.2 Digital Products and Digital Information Products

The general remarks on products presented so far will provide the ground
in this Section for the characterization of special types of products: digital
products, and digital information products as a subcategory. As there is no
general agreed-upon definition of what digital products are, various relevant
definitions and opinions are presented next, and the main aspects are distilled
in a working definition. Afterwards, detailed examples are provided, which
are followed by an analysis of typical characteristics of digital products and
classification of digital products. Finally, a model for value chain of digital
products is introduced.

14 2 Products, Digital Products, Digital Information Products

2.2.1 Definitions

Classic economic theory regards information only as a means to reduce un-
certainty, rather than a tradable good. Therefore, it is proposed in [Loe00] to
extend the view on information and digital content towards a digital product
as “a production asset, a good, and a market attribute”.

This attempt is supported by Wang et al. who advocate managing infor-
mation as a product, in particular by using an analysis of information needs,
well-defined production processes, or dedicated people like product managers
[WLLS98]. Moreover, information products are assumed to have a life cycle
with the stages introduction (creation), growth, maturity, and decline, which
all need managerial attention in order to prevent a deterioration of informa-
tion quality.

In a different approach, Varian views information goods as “anything that
can be digitized – a book, a movie, a record, a telephone conversation” [Var00].
He emphasizes that the definition does not require the information to be
actually digitized to constitute an information good. From this point of view,
one can deduce a subset of digital products as digitized information goods.

Some authors like Leonhardt restrict the notion of digital products to the
product data that represents the real (i.e., physical) product [Leo01]. However,
this view is very restrictive and excludes for example software products which
do not possess associated material products.

Choi et al.’s frequently cited definitions puts forward: “Anything that one
can send and receive over the Internet has the potential to be a digital prod-
uct” [CSW97]. From the context throughout their book, it can be deduced that
the authors do not restrict themselves only to the Internet, but to computer
networks in general. As an example, the authors consider the representation
of information as a digital product. In particular, it should be possible to
compose digital products out of text, data, graphics, video, or audio compo-
nents. Furthermore, Choi et al. state: “All aspects of digital communication
and processing can be considered to be digital products”. Unfortunately, this
definition is not specific enough.

Scupola focuses, in addition to electronic networks, on the value chain:
“A digital product is defined as a product whose complete value chain can
be implemented with the use of electronic networks, for example, it can be
produced and distributed electronically [...]” [Scu03].

A different approach is taken by Hilbert by defining the complement:
“Non-digital products must be physically delivered to consumers” [Hil03].
Furthermore, digital products should should be able to “bypass the [physical]
transport and often even the wholesale and retail network”.

Software in general is often regarded as an intangible, digital product
[Gun78, KRS04, SHT04], and sometimes only if the associated documentation
and data for delivery to the user is also included [IEE90].

In analogy to the general notion of services, Web services could be seen as
a possible counterpart in the digital world (see [CD02] for details). However,

2.2 Digital Products and Digital Information Products 15

Web services are defined only to provide standardized interfaces for enabling
application-to-application communication [W3C07c]. Therefore, it seems in-
appropriate to consider a Web service as a digital product in its own right,
since the actual product properties are essentially derived from the applica-
tions the Web service is connected to. It makes sense, however, to view the
combination of a Web service and the connected applications as a product, in
particular with the Web service as a product feature which offers an abstrac-
tion layer that hides the implementation, eases interoperability, and which
provides composition possibilities to assemble digital products from other ex-
isting digital products.

The main aspects of the presented definitions for digital products are sum-
marized as follows:

Definition 2.1 (Digital Product).
A digital product is a bundle of properties or features which are constituted by
artifacts that are digitized or produced electronically. In addition, the bundle
may have other properties which are intangible and not directly constituted by
artifacts. Digital products can be distributed without loss in purely digital form
(e.g., using computer networks, CDs, tapes, etc.). A digital product serves a
specific purpose (i.e., it has a core benefit), is intended to be a tradable or
exchangeable good, and can satisfy a want or need.

The definition covers many aspects of digital products in a general way. It
characterizes digital products as bundles of properties. However, such a bun-
dle should be divisible, since digital products typically consist of modular parts
which should be easily replaceable, for example during version upgrades. Ar-
tifacts are understood in a way that they may have static properties (e.g.,
they store data) and/or dynamic properties (e.g., functionality in form of
source code or executable programs). The artifacts constituting the product
properties are digitized, i.e., information goods can be mapped to a digital rep-
resentation, or the good is produced electronically right away. Consequently,
the definition includes, for example, digital content, software and the corre-
sponding source code files, files containing process specifications, the artifacts
constituting a Web site, or files needed to implement a Web service. Further-
more, the definition allows other intangible properties to be part of the prod-
uct bundle, which are not constituted by artifacts, like a well-known brand
name, for example. The definition does make any restrictions on the architec-
ture or organization of a digital product. For example, a digital product can
be a monolithic, stand-alone entity, or have a distributed, client-server-based
architecture where an artifact (client) draws upon data provided by another
artifact (server). The digital product consisting of client/server-artifacts is
merely using a different way to manage and organize its storage locations
and functionality, compared to the product which is implemented as a stand-
alone entity. Other important aspects of digital products are the possibility
of lossless transportation, and that they remain in a digital form during the
distribution process. Furthermore, a digital product has to serve a specific

16 2 Products, Digital Products, Digital Information Products

purpose and satisfy a want or need. Lastly, the bundle of properties becomes
a digital product if and only if there is the intention to make it a tradable or
exchangeable good, irrespective of the fact whether the good is offered for free
or not, or whether it is financially successful. In the following it is assumed
that digital products also have three conceptual levels of core benefit, actual
product, and augmented product (cf. [KA05]), and that each of the properties
in the bundle contributes some value to at least one of these levels.

Digital Information Products

Digital information products will be understood as a special category of digital
products:

Definition 2.2 (Digital Information Product).
A digital information product is a special type of digital product whose core
benefit is the delivery of information or education.

Building upon the widely-used definition by [LL03], data will be understood
as “raw facts” which still have to be organized in order to be understood and
used by people, and information as data that has been “shaped into a form
that is meaningful and useful for human beings”. The definition of informa-
tion contains some subjective components (e.g., “meaningful” or “useful”),
but this is inevitable since information is something that arises through the
interpretation by human beings. In some cases, this subjectivity may propa-
gate to the definition of digital information products.

An interesting aspect is that digital information products nowadays consist
of a mixture of information (i.e., content) and software, and that the exact dis-
tinction between contained content and software begins to blur. There exists
a spectrum with different degrees of mixtures where either the information as-
pect or software aspect prevail (see Fig. 2.3). On the one extreme, traditional
software, such as a word processor, may for example incorporate a thesaurus
or interactive help which have the properties of digital information products.
On the other hand, Web pages are for example more content-centric and may
contain also Java applets as additions; another example for a content-centric
mixture is an executable program that contains and displays (possibly with
a password protection) information in plain text. This thesis will concentrate
on digital information products where the information aspect prevails (right
side) and where the core benefit is the delivery of information. Further details
on content are given in Sect. 2.2.5.

2.2.2 Examples

Digital information products are ubiquitous, which is underpinned by the
following examples (see also [CSW97]):

• Electronic newspapers, magazines, journals, books, weather reports

2.2 Digital Products and Digital Information Products 17

Mixture of Content and Software

Spectrum
Software
aspect
prevails

Information
aspect
prevails

Fig. 2.3. A spectrum of digital information products.

• Digital (interactive) stock charts
• Electronic (interactive) travel maps
• Electronic phone books, yellow pages
• Digital audio: speech recordings, audio city guides (e.g., [Aud07]), pod-

casts (which represent published radio programs, spoken articles, or spo-
ken news downloadable from the Internet, usually in MP3 format; see
[KD05, Coc05])

• Digital video: movies (e.g., in AVI or MPEG format [KD05]), television
programs

• Electronic user and training manuals
• Digitized lecture videos with annotations
• Learning content with interactive animations

a) Western Europe Online Content Revenues
Source: EITO 2005

c) Market for Online Content
2004 in Western Europe
Source: BITKOM 2005

15%

33% 52%

b) E-Learning Spending in Europe
2006 Estimates (Euro): 3,635 million

Source: EITO 2003

content

infra-
structure

services

d) Online Revenues of US Newspapers
2004-2005, in billions

Source: eMarketer, August 2005

Online-Music
Online-Games

Online-Video
Online-Publishing

Not included: online business content and online education

7 55 70 102

515 73 87

7 58 43 95

6 55 41 95

3 35 36 59

France

Italy

Germany

UK

Spain

235

216

204

197

134

0 20 40 60 80 100 120 140 160 180 200 220 240

Euro
Million

2003 2004 2005

12,000

8,000

4,000

0

Euro Million

Total consumer
online content

Total business
online content

$1.03

$1.40

2004

2005

Fig. 2.4. Statistics related to digital products and digital information products.
Sources: [EIT03, EIT05, eMa05, BIT05].

18 2 Products, Digital Products, Digital Information Products

Figure 2.4 visualizes the economic importance of digital products and dig-
ital information products. There are estimations even claiming that over 90%
of the information currently created is in digital format, and it is expected that
much of the non-digital content will be digitized [Var05]. For statistics cover-
ing other aspects, the reader is referred to [LVS+03, EIT03, EIT05, eMa05,
BIT05, BIT06].

A digital newspaper

Digital products or digital information products which are the digitized coun-
terparts of existing physical products, have the potential to offer new kinds
of features which were previously impossible to deliver. For example, the core
benefit of a digital version of a newspaper remains the provision of infor-
mation (which qualifies it as a digital information product). In the actual
product layer, however, the digital newspaper can provide more up-to-date in-
formation, or seamless integration of content from a variety of online sources.
In addition, the digital newspaper can be equipped with interactive, full-
text search capabilities, personalized information filtering, or clickable cross-
reference links. The augmented product layer may offer additional index or
table of contents alerts delivered regularly via e-mail.

Google Earth

The Google Earth system [Goo07] is a digital product offering access to a ge-
ographic database of the whole world, along with interactive 3D visualization
capabilities. The core benefit of the product is primarily targeted towards the
provision of orientation and navigation information, and covers educational
aspects as well – it is, therefore, a digital information product. At the actual
product level, satellite and aerial imagery are offered, which can be navigated
using the mouse or exact coordinates. Other features are the possibility of
overlaying other pictures (e.g., showing actual damages after a hurricane, his-
toric sites, city maps). Depending on the price a consumer is prepared to
pay, Google offers – in a product line – different features and different con-
tent, such as overlayed traffic information, risk information for insurances,
real estate site analysis, environmental information, shipment and container
tracking, or security information.

2.2.3 Characteristics of Digital Products

Digital products (and consequently, digital information products) have some
characteristic properties which distinguish them from other types of products
[CSW97]. The characteristics considered most relevant are discussed next.

2.2 Digital Products and Digital Information Products 19

Indestructibility

Digital products are indestructible in the sense that after they are created
there is no wear and tear, so that a product could be used for ever [CSW97].
This has important implications, since a supplier of digital products will com-
pete with his own products already sold in the past, and may quickly face
saturation effects in the market. Furthermore, since digital products cannot
be “consumed” just like physical products (i.e., the usage has no impact on
the quality), a used digital product is equivalent to a new one. Therefore, to
maximize profits, there is hardly any other escape except licensing the usage of
a digital product (like charging a usage fee during a period while the product
continues to exist), or providing different versions of it [Var97, SV99].

More specifically, versioning – which may provide different qualities of a
digital product– can be done along a time dimension (e.g., the next release has
some bugs removed) or a space dimension, where basically versions of the same
product are offered at the same time with different sets of features. A more
thorough economic analysis of the latter approach – which essentially results
in a product line for digital products – has been done in the literature by
Meyer et al. [MZ96] and Varian [Var97]. Several versions of the same product
with different sets of features additionally have a diversification effect: the
inexpensive version may generate revenue during recessions, while the most
expensive one might bring additional profits during boom periods. Shapiro
and Varian also attribute psychological effects to versioning, since for example
from three possible product versions (e.g., light/basic/premium), undecided
customers might preferably choose the basic version in the middle [SV99]. The
versioning of digital products in a product line may be done, for example, w.r.t.
time delay or quality of updated information, convenience of user interface,
image resolution, supported file formats, comprehensiveness, programmatic
features, annoyance, or support.

It has to be critically remarked that indestructibility, as understood in the
literature [CSW97], assumes a well-working, secure environment. It neither
considers hardware failures which may destroy the digital representation, nor
harmful modifications by malicious software such as computer viruses.

Transmutability

Due to their digital nature, digital products are easy to modify. On the one
hand, this is advantageous because digital products can be customized easily.
On the other hand, this makes it extremely difficult to prevent unauthorized
copying or modification to circumvent copyright protections.

Reproducibility

Digital products can be easily reproduced, transferred, or stored. This can be
done without loss, so that there is no distinction between the original product
and the duplicated one.

20 2 Products, Digital Products, Digital Information Products

Cost Structure

As investigated in the literature [CSW97, Var00, KT02], digital products have
a characteristic cost structure:

• There are high fixed costs for production and low marginal (or variable)
costs for reproduction. In particular, the fixed costs that are usually in-
curred before production are not recoverable in case of failure, i.e., they
are sunk.

• Due to the easy reproducibility, the marginal costs of production are al-
most zero. However, there are some exceptions where this does not apply,
for example, if components with copyright fees are used, which are calcu-
lated on a per-unit basis.

• As the marginal costs are almost zero, the pricing of digital products can-
not be based on the cost structure. It is generally agreed upon that more
creative pricing is needed for digital products, for example by creating dif-
ferent versions for different customers or groups of customers, and charging
the maximum price they are willing to pay (price discrimination).

• Digital products may have extreme economies of scale, since (apart from
necessary hardware) there are almost no limits to the production of ad-
ditional copies. Once the fixed costs are recovered, every additional unit
sold represents almost pure profit.

The investigated properties have a direct influence on the way digital infor-
mation products are developed, as will be shown later.

2.2.4 Classification of Digital Products

As there is no uniform definition of digital products in the literature, classi-
fication schemes for digital products either do not exist or have only limited
applicability under the specific view of an author. For example, Hilbert in-
troduces the “degree of digitality” notion to classify goods [Hil03]. He distin-
guishes between goods that will never be digitized (like food), goods highly
susceptible for digitization which are hardly distributed physically (like soft-
ware), and goods that will eventually get digitized, but face – from his point
of view – technical or habitual obstacles at the moment (like movies). Other
authors apply the search goods/experience goods classification (discussed in
Sect. 2.1.2) also in the digital world [SV99]. It is also conceivable to use file
types for categorization. However, the latter is still subjectively dependent on
what information a user stores inside. Choi et al. have compiled a list of vari-
ous criteria for a taxonomy that is objective and general enough to be in line
with the notion of digital products discussed so far [CSW97]. The proposed
criteria to categorize digital products are presented below:

1. Transfer mode
This criterion refers to how digital products are obtained and how they
access data. In particular, two sub-categories are distinguished:

2.2 Digital Products and Digital Information Products 21

• Delivered products
Such products are downloaded from some location and become avail-
able in their entirety after download (e.g., a book in PDF format).

• Interactive products
As an integral part of these products, they require (even after a down-
load) a continuous connection and real-time communication with a
server or other clients (e.g., interactive games, real time video-on-
demand education).

2. Timeliness
Timeliness measures the freshness and up-to-datedness of the information
contained in a digital product. A digital product can be created to be
time-independent or time-dependent.

• Time-independent
In a general sense, time has only a minor influence on the value of a
digital product or the way the product is used.

• Time-dependent
Information is time-related, and has a significant influence on the us-
age of the product, which can be valued differently by different users.
For example, for certain users information can become nearly worth-
less when it is out-of-date (e.g., news or stock quotes), while other
users (e.g., scientists) may value it differently.

3. Intensity in use
This distinguishes between how often a digital product is used and which
utility can be expected.

• Single-use products
These products are used exactly once and are no longer needed after
the intended purpose is served (e.g., a news collection for a particular
day).

• Multiple-use products
Products in this category are used more than once, and the total util-
ity can increase after every usage. However, the utility growth rate
can have different shapes for different products. For example, an in-
creasing growth rate may be related to a software product that can
be operated more efficiently after many uses; a decreasing growth rate
is imaginable for a computer game which becomes boring; a constant
growth rate can be expected from the usage of a movie database

4. Operational usage
This aspect is used to distinguish whether a digital product is a static
document or an executable program. This is important since it can help

22 2 Products, Digital Products, Digital Information Products

control the way a consumer uses a digital product.

5. Focus on externalities
This criterion should characterize effects that are not directly attributable
to the digital product itself, but which come along with its usage. The
value of a digital product can be influenced depending on how many people
use it. It is distinguished between:

• Positive-externality products
The value of these digital products increases with the number of users
they are distributed to (e.g., chat rooms, online games).

• Negative-externality products
By contrast, the value of these digital products decreases with the
number of users (e.g., exclusive news for stock market investors).

Although the presented criteria for a taxonomy of digital products may
not cover any conceivable aspect, they simplify a comparison of existing dig-
ital products (which can be found, for example, on the Web), as well as the
derivation of various strategic decisions. For example, delivered digital prod-
ucts could be changed to become interactive, in order to increase customer
loyalty. To bypass the saturation problem when selling digital products with
an infinite life span, the timeliness of a time-independent product can be ar-
tificially changed to become a time-dependent product. This way, outdated
products will no longer be useful and leave more room for reselling. Another
strategy might sell the up-to-date products for a fee and give the outdated
products away for free – allowing potential customers to assess and experience
the product (like an experience good). It might also be desirable to turn single-
use products into multiple-use products. For example, news can be collected in
archives for historic purposes; books, articles, or scientific papers can be col-
lected in electronic libraries, adding a reference character to the collection as a
whole. The operational usage of a digital product may help enforce copyright
restrictions. A static document may not be able to enforce any restrictions.
However, it is possible to deliver the document embedded into an executable
program which restricts, for example, the viewing and printing capabilities.
Finally, positive externalities can help boost sales for digital products. For
example, vendors of shareware or freeware products may build up a customer
base by giving away a basic version for free and charging for a premium ver-
sion with additional features. Positive externalities are also vital for vendors
of operating systems or software platforms, as an increasing number of users
puts pressure on application developers to deliver compatible software – a
process which, in turn, attracts new users (who benefit from a wider choice of
compatible software) and creates entry barriers for other vendors of operating
systems or software platforms.

2.2 Digital Products and Digital Information Products 23

2.2.5 The Value Chain for Digital Information Products

The discussion of digital products so far has not given details on how the
value pertaining to the assumed product model layers consisting of core prod-
uct, actual product, and augmented product, is created. It is generally agreed
upon that the value or supply chain for digital products is itself also digi-
tized [BW95, KR00]. To some extent, pure software can be a digital prod-
uct if it satisfies the requirements of Def. 2.1 in Sect. 2.2. Therefore, typical
software process models like the well-known waterfall model [Roy70], the V-
model [Koo92, Bun04], the spiral model [Boe88], evolutionary development
[Som04b], or the Rational Unified Process [IBM07] can be integrated into a
value chain for digital products. In the following, however, this would lead to
a too broad discussion and therefore, the main focus will be adjusted only
to digital information products. Thus, further details on software develop-
ment process models are not discussed here, and the reader is referred to
[Som04b, Pre05] for an overview.

Content
Creation

Content
Packaging

Market
Making

Transport
Delivery
Support

Interface
and

Systems

Content

Infrastructure

Fig. 2.5. Electronic publishing value chain [Eur97]

For digital information products, the value chain model put forward by the
European Commission, originally developed for the electronic publishing (cf.
Fig. 2.5), provides a reasonable abstraction which captures the most relevant
activity areas for value creation [Eur97]. This model is also termed as the “2-
3-6-concept” because it contains two dimensions (aligned horizontally) each
of which is divided (vertically) into three stages, yielding a total of six process
areas [SLS02]. The content dimension focuses on the creation of content, its
packaging, and marketing. The infrastructure dimension covers communica-
tion and delivery aspects with the areas transport, delivery and support, and
interface and systems.

Applied to digital information products, content creation includes the dig-
itization of information goods or the creation of digital content. It must
be emphasized that content nowadays consists of far more than of mere
static text (in formats like ASCII, XML [HM04], HTML [W3C07a], MS-Word
[Mic07]), but also of interactive animations (e.g., created with Macromedia

24 2 Products, Digital Products, Digital Information Products

Flash [Mac03]), sound (e.g., WMV, MP3 [KD05]), video (e.g., AVI, MPEG
[KD05]), or embedded programs (e.g., Java Applets [Sun07]) [OPS06]. In ad-
dition, the clear distinction between content and genuine software begins to
blur, since embedding interactive functionality into content goes hand in hand
with software development (see for example [PW98, DEH+00]). Therefore,
content creation is intertwined with software development, and thus details
will be gradually developed and discussed throughout this work. After the
content is available, it has to be packaged for distribution. This is usually
done by adding so-called metadata (which is data describing data) like key-
words, cataloguing information, abstracts, etc. In addition, content may be
compressed or embedded into executable programs which act as containers
or wrappers (similar to packaging in Fig. 2.1) that allow users to install it
to a specified location. Executable programs may also help restrict the way
content is used, for example, by disallowing printing. In the market mak-
ing area, strategies are developed (e.g., using the classification introduced in
Sect. 2.2.4) for availability of a digital information product, customer access,
licensing, or pricing. Digital information products are frequently offered in
electronic markets [CSW97] where customers can access, purchase and down-
load digital information products from several suppliers, and which act as a
medium for communication and distribution 1.

In the infrastructure dimension, the transport activity area deals with the
transfer of the digital information product over electronic networks, whereas
the delivery and support area targets activities such as Internet access, server
platform management, bandwidth guarantees, or payment-process systems
[SS97]. The interface and systems area provides the necessary hardware com-
ponents (like terminal computers, Internet connectivity) as well as the soft-
ware components for user interfaces. It should be mentioned that various types
of specialized systems have evolved which can support different aspects of the
work with digital information products, like for example Document Manage-
ment Systems (DMS), Content Management Systems (CMS), or Workflow
Management Systems (WFMS). DMS are used to facilitate the activities oc-
curring during the lifecycle of documents (which are, in fact, digital infor-
mation products) like creation, storage, retrieval, publishing, modification,
change and configuration management, or archival [GSMK04]. By contrast,
CMS focus on the creation of content in collaborative and distributed envi-
ronments and allow the assignment of roles (like author, editor, publisher,
administrator) and responsibilities to different persons, i.e., the system im-
poses restrictions on who is allowed to do certain manipulations. The creation
and presentation of content are often separated in that an author may fo-

1 As an aside, it should be mentioned that there are several points of view of what
an electronic market is, e.g., “networks that let customers compare and order
offerings from competing suppliers” [MYB89], or a medium for price negotiation
and completion of ordering transactions [Mer02]. As such details on electronic
markets are not relevant for the further argumentation, the reader is referred to
[DDL01] for an overview and discussion of different definitions.

2.3 Summary and Discussion 25

cus on the creation of a text file, after which it is automatically processed
by the system to have a predefined presentation layout and colors, and pub-
lished in a specified location (e.g., on the Web). Various CMS and subtypes
of CMS are presented in [Bau05]. WFMS emphasize the aspect of structured
and repeatable collaborative work and usually have a predefined workflow
model (i.e., a description of a real-world process which can be executed by
computers [LR99]) which specifies how the work is performed by the actors
involved (i.e., people or other computers). A workflow model specifies which
digital products are created by which actors, as well as how and when they
are forwarded to other actors. During execution, the WFMS creates instances
of the workflow model which contain the specific paths taken by a particular
digital product. An overview of WFMS and their history is given in [WK96].
It finally has to be noticed that many available systems implement an over-
lapping functionality using concepts from DMS, CMS, as well as WFMS. A
detailed comparison is offered in [GSMK04]. Details on other related types of
systems not discussed here as well as a vendor comparison can be found in
[CMS05].

Overall, the presented value chain model represents a rough framework
from which one can derive more detailed processes for the creation and dis-
tribution of digital information products. Furthermore, it can also be used as
a means for analysis and categorization of suppliers in the market of digital
information products, or as a means to develop positioning strategies. For ex-
ample, [GSNHS03] use the presented framework to develop strategies in the
context of scientific libraries, virtual universities, and e-learning.

2.3 Summary and Discussion

This Chapter is one important pillar for the analysis to follow. Based on dif-
ferent opinions found in the literature, it elaborates a definition for products
in general, and introduces product classifications considered relevant for this
work. Building upon this, digital products are presented as a special type of
products with special properties. As a further specialization of digital prod-
ucts, digital information products have a core benefit restricted towards the
delivery of information or education. Throughout the Chapter, a conceptual
model with three layers – core product, actual product, and augmented prod-
uct – is assumed to be underlying all types of products. The model for the
value chain in electronic publishing is used to identify important areas for
the creation of digital information products. One important insight of this
Chapter is that the viability and success of digital information products in a
commercial environment is highly dependent on their typical characteristics –
which are different from traditional (physical) products. At the bottom line,
the analysis reveals for digital information products that:

• from a market-based view, versioning and the generation of variants
are indispensable.

26 2 Products, Digital Products, Digital Information Products

• from a production-based view,
– production is difficult; reproduction is easy.
– the fixed costs of production represent the biggest part of the

total production costs and have a significant influence on profits.

These insights and the realization that digital products can be time-
consuming to create and maintain [Sch03a] motivate the methodologies to
be developed in the next Chapters. The main questions to be answered are:

• How can different versions of a digital information product be efficiently
created, managed, and reused?

• How can the fixed costs of the production of digital information products
be reduced, using a systematic approach?

The research on software product lines (to be presented in Ch. 4) will provide
an important basis for a solution that will address both questions.

3

Digital Information Products in the
E-Learning Domain

This Chapter presents e-learning as a field in which digital information prod-
ucts are already intensively used. The main purpose is to provide a more
profound understanding of the concepts discussed so far by focusing on this
particular domain, and identify potential general problems which can be de-
rived from various practical examples.

After a clarification of the notion of e-learning, the activity areas of the
value chain for digital information products introduced in Fig. 2.5 will be
exemplified in the context of e-learning. Starting with the infrastructure di-
mension, existing types of systems will be described. In the content dimension,
the existing approaches of content creation, metadata and content packaging,
and market making will be discussed. Based on the given details, the existing
approaches will be evaluated to identify potential problems and open issues.
Finally, a discussion of the results reveals the problem areas which will be
further elaborated on in the thesis.

3.1 Notion of E-Learning

E-learning is a special form of distance education. Historically, distance ed-
ucation started already in the 1800s in a for-profit school in England which
delivered courses by mail to rural residents, who thus were able to receive
education independently of time and place [NM05]. With the development of
technology, other media were used for delivery, like for example radio or tele-
vision in the 1950s and 1960s, which are still used today. Later, in the 1990s,
the ubiquitous availability of computers drove the development of computer-
based training (CBT) with courses distributed on CD-ROM, while the In-
ternet facilitated the delivery of Web-based training (WBT). WBT offered a
wide range of new possibilities for synchronous learning (with same-time in-
teraction between actors, independently of their locations) using for example
audio and video conferencing, electronic whiteboards, screen sharing, instant
messaging, chat, as well as possibilities for asynchronous learning (where both

28 3 Digital Information Products in the E-Learning Domain

time and location of actors are different), like e-mail or discussion boards. To-
day, synchronous and asynchronous distance learning is often used in a mix
with classroom learning, which is termed blended learning. In the following,
e-learning will be understood as defined by the American Society for Train-
ing and Development (ASTD), a large association dedicated to workplace
learning [KL05]: “E-learning (electronic learning): Term covering a wide set
of applications and processes, such as Web-based learning, computer-based
learning, virtual classrooms, and digital collaboration. It includes the delivery
of content via Internet, intranet/extranet (LAN/WAN), audio- and videotape,
satellite broadcast, interactive TV, CD-ROM, and more”. Various aspects of
other definitions related to e-learning are discussed extensively in [Kle02].

3.2 Infrastructure and Systems Architecture

Most of the current e-learning systems have a conceptual architecture which
can be described using the reference model depicted in Fig. 3.1. In the refer-
ence model, people are supposed to play different roles. Using an authoring
system, learning content is created by teachers or teaching assistants. The
authoring system may interact with a Learning Management System (LMS),
managed by administrators, to transfer content. An LMS is typically used to
ease collaboration, workflow or administrative tasks, like for example, student
registration, scheduling of events, storage and delivery of learning material,
execution of online tests, or progress tracking [ACP01].

Authoring

System

Run-Time

System

Learning (Content) Management System

L(C)MS

Data Storage

Content

Creation

Learning/

Coaching

People

Administration

Exchange: Learning Objects

(Digital Information Products)

Fig. 3.1. A reference model for e-learning systems [OPS05].

Some LMS additionally offer content management functionality (cf. Sect.
2.2.5) along with standardized interfaces for content development and format-

3.3 Learning Objects as Digital Information Products 29

ting, where the authoring component becomes itself part of the LMS. Such sys-
tems were termed Learning Content Management Systems (LCMS) [Bau05].
However, since current e-learning systems often provide features from both
worlds, LMS and LCMS [HK03], this distinction is not further emphasized,
and this is expressed by using the acronym L(C)MS instead [PSS04]. The data
drawn from the L(C)MS is presented to the learners using a run-time system
or module which implements a presentation layer. This module is actually used
by learners for learning or by teachers for coaching. The technical realization
of authoring system, L(C)MS, and run-time system may range for exam-
ple from local, monolithical architectures, to Web-based, distributed architec-
tures [HK03, TDN03] or to architectures focusing on mobile devices [TR03].
Examples of projects using Web-based L(C)MS are Web Life Long Learn-
ing (W3L) [BBZ04], Wirtschaftsinformatik Online (WINFOLine) [ESSW01],
Virtual Global University (VGU) [PS05b]. Other e-learning reference models
focusing on different aspects can be found in [BBSS01, DT06b, STBZ+05].

Learning material usually has to be exchanged between the presented mod-
ules, as well as between different L(C)MS of different vendors. As a solution to
this problem, the concept of Learning Objects was created, which is described
next.

3.3 Learning Objects as Digital Information Products

The creation of learning material is expensive. For example, the ASTD of-
fers as a rule of thumb 40 hours of development for 1 hour of classroom
training, and 200 hours of development for 1 hour of computer-based train-
ing [NM05]; [Iss02] offers 625 hours of development for 1 hour of video-based
training. Therefore, reuse of already existing material, as well as the interop-
erability and interchangeability of content between different L(C)MS, is an
important issue which triggered the creation of so-called Reusable Learning
Objects or Learning Objects (LOs). According to the literature, it is possible
that the term “Learning Object” was popularized by Wayne Hodgins in 1994
[Wil02, Pol03]. LOs are supposed to be packaged, reusable granules of learn-
ing content, annotated by standardized metadata to facilitate classification
and retrieval. Beyond this agreement, there is no precise definition at the mo-
ment of what an LO is. For example, [Wil02] defines an LO as “any digital
resource that can be reused to support learning”, while the IEEE LOM stan-
dard (which will be discussed in Sect. 3.3.2) defines an LO as “any entity –
digital or non-digital – that may be used for learning, education, or training”
[IEE02]. Furthermore, LOs have not much in common with object-oriented
programming, since they mainly encapsulate data and only in a very limited
sense methods [Kno04]. However, most of the definition attempts have in com-
mon that LOs satisfy all properties of digital information products (cf. Sect.
2.2).

30 3 Digital Information Products in the E-Learning Domain

Transport
Format

Metadata
Format

Content
Format

Fig. 3.2. An “onion model” of learning objects [PV05].

Although a precise definition of LOs is lacking, the technical structure
of LO can be described using three conceptual levels, as depicted in Fig.
3.2. The onion model of learning objects distinguishes between the actual
content, metadata about the content, and packaging information for transport
purposes. With respect to what will be described in the following subsections,
the core benefit of an LO is delivered through the learning content which is
typically encoded in formats like (ASCII) text, MS-Powerpoint [Mic07], MS-
Word [Mic07], Acrobat PDF [Ado05], HTML [W3C07a]. There are currently
several metadata formats or guidelines for LOs (discussed in Sect. 3.3.2), like
AICC, Dublin Core, ARIADNE, IEEE LOM, IMS, or SCORM CAM. As
transport format, XML [HM04] or RDF [W3C07b] are widely used. The next
subsections present more details for each of the layers in turn.

3.3.1 Content Creation

Learning content is typically created using authoring tools. Although in many
cases LOs are regarded as traditional documents (e.g., a MS-Powerpoint file),
various content models have been developed that specify an inherent, more
general structure [VD04].

For example, the Learnativity Content Model [DH03] distinguishes be-
tween five different levels of content: 1) content assets at the lowest granular-
ity level represent raw media elements (e.g., sentences, paragraphs, pictures,
audio and video files); 2) information objects are sets of raw media elements
and represent concepts, facts, or principles; information objects can be assem-
bled to 3) learning objects which serve a single learning objective, and which
may include practice and assessment elements; 4) aggregate assemblies are
components with multiple objectives (e.g., chapters, lessons); 5) collections,
as a set of aggregate assemblies represent courses or curricula.

By contrast, the Sharable Content Object Model (SCORM) Content Aggre-
gation Model (CAM) [DT06a] distinguishes between the levels: 1) assets are a
basic form of text, images, sound, etc; 2) Sharable Content Objects (SCO) are
a collection of one or more assets, and one of these assets must be “launch-

3.3 Learning Objects as Digital Information Products 31

able” in the run-time environment of a SCORM-compliant LMS; 3) activities
represent meaningful units of instruction; 4) content organization links activi-
ties to resources in 1) and 2); 5) content aggregation describes a whole content
package along with sequencing and navigation details.

In the CISCO RLO/RIO model [BL01], a Reusable Learning Object (RLO)
has a fixed structure consisting of 7 ± 2 more fine-grained Reusable Infor-
mation Objects (RIO), and additionally, a part on overview, summary, and
assessment. It is assumed that the complete RLO serves a single learning
objective.

The NETg model [L’A97] has four levels of content types: 1) courses may
contain 2) units that consist of 3) lessons which themselves have several 4)
topics. A topic corresponds to an LO with a single learning objective, and it
also has assessment parts.

Finally, it has to be remarked that the notion of an LO is used in different
ways by the different models, which can be attributed to the non-existing
general definition of LOs [Wil02]. The presented models are discussed and
compared in more detail in [VD04].

3.3.2 Metadata and Packaging

At the moment, there exist a variety of metadata standards and recommen-
dations in the area of e-learning, which also cause confusion and misunder-
standing. As depicted in Fig. 3.3 a), some metadata standards also use parts
of other standards, for example by selecting a concept, or a subset of meta-
data elements and related value sets (often called an “application profile”
[NDTN03]). This somewhat intricate situation is not only the result of a lack
of consensus, but is also influenced by the way committees collaborate to
create e-learning standards [Duv04]. As shown in Fig. 3.3 b), there are basi-
cally two camps: organizations or consortia who produce specifications, but
who do not have the authority to create standards (e.g., the main players
IMS [IMS07], ARIADNE[ARI07] , ADL [DT06b], AICC [Avi07]), and accred-
ited organizations who may use the specifications to create standards meeting
the needs of the whole domain (e.g., CEN [CEN07], IEEE LTSC [IEE05] ,
ISO/JTC1/IEC [ISO05]). The most important links between standards and
committees are explained next.

The intention of the Aviation Industry CBT (Computer-Based Training)
Committee (AICC) is to “assist airplane operators in development of guide-
lines which promote the economic and effective implementation of computer-
based training (CBT)” [Avi07]. The guidelines and recommendations, e.g.,
for interoperability, Computer Managed Instruction (CMI), or testing proce-
dures, are general enough to be adopted beyond their initial scope. The AICC
coordinates its efforts with IEEE LTSC, ADL, and IMS [HC00].

The Dublin Core (DC) initiative defines a small set of metadata ele-
ments, originally used for content in digital libraries, for the description of

32 3 Digital Information Products in the E-Learning Domain

ARIADNE

IEEE LOM
UK LOM Core

CELTS

CanCore

SingCoreIMS

Dublin Core
EdNA

ADL SCORMAICC

DC-ED

ADL AICCARIADNEIMS

CEN IEEE LTSC

ISO/JTC1/IEC

Creation of specifications/requirements

Publication of standards

a) b)

Fig. 3.3. a) Metadata standards/recommendations for learning objects; b) Collab-
oration for standardization in e-learning between the leading committees; based on
[NHHMA03, Duv04].

LOs [ISO03a]. There are 15 elements related to content (title, subject, de-
scription), intellectual property (creator, publisher, contributor, rights), and
document instances (date, type, format, identifier, source, language, relation,
coverage) [PV05]. Additionally, an abstract model can be used which spec-
ifies how to create controlled vocabularies following encoding guidelines for
the elements. Very often, DC elements are embedded into HTML (via meta
tags), XML, or RDF. There are also parsers for automatic extraction of some
elements from Web pages (e.g., [Des07]). Various extensions of DC have been
proposed, which have additional descriptors for e-learning resources, like for
example DC-ED which was proposed in a working group of DC, and which
also draws upon IEEE LOM and IMS (described later). The EdNA (Edu-
cation Network Australia) Metadata Standard [EdN06] is another standard
which builds upon DC. Concerning the element set of DC, it has to be crit-
ically remarked that an empirical study with more than 910,000 analyzed
records revealed that some elements are heavily used (e.g., creator, identifier,
title, date, type were used in more than 70% of the cases), while there was
almost no usage of the remaining elements [War03].

The Alliance of Remote Instructional Authoring and Distribution Net-
works for Europe (ARIADNE) [NDTN03] is involved in the creation of meta-
data standards as well as in the provision of a “Knowledge Pool System” as
a distributed repository of LOs. The ARIADNE metadata has data elements
divided into six categories: general, semantics, pedagogical, technical, index-
ation, and annotations. These were used as a starting point for the IEEE
LOM standard (described later). At the moment, the ARIADNE metadata is
a subset of IEEE LOM (see [NDTN03] for details on mappings). An empirical
study of 3700 metadata instances collected during 7 years in the ARIADNE
Knowledge Pool System shows that many elements are used only in about
50% of the cases, while other are hardly ever used. [NTD03]. In addition,

3.3 Learning Objects as Digital Information Products 33

LOs are most frequently (in decreasing order) of type narrative text, exercise,
hypertext, slides, self assessment, questionnaires and videos, while the most
common file types are HTML, PDF, MS-Word, and MS-Powerpoint.

The working groups of the Learning Technology Standards Committee
(LTSC) of the Institute of Electrical and Electronics Engineers (IEEE) de-
fined several standards covering various aspects of e-learning systems, which
are for example related to architecture, digital rights management, computer
managed instruction, or Learning Object Metadata (LOM) [IEE02]. The meta-
data specification of LOM has more than 60 elements divided into nine cat-
egories: 1) general (describing an LO as a whole), 2) lifecycle (related to the
evolution of an LO), 3) meta-metadata (information about the metadata),
4) technical (technical characteristics of an LO), 5) educational (pedagogi-
cal characteristics of an LO), 6) rights (property rights and terms of use),
7) relation (specification of “links” between LOs), 8) annotation (change in-
formation), 9) classification (easing retrieval). All elements defined in this
standard are optional, and the standard even allows different levels of “con-
formity” (i.e., customized extensions of elements are possible) which may lead
to interoperability problems in practical situations [PV05]. Whenever possi-
ble, the standard uses controlled vocabularies (i.e., a predefined value space)
for the attribute domains, and parts of it can be mapped onto Dublin Core
[IEE02].

A survey conducted by the ISO/IEC committee has analyzed 250 instances
of different repositories with respect to the usage of LOM elements [Fri04a]. It
found out that the vocabularies used were inconsistent, and that only few of
the elements were used frequently, while the remaining ones were hardly ever
used. In particular, most of the elements in the educational category were used
in less than 30% of the cases, which is paradoxical for a standard intended
for the description of educational resources [POS05]. These findings raise the
suspicion that there are too many elements in LOM, and may help explain
why there are so many adaptations or application profiles of LOM [DH03].
Various other metadata standards are based on LOM: ARIADNE, UK LOM
Core [UK 07], CanCore [Can04], or SingCore [Ng01]. CELTS, in turn, is a
subset of CanCore [ISO03b].

The IMS Global Learning Consortium, originally initiated as the Instruc-
tional Management System (IMS) project, develops specifications for differ-
ent areas of e-learning, like for example content packaging and sequencing, or
question and test interoperability (there are more than 20 areas, see [IMS07]).
Compared with other specifications, the IMS Content Packaging defines more
details of the structure of an LO, with respect to “content resource aggrega-
tion, course organization, and meta-data” [IMS04]. In principle, an LO is seen
as a stand-alone package of content that “can be delivered independently, as
an entire course or as a collection of courses”(cf. Fig. 3.4). The package consists
of physical files (e.g., files of type MS-Powerpoint, PDF, MS-Word, HTML)
and a manifest. The manifest contains metadata (e.g., in IEEE LOM format),
an organizations section describing possible course outlines and an order of

34 3 Digital Information Products in the E-Learning Domain

logical resources, a resources section defining available logical resources and
their connection to physical files, and (optionally) other sub-manifests. Other
details on IMS are discussed in [PA01, Duv04].

Organization

Item

Item

Item

Item

Item

Item

Package

Manifest

Physical Files

Meta-Data

Organizations

Resources

(sub)Manifest(s)

Resource

Resource

Resource

Resource

Fig. 3.4. IMS Content Packaging

Finally, the Advanced Distributed Learning (ADL) Sharable Content Ob-
ject Model (SCORM)[DT06b] follows a different strategy: it tries to integrate
the best of other standards into one standard. The proposed Content Aggre-
gation Model (CAM) [DT06a] uses metadata specifications from IEEE LOM,
content structure derived from AICC, and sequencing and content packaging
from IMS. SCORM-compliant L(C)MS have to implement an activity tree,
which is a data structure describing the conceptual content structure. For
each learner, learning resources are mapped to the nodes of the tree, which
represent learning activities. In addition, SCORM describes the conceptual
structure of run-time environments for LOs with respect to interfaces, commu-
nication mechanisms, or temporal session models. SCORM is widely discussed
in the literature, for example in [HC00, PA01, NHHMA03, Duv04, VD04].

3.3.3 Market Making

E-learning is on the verge of becoming a business, and education is perceived
to be probably the world’s largest information industry [HWV96]. Electronic
markets for sharing of LOs are beginning to emerge in form of Web-based
repositories, like for example ARIADNE [ARI07], CAREO [CAR07], Merlot
[MER07], EdNA Online [EdN07], EducaNext [LMQS03], Smete [SME07], or
Intute [Int07]. With respect to the classification introduced in Sect. 2.2.4,
the LOs found in the repositories are mostly delivered (although a few might
have interactive components with synchronous communication capabilities);
many LOs are time-independent, as they consist in many cases of simple files
(see also studies mentioned in Sect. 3.3.2); LOs are intended for multiple
use; LOs can be or contain static documents or executable programs (e.g.,
based on Java or Macromedia Flash [Mac03]; see also [BMB04]); some LOs

3.3 Learning Objects as Digital Information Products 35

using components supporting synchronous communication may have positive
externalities as the user base grows.

However, there are still many obstacles to overcome, like for example qual-
ity problems [Bos03, Som04a], or a closed marketplace with limited opportu-
nities for selection [Dow03]. An empirical study of the e-learning suppliers’
market in Europe found out that the market for learning content is still very
immature and that it actually consists of several segments (higher education,
workplace learning, vocational education and training, schools segment, home
segment) [Dan05]. Furthermore, most e-learning is delivered as blended learn-
ing to on-campus students. It also seems to be difficult to motivate teachers
to share LOs freely and ensure that LOs are fully interoperable. In the overall
market there is little revenue growth, which makes competition tough. The
market participants thus have to drastically reduce costs in order to be prof-
itable. In addition, viable business models still have to be found, which is also
an area of research [EER02, SW05].

3.3.4 Evaluation of the Concepts behind Learning Objects

Despite the fast-paced developments in the e-learning field, many concep-
tual aspects related to LOs and reuse of courseware are still in their infancy
[Dod02], which contradicts the wide-spread belief that the current problems
in e-learning are only a matter of better standardization. This becomes obvi-
ous during the practical creation of courses based on LOs, which reveals that
suitable LOs are hard to find in repositories, and that LOs obtained from
repositories often do not “fit” together because of a mismatch with respect
to file type, structure, layout, didactics, or presentation (see also empirical
case-studies in [CA04]). Furthermore, metadata standards in e-learning do
not try to integrate the metadata already contained in various file types, like
for example in PDF, MS-Powerpoint, MS-Word, or MPEG. An evaluation of
technical, didactic, and economic problems of LOs are discussed next, and the
possible roots of the problems are outlined.

Technical Aspects

The LO paradigm has much in common with component-based software devel-
opment, which is a reuse technique whose idea is to build software from exist-
ing tradable and exchangeable components rather than from scratch; similarly,
in the LO paradigm, e-learning courses are constructed using LOs as compo-
nents. This technical similarity is used here to evaluate the LO paradigm
from the perspective of component-based software development, as the lat-
ter has similar problems to solve and obstacles to overcome. Moreover, it
has been already mentioned that the boundaries between content and soft-
ware begin to blur. Compared to the relatively young developments in the
LO area, the field of component-based software development is more than 35
years old (see [McI68] for an initial paper) and offers theoretical concepts and

36 3 Digital Information Products in the E-Learning Domain

empirical findings which are highly valuable for LOs. A software component
is generally understood as “a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component can
be deployed independently and is subject to composition by third parties”
[SGM02]. In addition, software components are modular artifacts whose state
is not observable from outside, and therefore context dependencies between a
component and other components or systems have to be expressed explicitly.

Based on the experiences made with component-based software develop-
ment, Fig. 3.5 shows the main categories of requirements for a successful use
of components [Aßm03]: 1) a component model is needed to describe precisely
how components might look like and when two components are exchangeable;
2) composition techniques provide the means to combine or adapt compo-
nents; 3) a composition language is needed to specify how to build systems
out of components, for example by describing the corresponding architecture.

Requirements for
component-based

development

1. Component
 Model

1.1 Modularity

1.2 Conformance to standards

1.3 Parameterizability

2. Composition
 Technique

2.1 Adaptibility of interfaces

2.2 Extensibility

2.5 Aspect separation

2.3 Scalability

2.4 Metamodeling

3. Composition
 Language

3.1 Product-consistency support

3.2 Process support

 3.3 Meta-composition support

Fig. 3.5. Requirements for component-based development; based on [Aßm03,
POS05].

Due to the abundance of specifications in e-learning, there is currently
no uniform component model for LOs (see also [Fri04b, Pol03]). In addition,
some specifications (e.g., IEEE LOM) do not provide precise models at all.
For software components, the modularity of components is realized by fol-
lowing the information hiding principle along with the definition of interfaces.
Very often, additional specifications or pre- or post-condition constraints (i.e.,
contracts between modules) are necessary to define how software components
should work together, e.g., an operation defined in one interface may need an
operation defined in another interface (see for [SGM02] details). For LOs in
e-learning, modularity is satisfied, although more on a logical level, since LOs
mostly consist of a loose collection of files and the package structure is often
defined using additional metadata. However, LOs are not conceived to mu-
tually use data or functionality from other LOs. Excluding a few exceptions

3.3 Learning Objects as Digital Information Products 37

[SS03], contract specifications for LOs are not in the focus of attention. The
conformance to standards should make components exchangeable on compo-
nent markets. In general, it is important to have a small number of standards
to ensure an acceptable market share for one standard [SGM02]. It has been
even shown that there are situations in which overall costs with standardiza-
tion may increase for all participants if a standard fails to have a critical mass
of users [BK98], and that network externalities play an important role [FS86].
The great number of standards for LOs in fact complicates their exchange and
reuse. In addition, the parameterizability and adaptability of existing LOs is
very limited. Some frequently used file formats (like PDF, Flash, Java byte-
code without source files [Sun07]) often allow LOs to be reused only in the
way they are delivered, and do not allow easy modifications and adaptations
to the reuse context.

There are similar shortcomings related to the composition techniques for
LOs. Without precise models or interface specifications, it is difficult to define
general techniques for LO composition. As with parameterizability, the exten-
sibility or scalability of LOs can be very limited, depending on the file types
used. Metamodelling, which eases the analysis of composition techniques for
LOs, is currently considered only on a rudimentary level (e.g., meta-metadata
in IEEE LOM). Aspect separation for LOs is an area of research [Pan05]. In
software development, aspects are crosscutting concerns, i.e., parts of code
which logically belong together, but which are physically distributed across
different modules because of the chosen decomposition criteria 1 (e.g., code for
failure handling or synchronization) [FECA04]. The concept of aspects can be
used similarly in e-learning; for example, a layout specification can be treated
as an aspect that occurs in several LOs. Then, during the packaging process
of LOs, the aspects are woven into their predefined locations, shortly before
LOs are delivered (see [Pan05, PV05] for details).

Furthermore, there are no wide-spread, general composition languages for
LOs, which is probably due to the inadequate component models and composi-
tion techniques. Although the concept of dynamic course generation has been
researched in some systems [Ate04, FLT04], course assembly out of LOs must
often be done manually, because only this ensures the product-consistency
with respect to file type, structure, layout, didactics, or presentation. Fur-
thermore, a composition language for LOs should be easy to integrate into
the overall development process, and should support meta-composition (i.e.,
it should itself be based on a component paradigm). Other details on the com-
parison between LOs and software components omitted here are presented in
[POS05].

Some research already attacks a part of the presented technical problems
at different levels. For example, Web services are used as a means to pack-
age LOs which, in addition to data, provide interfaces and functionality that

1 It is assumed that there are situations in which there is no other way to decompose
a system into modules which would cleanly encapsulate all concerns.

38 3 Digital Information Products in the E-Learning Domain

may process and deliver the data contained in LOs [PV03, PSS04]. Other
reuse techniques, like design patterns for LOs, try to ease the adaptability in
different reuse contexts by encoding the requirements for reuse in a pattern
definition [Jon04]. The empirical studies of the usage of the various standards
mentioned in Sect. 3.3.2 suggest that a general adequate abstraction for the
description of LOs has not been found so far.

Didactic Aspects

Most of the e-learning standards are designed to be “pedagogically neutral”,
i.e., the design and usage of LOs is independent of the chosen pedagogical
approach. For example, SCORM is criticized to be “limited in its pedagogical
scope, neutrality or relevance”, and to support only single-learner scenarios
[Fri04b]. Because of such reasons, other approaches like the Educational Mod-
eling Language (EML), Learning Roles, Essener-Lern-Modell, IMS Learning
Design, DIN didactic object model, or didactic ontologies try to fill this gap
and provide formalized didactic descriptions for instruction (see [TS04] for a
detailed overview). Furthermore, due to the support of committees like ADL
by the US Department of Defense, LOs and e-learning standardization are
suspected to “bear the imprint of the ideology and culture of the American
military-industrial complex” which imposes a “military worldview”, although
the “goals of public education” are claimed to be “radically different than
those of the American military.” [Fri04b]. Finally, the context of content reuse
should not be fully neglected during LO design [Eur04]. Related problems, like
for example on social problems, are collected in [Mor00].

Economic Aspects

It remains generally unclear whether interoperability and uncomplicated mi-
gration of LOs between different L(C)MS is really desired by commercial
vendors. Assuming that there was a single, wide-spread standard with an ad-
equate model for LOs, the only competitive advantage would be constituted
by the learning content itself, since everything else would become easily ex-
changeable. However, content is expensive to produce and the investment has
to be protected. In such situations, vendors would try to build up entry bar-
riers for competitors (e.g., by creating high quality content which is bound
to a proprietary platform under their control), and exit barriers for existing
customers (e.g., by making switching to other platforms difficult through com-
plicated migration and reduced interoperability) [PSV05, Mor00, Eur04]. In
fact, [Sie04] claims that the “real issue is that LMS vendors are attempting
to position their tools as the center-point for elearning”, not the content. In
addition to the technical shortcomings, these aspects may also explain why
there are “hundreds of academic or commercial platforms [...] present on the
e-Learning market”, and why “[m]ost of these systems are closed and allow
neither share nor re-use” [VBDT04], or why the “reality of elearning is a

3.4 Summary and Discussion 39

hodge-podge of legacy repositories, protocols, special interest groups and self-
serving communities” [HREW04]. It is also ironically recognized that stan-
dardization in e-learning is meeting the needs of “vendors with the content
they have right now” [Fri04b].

3.4 Summary and Discussion

This Chapter presents e-learning as an example of a field in which digital
information products play an important role. The content and infrastructure
dimensions of the 2-3-6 concept describing the value chain of digital infor-
mation products (see Sect. 2.2.5) are presented with more details for this
special field. In the infrastructure dimension, it is shown that L(C)MS have
evolved as a special kind of systems for e-learning. In the content dimension,
it is explained that LOs are in fact digital information products using pos-
sibly different data formats for content, metadata/packaging, and transport.
However, the described abundance of standards and recommendations should
also convey the current confusion in the e-learning field. More and more par-
ticipants are beginning to realize that the complexity and difficulty of many
problems were underestimated, and that “the use of learning objects was not
nearly so simple as [...] at first assumed” [Dow04]. This is supported by the
analysis of the concepts behind LOs, which reveals that component models of
LOs are not well-developed, didactic aspects partly neglected, and that there
are economic reasons that may complicate interoperability and migration. In
conclusion, it can be derived that:

• from a market-based view, the learning content constitutes an im-
portant competitive advantage for digital information products in e-
learning.

• from a production-based view,
– better reuse techniques are required for learning objects as

digital information products. Such techniques should help cut the fixed
costs of production, which is vitally important in the current low-
margin markets.

– beyond reuse on a “code-and-file-level”, reuse techniques for LOs
also need to target higher conceptual levels (e.g., ensuring identi-
cal component models for related LOs, modeling of similarities between
sets of LOs, or modeling the reuse context of several related LOs)

This is underlined in a report of the European Commission which states that
indeed “[n]ew models are required for selecting, producing, using and re-using
content for elearning” [Eur04]. The wide-spread belief that interoperability
and reuse problems will be solved as soon as the current standards mature
and converge seems elusive [PS06]. Based on the assumption that content
of digital information products can be just as complex as genuine software,
the reusability problems with LOs are likely to persist beyond the present

40 3 Digital Information Products in the E-Learning Domain

standardization discussion. In addition, the time of adoption can play a role
as well [FS86, BK98].

The illustrated parallels to Software Engineering show that reuse is a com-
plex issue which cannot be solved satisfactorily in a general way [SGM02,
POS05], and that it “is far too simplistic to assume that components are sim-
ply selected from catalogs, thrown together, and magic happens” [SGM02]
– which seems to be true also for digital information products. A situation
with several standards is also typical for domains other than e-learning, such
as for example digital libraries [ESK04, TL05, KD05]. Very often, “successful
and efficient reuse involves constraints and tradeoffs, and requires planning
and coordination in advance before reusable artifacts are created” [OPS06].
The next Chapter presents an overview of software product lines as a reuse
technique that follows this approach, and which will be extended later to man-
age the reuse context and commonalities of digital information products more
efficiently.

4

Software Product Lines

This Chapter presents software product lines as an approach to software reuse,
which draws upon principles used in today’s manufacturing product lines. As
an overview, it presents the currently most influential methods and techniques
as well as some open research questions in a generic way which is indepen-
dent of individual approaches, along with the key contributions of different
approaches.

After an introduction that sketches traditional approaches to software
reuse with their intentions and drawbacks, the approach of software product
lines and its underlying hypotheses are described. Thereafter, three relevant
sub-processes of the overall product line development process are introduced
in a generic way: domain engineering with the view on all products in a prod-
uct line, application engineering with the view on a single product, which is
derived from the results of domain engineering, and family engineering with
the view on the family itself with respect to organizational issues. For domain
engineering, details are outlined that are relevant for domain analysis, domain
design, domain implementation, and domain testing. The same is done for ap-
plication engineering with application analysis, application design, application
implementation, and application testing. Family engineering is understood in
the sequel to subsume, for a product family as a whole, economic aspects,
organizational aspects, and evolution and maintenance aspects. Being aware
that the presented methods differ in their details, the main concepts of a soft-
ware product line are finally distilled into a more precise definition that will
serve as a reference in the following Chapters. A final discussion summarizes
the main insights.

4.1 Traditional Approaches to Software Reuse

This Section outlines some of the well-known state-of-the-art approaches to
software reuse on different abstraction levels, along with their intentions and
drawbacks.

42 4 Software Product Lines

Object-Oriented Programming

Object-oriented programming languages introduce language constructs like in-
heritance to support reuse on the code level. Additional flexibility is provided
by different types of polymorphism [CW85]. The reuse of code by program-
mers, however, often occurs on a fine-grained scale and in a rather oppor-
tunistic way without coordination in advance. It has also been noted that
excessive use of inheritance can lead to designs that are more difficult to
reuse [GHJV95]. A copy-and-paste approach for reuse of code by program-
mers, sometimes referred to as “code scavenging” [Kru92], has proven not to
be effective for successful reuse [Bos00].

Design Patterns

In the context of object-oriented software design, patterns are understood to
be a general, proven solution for a recurring design problem [GHJV95]. They
are intended to be an extensible template describing a generalized solution on
a higher abstraction level (i.e., design level instead of code level). In object-
oriented languages, design patterns can show relationships and interactions
between classes and objects. An important progress is that patterns are able
to capture design knowledge and model a context of reuse. One drawback is
the lacking capability to describe design on higher levels of abstraction.

Libraries and Frameworks

During the construction of larger software systems, frequently needed func-
tions or subprograms can be stored in a separate collection which forms a
library. As a further development, object-oriented frameworks attempt to pro-
vide an abstract design for a particular domain [Bos00]. A framework is un-
derstood as “a set of classes that embodies an abstract design for solutions to
a family of related problems” [JF88]. In contrast to design patterns, a frame-
work is more specialized and addresses all or only a part of an application.
For example, a framework for a graphical user interface can be an almost fin-
ished part of an application, which can be extended and customized. Based on
the extension mechanisms, it is distinguished between white-box (inheritance-
based) and black-box (parameterized) frameworks [JF88]. Frameworks can
also be classified into calling (i.e., they completely control the application and
actively call other parts) and called frameworks (i.e., they are invoked by the
application) [SBF96]. Frameworks facilitate a reuse of architecture and make
predefined assumptions about their context of reuse. However, this can also
lead to problems if more than one framework has to be used in an application
[Bos00].

Components

The idea of software components has been discussed in Sect. 3.3.4 in the
context of learning objects. From the reuse perspective, software components

4.2 The Approach of Software Product Lines 43

are still perceived to have several drawbacks. For example, component tech-
nologies are heavily dependent on specific platforms or middleware and have
strong ties to the implementation technology [AB05, GSC+04]. In addition,
it is hard to predict the properties of software that is built from retrieved
components, since the technologies for component specification and packag-
ing have difficulties to capture in general the information on how components
interact and depend on each other, how they function, or what resources they
may consume [GSC+04]. Furthermore, the idea of components as “LEGO
bricks” seems elusive, since during the combination of components, further
adaptations may be necessary [Bos00].

Architectural Styles

The abstraction level can be raised further to describe the architecture of
a system from a more general perspective which encompasses components,
as well as their interactions. An architecture of a software system defines
that concrete system in terms of computational components and interactions
among those components [SG96]. An architectural style defines “a family of
[...] systems in terms of a pattern of structural organization. More specifi-
cally, an architectural style defines a vocabulary of components and connec-
tor types, and a set of constraints on how they can be combined” [SG96].
For example, in a pipe-and-filter style, components have input and output
streams on which they operate, and streams are directed between compo-
nents using pipes as connectors. As a more recent approach, Web services
[CD02, W3C07c] have made service-oriented architectures popular. Architec-
ture description languages have been developed as a means to formally cap-
ture architectures. However, their capabilities to describe or analyze general
architectures can vary widely [Cle96].

4.2 The Approach of Software Product Lines

The lessons learnt from the experiences with software reuse so far are that
without proper planning, the costs with reuse can be higher than developing
from scratch [BKPS04], and even other criteria like software quality can suf-
fer when reuse occurs in unintended or uncoordinated ways. Some of the root
problems of reuse are for example excessive generality, a too broad scope, one-
off development (without paying attention to reusability), or process imma-
turity [GSC+04]. The need to reuse processes is also emphasized in [Rom05],
and the importance of an overall strategy for reuse is also stressed in [Bos00].

Software product lines are a proactive approach that tackles the reuse
problem by planning in advance, reducing the scope to a predefined domain,
and exploiting commonalities between a set of related software products in
the domain. The notion of a product line is borrowed from marketing, where
it is understood to be a “group of products that are closely related because

44 4 Software Product Lines

they function in a similar manner, are sold to the same customer groups,
are marketed through the same types of outlets, or fall within given price
ranges” [KA05]. Thus, the relation and similarity between products in a prod-
uct line can be based on different criteria: similar technical aspects, customer
groups, distribution channels, or similar pricing. Especially technical aspects
are widely used to create product lines. For example, it is general practice in
the car manufacturing industry to create common platforms (e.g., for chassis,
electrical equipment, etc.; see [RU98]) for different brands of cars, and to limit
the number of possible customizations in advance. The tradeoff is that cus-
tomers will only be able to choose from a limited number of colors, seat types,
or engines. However, such practices lead to significant cost savings and at the
same time improve reuse of parts through a coordinated reduction of vari-
ability. Variability is often informally understood as the number of possible
configurations or adaptations. Product lines try to find a balance between the
degree of individual customization and the efficiency of creation of products.

Although it has been realized already in the 1970s that these principles can
be applied to software [Dij72, Par01], this area has not received much atten-
tion until recently, because the reuse approaches presented in Sect. 4.1 were
believed to be adequate solutions by themselves. Although in the beginning a
distinction has been made between the notion of software product lines and
software product families, this distinction is not emphasized any longer and
the terms are frequently used interchangeably [vdL02, CN02]. From a general
perspective, the definition of [CN02], which has been widely accepted by the
community, will be adopted in the following:

Definition 4.1 (Software Product Line).
A software product line is a set of software-intensive systems sharing a com-
mon, managed set of features that satisfy the specific needs of a particular
market segment or mission and that are developed from a common set of core
assets in a prescribed way.

An important point in the definition is the focus on a set of related systems
instead of single systems, which requires a longer-term strategy. In addition,
the scope of the examined domain is reduced to a particular market segment
or mission, i.e., the view is not general, but specialized on a particular area
of expertise. In contrast to the marketing literature (e.g., [KA05]) where the
product line notion does not require products in the product line to have
technical commonalities, the software product line notion explicitly demands
for technical commonalities between the software systems in one product line.
Furthermore, a system is built only from a fixed set of predefined core assets
which can be (possibly parameterizable) artifacts. For example, there can be
different types of core assets like architecture definitions, reusable software
components, domain models, schedules, budget plans, test plans, or process
descriptions [McG01, CN02]. A concrete software system is finally created
by binding possible parameters of core assets to permitted values, and using
them in an assembly process which is defined in advance in a production plan.

4.2 The Approach of Software Product Lines 45

A feature is generally understood as a “requirement or characteristic that is
provided by one or more members of the software product line” [Gom05],
and as a “a logical unit of behavior” which embodies functional as well as
non-functional requirements (e.g., quality) [Bos00]. The approach of software
product lines is a proactive approach to control evolution and coordinate reuse,
which defines in advance all possible product features and allowed feature
combinations, as well as the assets used to implement the features. This leads
to savings across the family of related products (economies of scope).

The reuse approach of software product lines is based on three underlying
hypotheses[WL99]:

• Redevelopment hypothesis
Most software development consists of creating variations of existing sys-
tems. Among the created systems, a major part is identical in any system,
and the variations which make up the differences are – in comparison –
small. Thus, the redevelopment of common parts is avoided.

• Oracle hypothesis
The variability and the changes to a system that are likely needed are
predictable (otherwise, a product line may not be profitable [BKPS04]).

• Organizational hypothesis
The organization as well as the software itself can take advantage of the
predictability.

Based on experience [PBvdL05] and these hypotheses, the general develop-
ment process is split up into two sub-processes which are called domain engi-
neering and application engineering1 (cf. Fig. 4.1). In domain engineering, a
domain engineer creates a definition of the whole product line. At the moment,

Family Definition

Application
Engineering
Process Spec.

Application
Engineering
Environment

Domain
Engineer

Domain
Engineering

Application
Engineering

Creates

Creates and Uses

Creates

Family
Members

Application
Engineer

Uses

Fig. 4.1. Artifacts in Domain and Application Engineering (based on [WL99]).

1 In this context, the word “engineering” is typically used in a narrower sense than
traditionally (cf. [Web95]).

46 4 Software Product Lines

this is frequently done by creating a model which specifies all possible features
for all products in the product line, along with restrictions that express valid
feature configurations. In addition, the commonalities and variabilities of all
future products are analyzed. The resulting choices are fixed and incorporated
into the model, which helps to delay some of the design decisions until applica-
tion engineering [AB05]. Using the family definition, a domain engineer creates
an application engineering environment which contains the necessary tools as
well as the artifacts and parameterizable core assets needed to implement the
features of the family definition. The designed application engineering pro-
cess specification (sometimes also called a production plan [CM02]) specifies
how to exactly combine core assets to obtain a software product which may
implement a subset of the predefined features. During application engineer-
ing, an application engineer is supposed to use the application engineering
environment with its artifacts and tools, and to produce software products,
which are actually members of the same family. Since reuse was planned in ad-
vance, there is no time-consuming and costly search for suitable components.
Of course, an application engineer might perform custom additions and adap-
tations on a product, if demanded by a specific customer or market segment,
as long as the resulting software product does not violate the constraints of
domain engineering.

Further connections between the domain engineering process and the appli-
cation engineering process are shown in Fig. 4.2. The philosophy of software
product lines is that the major investment has to be made throughout the

Investment
Domain Engineering Process:

Define family and develop
production facility

Application Engineering Process:

Produce family members

Applications

Feedback
Application Engineering

Environment

Payback

Fig. 4.2. Connections between the Domain Engineering and the Application En-
gineering process (based on [WL99]); ovals represent artifacts resulting from the
processes that are represented as rectangles

4.3 Domain Engineering 47

domain engineering process which basically focuses the product line on a par-
ticular area, narrows the angle of vision to the relevant details, analyzes and
determines valid choices, and prepares accordingly the reusable artifacts and
tools which go into the application engineering environment. During the ap-
plication engineering process, the choices are bound to concrete values which
must be within the ranges defined in domain engineering. Since the concrete
software applications are created in a generative manner [CE00], there are
fewer activities and shorter development times – the payback of the invest-
ment in domain engineering. The feedback loop from application to domain
engineering enables a continuous evolution and enhancement of the domain
models.

In addition to the two sub-processes of the development process presented
so far – domain and application engineering – there is a third sub-process
cutting across these processes, which is often neglected in the literature. This
process is sometimes simply called “management” [CN02] and the activities
performed within this process often depend on the specific view of the respec-
tive authors. In the following, family engineering will be understood to have
the view on the family itself, and especially on organizational and economic
aspects of software product lines.

The discussion so far introduced the main concepts on a macroscopic level.
In the literature, various approaches refine the concepts in different ways
[vdL02, BKPS04, PBvdL05]. The relevant state-of-the-art methods and mod-
els currently used in each of the sub-processes are presented next in a generic
manner, which is independent of a specific approach.

4.3 Domain Engineering

Domain engineering is understood to be a sub-process of the overall devel-
opment process which focuses on issues concerning all products in a product
line. In particular, [PBvdL05] define it as follows:

Definition 4.2 (Domain Engineering).
Domain engineering is the process of software product line engineering in
which the commonality and the variability of the product line are defined and
realised.

A domain is understood to be an artificial construct which restricts the
attention to one or more particular areas of interest [Ara94]. An important
assumption is that the considered domain should be “stable”, i.e., the likeli-
hood of change is low or predictable. Since a domain may be highly specialized,
there is no general engineering methodology which could produce satisfactory
results for all imaginable domains. Thus, domain-specific languages are typi-
cally used to describe domains [TMC99, vDKV00, MHS05].

In domain engineering, the commonalities of programs in a domain are
detected and defined explicitly. Variability is understood as “the ability to

48 4 Software Product Lines

change or customize a system” [vGBS01]. Furthermore, the variability char-
acterizes differences in software products and is represented using the concept
of a variation point which “identifies one or more locations at which the vari-
ation will occur” [JGJ97]. Variability and variation points are captured at
different levels of abstraction, e.g., at requirements, architecture, or imple-
mentation level [BKPS04]. The exact description of where a variation point
is located or how variability is finally implemented depends on the chosen
method or description language. For example, variability can be represented
at the requirements level as customizable use case scenarios, at the archi-
tecture level as optional components, and at the implementation level using
parameterizable build files (see Sect. 4.3.3 for details). In all cases, there is a
limited and predefined choice of options whose exact values are bound during
application generation. Detailed discussions on the notion of variability can
be found in [vGBS01, Bec04].

More details on the handling of commonalities and variabilities are pre-
sented in the following. The overall categorization of some techniques may
differ from some presentations in the literature, since a more general perspec-
tive should be provided. The examination begins with domain analysis which
comprises domain requirements analysis and scoping. It continues with do-
main design and illustrates feature models and production plans. Thereafter,
domain implementation and testing techniques are discussed.

4.3.1 Domain Analysis

Domain analysis is a process performed at the beginning of domain engineering
to systematically analyze the problem domain and to structure the knowledge
in a way that it is useful for the other phases of the development process
[Ara94]. Although domain analysis has initially been developed for the context
of component-based development [Nei80], it has been adapted for software
product line engineering as well. The most important sub-processes in domain
analysis are domain requirements engineering and domain scoping.

Domain Requirements Engineering

In traditional requirements engineering, the following activities are performed
for single systems [Poh97]: requirements elicitation (understand customer
needs and constraints), documentation in a structured form, negotiation
(achieve consensus with stakeholders), verification and validation (ensure that
requirements are clear, complete, correct with respect to internal consistency
and external user validation, and understandable), and management (require-
ments are continuously kept consistent and up-to-date). In domain engineer-
ing, it is necessary to capture additionally the commonality and variability of
software products in a product line. For example, this can be done with the
following approaches [PBvdL05]:

4.3 Domain Engineering 49

• Application-Requirements Matrix
The Application-Requirements-Matrix is structured as follows: it contains
in the column heading all applications (i.e., software products) and in the
row heading all application requirements. At the intersection of a row and
a column, it is marked if a particular feature is mandatory for a particular
application. Requirements which have the ‘mandatory’ mark in every cell
of one row are candidates to be common requirements, whereas the others
are variable requirements.

• Priority-based analysis
Another way to obtain common and optional requirements is a priority-
based analysis which lets stakeholders rate the requirements and define a
priority for them. If a significant number of customers rate a requirement
as important or indispensable, then it should be considered to categorize
it as a common requirement for all products in the product line. Details
on how to organize such surveys are given in [PBvdL05].

• Checklist-based analysis
The checklist-based analysis identifies common requirements using check-
lists which may cover for example different categories of legal requirements
or organizational standards. The analysis of such lists may reveal common
requirements right away.

During the requirements engineering process for software product lines, it
is conceivable to use all of these approaches. A feature in a product may be
created due to one or a set of several requirements captured in this phase.

Scoping

Generally speaking, scoping is performed to answer the question of what is in
the product line and what not. There are, however, several different areas in
which boundaries can be defined [BKPS04]:

• Product portfolio scoping
This area aims to identify which products should become a part of the
product line, not only under the consideration of marketing aspects, but
also based on the possibility to exploit commonalities. For software product
lines, the products in the portfolio must have technical commonalities.

• Domain scoping
In this area, the relevant domains for the product portfolio have to be
identified along with their boundaries. In addition, the general descrip-
tion of areas of functionality is limited to the functionality needed in the
software product line. The resulting domain descriptions are analyzed to
identify potentially reusable parts (which are often modeled in later stages
with feature models, see Sect. 4.3.2).

50 4 Software Product Lines

• Asset scoping
This area focuses – in contrast to the other two – on how to realize the
needed functionality. For this, reusable components (the “core assets”, see
Def. 4.1) offering different aspects of the functionality are identified in
existing repositories or specified for an own development.

In principle, product portfolio scoping and asset scoping specify the “prob-
lem space” while asset scoping specifies the “solution space” of the software
product line. In the literature, more specific scoping techniques have been de-
veloped. As an example, the main ideas of FAST and PuLSE-Eco are briefly
described.

In the Family-Oriented Abstraction, Specification, Translation (FAST) ap-
proach used at AT&T and Lucent Technologies, commonality analysis firstly
defines a standardized terminology for the domain [WL99]. Then, commonal-
ities and variabilities are stated as assumptions. Commonality is understood
as an invariant, and in particular as “assumptions that are true for all fam-
ily members” [WL99]. Finally, parameters of variation and binding times are
defined for each variability.

Within the Product Line Software Engineering (PuLSE) approach devel-
oped at Fraunhofer IESE, the PuLSE-Eco component incorporates economic
aspects and connects the product line scope to business objectives. It is sim-
ilar to the Goal-Question-Metric (GQM) approach which is a measurement
mechanism that specifies goals on a conceptual level, concrete questions to
achieve the goals on an operational level, and metrics for measurement on a
quantitative level [BCR02]. PuLSE-Eco performs a step-wise scoping. Prod-
uct line mapping captures the functional features of products and identifies
the relevant domains. A product map is used to show which functionality has
to be incorporated into which product. Then, domain potential analysis eval-
uates and identifies the areas with the highest potential for reusability using
different evaluation criteria (e.g., for stability of domain, market potential,
existing artifacts). Finally, reuse infrastructure scoping defines which reusable
components are to be developed, along with quantitative, context-dependent
evaluation functions that assess the benefit of introducing a feature into the
reuse infrastructure. This approach has been evaluated in several practical sce-
narios. More details can be found in [BFK+99, DS99, Sch03b, Sch04]. Other
issues related to the implementation of scoping are discussed in [SG00].

As in general, it is also often difficult for the presented techniques to find
the right balance between informal descriptions and too many formalized de-
tails. In this respect, it is possible that the described assumptions in the
commonality analysis of FAST are not precise enough. On the other hand,
the meticulous definitions employed in reuse infrastructure scoping of PuLSE
are sometimes left out, as pointed out in [Sch04].

4.3 Domain Engineering 51

4.3.2 Domain Design

In the traditional design phase, abstractions and models are created for single
systems (e.g., class UML diagrams, ER-diagrams, etc.). In the context of
domain design for product lines, feature models are additionally created to
specify all available features for all products in a product line, and constraints
upon their selection. Thereafter, features of the feature models are connected
to traditional design model elements (e.g., classes in UML) to indicate how
they will be realized. Another typical output of domain design is a production
plan which develops the details of how core assets are assembled to create
products which have a subset of features of the overall feature model. The
current practices related to feature models and production plans are presented
in turn.

Feature Modeling

Throughout the development of the area of software product lines, feature
modeling has remained a widely used technique to represent the commonality
and variability of product variants on a feature level in an implementation-
independent way. Feature models describe the available configuration space
with all available options and constraints that are considered relevant. Feature
models are an alternative to enumerating all valid combinations of features
for every possible application, which would be inappropriate for large systems.
Later in application engineering, the selected features for a product can be
regarded as an instantiation of the product line feature model.

Although feature modeling is sometimes presented in the literature as a
part of domain analysis, it is understood in this thesis that it is actually settled
somewhere between analysis and design, as it transfers the requirements to
a design for the product line. The resulting feature models are in principle
a high-level design specification, so that it seems more suitable to discuss
the related approaches here, and not in domain analysis. This view is also
supported by some approaches which actually integrate feature models in
[Gom05] or along [PBvdL05] traditional design models.

One well-known method for feature modeling is the Feature Oriented Do-
main Analysis (FODA), whose initial approach is used here to exemplify the
typical activities of feature modeling in general [KCHP90]. FODA begins with
a context analysis phase (which basically scopes the domain, see Sect. 4.3.1),
followed by a domain modeling and an architecture modeling phase. The do-
main modeling phase which introduced feature models is described here in
more detail. In FODA, features are understood to be characteristics visible
to the end-user, which are further categorized into functional features (i.e.,
functions of the application seen by the user), operational features (related to
the operation of an application from the user’s perspective), and presentation
features (related to the presentation of information to users). All features are
represented in a feature model which consists of [KCHP90]:

52 4 Software Product Lines

1. A feature diagram
a) The diagram graphically depicts a hierarchy of features, and has a

distinguished root.
b) Nodes other than the root represent features which can be mandatory,

optional (drawn with a circle above the feature name), or alternative
(drawn as children of the same parent feature, with an arc intersecting
the connecting lines).

2. Composition rules may additionally express dependencies between fea-
tures: mutual dependency (“requires”) or mutual exclusion (“mutex-
with”).

3. A record of trade-offs, rationales, justifications.
4. A record of system features.

The feature diagram presents for the scoped domain all relevant features
which can be eventually included into a product variant. In the diagram, there
is no notational distinction between functional, operational, or presentation
features. Composition rules are additional constraints limiting the choice of
features. The record of trade-offs, rationales, and justifications offers guidance
during the selection of features. The system feature catalogue is used to record
which features are used in which systems with which values – it has therefore
similarities with a product map (see Sect. 4.3.1). Each feature must have a
distinct name that is also included in a domain terminology dictionary which
is used throughout the modeling phase, and which describes the meaning of
features. Finally, the validity of a feature model, i.e., whether it captures
all relevant features and feature combinations, has to be verified by domain
experts.

Thermostat

Temperature
control1

Status
visualization1

Audio
alarm2

Manual3 Automatic3

Rationale:
 Manual has lower price
Composition rule:
 Audio alarm requires temperature control = automatic

1) Mandatory feature
2) Optional feature
3) Alternative feature

Fig. 4.3. An example for a FODA feature model.

The FODA diagram does not have precisely specified semantics. Therefore,
the meaning of such a diagram will be explained using the example shown in

4.3 Domain Engineering 53

Fig. 4.3. Composite features (e.g., “temperature control”) may consist of sev-
eral other features, while atomic features are not subdivided further (e.g.,
“manual”). A line in the diagram models the “requires” relationship between
the possible features of the software for a thermostat, and in addition every
feature has an imaginary flag (not depicted) to mark if it is chosen for a prod-
uct or not. If a parent feature is not chosen in an instance, then all its children
cannot be chosen. The root “thermostat” is, by definition, chosen for every
product configuration. Then, the mandatory features “temperature control”
and “status visualization” have to be implemented in every product. The fea-
ture “audio alarm” is optional, i.e, it is included only if desired by a customer.
The alternative features “manual” and “automatic” are understood to be spe-
cializations of the parent “temperature control”; however, FODA allows only
at most one of the specializations to be chosen. An additional composition
rule specifies that when the optional feature “audio alarm” is chosen, then
the temperature control must be “automatic”. Without such interconnections
from composition rules, the feature diagram is basically a tree, however, with
the introduction of such interconnections the diagram looses this property and
becomes a graph. Finally, a rationale provides additional guidance, e.g., the
choice of “manual” leads to a lower price for the product. The feature model
is instantiated during application design, and examples for possible instances
of Fig. 4.3 are given in Sect. 4.4.2.

The FODA notation has initiated the development of a multitude of other
methods and notations for feature models. From a conceptual point of view,
there are two main classes of approaches. In the first class, existing methods
or notations are extended to incorporate variability descriptions (e.g., exten-
sions to UML [Gom05]). In the second class, a separate orthogonal layer with
a variability model is created, which contains variability descriptions that are
independent of existing notations [PBvdL05]. From this layer, the parts that
represent variation points can contain references to other underlying notations
(e.g., a reference to a corresponding use case in a UML use case diagram or to
particular calls in a UML sequence diagram). Both approaches have advan-
tages and disadvantages. Extending existing methods accelerates learning, but
the variable parts may be distributed across several models. A separate layer
with a general variability model has the advantage that existing notations can
be used as usual and that variability descriptions are separated. However, a
disadvantage is that the model must be a quite general metalanguage which
should be usable with several different types of underlying models, and a lan-
guage with the ability to deal with all subtleties of all possible underlying
models seems elusive. An appropriate choice might therefore depend on the
particular project and domain.

There are currently many approaches for feature modeling which extend
existing notations. As an example, Fig. 4.4 shows a comparison between the
FODA notation (notation 1), a notation with additional constructs (notation
2) proposed in [CE00], and a cardinality-based notation (notation 3) pre-
sented in [CHE04]. All notations can express the mandatory, optional, and

54 4 Software Product Lines

f

f1 f2 f1

f

f1 f2 f1

f

f1 f2

[0..1][1..1]

mandatory and optional
subfeatures

mandatory and optional
subfeatures

mandatory and
optional subfeatures

f

f1 fk

f

f1 fk

alternative subfeatures exclusive-or group group with
cardinality <1-1>

f

f1 fk

<1..1>

f

f1 fk

inclusive-or group group with
cardinality <1-k>

f

f1 fk

<1..k>

f

f1 fk

exclusive-or group with
optional subfeatures

group with cardinality
<0-1>

f

f1 fk

<0..1>

n/a

n/a

Notation 1 Notation 2 Notation 3

Fig. 4.4. A comparison of feature modeling notations (based on [CHE04]). Notation
1: FODA [KCHP90]; Notation 2: [CE00]; Notation 3: cardinality-based [CHE04].

alternative subfeatures of FODA. Notation 2 adds a construct to semantically
denote groups consisting of one or more subfeatures, and has a constraint on
the group – a feature can thus have several groups of subfeatures with different
constraints on each group. From an inclusive-or group, any non-empty subset
of features can be chosen if the parent feature is chosen. In the exclusive-or
group with optional subfeatures either none, or at most one subfeature can
be chosen. Notation 3 is basically an extension of notation 2 which explicitly
shows user-defined cardinalities related to the constraints. Other extensions
to FODA have been provided in the Feature Oriented Reuse Method (FORM)
which is directed more towards object-orientation and adds a marketing and
product plan [KLD02]. Another feature modeling notation has been devel-
oped in FeatuRSEB [GFd98] which extends the Reuse-driven Software Engi-
neering Business (RSEB) approach [JGJ97]. FeatuRSEB is a use case driven
approach where features are related to use cases or parts of use cases. Com-
pared to FODA, FeatuRSEB has another notation for alternative features
and distinguishes between variation point features (where a choice can be
made) and variant features (the choices that can be selected). A description
of FODA models in a textual way is offered in [vDdJK02], and [Bat05] shows
the connection between feature models, grammars, and propositional formu-
las. Approaches with ontologies are shown in [dAFGD02, Ate04, CKK06]. The
usage of XML for the description of a variability model is proposed in [Bec04].
Other approaches like Organizational Domain Modeling (ODM) [Sim95] or

4.3 Domain Engineering 55

Domain-Specific Software Architectures (DSSA), [TTC95] are discussed in
[CE00, CHE04]. The usage of decision trees to select features has been inves-
tigated in [TGTG05], but becomes clumsy and impractical when the size of
such trees grows.

Some points of the presented feature models which seem to have become
common practice have to be criticized. One problem is that many of the
notations are not defined precisely enough, e.g., using formal methods. This
can lead to misunderstandings when one has to analyze what they exactly
describe. It has also been shown that many extensions of FODA do not add
any further expressiveness [BHST04]. Another problem is that some notations
allow different ways to express the same issues (e.g., [CE00]) which may also
lead to misunderstandings and complicated transformations when two given
models have to be analyzed for equivalence. Furthermore, the notations often
do not have a clearly-defined grammar and do not prohibit the creation of
invalid models (cf. [vdML04] for examples). Another critical problem is that
although feature models are presumed to have a tree-like form, the insertion
of additional relationships between nodes actually lead to a graph. As such
models become larger in practical applications, they also become more difficult
to understand due to their interconnections, which degrades their usefulness
for abstraction. Although in an automated analysis could be used in such
cases [BBRC06], a feature modeling technique would be more helpful if the
formalism itself is constructed in such a way that the discussed problems are
not allowed to happen.

Production Plans

A production plan is the “prescribed way” of the product production men-
tioned in the definition of software product lines (cf. Def. 4.1), and is itself
regarded as a core asset. The production plan is generally understood as “a
description of how core assets are to be used to develop a product in a product
line”, and is currently often specified only as a textual description covering
the following points [CM02]:

1. Introduction
2. Strategic view of product development
3. Overview of available core assets
4. Detailed production process
5. Tailoring production plan to product-specific production plan
6. Management information

In the introductory part, there are descriptions of the production context,
the audience, and the needed qualifications. Secondly, the strategic view makes
the assumptions and qualities explicit. Furthermore, it is specified which prod-
ucts are possible based on available assets, and a production strategy defines
(as a high-level statement) how the production goals should be met [McG04].

56 4 Software Product Lines

Next, the overview of available core assets describes their inputs, dependen-
cies, and variations. Some authors assume that every core asset has an at-
tached process related to its construction [CN02], and this description is also
included in the production plan. Next, the detailed production process con-
tains the technical details for construction. Despite the complexity, many pro-
duction plans are currently simple textual descriptions [DTA05]. Alternatively,
build scripts are used to implement the details of the production process (see
Sect. 4.3.3). Next, product-specific descriptions are added. Finally, the part
on management information contains organizational information, e.g., bill of
materials, resources, team assignments, schedules, or metrics.

Although production plans are an essential part for the success of the
product line approach, there is little research on the technical details, which
goes beyond build scripts or how the textual descriptions should be structured.
Sometimes the build scripts alone are understood to be the production plan.
Overall, no specific modeling techniques were proposed which may simplify
the modeling, analysis, verification, validation, or reuse of build processes for
product lines.

4.3.3 Domain Implementation

In domain implementation, all the core assets are implemented which can
be used to realize the previously defined features. In some approaches it is
assumed that for every core asset there is an attached process which describes
how to implement the asset (see also [CN02] and Sect. 4.3.2). In particular,
the core assets which are of type “software component” are implemented at
this stage. In addition, configuration and parameter passing mechanisms are
included.

Parametrization can be used as a means to create variants of compo-
nents with similar behavior. In principle, there are several binding mecha-
nisms which can be used at different times of the implementation process, like
for example [AG01, PBvdL05]:

• before compilation: code generation, aspect-oriented
programming (AOP), model-driven architecture (MDA)

• at compile-time: pre-compiler macros

• at link-time: build scripts with parameters

• at load-time: configuration files

• at run-time: a system registry

• at post-run-time: binary patches

The binding mechanisms implement the variability of the product line in a
predefined and controlled way, and parameters represent variation points. Be-
fore compilation, code generators can be used to generate code which has
incorporated the common parts and, based on the value of parameters, the

4.3 Domain Engineering 57

code pieces that differ in every product line member [CE00]. AOP can be
used to insert predefined pieces of code (aspects) at specified program loca-
tions (join points) which can be in the existing code or in the control flow
of the program (see [FECA04] for details). The MDA approach attempts to
transform general, implementation-independent models into platform-specific
models, which are then transformed into code [KWB03].

In the approach with macros, it can be specified at compile-time which
parts of code will be compiled and which not (e.g., IFDEF statements in
C++), according to macro parameters defined in the macro code.

At link-time, build scripts (e.g., using MAKE [Mec04] or ANT [The07]) can
be parameterized to produce applications from different sets of base artifacts.

Another possibility is to implement components in such a way that they
check at load-time a specified configuration file and adapt their behavior ac-
cordingly.

If a central registry is available in the target environment to store values at
run-time, it can be queried by components at run-time to adapt their behavior
or find other components.

Finally, the behavior of components can be also altered at post-run-time
(i.e., update time) [AG01] through binary replacement of the whole component
of parts of it. A more detailed classification of variability realization techniques
is given in [SvGB05].

The difference of domain implementation from the implementation of sin-
gle systems is that after the development of core assets, there is no executable
application yet in this phase. Applications are created later in application
engineering with the core assets produced here. Another difference is that
the implemented artifacts incorporate the variability defined in the feature
models, using the mechanisms described above. These differences require also
special testing approaches which are described next.

4.3.4 Domain Testing

In general, a test is an “activity in which a system or component is executed
under specified conditions, the results are observed or recorded, and an eval-
uation is made of some aspect of the system or component” [IEE90]. Domain
testing differs from traditional application testing, as it poses the problem that
after domain implementation there exist only core assets (e.g., code compo-
nents), but not yet a complete executable application which can be tested –
this is constructed later in application engineering. However, it is desirable
to test core assets at this point, especially those representing common parts
used in all systems, in order to be able to make corrections as early as possi-
ble. A particular difficulty is that the available core assets could be combined
in different ways to obtain a concrete system, resulting in a large number of
possible configurations for a concrete system.

Domain testing has to deal with loosely coupled components that were
produced in domain implementation, and try to discover defects (i.e., if the

58 4 Software Product Lines

specified behavior is different from the implemented behavior). Test artifacts
produced in domain testing, e.g., test cases (specifying initial conditions, in-
puts, expected results), test plans (describing what and how to test), and test
reports, are intended to be reusable artifacts which can be used in this phase,
but also later in application testing. Test artifacts may also incorporate vari-
ability. For example, a test case generator may produce random text according
to predefined parameters.

Like for single systems, domain testing must occur at different levels of
granularity. At the lowest level, domain unit tests validate modular parts of
code against the specified behavior and are in most cases feasible. A domain
integration test which validates several interacting components is typically
infeasible, since not all components have to be integrated in an application,
and there might be many possible configurations. The creation of test mock-
ups (or stubs) that “simulate” the behavior of unfinished components is also
problematic, because they require themselves effort to be created, are not a
fully equivalent substitute for the original component, and might be them-
selves the source of errors. A domain system test in which a system is tested
that represents the whole domain is typically infeasible as well.

Various strategies are identified in the literature to cope with the afore-
mentioned problems [PBvdL05]:

• Brute Force Strategy (BFS)
The BFS aims to perform tests at all levels for all possible application con-
figurations. This strategy is in practice usually infeasible since the num-
ber of applications with different configurations can grow exponentially
[TTK04].

• Pure Application Strategy (PAS)
The PAS does not do any testing in domain engineering, and postpones all
testing to application engineering, when an application is created. How-
ever, an early validation would be missed this way and there would be
no possibility to reuse test cases. The repetitive development of test cases
from scratch is a major drawback, especially because there might be be-
havior that is common to all applications in the product line.

• Sample Application Strategy (SAS)
The SAS intends to create in domain testing a sample application with
a typical configuration. The common components are tested in this con-
text, enabling an early validation of common features. The generated test
cases can also be reused later (possibly with minor adaptations) in appli-
cation testing. One drawback of SAS is the overhead to create a sample
application.

• Commonality and Reuse Strategy (CRS)
The CRS distributes the testing activities in another way: in domain test-
ing, test cases are defined for the common and variable parts of an ap-
plication. Common parts are tested with the appropriate test cases as far

4.4 Application Engineering 59

as possible. Later, all predefined test cases are reused in application test-
ing for a chosen system configuration to test the variable parts and once
again the common parts to see if they work as intended. In [PBvdL05] it
is suggested to use in practice a combination of SAS and CRS.

Beyond these high-level strategies, there are also more detailed approaches
for certain contexts of domain testing. For example, the ScenTED approach
[RRKP06] derives test cases based on a test model that is itself derived from
the requirements. A strategy for regression testing in product lines is sketched
in [McG01]. Other approaches are sketched in [KN06, KD06], and in a sur-
vey in [TTK04] which observes that many testing concepts for product lines
are in their infancy, especially those around the code level. Further research
is needed, especially with respect to the concrete division of tasks between
domain testing and application testing, since they can be difficult to split up
in practice.

4.4 Application Engineering

Application engineering focuses on the creation of a single product, using the
prepared models and artifacts from domain engineering [PBvdL05]:

Definition 4.3 (Application Engineering).
Application engineering is the process of software product line engineering in
which the applications of the product line are built by reusing domain artifacts
and exploiting the product line variability.

Every product within the scope of the product line can be created in ap-
plication engineering by instantiating the models and reusing the artifacts of
domain engineering [vGBS01]. The parameterizable core assets are configured
with concrete parameters. Then, they are assembled to realize the needed fea-
tures. However, many approaches allow minor product-specific additions if
they are in line with the overall product line specifications defined in domain
engineering. If domain engineering was done right, the effort in application
engineering should be much lower than in single system development. Some
relevant details of application analysis, application design, application imple-
mentation, and application testing are presented next.

4.4.1 Application Analysis

The application analysis process is mainly focused on the requirements anal-
ysis for a concrete application. One difference from requirements analysis in
single systems is that here a balance has to be found between the stakeholder
requirements and the product line requirements defined in domain engineering
for all applications in the product line. The idea of the product line as well
as its scope have to be communicated to the customer in order to negotiate

60 4 Software Product Lines

which requirements are really needed, and if they can be realized with the
product line. Of course, there might be tradeoffs for customers when they do
not receive 100% of the features they want, but if they can live with, say, 90%
of the features which can all be delivered with the product line approach for
a fraction of the cost of a single system, this approach becomes attractive.
Furthermore, using the product line solution, customers can expect a higher
quality and better stability of an application, since the underlying core assets
must themselves be of higher quality, as they are reused in several systems.
Nevertheless, required additions that are not present in the product line have
to be recorded and evaluated carefully to make sure that they fit into the
existing context.

Other typical activities in application analysis are the documentation and
the traceability of application requirements, especially with respect to the
connection to domain requirements. Furthermore, the parameter values for
variation points are defined, and they will remain fixed from now on. Appli-
cation analysis influences also domain analysis. For example, if in the require-
ments documents of different applications it is detected that many customers
demand a certain functionality that is not already in the product line, this
feedback must be communicated to domain engineering to help to improve
the overall design.

More details on application requirements engineering can be found in
[PBvdL05]. An approach of how to communicate the product line require-
ments to customers is presented in [HP03]. The approach in [KS00] describes
how to capture decisions and priorities for requirements.

4.4.2 Application Design

During application design, the architecture and the corresponding models of
an application are created, using the preparatory work of domain design.
Based on the results of application analysis, one of the main activities of ap-
plication design is to choose a valid feature configuration for an application.
This configuration is in principle a valid instance of the feature model de-
veloped in domain design (discussed in Sect. 4.3.2). As an example for such
an instantiation, valid feature sets derived from the feature model in Fig. 4.3
are shown for product variants for the software of a thermostat. They are
enumerated below (the root node is omitted and composite features contain
subfeatures in parentheses):
In addition to the generation of a consistent feature configuration, other mod-
els possibly defined as a reference in domain design are specialized here for
the particular application, and variation points are bound to concrete values
(e.g., “temperature control” is bound to “manual” in V ariant1). The selected
features influence the concrete architecture of the application. The generic
production plan may also be adapted to account for the peculiarities of the
application, like for example individual adaptations specified in application
analysis.

4.4 Application Engineering 61

V ariant1 = {temperature control (manual), status visualization}
V ariant2 = {temperature control (automatic), status visualization}
V ariant3 = {temperature control (automatic), status visualization,

audio alarm}

Fig. 4.5. An example for instances of the feature model in Fig. 4.3.

A difference between application design in the product line context and
traditional single system design is that the application architecture in the
product line context is based on the results of domain design and may also give
feedback to domain design (e.g., useful changes to the reference architecture).
In addition, reuse in application design occurs on an architectural level, and
it is ensured – due to the preparatory work in domain design – that the
refinements of the general architecture of domain engineering will lead to a
functioning system.

However, there are still many sources for errors as well as open research
questions, especially with respect to empirical validations how well the ap-
plication design can be derived from the domain design. Although some case
studies describe positive results [ADH+00, CN02] (sometimes from a gen-
eral perspective) there is also the awareness that in the presence of tens of
thousands of variation points there can be a large number of human errors
during product derivation, due to complexity of the models (see case study
in [DSB04]). The latter results support the criticism put forward in Sect.
4.3.2 that most of the proposed feature models are difficult to use at larger
scale, and that they may be ambiguous due to a lack of formal precision or
disadvantageous model constructs. These shortcomings must be remedied if
application design should work as intended.

4.4.3 Application Implementation

Due to the preparatory work done in domain engineering and in the previous
phases of application analysis and application design, the number of activities
in application implementation is reduced. As a difference from traditional sys-
tems implementation, the focus of this implementation process is often shifted
from a detailed development to a configuration and assembly of software com-
ponents [CN02]. Based on the specific application architecture, the reusable
components created in domain implementation are selected and configured
with the specified parameters so that they exhibit the desired behavior. If
the work in the previous phases was done right, the effort to create individual
components for the specific application (which are not part of the product line
architecture and on which a customer might have insisted) should be minimal.
The application architecture specifies how the components interact, and pro-
vides the means to integrate them into a functioning system. The details on

62 4 Software Product Lines

how to compile and build the necessary files can be taken from the production
plan. More details on application implementation techniques are discussed in
[CE00, AG01].

4.4.4 Application Testing

As already discussed in Sect. 4.3.4, some activities of the testing process in
product lines are done in domain engineering and some in application en-
gineering. Application testing can of course test the final application with
traditional testing techniques (see [AM05] for a comprehensive overview).

Application testing can be done on different levels: unit testing (validating
the single and newly created components), integration testing (checking com-
ponent interaction), system testing (for whole application). However, prepared
test artifacts from domain engineering, like for example test cases, test plans,
or test reports, can be reused and configured for the particular application.
Depending on the chosen strategy of domain testing (e.g., Sample Application
Strategy or Commonality and Reuse Strategy), some parts of the application
may be already tested, which can speed up application testing.

The common parts need to be tested in a commonality test with reusable
test cases to see if they still work in the current application context. For
variability testing, there are two further types of tests: the variant absence
test and the application dependency test [PBvdL05]. The variant absence
test makes sure that no functionality was included that was not defined in
the configuration of the particular application. An application dependency
test checks that no constraint defined in the domain models is violated in
the generated application. These types of test are typical of product lines and
usually not needed in traditional single-system development [TTK04]. Finally,
application-specific tests may be performed.

4.5 Family Engineering

In the sequel, “family engineering” will be used in a sense that is related
to the product line as as whole, with activities which may crosscut domain
or application engineering2. Family engineering is understood here as a sub-
process in its own right which subsumes, based upon existing approaches,
under one roof economic aspects, organizational aspects, and product line
evolution aspects. Such an integrated view of these issues as a subprocess
in its own right is often neglected in the literature or roughly reduced to
“management” [CN02].

2 Remark: there are approaches which have a different understanding of family
and domain engineering. For example in [Mut03], a domain is understood to
potentially characterize an infinite number of applications of a particular type;
family engineering belongs there to domain engineering, and a family is only a
subset of systems of the domain.

4.5 Family Engineering 63

4.5.1 Economic Aspects

There are currently different approaches to assess if the investment in a soft-
ware product line is worthwhile or not. In this context, several methods known
from investment theory can be applied.

Starting on a rudimentary level, the basic principles are illustrated in Fig.
4.6. The figure compares the cost of development with domain engineering
(in a product line approach) with that of the traditional single-system devel-
opment without domain engineering3. The cost of developing one system in
the traditional way is denoted as CT , so that the development of N product
line members yields the total cost N ∗CT (line A in the figure). With domain
engineering, at first the investment I has to be made for example for the do-
main engineering itself (cf. Sect. 4.3) and the creation of a core asset base.
This investment can also be risky, since it can delay the delivery of the first
product in a product line. However, later the creation of additional product
line applications is faster than in single system engineering. Assuming that
CF is the cost for producing one family member, the cost of producing N

family members is I + N ∗ CF (line B in the Figure). If domain engineering
was successful, then CF < CT . This is the case in Fig. 4.6, i.e., the slope of
line B is lower than that of line A; an intersection (=payback point) of both
lines exists.

Cumulative Cost

Number of Family Members

Payback Point

(A) Without Domain Engineering

(B) With Domain Engineering

Investment I

C
T

1

Fig. 4.6. A situation with successful domain engineering (based on [WL99]); CT

ist the cost of developing one system in the traditional way.

In the literature, there are different estimates of when the investment in
the product line approach pays off, i.e., of how many systems need to be
developed so that the development with product lines is more efficient than

3 In [WL99] the shape of the curves is assumed to be linear. Although the number
of systems and the associated costs are usually discrete values, the lines are drawn
continuously for illustration.

64 4 Software Product Lines

with the single-system approach. For example, [WL99, CN02] estimate for
their presented context that between 2 and 4 systems are needed. Furthermore,
[WL99] report a decrease of development time of factors ranging between 3
and 5. In another case study [ADH+00], the initial investment I is reported
to be less than the cost of three new family members, and the reduction of the
marginal cost with domain engineering (CF) is reported to be on the order of
4 to 1. Overall, these numbers have been obtained in the particular contexts,
so that one cannot say for sure to what degree they can be generalized.

A more detailed cost model taking into account the peculiarities of product
lines is proposed in [BCM+04]. The cost to establish a product line with N

products is quantified as:

CF := Corg + Ccab +

N
∑

i=1

(Cunique(pi) + Creuse(pi))

where Corg, Ccab, Cunique, Creuse are cost functions. However, they are defined
only in a general way. Corg are costs to adapt the organization to a product
line approach, train staff, etc; Ccab is the cost for the development of a core
asset base as well as the cost of the associated commonality and variability
analysis; Cunique is the cost to develop parts that can be unique to a product
pi in the product line, and it is assumed that they are usually small; Creuse are
the costs that are incurred for a product pi during reuse of existing core assets,
e.g., for searching, checking, or integration. The authors also propose different
variations of the formula depending on the usage scenario. However, it is not
described how to exactly estimate the different cost components. It is proposed
to use case studies or standard reuse metrics [Pou96] for Ccab , other known
models like COCOMO [Boe81] for Cunique, or historical data of the company.
The latter can be a problem especially for young companies. Other problems
of this cost model are that it is not obvious how other regularly incurring costs
are considered which can result from evolution, e.g., for continuous updating
and maintenance of the core asset base.

In the presented methods, the mere concentration on the costs and the
payback of the initial investment does not take into account that the money
could have been invested somewhere else, possibly accruing interest over a
period of time. Therefore, a “good” investment would not only earn its initial
amount of money back, but additionally earn at least the interest that could
have been earned for example by depositing the money on a bank account.
To be able to compare cash in- and outflows of different time periods, their
net present value has to be calculated for the current period (t = 0):

NPV =

n
∑

t=0

Cit
− Cot

(1 + r)t

where Cit
, Cot

are the cash in- and outflows for a period t; r is the opportunity
cost of capital, i.e., the interest that could have been earned in another similar

4.5 Family Engineering 65

investment; t is a discrete time period; n is the total number of periods.
Using estimates for the cash flows for the development of a set of products
with a product line and without a product line, the NPV s can be calculated
for both alternatives (that are assumed to be mutually exclusive) and the
alternative with the higher, non-negative NPV should be chosen (see also
[Wit96]). The general problems with this method, such as the assumption of
perfect markets with equal interest rates for debit and credit, certainty of cash
flows (and neglect of risk), focus only on tangible benefits, the determination
of the discount rate r – to name just a few – are well-known and thoroughly
discussed in the literature [BMM99].

Without unfolding here the well-known investment theory into too many
details, it should be mentioned that other approaches can be used as well in
the context of product lines. For example, decision trees can be used to model
the possible decisions (e.g., make initial investment? produce repository?) and
possible outcomes (e.g., the respective NPV) with their expected probabilities
of occurrence. In contrast to the traditional NPV method, decision trees are
able to model interventions depending on how the current situation develops
(see also [FFF98] for software-related examples). It has also been recognized
that such decisions resemble “real” options (as a counterpart to financial op-
tions, see [BMM99]), and that option pricing theory [BS73] can be applied
to estimate the value of options in reuse investment. The main rationale is
that the investment in a reuse platform, e.g., domain engineering and a core
asset base, will not only produce directly measurable cash flows, but also the
opportunity (=option) to react more quickly on the market, or even enter new
markets (see [BS73, FFF98] for more details). From a different perspective,
the core asset base and the possible products in the product line can be re-
garded as a portfolio which helps to diversify risk [Wit96]. A related method
to reduce risk is an incremental introduction of the product line approach
[SV02].

It is obvious that each of the methods has its advantages and disadvan-
tages. Although the simpler methods have some inaccuracies, they are use-
ful when a limited number of facets are of interest during the evaluation of
an investment in product lines. By contrast, the more complex methods in-
corporate additional information, but often introduce additional parameters
which require the collection of additional data. However, there might be still
situations in which not all possible developments can be quantified. For ex-
ample, a product line and its underlying platform may eventually evolve to
an industry-wide standard – a situation which would give a company an im-
portant strategic advantage and an opportunity to influence competitors in
unforeseen ways [MS98]. For product lines, other specific contextual factors
can play a role for cost determination, which would require further adapta-
tions of the investment analysis methods. Adaptations and additions can be,
for example, the rate how often core assets have to be updated in order to
keep all products in the product line competitive, or the maintenance effort
for the production plan [Coh03], or quality cost [IBK+06]. From a marketing

66 4 Software Product Lines

perspective, the inclusion of additional products may lead to cannibalization
effects where the introduction of a new product might take away sales from
other products in the product line.

4.5.2 Organizational Aspects

The discussion so far is now complemented with a brief presentation of some
proposed approaches on how to organize people and business units for the
development with software product lines. In [Bos01] various forms of a basic
organization are proposed, which all have different advantages and disadvan-
tages, and which are suited for different situations:

• The development department model
This model does not impose a certain organizational structure for product
lines, and every person in a development department can be assigned tasks
from domain or application engineering. The department is the only orga-
nizational unit dealing with the product line. This approach is applicable
in small organizations and facilitates communication between developers.
As a disadvantage, this form of organization is not scalable.

• The business units model
This model has business units as organizational entities dedicated to prod-
uct line development. Each unit develops one or a few products in the
product line. Domain engineering and the core asset base are shared be-
tween the business units. Business units can create new assets or extend
existing ones and make them available for the other units. If the coordi-
nation needed for the update of the shared assets is not controlled, then
there is a danger that the performed extensions are not general enough.
To deal with this, the responsibility to control the evolution of one asset
can be assigned to one of the business units. However, it can be technically
difficult for a unit to check whether an asset was only changed as agreed
upon. As a compromise, the responsibility for an asset can be assigned to
the business unit in relation to the products it produces, for example to
the one which makes the most extensive use of an asset. The advantages
of the overall approach are better scalability and exchange of core assets.
As a disadvantage, there might be conflicts between the business units
(especially if they are profit centers) so that there is no incentive to reuse
assets from other units.

• The domain engineering unit model
This model separates for larger organizations domain engineering and ap-
plication engineering into one domain engineering unit and several product
engineering units. The domain engineering unit creates the product line
architecture and the core assets. In even larger organizations, the domain
engineering unit can again be split up on the same level into a group re-
sponsible for the architecture, and a group that creates the core assets.

4.5 Family Engineering 67

The product engineering units create products derived from the product
line specifications and the requirements of customers. An advantage of this
organizational form is that a product engineering unit has to communi-
cate only with the domain engineering unit. One drawback is the difficulty
to transfer the wishes of the customers to the domain engineering unit
which also has to deal with possibly conflicting demands of other product
engineering units.

• The hierarchical domain engineering units model
This model targets larger organizations in which a hierarchy of domain
engineering units is established for a better coordination. One leading do-
main engineering unit coordinates several specialized domain engineering
units which focus on the development of a subset of core assets. This
organizational form has advantages if a large number of products and a
large number of staff are involved, probably also at different geographical
locations. One disadvantage introduced by the hierarchy is the reduced
ability to quickly react to market changes, compared for example with the
development department model.

Beyond these proposals for a basic organization, additional secondary or-
ganization structures which superimpose the basic ones, as well as other in-
fluencing factors known from organization theory are discussed in the context
of product lines in [PBvdL05]. A comparison of different process management
approaches for product lines is made in [VK00].

4.5.3 Evolution

Another important aspect is the evolution and maintenance of the product line
after the initial creation of models and core assets. To a certain degree, product
line evolution can be influenced through proactive planning. However, there
might also be unplanned developments which demand a reaction. Evolutionary
development for product lines can be categorized into proactive and reactive
evolution [BKPS04]:

• Proactive evolution is planned in advance.

– Platform expansion can incrementally add new core assets or new
parts in the architecture.

– Platform enhancement incrementally improves existing artifacts or
the architecture.

• Reactive evolution results from unforeseen changes in the environment,
and may affect several or all products in the product line. Adaptive or
perfective maintenance operations can be involved [Som04b], as there may
be changes in the scope of the product line, manifested as changes in
functional, non-functional, or domain requirements.

68 4 Software Product Lines

– New functional requirements demand new functionality.

– New non-functional requirements (e.g., reduction of execution
time) can result for example from the existence of newly available hard-
ware.

– New domain requirements can affect domain engineering, for ex-
ample, due to new laws or legal regulations.

A successful management of the product line evolution needs metrics and
feedback mechanisms to measure various aspects of the product line and the
products contained therein. Traditional metrics from software development
[Zus94] and reuse [Pou96] can be applied in this context. However, special
metrics are currently researched for product lines (e.g, number of products,
defect density, percent reuse of core assets, architectural conformance; see
[ZC03] for details). A maturity model for product lines and related artifacts
is proposed in [Bos02]. More details on product line evolution are given in the
survey of [Pus02].

4.6 Deriving a Precise Definition

The exposition so far has illustrated that there are several approaches with
sometimes differing views and understandings of product lines and the compo-
nents they consist of. At a bottom line, a precise definition is needed [OPS06]
because 1) the meaning of the terms as they are used in this thesis needs
to be communicated (e.g., a special feature model that is referenced later);
2) different views and ideas are collected from different approaches into one
definition; 3) it serves as a basis for the understanding and the analogies to be
developed in the following Chapters. However, it is not the intention of this
definition to express all existing views of all existing approaches.

Definition 4.4 (Software Product Line).
A software product line SPL(F, FT, P, A, C) consists of

• A set F of features which each have a name, a type, and an anno-
tation (e.g., a description in natural language). That is, f ∈ F : f =
(name, type, annotation); type ∈ {common, optional, alternative}.
It is distinguished between the sets of

– common features CF := {f ∈ F | type(f) = common} with CF 6= ∅
– optional features OF := {f ∈ F | type(f) = optional}
– alternative features AF := {f ∈ F | type(f) = alternative}

• The features F are organized in a feature tree FT with vertices (or
nodes) V . Each node v ∈ V , except the root node r ∈ V , has a type and
contents, i.e., v = (type, contents) with node type ∈ {common, optional,

alternative}. Via its contents, every node is linked to features in F , and

4.6 Deriving a Precise Definition 69

each feature must occur in exactly one node. As an exception, r has no
corresponding feature in F . The connection between a node v and features
is as follows:

– contents(v) =

f ∈ CF , if type(v) = common;
f ∈ OF , if type(v) = optional;

(Y, min, max) with
Y ⊆ AF ; min, max ∈ N;
min ≤ max ≤ |Y |

, if type(v) = alternative

– if type(v) = alternative then v must be a leaf in FT .

• A set of software products P = {p1, . . . , pq}, and
for p ∈ P : p = (pid, FTp, Fp) with

– pid is a unique identifier for the software product p.
– FTp is a feature tree for the product p, which is called an instance of

FT . This means that FTp is a subtree of FT , with root node r that is
by default included into FTp

4;
− a node v of type common in FT has to be included in FTp if its

immediate predecessor was included, i.e., for an included node, all
immediate successors of type common have to be included in FTp

5;
− from a node va of type alternative in FT , not all alternative

features must be chosen for FTp. The corresponding node v′a =
(type′, contents′) in FTp has type′ = alternative and contents′(v′a)
= X ⊆ Y with min ≤ |X | ≤ max, i.e., at least min and at most
max alternative features have to be chosen from the set Y 6.

– The set Fp = CFp ∪ OFp ∪ AFp denotes all common, optional, and
alternative features in FTp which are finally in the contents of the in-
cluded nodes; these features will realize the functionality of the product
p.

• A set of core assets A := {c1, . . . , cr} which are used to build a
feature or a subset of features in FT . Furthermore, for c ∈ A : c =
(cid, content, annotation), which means that a core asset can conceptually
consist of
– a unique identifier cid;

4 From “subtree” it follows that if a node of FT other than r is included into FTp,
then its predecessor must also have been included.

5 It follows that a node of type optional may be included in FTp if its predecessor
is included; therefore, this condition is not part of the definition.

6 The notation of contents′(v′

a) is simplified to avoid unnecessary overload. A for-
mally more precise formulation would be contents′(v′

a) = (X, n, n) with |X| = n

and min ≤ n ≤ max, since contents(v) is a triple. However, min and max

need not be transferred to the instance FTp since the respective instance node is
intended to contain only the subset X of selected features.

70 4 Software Product Lines

– some content which can be for example a document, code, a model, etc.;
– some annotation related to the content, e.g., natural language descrip-

tions, metadata, process specifications for its construction, etc.

• A construction specification C = (model, annotation, B) which spec-
ifies how to create every possible product of the product line from core
assets. In particular,
– there is a model which describes the overall construction;
– an annotation adds additional information, e.g., as natural language

descriptions;
– B is the built-from-relation B ⊆ P × A indicating which products are

built using which core assets.

As defined in Def. 4.4, a software product line SPL is understood to
consist of a set of features F that are organized in a feature tree FT , a set of
software products P that can be built using core assets A, and a construction
specification C that defines how to built products from core assets. Three
types of features are distinguished: common features, optional features, and
alternative features. In the feature tree, each node is “linked” to features,
and a feature must occur in exactly one node. The set of common features
must not be empty, since without commonalities, the setup of a product line
would hardly make sense. The types for features and nodes are used to impose
constraints on the choice of features for particular products. The feature tree
is used as an organization structure for features and as a means to model
feature dependencies and constraints.

An instance of the feature tree is used to model valid feature configurations
for concrete products. For the creation of such an instance, it is assumed that
starting with the root (which is always included in every product) only those
nodes from FT are chosen, which contain features that should be implemented
in a product. For a specific product, the resulting instance FTp is also a tree.
The selection process of features in the nodes of the tree FT is influenced by
already chosen parents and by the type of a node. An application engineer
may be forced to select a node with a common feature if its parent node was
selected; a node with an optional feature can be selected if needed, provided
that its parent node was selected; if the parent of an alternative node was
selected, then a certain minimum and maximum of alternative features have
to be selected. The core assets in A have, in addition to a unique identifier, a
content part and an annotation part. The content part can be for example a
code component, an architecture specification, a design diagram, a test case,
etc. The annotation part can be for example metadata, a natural language
description with details on how to use the asset during the construction of
a product, or even a more precise process specification for application engi-
neering (similar to the proposal of [CN02]). The construction specification C

is aimed at the construction of the product line as a whole, and contains a
model specifying the overall construction procedure for every product, and an

4.6 Deriving a Precise Definition 71

additional annotation which can be for example in natural language. Such an
annotation can contain the non-model information of a production plan (e.g.,
the textual descriptions shown in Sect. 4.3.2). Finally, the built-from-relation
B captures which core assets are used to build which product.

Example 4.1

Figure 4.7 is used to illustrate the introduced feature model and the creation of a
valid feature configuration. It shows the tree FT as a possible excerpt for a product
line of accounting systems, which can be configured to meet various needs with
respect to the graphical user interface (GUI), law regulations, or reporting.

Accounting System
Root Concept

Reporting
common

Data Export
optional

Graphical
optional

Financial Statement
common

Income Statement
common

Balance Sheet
common

GUI
common

Input
alternative (1,2)

Batch
alternative

Interactive
alternative

Language
alternative (1,1)

English
alternative

German
alternative

Law Regulations
alternative (1,3)

USGAAP
alternative

HGB
alternative

IAS
alternative

Fig. 4.7. Example for a feature tree FT for accounting systems.

Accounting System (Variant 1)
Root Concept

Reporting
common

Financial Statement
common

Income Statement
common

Balance Sheet
common

GUI
common

Input
alternative

Interactive
alternative

Language
alternative

German
alternative

Law Regulations
alternative

HGB
alternative

Fig. 4.8. Example for an instance FTvariant1 .

Here is a valid feature configuration for variant1, a product for the low-cost segment
of the German market (the root node is omitted and subfeatures of a feature are
written in parentheses):

• {reporting (financial statement (balance sheet, income statement)),
law regulations (HGB), GUI (input (interactive), language(German))}

72 4 Software Product Lines

The corresponding tree FTvariant1 , which is an instance of FT , is shown in Fig.
4.8. The construction specification will contain the needed details on how to build
a system with these features from the existing core assets. �

4.7 Summary and Discussion

Contrary to an intuitive belief, software reuse is difficult to realize in practice –
an insight that crystallizes out throughout the history of software engineering.
The approach of software product lines is realistic enough not to believe in a
too general and opportunistic (i.e., unplanned) reuse. Instead, it is believed
that coordinated and planned restrictions will improve reuse. The approach
of software product lines can be understood as a small niche in the reuse
landscape, which makes extensive planning in advance, and which assumes
that several similar systems will be produced. The main trade-offs are known
from the beginning: a fixed number of valid configurations, a fixed set of
features and possible implementations vs. improved reuse, lower costs, better
quality, easier maintenance. This approach will only be applicable when the
assumptions and the trade-offs are accepted. The most important points of
software product lines, which are also of interest in the following Chapters,
are:

• software product lines are a special-purpose reuse approach with specific
assumptions;

• software product lines focus on sets of similar software systems;
• most commonalities and variabilities of product variants are known

and specified in advance (e.g., as predefined feature models, core assets,
construction rules);

• most effort is spent in domain engineering to prepare reuse for applica-
tion engineering that mainly focuses on assembly of artifacts produced in
domain engineering;

• the reuse context of artifacts is known and planned in advance.

In the research of software product lines, however, there are still many open
questions. For example, the idea of feature models was quickly adopted by the
community, but the concrete modeling techniques lack more precise semantics
and tool support for more complex scenarios. The diversity of available fea-
ture modeling notations probably points to a need for different notations for
different domains or to a need for standardization of notations. Testing in the
context of product lines provides also opportunities for research, especially on
how to connect domain and application testing. Further open questions are
currently also encountered in the area of process management for software
product lines, especially with respect to process modeling and process reuse.

Part II

Product Lines for Digital Information Products

5

The Product Lines for Digital Information
Products (PLANT) Approach

This Chapter introduces the Product Lines for Digital Information
Products (PLANT) approach that is targeted at the creation of variants
of digital information products. The Chapter begins with the motivation and
description of the goals of this approach, and presents thereafter typical short-
comings of existing approaches. The discussion of shortcomings is used to de-
rive requirements for PLANT. This is followed by a macroscopic and general
overview of the PLANT approach, which describes the main ideas such as the
underlying strategy, assumptions, constraints, the process model, as well as a
related tool. In addition, ideas of validation of the approach are discussed. The
Chapter concludes with a summary and a discussion of the expected benefits.

5.1 Motivation and Goal

The discussion in Chapter 2 has revealed that digital information products
generally play an important role in today’s digital economy, and that substan-
tial investments have been made in the creation of various types of content
that constitute the core benefit of digital information products. In Sect. 2.3,
the attention was drawn upon the need for an efficient creation of versions
of digital information products. Due to the properties of digital information
products – indestructibility, transmutability, reproducibility, and the typical
cost structure – there is not only a technical need, but also an economic pres-
sure to create variants of digital information products. Thus, one can work
against saturation effects in markets, and address different customer segments.
In addition, it was concluded that a structured approach is needed which helps
to reduce the costs of production, for example, by taking advantage of possible
commonalities within the content that is used in different digital information
products.

The importance of content contained in digital information products has
been illustrated in Chapter 3 for the e-learning domain as an example area
where content is one of the critical parts to establish a competitive advantage.

76 5 The Product Lines for Digital Information Products (PLANT) Approach

Although progress has been made with reuse techniques in the area of Software
Engineering, the e-learning area at this point shows that the reuse of content
within digital information products is still immature. To some degree, the
history seems to repeat itself: the reuse approaches for content within digital
information products in e-learning seem to run into similar traps like the
reuse approaches for code in the early days of Software Engineering, where it is
meanwhile noticed that it “is far too simplistic to assume that components are
simply selected from catalogs, thrown together, and magic happens” [SGM02].
Especially in e-learning it is evident that content reuse approaches should also
address higher conceptual (i.e., strategic) levels, not only fine-grained technical
levels.

This is a motivation for this thesis to transfer the experience and extend
key concepts of reuse from Software Engineering, especially those of software
product lines (presented in Chapter 4), to digital information products. As
pointed out, the content contained in today’s digital information products may
consist of a mixture of text and software (see Sect. 2.2.5). Software Engineering
techniques are therefore needed anyway, however, with adaptations to make
them applicable in the specific context of digital information products. The
details of these adaptations will be developed throughout the thesis.

As learned from the e-learning area, opportunistic reuse of digital artifacts
within digital information products is inefficient and needs to be replaced by
a structured, engineering-like reuse approach that takes also strategic aspects
into account. These include planning reuse before artifacts are created as well
as planning from the beginning what the context of reuse will be. Furthermore,
assuming that the content found in variants of digital information products
is similar to some degree, reuse has to keep an eye not only on individual
products, but also on the sets of similar products. Only this way one can
take advantage of synergy effects and reduce the costs to produce digital
information products that have commonalities. The focus on sets of similar
products is indeed realistic, as can be observed in e-learning; for example one
can think of the digital content for an information systems course which is
offered for different audiences (e.g., beginners, intermediates, experts), or with
a different emphasis (e.g., database-centric, workflow-centric). Such content
often possesses common parts and parts which are different, which can be
explained by the typical creation procedure. It is conceivable to create the
intermediate version first, and then delete some parts for the beginners or
add some parts for the advanced course. Other strategic aspects also play a
role for reuse, since such content is typically not developed in isolation, but has
be to aligned with the strategy of a department, an institute, or a university
as a whole. In many situations, an underlying strategy additionally regulates
which content is covered by courses in a department, and how they need to
be integrated into an overall curriculum.

In a different area, the example of Google Earth (see Sect. 2.2.2) shows
that different customer groups may receive different information with different
levels of additional detail. The same is true in a case of a digital newspaper

5.2 Shortcomings of Existing Approaches 77

which might offer a base package with news for the general public, and ad-
ditional configurable categories of news for financial analysts, managers, or
scientists. These observations and the sketched requirements additionally mo-
tivate the application and adaptation of the software product line concept to
digital information products. Therefore, the goal of the approach to be devel-
oped is to reuse content within digital information products in a systematic
way, and especially handle the commonalities between similar products in a
systematic way. For a successful reuse, the approach must ensure that the
combination of available content components is finally feasible and that all
pieces will fit when they are assembled together.

5.2 Shortcomings of Existing Approaches

Although the reuse process of digital content seems to be immature at the
moment, it has not attracted much attention, as in the early days of the
World Wide Web the amount of digital content and the complexity of digital
products were small enough to be handled just “by hand”. However, this has
changed in recent years dramatically as digital information products have
become more complex and ubiquitous, mainly propelled by a rapidly growing
amount of digital content available on the Web (see also Sect. 2.2.2). There
are estimations which claim that more than 90% of the currently produced
information is in digital format and that this percentage will likely increase in
the future [Var05]. Especially the e-learning area – where content is at the core
of the business – shows that on a larger scale content reuse can be difficult to
handle, e.g., a developer not only has to find the desired content component,
but also adapt it to “fit” into the specific context and other existing content. If
a component does not fit, adaptations are necessary that in some cases can be
just as tedious as developing everything from scratch. Moreover, as described
so far, there are technical and economic reasons to create variants of digital
information products, which demand for an approach that is able to handle
similar sets of related content within a product line of digital content.

Although there are currently different types of systems which aim to im-
prove content reuse with different methods, e.g., content management sys-
tems, document management systems, or workflow management systems (see
Sect. 2.2.5), they largely fail to efficiently handle reuse in different information
products with content that is in some parts similar and in some parts differ-
ent, and take advantage of synergy effects. However, even if such systems had
the full-fledged mechanisms for product line support, a reuse strategy and a
process model would be additionally needed for successful content reuse. The
problems arising when a reuse strategy is lacking have been illustrated for
content within learning objects in the e-learning area (Chapter 3) where the
currently employed reuse techniques are hardly efficient.

In the context of digital information products, current content reuse ap-
proaches have got drawbacks in the following respects:

78 5 The Product Lines for Digital Information Products (PLANT) Approach

• Standards: there are numerous metadata standards for various fields,
such as for digital libraries or e-learning, to name just a few (see also Sect.
3.4); this complicates retrieval of content components. Some standards
(e.g., in e-learning) seem to be still immature [POS05].

• Compatibility: retrieved content components may not be “compatible”
with each other or with the ones already owned, i.e., they may have a
different file format/encoding, structure, layout, presentation, or assume
a different reuse context (see also [GM05]).

• Strategy: an overall reuse strategy for content, which goes beyond oppor-
tunistic reuse, is frequently missing. The often practiced reuse of content
in an opportunistic “copy-and-paste” manner can lead to redundancy and
difficult updating.

• Context: it is neglected that content may not be developed in isolation.
– There can be sets of digital information products that contain com-

mon parts (e.g., some basic subject matters covered in all products, a
corporate design for all information products in a product line, etc.)
and parts in which they differ.

– There can be constraints on the allowed configurations of variants,
which can be derived from an overall strategy (e.g., if a certain subject
is covered, then another subject should not be covered).

To solve these problems, a complete “solution package” is needed, which
consists of a strategy, a process model, and a tool or system to support the
creation of digital information products.

5.3 Requirements on the Approach

Based on the previous expositions, the most important (functional and non-
functional) requirements for reuse of content with digital information products
are derived in a more general way as follows:

1. The approach should have an overall strategy for reuse.
a) The reuse should be planned proactively, before a component is reused.
b) The approach must have a uniform view on reusable content compo-

nents, and should be able to handle different types of content when
applied in different fields.

c) The approach must be aware of common parts and differing parts
of content as well as of variants of digital information products in a
product line.

d) The approach must be able to handle constraints upon variants of
digital information products in a product line.

2. A general process model is needed which complements the strategy.
3. Tool support is needed which helps to enact the well-structured parts of

the general process model.

5.4 Overview of PLANT 79

a) In particular, a tool must permit the assembly of digital information
products from existing digital content components.

b) The tool must be able to model and enact (i.e., execute) the corre-
sponding construction workflow.

4. Synergy effects between digital information products in the product line
should be exploited. The development effort for digital information prod-
ucts with the product line (i.e., with joint domain engineering for all
products and individual application engineering for each of the products)
should be less than developing all products individually.

The strategy for reuse (1) intends to move away from opportunistic reuse
and help to resolve the retrieval and compatibility problems for pieces of
content. Furthermore, the focus is explicitly adjusted to sets of digital infor-
mation products, which accounts for the shortcoming that content may not
be developed in isolation. The general process model (2) and the tool support
(3) should help to realize the strategy. The exploitation of synergy effects (4)
should reduce the development effort. On the one hand, the effort can be as-
sessed in a qualitative way, e.g., if synergy effects indeed reduce redundant
parts and allow easier updates in the product line approach compared to an
individual development. On the other hand, quantitative effort can be assessed
by measuring the development effort, for example, in person months.

5.4 Overview of PLANT

The Product Lines for Digital Information Products (PLANT) ap-
proach proposes to remedy the aforementioned shortcomings encountered dur-
ing the creation and reuse of content in digital information products by apply-
ing and extending concepts from software product lines. PLANT is a special-
purpose approach aimed at the creation of a set of several related digital
information products. Each product in a product line is regarded as a variant
with a special content configuration, and the creation of information prod-
ucts is standardized within a product line. PLANT is conceived as a “solution
package” that encompasses several elements: a strategy, a process model, and
appropriate tools. An overview of the elements and their interconnections is
presented next.

5.4.1 Strategy and Assumptions

PLANT is designed to be applicable in situations in which several similar dig-
ital information products are to be developed. The main strategy is to tackle
the aforementioned shortcomings and make the reuse of content more efficient
by introducing several limitations known and communicated in advance:

• All developed digital information products must belong to exactly one
product line.

80 5 The Product Lines for Digital Information Products (PLANT) Approach

• The product line constrains in advance the possible content configurations
for different variants of digital information products, defines a fixed set of
available content components, as well as the construction process how to
create a digital information product out of content components.

• Planning, especially of the content component structure and reuse context,
is done (proactively) in advance.

Since the appearance of digital information products may vary in different
application areas, PLANT is conceived as a more general approach which can
be partly customized; this is done by creating construction artifacts that are
customized to fit in the particular area. Furthermore, PLANT is based on the
following assumptions:

• Newly developed content often builds upon existing content.
• Newly developed versions of digital information products are often varia-

tions of existing ones, having some identical parts.
• The variability of distinct parts is in most cases small or predictable.

Having made explicit the strategy and assumptions, it becomes obvious
that PLANT follows a reuse approach that is targeted at a special niche in the
content reuse landscape. Contrary to a general-purpose or opportunistic reuse
approach, the introduced limitations help to establish a technical and orga-
nizational platform for the creation of related digital information products,
which can better exploit existing commonalities and achieve synergy effects.
The assumptions also make clear when PLANT is not applicable. A more
detailed process model is introduced next.

5.4.2 A Process Model with Three Sub-Processes

The process model complements the strategy and provides more concrete
guidance during the creation of product lines for digital information products.
The process model of the PLANT approach is depicted in Fig. 5.1. It is derived
from the insights gained with software product lines (Sect. 4.2) and has three
different, interrelated sub-processes: family engineering, domain engineering,
and application engineering. The sequence of the respective activities in the
sub-processes does not have to be strictly waterfall-like, and iterations are
possible. An overview of the sub-processes is shown next in Tab. 5.1–5.4.
More details will follow in Chapters 6–8, and details on the interrelation of
the sub-processes will be explained as well.

Family engineering (1) has the view on the product line as such and pro-
vides an organizational roof for the PLANT approach. It is assumed that the
activities of family engineering (cf. Tab. 5.1) are executed when a product line
is initiated, and thereafter for controlling purposes at specified time intervals
or after the completion of one pass of domain or application engineering. The
main purpose of family engineering is to complement the purely technical view

5.4 Overview of PLANT 81

Repository of
Core Assets

1) Family Engineering

2) Domain Engineering 3) Application Engineering

Domain Req.
Documents

Models

Construction
Artifacts

Domain Test
Artifacts

Process

1) Domain
Analysis

2) Domain
Design

3) Domain
Realization

4) Domain
Testing Product Repository

Process

5) Evaluation/Controlling

Repository

1) Feasibility/Risk Assessment

2) Economic/Evolution/Lifecycle

3) Configuration Management
Documents

2) Application

Design

3) Application

Realization

4) Application

Testing

1) Application

Analysis

4) Organization

D
ig

it
a

l
In

fo
rm

a
ti
o

n
 P

ro
d

u
c
t

1

D
ig

it
a

l
In

fo
rm

a
ti
o

n
 P

ro
d

u
c
t

n

Design

Digital

Artifacts

Test

Artifacts

Requirements

Documents

Fig. 5.1. The process model of the PLANT approach with the most important
activities and connections.

of domain and application engineering by management issues. More details are
presented in Chapter 6.

Domain engineering (2) is a sub-process that focuses on all digital in-
formation products in one product line in one specific domain. Most of the
overall effort is invested here to plan and prepare reuse. All artifacts created
in domain engineering are called core assets, and are stored in a core asset
repository on which activities in other phases can draw upon. The core assets
represent the building blocks that can be used later to build a concrete digital
information product. There are various types of core assets in PLANT which
are shown in Tab. 5.2. The typical inputs, outputs, and activities of domain
engineering are depicted in Tab. 5.3.

Domain engineering makes preparations for application engineering and
among these, defines exactly one conceptual product line model for one prod-
uct line. This model specifies before reuse which content configurations are
allowed for digital information products. Later, in application engineering,
one concrete digital information product can only have a content configura-
tion that can be derived from the conceptual product line model; a prede-
fined product map template is used to capture in application engineering the
product-specific configurations.

It has already been mentioned that digital information products can con-
sist of a mixture of content and software (Sect. 2.2.5), and this becomes ob-
vious in PLANT since especially the construction artifacts can be content,
or a mixture of both content and software; thus, the phases in the domain

82 5 The Product Lines for Digital Information Products (PLANT) Approach

Table 5.1. Overview of family engineering in PLANT. A detailed description is
given in Chapter 6

1.1 Feasibility/Risk Assessment

Inputs:
results of interviews/surveys, information about legal regulations, best
practices in the field, competitors, current state of market, available
resources and constraints

Activities: assess technical and organizational feasibility of product line; assess risk

Outputs: family engineering overview document; if necessary: other documents
(surveys, etc.)

1.2 Economic/Evolution/Lifecycle Aspects

Inputs: overview document

Activities: estimate effort in person months with/without PLANT; plan update
cycles for content during lifecycle of information products

Outputs: updated overview document; if necessary: other documents with details

1.3 Configuration Management

Inputs:
overview document; if available: feedback from domain analysis (2.1)
with configuration data from market-based view, feedback from appli-
cation realization (3.3) with configurations from product-based view

Activities: if data is available: compare and assess if configurations from market-
based view and product-based view match sufficiently

Outputs: updated overview document

1.4 Organization

Inputs: overview document

Activities:
choose appropriate organization structure for employees or check
whether existing one is still suitable; define who is responsible for fam-
ily, domain, or application engineering

Outputs: updated overview document

1.5 Evaluation/Controlling

Inputs: overview document

Activities: check is defined indicators in 1.1–1.4 are within expected ranges; make
decisions

Outputs: updated overview document with next date for evaluation

engineering process are not only concerned with content development, but
also in parallel with software development. Content components are construc-
tion artifacts that contain a predefined piece of content. Other artifacts such
as applets (e.g., used within a Web page) or helper programs, are software.
Helper programs are used to create information products by composition out
of content components, or to accomplish other tasks; they are procured or
created in domain engineering.

A version graph model is defined uniformly for all core assets, but it is em-
ployed only if an asset needs to be versioned. For example, a version graph can
be used to track the evolution of content components and ease the simultane-
ous usage of different component versions in different information products.

5.4 Overview of PLANT 83

Table 5.2. Types of core assets for one product line in PLANT. Details are presented
in Chapter 7.

1. domain requirements documents
2. models1

a) 1 product line metamodel
b) 1 conceptual product line model (derived from product line metamodel)
c) 1 product map template
d) 1 component model for content components
e) 1 uniform versioning scheme for core assets
f) 1 construction specification
g) 0 . . . ∗ reusable workflow modules
h) 0 . . . ∗ models for software artifacts (e.g., for helper programs, etc.)

3. construction artifacts
a) content components
b) other artifacts (such as layout description files, helper programs, programs

that are part of the content)
4. test artifacts

Furthermore, a uniform component model is specified for all content com-
ponents in one product line, which guarantees that all content components
have for example the same structure and the same underlying assumptions
for reuse. Therefore, the assembly of content components becomes less prob-
lematic than with components found in public repositories which were built
according to different requirements.

The construction specification defines in fact a construction workflow
model that creates all information products in one product line, using con-
struction artifacts. Reusable workflow modules, which represent prefabricated
pieces of a workflow model, can be prepared to speed up the creation of a con-
struction specification. The actual execution of the workflow model is done in
application engineering. Additional details on domain engineering of PLANT
are presented in Chapter 7.

Application engineering (3) focuses on the construction of one single digital
information product (see Tab. 5.4 for an overview of inputs, outputs, and
activities). However, it is not allowed to realize every conceivable product,
but only one that can be derived from the specifications made in domain
engineering. If some specific core assets are needed for a product which are
not already there, then application engineering must be stopped and domain
engineering is repeated with adequate feedback. The term “application” seems
suitable in this context, since (as already argued) the content inside a digital
information product may consist of a mixture of content and software.

1 “1” means “exactly one”; “*” means arbitrary many.

84 5 The Product Lines for Digital Information Products (PLANT) Approach

Table 5.3. Overview of domain engineering in PLANT. A detailed description is
given in Chapter 7

2.1 Domain Analysis

Inputs:
results of interviews/surveys; if available: external domain requirements
documents (e.g., legal regulations) or other available artifacts; if avail-
able: feedback from domain testing (2.4) or application analysis (3.4)

Activities:

define scope of the product line; define content & packaging require-
ments valid for all information products in the product line; define
requirements for additionally employed software artifacts (e.g., helper
programs); communicate market-based view of configurations to (1.3)

Outputs: domain requirements documents
2.2 Domain Design

Inputs: domain requirements documents from domain analysis (2.1); if avail-
able: feedback from application design (3.2)

Activities:
derive product line models (see Tab. 5.2, 2a-2g) from product line re-
quirements; if necessary: create models for additional software artifacts
(e.g., helper programs; see Tab. 5.2, 2h)

Outputs: models

2.3 Domain Realization

Inputs: models from domain design (2.2), if available: feedback from application
realization (3.3)

Activities:

realization of construction artifacts for digital information products
(Tab. 5.2 3a-3b), i.e., content components (by forward engineering or re-
engineering from existing material), realization of other artifacts (e.g.,
layout descriptions; helper programs for construction, packaging, de-
livery; programs for test case generation; programs that are part of
content), realization of product map database and construction work-
flow model

Outputs: construction artifacts
2.4 Domain Testing

Inputs: construction artifacts (from 2.3), domain requirements documents
(from 2.1), if available: feedback from application testing (3.4)

Activities:

create reusable domain test cases; test construction artifacts (e.g., syn-
tax checking, content validation, test of helper programs), verify that
construction workflow model can generate only products with desired
configurations, integration testing of content components

Outputs: tested construction artifacts; reusable domain test cases; if necessary:
feedback to domain analysis (2.1)

Due to the preparatory work of domain engineering (e.g., content creation
or programming), the focus of application engineering is shifted towards a
derivation of a content configuration, and assembly of appropriate core assets.
The product map template records the configuration special to one product.
The configuration data is stored in a relational database. In a well-designed
product line the effort of application engineering should be less than in tradi-

5.4 Overview of PLANT 85

Table 5.4. Overview of application engineering in PLANT. A detailed description
is given in Chapter 8

3.1 Application Analysis

Inputs:

domain requirements documents (from 2.1); if needed: domain design
models (from 2.2) for assessing application-specific requirements; re-
sults of application-specific interviews/surveys; if available: feedback
from application testing (3.4)

Activities:
define particular requirements for one digital information product; con-
sider requirements/constraints defined in domain engineering (2.1 and
2.2)

Outputs: application requirements documents for one digital information prod-
uct; if needed: feedback to domain analysis (2.1)

3.2 Application Design

Inputs: application requirements documents from application analysis (3.1),
models from domain design (2.2)

Activities: derive the models and the specific configuration for one specific digital
information product

Outputs: application-specific models; if necessary: feedback to domain design
(2.2)

3.3 Application Realization

Inputs: models from application design (3.2), construction artifacts prepared
in domain realization (2.3)

Activities:
configuration and assembly of one digital information product; commu-
nication of created configuration (product-based view) to family engi-
neering (1.3)

Outputs: one digital information product with its specific digital artifacts; if nec-
essary: feedback to domain realization (2.3)

3.4 Application Testing

Inputs:
the digital information product (from 3.3), domain requirements docu-
ments (from 2.1), application requirements documents (from 3.1), do-
main test artifacts (from 2.4)

Activities: test and validate digital information product

Outputs: tested and validated digital information product; if necessary: feedback
to application analysis (3.1), domain testing (2.4)

tional single-product development – the payback of the investment in domain
engineering.

After a product is created, it is allowed to make some manual adaptations
to make it suit better to product-specific requirements, but only if they do not
contradict the overall product line constraints, and if the effort of the modifi-
cations is low compared to the overall effort needed for application engineering
(e.g., adding some cross-references, etc.). However, in a well-designed product
line such adaptations should be rare. For major modifications (e.g., of new

86 5 The Product Lines for Digital Information Products (PLANT) Approach

core assets), PLANT requires a new pass of domain engineering. More details
on application engineering are discussed in Chapter 8.

An overview of the models used in PLANT in domain and application engi-
neering is shown in Fig. 5.2, along with a categorization into conceptual, logi-
cal and physical design (i.e., from a general to a more specific, implementation-
dependent view). The models are on different abstraction layers and allow
a delay of design and configuration decisions for a concrete variant up to
the latest possible point. At the most general level, the conceptual product
line model, which is built according to the product line metamodel, specifies
which content configurations are possible for information products. The con-
tent component model specifies the general characteristics of reusable content
components, which are a special category of core assets of a product line. Core
assets can be versioned according to the core asset version graph model. A
product map derives a product model based on the conceptual product line
model; the product model records a special feature configuration, as well as
the versions of the core assets implementing those features. In a general sense,
the product model can be regarded as the architecture description of a prod-
uct. The data of the product map is stored in a relational database, which is
queried during the construction of a product. The construction specification
is a workflow model that specifies how to create each information product in
the product line. Reusable workflow modules are prefabricated model pieces
that can be employed to speed up the design of the construction specifica-
tion model. Additional details on the presented models will be provided in
Chapters 7– 8.

How PLANT is initiated

The interconnections between domain, application, and family engineering
for digital information products pose the question of where to start when the
PLANT approach is initiated. In brief, the initial pass is sketched in Fig. 5.3;
PLANT starts in family engineering. If there is a decision in favor of one
product line, the process can move on to the first pass of domain engineering.
Thereafter, a base of core assets is available for one product line. Individual in-
formation products can then be derived in application engineering. After each
pass of domain or application engineering, the product line is re-evaluated in
family engineering which can use updated data, for example data from domain
analysis, or product configuration data recorded in application realization.

5.4.3 Tools and Customization

PLANT is intended to be used in different areas where different types of con-
tent exist. PLANT therefore has fixed parts and adaptable parts on different
abstraction levels. What always remains fixed are the product line metamodel,
the core asset version graph model, and the database schema of the product
map template. What can be adapted to a specific area are: the conceptual

5.4 Overview of PLANT 87

Construction Specification
(design: DE; execution: AE)

Core Asset Version Graph Model
(model: domain design;

instances: domain realization)Product Model (AE)

Conceptual Product Line Model (DE)

(Grammar for Product Model)

Product Line Metamodel (DE)
(Grammar for Product Line Model)

derived from

derived from

used indefined in

Database

used in

Conceptual
Design

Logical
Design

Physical
Design

Content Component

Model (DE)

Reusable Workflow
Modules (DE) usable in

Product Map (Content Conf. Mgmt.)

(template design: DE; data: DE+AE)

Abbreviations: DE: Domain Engineering; AE: Application Engineering

(more general)

(more specific)

data
stored in

references
components
spec. by

Fig. 5.2. Overview of the models used in the PLANT approach.

Repository of
Core Assets

1) Family Engineering

2) Domain Engineering 3) Application Engineering

Domain Req.
Documents

Models

Construction
Artifacts

Domain Test
Artifacts

Process

1) Domain
Analysis

2) Domain
Design

3) Domain
Realization

4) Domain
Testing Product Repository

Process

5) Evalutation/Controlling

Repository

1) Feasibility/Risk Assessment

2) Economics/Evolution/Lifecycle

3) Configuration Management
Documents

2) Application

Design

3) Application

Realization

4) Application

Testing

1) Application

Analysis

4) Organization

D
ig

it
a
l

P

ro
d
u
c
t
1

D
ig

it
a
l

P

ro
d
u
c
t

n

Design

Digital

Artifacts

Test

Artifacts

Requirements

Documents

Fig. 5.3. How the PLANT approach is initiated.

product line model, the data of the product map, the construction workflow
model, the content component model, the construction artifacts (e.g., content
components, helper programs), and test artifacts.

PLANT comes initially with one tool that is able to handle such adapta-
tions, and which mainly targets workflow execution: the Desktop Workflow
Engine (DWE). It is used to model and execute the concrete workflow that

88 5 The Product Lines for Digital Information Products (PLANT) Approach

assembles digital information products from the specific core assets developed
in domain engineering. The assembly is done by calling area-specific helper
programs that for example construct products by appending Powerpoint files,
converting files into different formats such as HTML or PDF, performing
XSLT transformations, etc. Additional details on this tool are presented in
Chapter 9.

5.4.4 Parallels between PLANT and Software Product Lines

Besides distinction of domain and application engineering in the development
process, the product line of digital information products in PLANT has ba-
sically the same components that were illustrated for software products lines
in Def. 4.4: a set of features, a feature tree, a set of products, a set of core
assets, and a construction specification.

However, existing methodologies of software product lines (cf. Chapter
4) cannot be applied to the context of information products right away, be-
cause for software product lines the aforementioned components have different
assumptions and are tailored to pure software only. As typical examples, fea-
tures and feature tree focus on the potential functionality of a software system,
products are programs, many of the core assets are code components, and the
construction specification is used to produce executable programs.

Adaptation is needed for the context of digital information products, espe-
cially for capturing the “information” aspect, i.e., which information a product
should deliver to a user. Roughly described, features are in PLANT mod-
ules of information, the feature tree is extended to a conceptual product line
model, the set of products corresponds to the set of digital information prod-
ucts in a product line, the core assets are – in a more general sense – digital
artifacts (e.g., content components) that are used for the construction of in-
formation products, and the construction specification is a workflow model
which specifies how information products are assembled. The parametrization
is supported in PLANT by the workflow model, and parameter data is stored
in the aforementioned the relational database (cf. Fig. 5.2).

Contrary to the presentation of software product lines, which are intended
to be applicable only for software, the PLANT approach is intended to be
applicable in several information-product-related areas (e.g., for e-learning,
e-news, audio- or video-based information products) and which will not be
formalized each, as such a general formalization would be necessarily incom-
plete. In the sequel, the general PLANT models are specified in a formal way,
to help express their exact semantics and assess the expressive power. Further
connections between PLANT and the definition of a software product line
(Def. 4.4) as well as extensions will be discussed in the appropriate parts.

5.4.5 Examples for Application Areas

The PLANT approach is meant to be applicable in different areas in which
digital information products play a role. Four important areas are sketched in

5.4 Overview of PLANT 89

the sequel, along with the respective motivations, the meaning of the concep-
tual product line model, the area-specific construction artifacts (i.e., content
components or helper programs), the purpose of the construction specifica-
tion, and resulting products. The examples should clarify how and to which
degree PLANT can be customized to a specific area.

Product Lines for E-Learning Courses

• Motivation: create variants of an e-learning course (e.g., “Information
Systems”) with a different emphasis on sub-topics from the database or
workflow area, depending on the target audience.

• Conceptual product line model: models commonalities, differences,
and valid content configurations for all relevant course variants.

• Core assets: content components: Powerpoint files for subtopics (e.g. “ER
model”, etc.) in PPT format; layout descriptions: PPT-Master files; helper
programs: a program to append two given PPT files to one file; a program
to apply given a given PPT layout to a given PPT file

• Construction specification: models how to append which files to obtain
a certain course; the decisions which path to take during execution lead
to one course with a specific configuration for one target audience

• One generated product: a PPT handout that is sent to students.

Product Lines for E-Books

• Motivation: efficient creation of PDF files for the user manual of similar
digital camera models. As such cameras themselves have technical com-
monalities and differences, their corresponding documentation will neces-
sarily have common parts and differing parts.

• Conceptual product line model: models commonalities, differences,
and valid content configurations for user manuals.

• Core assets: content components: chapter texts in XML format; layout
descriptions: XSLT and XSLT-FO specifications [HM04]; helper programs:
an XSLT parser that generates PDF files from the content components
according to the XSLT specifications.

• Construction specification: models when to call an XSLT parser with
which parameters; specifies how the resulting artifacts are copied on a Web
server.

• One generated product: a PDF file representing the documentation for
a specific camera model.

Product Lines for E-News

• Motivation: package and deliver the news according to the interests of
different target groups (e.g., general interest, business, science, etc.). To
maximize the profits, only certain configurations should be allowed.

90 5 The Product Lines for Digital Information Products (PLANT) Approach

• Conceptual product line model: models the relevant domains of news
and selectable content (e.g., foreign affairs); the allowed configurations are
based on the business model.

• Core assets: content components: HTML files with a standardized struc-
ture; cascading style sheets (CSS) define layout specifications; helper pro-
grams: program to generate a Web site with a corresponding menu struc-
ture. The core asset version graphs of the content components are used
to capture the versions of content (associated to a feature like “foreign
affairs”) from different days.

• Construction specification: call the programs that create the Web site
and publish the corresponding files on a Web server.

• One generated product: a Web site that contains a special configuration
of news content.

Product Lines for Audio-based Products

• Motivation: instructional podcasts [Coc05] are available on the Web,
such as spoken encyclopedia articles. For a certain topic (e.g., history of
computing), sensible variants can be chosen that suit the needs of a listener
or a group of listeners.

• Conceptual product line model: meaningful configurations of audio
chapters

• Core assets: content components: audio files in MP3 format that cover a
certain chapter; a helper program that can insert a jingle (short melody)
at the beginning of each chapter to audibly mark the beginning of a new
topic, a helper program to append MP3 files one after another.

• Construction specification: construct a specific audio file (based on the
selection constraints of the feature model) by appending existing files one
after another and inserting jingles at defined points.

• One generated product: a podcast covering a meaningful combination
of selected topics.

5.5 Validation Approach

One important question is how it can be assessed whether the presented ap-
proach indeed solves the aforementioned problems in practice. To show the
plausibility of the proposed solution, various scenarios are used throughout
this thesis from the e-learning field. As already pointed out in Chapter 3, one
can observe that information in e-learning field is currently represented by a
multitude of different content types, such as text, graphics, animations, au-
dio and video files, or programs (e.g., Java applets). It is assumed that if the
presented approach is usable in such a complex environment, it can also be
used in other environments with similar or less complex content. Therefore,

5.6 Summary and Discussion 91

e-learning will be used in the sequel as a typical field for the application of dig-
ital information products. After the introduction of the details of the PLANT
approach, a case study will additionally show in Chapter 10 how PLANT was
practically applied in a real-world context related to e-learning.

5.6 Summary and Discussion

This Chapter presented a macroscopic overview of the Product Lines for
Digital Information Products (PLANT) approach which targets a spe-
cial niche in the content reuse landscape for information products. In PLANT,
a digital information product is understood to be a variant with one of sev-
eral predefined content configurations. The product line as such is, from a
more general point of view, a kind of envelope that imposes predefined con-
straints upon all its digital information products. These constraints are known
and communicated in advance, and are expressed in the aforementioned doc-
uments and models. PLANT attempts to make content reuse feasible and
more efficient by achieving synergy effects. These can reduce development
times and yield higher-quality information products due to less redundancy
and simplified updates. More details on the three sub-processes of PLANT –
family engineering, domain engineering, and application engineering – will be
presented in the following Chapters.

6

Family Engineering in PLANT

Repository of
Core Assets

1) Family Engineering

2) Domain Engineering 3) Application Engineering

Domain Req.
Documents

Models

Construction
Artifacts

Domain Test
Artifacts

Process

1) Domain
Analysis

2) Domain
Design

3) Domain
Realization

4) Domain
Testing Product Repository

Process

5) Evalutation/Controlling

Repository

1) Feasibility/Risk Assessment

2) Economics/Evolution/Lifecycle

3) Configuration Management
Documents

2) Application

Design

3) Application

Realization

4) Application

Testing

1) Application

Analysis

4) Organization

D
ig

it
a

l

P
ro

d
u

c
t

1

D
ig

it
a

l

P
ro

d
u

c
t

n

Design

Digital

Artifacts

Test

Artifacts

Requirements

Documents

The family engineering sub-process in PLANT has the view on one prod-
uct line as such, and provides an overall organizational roof that is intended
to complement the technical views of domain and application engineering by
management issues. Family engineering is carried out once during the initial
creation of a product line, and indicators with specified ranges are prede-
termined for various aspects. In addition, family engineering is executed for
controlling purposes at predefined time intervals or after the execution of
domain or application engineering. Within family engineering, the following
aspects play a role: feasibility and risk of creating a product line, economic
aspects, a comparison of market-demanded and technically realized product
configurations, organizational aspects, and controlling aspects. This Chapter
discusses each of these aspects in a detailed way, and finally points out some
of the typical difficulties.

94 6 Family Engineering in PLANT

6.1 Feasibility and Risk Assessment

An important aspect at the initial creation of a product line is whether it
is feasible to create it, and the involved risks. These aspects can be assessed
in various ways, qualitatively (e.g., through questionnaires) or quantitatively
(e.g., through measurements or estimations). Possible inputs for such an as-
sessment can be: results or interviews or surveys, legal regulations or other
constraints, descriptions of best practices, data about competitors or markets,
or information about the availability of needed resources.

To keep a better overview and simplify controlling afterwards, PLANT
distills the most important information from the aforementioned documents
into a family engineering overview document which is created when a product
line is initiated, and which contains general information about the product line
(e.g., identifier, description, domain of intended use), as well as information
from other activities in family engineering. In the family engineering overview
document, the data characterizing feasibility and risk of a product line is
summarized with respect to predefined factors which are considered most
relevant (derived from the assumptions in Sect. 5.4.1), using a rating approach.
For each factor, there is an ordinal scale with 5 possible answers a)–e), from
which exactly one must be chosen1. The scale is designed in such a way that
if all answers are either d) or e), then feasibility and risk of a product line are
within acceptable ranges. If any of the answers is either a) or b), then PLANT
should not be used. If any of the answers is c), then the development should
not go on until the respective issue is clarified to be either in a), b) or in d),
e).

Feasibility

• 1) Is the product line technically feasible?
a) infeasible; b) almost completely infeasible; c) unsure; d) feasible, but
with restrictions; e) completely feasible
Aspects to be considered: e.g., can the relevant file formats be handled?
Are the necessary tools, programs, etc., there? Can the missing tools or
programs be technically realized? Is the technical infrastructure available?

• 2) Do information products in the product line have commonal-
ities?
a) no commonalities; b) some commonalities, but which cannot be techni-
cally exploited; c) unsure; d) some commonalities that can be technically
exploited; e) many commonalities that can be technically exploited
Aspects to be considered: e.g., is there enough potential for synergy effects?
Are there content similarities that can be modularized?

1 This scale is similar to a Likert-like scale [Lik32] that is used to measure strengths
of agreement.

6.1 Feasibility and Risk Assessment 95

• 3) Are the variable parts of information products known?
a) unknown or unpredictable; b) only partly known or unpredictable; c)
unsure; d) most known, rest predictable; e) all known in advance
Aspects to be considered: e.g., for the parts that are individual to each
product and that are not in common with other products, is it possible to
find some regularities?

• 4) Is the product line organizationally feasible?
a) infeasible; b) many arguments against it; resources not available; c)
unsure; d) feasible, some management support; e) feasible, strong man-
agement support
Aspects to be considered: e.g., are the necessary resources available (staff,
etc.)? is the strategy of product lines clearly communicated and does the
management support this?

The questions on risk assessment focus on the factors considered most
important in the PLANT context, and for this context, risk is understood as
the degree of uncertainty which is influenced by several factors. In addition,
explanations can be given in natural language to show possible consequences
associated with a certain factor.

Risk assessment

• 1) In the domain where PLANT is to be applied, how often are
radical changes expected to occur?
a) often; b) very likely; c) unsure; d) rarely; e) never
Aspects to be considered: e.g., radical changes of the domain (in which in-
formation products will be created) can affect what is common and what is
variable in different products. If such changes occur too often, the prepa-
rations done in the product line could not pay off.

• 2) Is the demand for information products predictable?
a) not predictable at all; b) hardly predictable; c) unsure; d) predictable;
e) known for sure
Aspects to be considered: e.g., if the demand (internal in a company or
external from customers or a market) is unstable, then the investment
in a product line is more risky than if the demand is stable, because the
preparations to create products may become obsolete

• 3) Are there strategic advantages that are expected from a prod-
uct line approach?
a) no advantages expected; b) overall strategy is unclear; c) unsure; d)
strategy is in most parts defined and advantages are expected; e) strategy
is defined and advantages are expected
Aspects to be considered: e.g., a product line should be created only with

96 6 Family Engineering in PLANT

a clear goal and strategy where it is to be applied and why (efficiency as-
pects, competitive advantage, entry barriers for competitors, etc.). Oth-
erwise, technical and organizational aspects cannot be aligned towards a
certain goal, which increases the risk of failure.

In addition to the factors mentioned before, brief textual comments can be
supplemented in an additional section in the family engineering overview doc-
ument. These can characterize other aspects related to feasibility or risk, for
example, if some digital artifacts are already existing, names of competitors,
etc.

6.2 Economic, Evolution, Lifecycle Aspects

To assess whether the application of PLANT has economic advantages,
one has to quantitatively compare the situation with PLANT and without
PLANT. In particular, PLANT uses as a basis for this comparison the effort
in person months, and it is assumed that this quantity can flow as well into the
computation of other economically relevant quantities (e.g., costs, net present
value, etc.).

At the initiation of a product line, most values for the situation with
PLANT inevitably have to be estimated, and only those for the situation
without PLANT may be already known (e.g., by measuring the status quo
values). However, when family engineering is repeated at predefined time in-
tervals or after application engineering, the estimations can become more
accurate and thus improve their validity.

Closely related to the economic aspects are also the evolution and lifecycle
aspects of products, as it can be expected that the content in digital informa-
tion products will evolve over time and will require updates. The strategically
planned lifecycle of information products influences the frequency of needed
updates. The evolution and lifecycle data that is most important from an
economic point of view is collected here; other aspects of evolution and lifecy-
cle (e.g., technical configurations) are managed in an integrated way during
domain and application engineering (see Sect. 7.2.2).

6.2.1 Estimating Effort with PLANT

The effort estimation with PLANT is derived from a model that has already
been developed for the context of software product lines ([BCM+04]; see Sect.
4.5.1). The effort with PLANT (in person months) is calculated as follows:

Ewith := Eorg + Ecab + N ∗ (Ereusewith
+ Euniquewith

+ j ∗ Eupdatewith
)

with

6.2 Economic, Evolution, Lifecycle Aspects 97

• Eorg: effort to introduce the product line, adapt the organization, train
staff, etc.;

• Ecab: effort for the development of a core asset base, cost of the associated
commonality and variability analysis;

• N : number of digital information products in the product line;
• Ereusewith

: average effort (for one information product) for reuse of exist-
ing core assets, e.g., choosing configuration, searching, checking, integra-
tion;

• Euniquewith
: average effort to extend the core asset base with core assets

unique to a product, effort for manual adaptations after generation;
• j: average planned number of content update cycles for one information

product;
• Eupdatewith

: average effort of updating the product-related core assets in the
core asset base;

In a well-designed product line, Ereusewith
+Euniquewith

should be relatively
small2, compared to Eorg + Ecab.

6.2.2 Estimating Effort without PLANT

In the case without product lines, the effort to create N individual products
is:

Ewithout := N ∗ (Euniquewithout
+ j ∗ Eupdatewithout

)

with

• N : number of individual digital information products;
• Euniquewithout

: average effort to create one unique information product;
• j: average planned number of content update cycles for one information

product;
• Eupdatewithout

: average effort of updating one information product;

6.2.3 Comparison of effort with/without PLANT

The economic rationale of a product line of information products is similar to
that of software product lines (see Sect. 4.5.1). If the product line for informa-
tion products is well-designed, then Ereusewith

+ Euniquewith
< Euniquewithout

,
and Eupdatewith

< Eupdatewithout
. However, with PLANT, one must first invest

in Eorg +Ecab, which will typically pay off only after several information prod-
ucts are realized. If synergy effects can indeed be realized with PLANT, then
Ewith < Ewithout must be satisfied. Only then should the PLANT approach
be applied or continued to be applied.

2 What “small” means depends heavily on the specific domain and thus cannot be
specified precisely in a general way.

98 6 Family Engineering in PLANT

6.3 Configuration Management

Configuration management for digital information products is similar to soft-
ware configuration management, and also has the concepts of configuration
items, configurations, and baselines [Tic92]. In general, items are artifacts that
are the smallest unit of change. A configuration is a set of items, and the set
is fixed at a certain point in time. A baseline is an unambiguous description of
a configuration, identifying which items belong to a particular configuration.

In PLANT, configuration management has two views: the market-based
view and the product-based view. The main reason for this splitting is that
not every configuration that is demanded by a market (or customer) will or
can be technically realized. From a management point of view, it is therefore
important to keep an eye on potential mismatches to avoid that the product
line technically evolves to a point where none of its products is demanded any
more, and work against such effects. In fact, the data for market-based view of
configuration management results from domain engineering, and that of the
product-based view from application engineering. Configuration management
in family engineering is merely an integrated view to evaluate mismatches.
When the product line is initiated, there is no configuration data there yet,
and this step is overridden; this step becomes important during controlling.

6.3.1 Market-Based View

The market-based view of configuration management captures from the de-
mand side, i.e., from a market or customer perspective, which potential con-
tent components are demanded for different information products. Therefore,
the configuration items are the demanded content components, a configura-
tion is a fixed set of demanded components for one information product, and a
baseline is a description defining which demanded components make up a cer-
tain information product. The data for the market-based view of configuration
management is obtained from domain analysis (see Sect. 7.1).

6.3.2 Product-Based View

Broadly speaking, the product-based view of configuration management cap-
tures which versions of which artifacts are used to implement which informa-
tion product. In the technical context of information products, the items to be
configured are core assets, like for example content components. Information
products are made up of versions of different core assets; such a set of versions
of core assets represents a configuration. A baseline is a description of a con-
figuration that precisely defines which core assets make up a certain digital
information product. The baseline data is reported by application engineers
after the creation of a product.

6.4 Organizational Aspects 99

6.3.3 Matching Market-Based and Product-Based View

The detailed comparison of the market-based view and product-based view of
configuration management can become time-consuming even if it is to be au-
tomated, as appropriate links between demanded and realized features would
have to be created and updated continuously. However, PLANT considers
that managers in family engineering do not need too detailed information at
this point, but merely a status reported by experts whether the technical con-
figurations match the market-demanded ones to a certain degree, which helps
managers to take appropriate actions.

The match between the market-based and product-based configuration is
therefore summarized in the family engineering overview document, in a scale
similar to those used for feasibility and risk assessment (Sect. 6.1).

• Match between market-based and product-based view of config-
uration management
a) none of the configurations demanded in market-based view match those
in product-based view; b) few of the configurations demanded in market-
based view match those in product-based view; c) unsure – must be clar-
ified; d) the majority of the configurations in market-based view matches
those in product-based view; e) all configurations in market-based view
match those in product-based view

The meaning of “few”/“majority”/“match” may be defined individually
for each product line in a more precise way. The ideal situation is e). In case of
d), managers should take actions to achieve e) if possible, or at least maintain
d). If the match is rated a) or b), then managers must take actions to avoid
the technical base of the product line to evolve into a wrong direction, which
could lead to a situation where standardization comes to a degree in which
demand is not satisfied at all.

6.4 Organizational Aspects

PLANT requires in family engineering the definition of key organizational
aspects for each product line and summarizes them as well in the family en-
gineering overview document. In particular, a brief statement of the chosen
organizational model must be included. For example, the model can be devel-
oped individually or based on one of the models presented in Sect. 4.5.2, such
as, the development department model, the business units model, the domain
engineering unit model, or the hierarchical domain engineering units model.
After the choice of the model, the management has to take care of its realiza-
tion and provide the necessary infrastructure, such as an IT infrastructure.

In addition, the number of staff and the names of the employees that are
available for the product line are recorded in the family engineering overview

100 6 Family Engineering in PLANT

document. Role responsibilities are defined in a general way by assigning every
staff member to the categories family engineering, domain engineering, or
application engineering; it is possible to assign one employee to more than
one category. For some product lines it is possible that there is only one
employee who is responsible for all categories, if the effort required for the
respective activities is small enough. For more complex scenarios, the role
model can be refined to fit the specific situation, i.e., additional, more specifc
roles can be defined for family engineering, domain engineering, or application
engineering.

6.5 Evaluation and Controlling

The family engineering document provides in the evaluation and controlling
section a summary of the issues monitored in the previous phases. It helps
managers to make decisions, for example whether to continue with the product
line approach or not.

Here, feasibility and risk assessment are each summarized to “ok/critical/to
be checked”. For example, if all answers related to feasibility are in d) or e),
then feasibility is “ok”; if one of the answers is in c), then feasibility is “to be
checked”; if one of the answers is in “a)” or “b)”, then feasibility is “critical”.
The same is done for risk assessment. From the economics part, the estimated
and actual savings with PLANT are listed. The comparison between market-
based and product-based configuration management is summarized (similar
to feasibility) to “ok/critical/to be checked”.

In addition to this summary overview, additional comments can be added
which point to issues that are to be monitored or evaluated regularly, and
which may depend on the specific product line. These can be, for example,
inspections of whether synergy effects were indeed realized, customer satisfac-
tion obtained from surveys, potential improvements, etc.

It is important that the controlling of the development of the data in the
family engineering overview document is done in a repetitive manner in order
to be able to take corrective actions. Therefore, this document contains the
date of the current inspection and the date of the next planned inspection,
where the data of each phase is updated sequentially, and the approach is
re-evaluated. The data update or completion, and the re-evaluation are also
done after one pass of domain engineering or application engineering.

6.6 Summary and Discussion

Family engineering is mainly concerned with management and organizational
issues at the initiation of PLANT, and also throughout development. Carrying
out family engineering in a repeated fashion at specified intervalls makes it
possible to base management decisions on recent data. The family engineering

6.6 Summary and Discussion 101

overview document summarizes the most important information related to
feasibility and risk assessment, economic aspects, an integrated evaluation
of the market-based and product-based view of configuration management,
organization, and evaluation and controlling.

One main difficulty of family engineering is that it also has to deal with
“soft” factors such as feasibility or risk, which are difficult to describe or quan-
tify, or which could be quantified in different ways. However, such difficulties
are independent of this approach as they are inherent to the factors them-
selves. Although a more complex approach could have been taken for their
assessment, the employed ordinal scales in PLANT try to find a balance be-
tween required effort and usefulness of the results, which still allows to steer
the product line development from the management side.

7

Domain Engineering in PLANT

Repository of
Core Assets

1) Family Engineering

2) Domain Engineering 3) Application Engineering

Domain Req.
Documents

Models

Construction
Artifacts

Domain Test
Artifacts

Process

1) Domain
Analysis

2) Domain
Design

3) Domain
Realization

4) Domain
Testing Product Repository

Process

5) Evalutation/Controlling

Repository

1) Feasibility/Risk Assessment

2) Economics/Evolution/Lifecycle

3) Configuration Management
Documents

2) Application

Design

3) Application

Realization

4) Application

Testing

1) Application

Analysis

4) Organization

D
ig

it
a

l

P
ro

d
u

c
t

1

D
ig

it
a

l

P
ro

d
u

c
t

n

Design

Digital

Artifacts

Test

Artifacts

Requirements

Documents

This Chapter presents the details of the domain engineering sub-process,
which is the sub-process that requires the most effort. It has the view on all
digital information products of one product line and its purpose is to make
all preparations necessary for application engineering.

Starting with domain analysis, the domain that is relevant for the product
line is scoped and domain requirements are collected. The results are used in
domain design to create more abstract models that address all products in
one product line. These models belong to different layers of abstraction, rang-
ing from conceptual design over logical design to physical design. Content
components and other implementation-related core assets are implemented in
domain realization, and they will serve later as building blocks for the informa-
tion products to be created in application engineering. Domain testing focuses
on the peculiarities of the artifacts prepared for the creation of information
products, such as content component testing, verification of the construction
workflow model, and integration testing of content components. The Chapter
finishes with a summary.

104 7 Domain Engineering in PLANT

7.1 Domain Analysis

The domain analysis process systematically captures the requirements for all
digital information products that will be eventually built. In addition, scoping
is performed in a way that is similar to software product lines (cf. Sect. 4.3.1).
Domain analysis uses the following inputs (cf. Tab. 5.3): results of interviews
or surveys, other available domain requirements documents (e.g., obtained
from law regulations) or existing artifacts. Furthermore, if domain analysis is
not done for the first time and if some digital information products have al-
ready been created in application engineering, possible feedback from domain
testing or application analysis can be used to derive new or adapt existing
requirements.

The output of domain analysis is one or more documents that contain
natural language descriptions for scoping, and requirements for content used
for information products. Details are presented next.

7.1.1 Domain Scoping

In PLANT, a domain is understood to cover a certain area of information,
or in a general sense, a field of knowledge. Similar to software product lines
(Sect. 4.3.1), scoping for digital information products is split up into three
parts that introduce limitations:

• Product portfolio scoping:
Purpose: limits the number of different information products to what is
technically feasible and considered relevant for one product line.
Output: a general statement in natural language of what an information
product is, and which variants are generally needed.

• Information domain scoping:
Purpose: defines a hierarchy of information domains that are relevant for
all information products in one product line. It is assumed that in one
product line there is exactly one root domain that can hierarchically con-
tain zero or more subdomains which themselves might contain zero or more
subdomains, and so on.
Output: description of the hierarchy of information domains.

• Asset scoping:
Purpose: specifies limitations for the core assets used in one product line.
For example, the structure, layout, or file format of content can be precisely
limited.
Output: limitations for core assets expressed in natural language.

7.1 Domain Analysis 105

7.1.2 Capturing Requirements for Information Products

Based on the aforementioned inputs, the content requirements and packag-
ing requirements are captured that are relevant for all digital products in
the product line. Additionally, the requirements for the employed software
artifacts, such as helper programs, are captured as well.

Content Requirements

Content Requirements are defined and categorized into common, optional,
and alternative requirements. Common requirements refer to content that has
to be included into every digital information product in the product line. Op-
tional requirements refer to content that may be realized in some information
products, but not in all products. Alternative requirements define a set of al-
ternative topics along with a minimum and maximum number that indicate
how many topics have to be covered at least/at most.

These categories of requirements implicitly define the demanded content
configurations from a demand-side perspective, and thus make up the market-
based view of configuration management (see also Sect. 6.3.1).

In addition to the common, optional and alternative requirements, con-
straints can be formulated for different product variants (e.g., in natural
language). For example, a constraint can limit the valid configurations by
stating that certain content must be covered when another particular content
is covered. Furthermore, content component model requirements are captured
which are relevant for the choice of the uniform content component model.
In addition, crosscutting concerns are defined, which are requirements that
simultaneously affect more than one digital information product. An example
of a crosscutting concern is a layout specification which has to be used in
every information product.

Packaging Requirements

The packaging requirements describe how the resulting artifacts should be put
together for delivery. Conceptually, a package contains one or more artifacts
of an information product. Every digital information product is delivered in
at least one package. Technically, a package can be for example a folder, a
ZIP-file, a learning object, or a file with an application-specific format (e.g.,
Powerpoint). For a package, a general order can be specified in natural lan-
guage, of how artifacts representing certain content have to be included.

Requirements for Software Artifacts

Requirements for software artifacts can be captured as in traditional require-
ments engineering. The methods are well-known and the reader is referenced
to [Poh97, Som04b, Pre05] for a discussion. Software artifacts used in the

106 7 Domain Engineering in PLANT

context of information products are for example helper programs that will be
used to assemble information products out of content components, or Java
applets that are part the content.

Example 7.1

Let’s consider as a brief example for scoping and requirements capturing for a prod-
uct line of e-learning courses in the domain “Information Systems”:

Domain scoping
• Product portfolio scoping: a digital information product is a variant of a

course in the area of Information Systems. In this product line, a course covers
databases and workflow aspects, or only database aspects.

• Information domain scoping: the root domain is “Information Systems” which
has two subdomains considered relevant here: “databases” and ”workflow”. The
domain “databases” is defined to have the subdomains “database modeling”,
“database theory”, and “database implementation”. The domain “workflow” is
defined to have the subdomains “workflow modeling” and “workflow implemen-
tation”.

• Asset scoping: every content component must be a Powerpoint file with the
same predefined master layout.

Content requirements
• Common requirements: every course must have a general introduction; every

course must contain the domains “databases” and “database modeling”; the
database domain must have an introduction; “database modeling” must contain
the “ER model” and the “relational model”. The domain “workflow” must have
an introduction.

• Optional requirements: the domain “databases” may contain optionally the
domain “database theory” which discusses “normalization”; the domain “databases”
may contain optionally the domain “database implementation” which discusses
“SQL”. A course may optionally contain the domain “workflow”, which in turn
may contain optionally the domain “workflow implementation” discussing “sys-
tems architecture”.

• Alternative requirements: The domain “workflow modeling” must contain ei-
ther “Petri nets” or “Event-driven Process Chains”, or both.

• Constraints: If the “workflow” area is covered, then the domain “workflow mod-
eling” must be covered.

• Content component model requirements: A content component must be re-
alized as a Powerpoint file.

• Crosscutting concerns: a uniform layout is to be used for all courses; it is de-
fined in a separate Powerpoint master file.

Packaging requirements: A package is a Powerpoint file (i.e., the package has an
application-specific format) which can contain the slides of one or more content
components. In total, there must be 3 packages: for an introductory part, for
databases, and for workflow. Inside the database package, content components
should be included in the following order (or sequence): 1) “introduction to DB”;

7.2 Domain Design 107

2) “ER model” 3) “relational model” 4) “normalization” 5) “SQL”. Inside the
workflow package there is the order: 1) “introduction to WF”; 2) “Petri nets”;
3) “Event-driven Process Chains”; 4) “systems architecture”. The order in the
packages must be preserved even if some content component is not included.

Requirements for software artifacts
• Helper programs: The helper program “pptappend.exe” is called with two

Powerpoint files as parameters, p1 and p2, and it appends all slides of p2 af-
ter the last slide of p1. The program “pptapplytemplate.exe” is called with
parameters p1, p2, where p1 is a Powerpoint master file and p2 is a directory
that contains Powerpoint files; the program applies the layout defined in the
master file to all Powerpoint files in the directory.

�

7.2 Domain Design

The domain requirements documents from domain analysis are used in domain
design to create models for the product line that provide more abstraction and
ease the development of information products. For the product line, there are
different areas for which models are created (see also Fig. 5.2):

• Conceptual Design

– Conceptual product line model : incorporates the domains and features
available for all information products in the product line. For one spe-
cific product, valid configurations can be chosen only from this model.

– Content component model : defines the details for content components,
such as file format, metadata, etc.

• Logical Design

– Core asset version graph model : handles the evolution of core assets by
specifying uniformly how assets are versioned. If a core asset needs to
be versioned, this is done according to this model.

– Product map template: structures the configuration management data
for information products. It is filled in application engineering with
the data which versions of which core assets are used for a particular
product.

• Physical Design
– Construction specification: defines for the whole product line one con-

struction workflow model that is used to create every possible informa-
tion product in the product line.

– Reusable workflow modules : are prefabricated and tested pieces of a
workflow that can be reused in domain engineering.

108 7 Domain Engineering in PLANT

The models created in PLANT for the product line have a conceptual de-
sign layer that is mostly implementation-independent, while the physical de-
sign layer is mostly implementation-dependent. The models in the conceptual
design layer do not contain all the details in the beginning (e.g., the sequence
in which content components should be assembled). Details are subsequently
added in the logical design layer (e.g., versioning) and in the physical design
layer (e.g., sequence of content components within a package, and assembly
of components).

In addition to the design models for the product line, other design models
can be created for software artifacts, such as the helper programs that are
to be implemented additionally. These models can use traditional notations
like the Unified Modeling Language (UML) [Obj07]; they are well-known and
thus will not be discussed here in detail.

7.2.1 Conceptual Design: Defining Allowed Configurations

The conceptual design of the product line has the highest level of abstraction
and defines in a general way the valid configurations for digital information
products in a product line, as well as a uniform model for content components.

The Conceptual Product Line Model

On a conceptual level, it has to be modeled first which digital information
products can be built within the product line and which not, which common-
alities and differences are there between possible products, and which config-
urations are allowed. These aspects are defined in PLANT using a tree-like
conceptual product line model.

Constructs

The conceptual product line model consists of non-empty domains which can
contain features or other (sub)domains. Conceptually, a feature is understood
to be an indivisible module of information; from an implementation-oriented
view, a feature will be realized by a content component that can consist of
a set of digital artifacts. The term “feature” is adopted from the software
product lines area, and the content such a feature refers to can consist of
more than simple text, but also contain multimedia components or programs
such as Java applets (see Sect. 2.2.5). In the conceptual product line model, a
domain is merely a construct to group related features or other sub-domains.
The sub-domains and their hierarchical relationships are taken from domain
scoping (Sect. 7.1.1). Since features are meant to be realized by self-contained
content components, PLANT assumes that in domain engineering there are

7.2 Domain Design 109

no interactions between domains or between features1. Domains or features
can be of type common, optional, alternative. In the following, features of type
common, optional, alternative will be referred to as atomic features .

Additionally, a crosscutting feature is a feature (with no type) that is
merged during the execution of the construction process in application en-
gineering with all atomic features in the domain where it is located, as well
as with all atomic features in all of its subdomains. One typical property of
a crosscutting feature (e.g., a layout specification) is that after it is merged
with an atomic feature, it is not distinguishable within the result as a mod-
ular entity. In principle, crosscutting features are comparable to aspects in
Aspect-Oriented Programming (AOP) [FECA04, PSV05]; they are also simi-
lar to graybox components [AN03]2.

Grammar

Exactly one conceptual product line model has to be defined for one product
line. The grammar and the structure of the conceptual product line model,
however, are always the same and do not depend on a particular product
line. The grammar G = (N, T, P, S) of the conceptual product line model is
described more precisely in Fig. 7.1 using the Extended Backus-Naur Form
(EBNF)3. It can be understood as a metamodel of the conceptual product
line model.

In principle, the terminals of the grammar are the actual domains and
features. The root domain terminal is denoted as ′RD′, a common domain
as ′CD′, an optional domain as ′OD′, and an alternative domain as ′AD′.
The terminals for common features are denoted as ′cf ′ (i.e., features of type
common), for optional features as ′of ′ (i.e., features of type optional), for
alternative features as ′af ′ (i.e., features of type alternative), and for cross-
cutting features as ′ccf ′ (i.e., features of type crosscutting). The grammar has
similarities with attribute grammars introduced by [Knu68], as it is assumed
here that terminals have attributes associated with them; in this grammar,

1 As already mentioned, it is possible to make minor adaptations in application
realization after a product was created. It is therefore possible to add intercon-
nections manually in a specific product, such as cross-references in a text that
was generated from content components.

2 The formalization of a crosscutting feature is omitted, since such a feature and
the way how it is merged with atomic features can be different for different appli-
cation areas and component models. For example, a layout defined in a cascading
stylesheet is code that has to be inserted at a specified location inside an HTML
page, a layout definition in Powerpoint is a special binary file that can be inter-
nally merged by the program, etc.

3 In brief, the ISO notation [ISO96] for the Extended Backus-Naur Form (EBNF)
uses ’=’ for ’is defined to be’; ’;’ for end of production; quotes for terminal symbols,
e.g., ’t’ for terminal symbol t; ’|’ for ’alternatively’; {X} for a repetition of zero
or more X; () for grouping; ’*’ for repetition, e.g. 2*’X’ means ’XX’. Details see
[ISO96].

110 7 Domain Engineering in PLANT

however, the only purpose of these attributes is to capture the names of do-
mains or features, and the min and max ranges of alternative domains.

• Non-terminals N = { RootDomain, Domain, CommonDomain, OptionalDomain,
AlternativeDomain, OtherFeatures }

• Terminals T = { ’RD’, ’CD’, ’OD’, ’AD’, ’cf ’, ’of ’, ’af ’, ’ccf ’, ’(’, ’)’ }
• Start symbol S = RootDomain

• Productions P in EBNF notation [ISO96]:

RootDomain = ’RD’ ’(’ ’cf ’ OtherFeatures {Domain} ’)’; (1)
Domain = CommonDomain (2.1)

| OptionalDomain (2.2)
| AlternativeDomain; (2.3)

CommonDomain = ’CD’ ’(’ ’cf ’ OtherFeatures ’)’ (3.1)
| ’CD’ ’(’ OtherFeatures CommonDomain

{Domain} ’)’; (3.2)
OptionalDomain = ’OD’ ’(’ ’cf ’ OtherFeatures ’)’ (4.1)

| ’OD’ ’(’ ’of ’ OtherFeatures ’)’ (4.2)
| ’OD’ ’(’ OtherFeatures Domain {Domain} ’)’; (4.3)

AlternativeDomain = ’AD’ ’(’ 2 * ’af ’ {’af ’} ’)’ (5.1)
| ’AD’ ’(’ 2 * AlternativeDomain

{AlternativeDomain ’)’ }; (5.2)
OtherFeatures = {(’cf ’ | ’of ’ | ’ccf ’)}; (6)

Additional assumptions

• The terminals RD, CD, OD, AD, cf, of, af, ccf have the attribute name which
holds a name associated to the respective domain or feature.

• The terminal AD additionally has the attributes min, max ∈ N with min ≤ max,
and max ≤ the number of contained alternative features or alternative domains.

• In L(G), a terminal with a particular value of its name attribute must not occur
more than once.

Fig. 7.1. Product line metamodel as the grammar G = (N, T, P, S) for conceptual
product line models.

Using the grammar, one can construct a tree that contains features in the
leaves, and domains in the inner nodes. The key idea is that the structure
of the tree, defined by the grammar, and the types of domains and features
impose constraints on which of them can be chosen for a particular digital
information product later in application engineering. The semantics of com-
mon, optional, and alternative features are similar to those defined in Def.
4.4. Basically, the root domain is incorporated by default into every digital
information product. Common features or domains have to be incorporated

7.2 Domain Design 111

if their parent node is incorporated. Optional features and domains can be
included in some products, but only if their parent node was already included.
If the parent node of an alternative domain is included, then a certain num-
ber of features of the contained alternative features or alternative domains
have to be selected, and this number must be greater than or equal to the
min attribute, and less than or equal to the max attribute associated to the
respective domain. Details on how features are selected for a particular in-
formation product are explained later in the context application engineering
(see Sect. 8).

The sequence of how domains or features can appear in the conceptual
product line model is precisely defined by the grammar. However, the details
of the exact sequence specifying which feature is implemented in which pack-
age after which other feature is postponed until physical design (see 7.2.3).
There, the focus is on the exact creation procedure, and the constraints for the
creation procedure are derived there from the conceptual product line model.

Graphical Notation

The graphical notation in Figure 7.2 will be used throughout this thesis to
depict conceptual product line models for digital information products, which
can be drawn as trees. The structure of the model results from the application
of the grammar in Fig. 7.1. The notation is a modified UML notation that
presents domains as rounded rectangles, and atomic features (i.e., common,
optional, alternative features) as rectangles. The type (i.e., common, optional,
alternative) is attached to rectangles and rounded rectangles as a stereotype
in angle brackets. In addition, the min and max attributes of alternative
domains are shown in parentheses next to the stereotypes. Rectangles with a
truncated edge represent crosscutting features.

Example 7.2

To illustrate the application of the grammar, a conceptual product line model is
derived from the domain requirements captured in the example on page 106. The
notation terminal

attribute: value
is used to show the value of an attribute associated to a

terminal. The result can be written syntactically as follows:

RD
name: “Information Systems”

(cf
name: “Introduction to IS”

ccf
name: “Layout-General”

CD
name: “Databases”

(cf
name: “Introduction to DB”

CD
name: “DB Modeling”

(cf
name: “ER Model”

cf
name: “Relational Model”

) OD
name: “DB Theory”

(of
name: “Normalization”

)
OD

name: “DB Implementation”
(of

name: “SQL”
)) OD

name: “Workflow”
(cf

name: “Introduction to WF”
AD

name: “WF Modeling”, min:1, max:2
(af

name: “Petri Nets”
af

name: “Event-driven Process Chains”

) OD
name: “WF Implementation”

(of
name: “WFMS Architecture”

)))

The result is depicted with the graphical notation in Fig. 7.2. The root domain
Information Systems and the subdomains Databases and Workflow, as well as the

112 7 Domain Engineering in PLANT

Information Systems

Petri Nets

<<alternative>>

Event-driven
Process Chains

<<alternative>>

WF Implementation

<<optional>>

WF Modeling

<<alternative>> (1,2)

Workflow

<<optional>>

Databases

<<common>>

Introduction to DB

<<common>>

DB Modeling

<<common>>

ER Model

<<common>>

Relational Model

<<common>>

DB Theory

<<optional>>

Normalization

<<optional>>

DB Implementation

<<optional>>

SQL

<<optional>>

WFMS
Architecture

<<optional>>

Introduction to WF

<<common>>

Layout-GeneralIntroduction to IS

<<common>>

Domain

<<stereotype>>

Atomic Feature

<<stereotype>>

Legend: Crosscutting
Feature

Fig. 7.2. Example for a conceptual product line model for electronic courses in
information systems.

hierarchy of their subdomains are derived from the specifications of product portfolio
scoping and information domain scoping. Since a course must cover databases and
workflow, or only databases, Databases must be a common domain and Workflow an
optional domain. The atomic features are derived from the captured requirements
and they are assigned to the existing domains; common features are derived from
the common requirements (e.g., ER Model), optional features from optional require-
ments (e.g., Workflow Implementation), and alternative features from alternative
requirements (e.g., Petri Nets). Their types are determined from the description of
the domain requirements, e.g., the requirement that database modeling must discuss
ER models leads to type common for the feature ER Model. Crosscutting features
are derived from the specifications of crosscutting concerns. In this case, the layout
specification is a crosscutting concern for all atomic features. Thus, the crosscutting
feature is included below the root domain to signalize that it will be weaved later
in application engineering into all atomic features in the domain where it is located
and all of its subdomains. �

7.2 Domain Design 113

Design Rationale and Expressive Power

The grammar of the conceptual product line model is based on the concepts
of a feature tree introduced in Def. 4.4, however, with several extensions: do-
mains are used to group related features or domains, features are assumed
to be indivisible modules of information, features composed of other features
are not allowed. One reason why composition of features out of other fea-
tures is omitted in the conceptual model is that the necessary composition
operator would need a precise definition of what composition means, but this
definition would depend on several implementation details – a level that is
closer to implementation than to the conceptual level – like for example the
chosen component model (which can also vary depending on the application
area). At this stage, such details are therefore kept away from the conceptual
level. Instead, these details are dealt with in the construction specification on
physical design (cf. Sect. 7.2.3).

The conceptual product line model is intended to be used on a general level
as an initial entry point in application engineering to help application engi-
neers choose a content configuration, and in domain engineering as a planning
instrument for reuse. The model implicitly determines a context for content
reuse. For example, a content developer can deduce in domain engineering
from the model that when certain content is covered in a certain information
product (e.g. “ER model”), some other content must also be covered (e.g., “In-
troduction to DB”), and create the content components accordingly. Details
on the usage of the conceptual product line model in application engineering
are given in Chapter 8.

The grammar is designed in such a way that circular relationships between
domains and features are not allowed. Of course, the models could have been
designed to have more constructs with additional semantics or sequencing in-
formation. However, a too meticulous specification with too many details has
the disadvantage that the model becomes too difficult to understand as it
looses its ability to abstract, and changes coming later throughout the evolu-
tion of the product line may be too difficult or tedious to incorporate, which
could drastically reduce the benefits of such a model. Even if tool support
would partly ease the handling of models with complex interrelationships, it
still remains necessary for designers to be able to understand the models, and
this can be influenced and made easier with the allowed constructs of a model.
In addition, it has been realized in other contexts that “different product-line
managers might simply ignore a structure that is too elaborate”4 [MZ96].

The current restrictions of the conceptual product line model stimulate
standardization of products at an early phase, and will be rewarded in appli-
cation engineering. Another advantage of the choice of the model constructs
will become evident in the context of the construction workflow model, which
can use patterns for the creation of common, optional, or alternative features

4 This is another reason for not incorporating a creation sequence of features yet
in this model.

114 7 Domain Engineering in PLANT

(see Sect. 7.2.3). As far as the ease of use is concerned, it is considered that
the constructs and rules of the grammar are quite intuitive and easy to un-
derstand without technical details, which can be helpful in discussions with
customers.

With the proposed grammar, PLANT attempts to find a balance between
expressiveness and ease of use. As can be observed in Fig. 7.1, the grammar
is context-free because on the left side of each production P there is only one
non-terminal. However, the additional constraint that a terminal with one
particular value of its name attribute must not occur more than once, makes
the language context-sensitive.

The Content Component Model

In PLANT, a content component is understood to be a unit of content that
can be used for composition in information products; this unit of content has
a specified structure and can be deployed independently and can be subject
to composition by third parties (see also [SGM02]). A content component is
used to implement one atomic feature of the conceptual product line model.
On a conceptual level, the content component model should

• be uniform for all content components in the product line;
• specify uniformly for all components: structure/encoding, metadata, way

of presentation, delivery format;
• be applicable in the product-line context, i.e., allow a composition of con-

tent components to digital information products.

In PLANT, a content component model is defined in advance, i.e., during
the initiation of the product line, and every content component in the product
line will adhere to the same component model. This is to make sure that
content components will indeed “fit” together when an information product
is created later in application engineering.

Although explicit dependencies between content components are not mod-
eled in PLANT (i.e., no explicit links or other similar constructs), the context
of reuse of a content component can be derived through the associated fea-
ture in the conceptual product line model. Contrary to an unplanned reuse
of content, it is here an advantage for the developer to know in advance in
which product configurations the developed content can occur, and create the
content accordingly.

The information relevant for the choice or design of a content component
model is obtained from asset scoping (Sect. 7.1.1). However, the PLANT ap-
proach does not impose a specific content component model. Depending on the
specifications in the domain requirements documents, a chosen content com-
ponent model may range from a more simple one to a more complex one. For
example, a component model can be even based on HTML specifications for
a page with a standardized structure, metadata, and layout for the contained

7.2 Domain Design 115

text, pictures, or videos. For digital information products in the e-learning
domain, a suitable content model can be chosen from already existing ones
(see Sect. 3.3.1). For other areas (e.g., electronic books or newspapers) a spe-
cific component model can be defined, for example using XML DTDs [HM04]
for the structure and XSLT/XSLT-FO [HM04] for presentation. Alternatively,
existing formats such as DocBook [Doc07] can be used.

7.2.2 Logical Design: Preparing Configuration Management

A uniform versioning scheme is defined for core assets, called the core asset
version graph. It defines the available versions of core assets that can be used
in different configurations. PLANT imposes the usage of core asset version
graphs especially for content components and for the artifacts of crosscutting
features; if it is necessary in a particular context, other core assets may be
versioned as well using this scheme.

In addition, a product map template is prepared for the usage in application
engineering, to capture which versions of core assets are used in a specific
information product. In principle, the product map adapts the concept of a
baseline to the context of digital information products (cf. Sect. 6.3).

The Core Asset Version Graph

PLANT uses a standardized versioning scheme for all core assets: the core
asset version graph. It is defined as a directed, acyclic graph in which one
node is considered to be an initial version (and an entry point). A version
is represented as a node in the graph, and changes between versions as arcs,
which result in other versions. A node may have additional attributes, such as
the file path of the file (i.e., artifact) that realizes that particular version, the
file type, textual comments, etc. In PLANT, exactly one core asset version
graph must be associated to every atomic and crosscutting feature in the
conceptual product line model. Semantically, this means that one particular
feature can be realized later in application engineering only by choosing one
of the available versions from its associated core asset version graph. For
content components, each version (i.e., node) in the graph must be adhere to
the content component model.

The graph is in fact a combination of a state-based and a change-based
version model [CW98, PV05]. Although one of the two models would theoreti-
cally suffice, from a creator’s point of view it is additionally helpful to describe
what was changed between different versions. Even though this might be au-
tomatically computed as the difference between two versions, the integration
of additional metadata (for example with the rationale behind the changes of
content) into a state-based model is sensible from a practical point of view.

The application of the core asset version graph in PLANT is illustrated as
an example in Fig. 7.3. The feature “Petri Nets” can be realized only by the
versions of its associated version graph. A node, which represents a version,

116 7 Domain Engineering in PLANT

provides links (e.g., via the file path attribute) to the concrete digital artifact
that makes up a version. In case that more than one artifact belongs to one
version, it is assumed that there is one “header” artifact that is linked in
the node. For example, in a content component model based on Web pages
which may consist of text, pictures, and applets, exactly one HTML file is
denoted as the “header”. The artifacts which are referenced from the nodes
of the version graph must either exist in a predefined location, or they will be
created in domain realization. The labels of the arcs between to version nodes
are in fact identifiers referencing more detailed descriptions of the changes.

Petri Nets

<<alternative>>

WF Modeling

<<alternative>> (1,2)

V1.0 V1.1a V1.2a
change 1 change 2

V1.1b V1.2b
change 4

change 3

its core asset version graphFeature is associated to

A version node may contain attributes:
file path of content component,
comments, file type, etc.

Fig. 7.3. Example for an association between a feature in the conceptual product
line model and a corresponding core asset version graph.

Core asset version graphs are useful to handle the evolution of core assets
throughout the lifecycle of information products. The product map template,
which is presented next, helps to relate the existing versions to the features
of a specific information product.

The Product Map Template

The product map template is a means for a product to manage the configu-
rations of employed core assets in systematic way. This template is filled with
data obtained from the conceptual product line model and with data from
application engineering.

From a general point of view, a product map template is a two-dimensional
matrix as shown in Fig. 7.4, listing all available features along one dimension,
and a particular digital information product along the other. The available
features are obtained from the conceptual product line model. Optionally,
the corresponding domains and their types can be noted on the left side to
visualize the existing constraints.

In application engineering, this template is used to record the configuration
chosen for one product. This is done by inserting in a cell at an intersection of
a row (feature) and a column (digital information product) a version chosen

7.2 Domain Design 117

from the core asset version graph that is associated to the particular feature.
Such an insertion can only be made if it is allowed by the constraints of the
conceptual product line model.

Domain Subdomain1 Subdomain2 Feature
(atomic or crosscutting)

Digital

Information

Product

 Layout-General �

 Introduction to IS C �

Databases C Introduction to DB C �

DB Modeling C ER Model C �

 Relational Model C �

DB Theory O Normalization O �

DB

Implementation

O SQL O �

Workflow O Introduction to WF C �

Modeling A

(1,2)

 Petri Nets A �

 Event-oriented

Process Chains

A � In
fo

rm
at

io
n

S
y
st

em
s

WF

Implementation

O WFMS

Architecture

O �

Data from
Conceptual Product Line Model

Row with versions for a product
added in application engineering

Fig. 7.4. A product map template from a general point of view.

From a technical point of view, the product map is realized in PLANT as
a relational database that is associated to one product line. In this context,
the aforementioned product map template corresponds to a database schema.
The usage of a database has several advantages: redundant entries can be
avoided; the data can be queried with SQL and analyzed in various ways, es-
pecially during the assembly of an information product; the constraints where
and when it is allowed to make entries can be expressed as intra- and inter-
relational constraints; it can be easily extended to hold additional data.

An Entity-Relationship (ER) model for this schema is depicted in Fig. 7.5
using the (min,max) notation for cardinalities and showing primary key at-
tributes underlined; for n-way relationship types with n > 2, the 1:n notation
is used as in [SS83] to express additional semantics. The main rationale be-
hind the entity types and relationship types is briefly discussed, starting in the
upper right corner and continuing clockwise. The entity types Domain (E1),
Feature (E2) hold entities of the conceptual product line model, and R1 , R2
model the containedness of domains and features. As explained, a particular
feature is associated via R3 to exactly one Core Asset Version Graph, realized
by E3 – E5, and R4, R5. A node of a graph is represented by an entity of
type E4. The data related to a change from one version node to another is
stored in E5. R5 records which versions evolved from which other versions

118 7 Domain Engineering in PLANT

with which changes. The packages (E6) are obtained from the packaging re-
quirements and are used to denote bundles of core assets for delivery. The
data for E1–E6 and R1–R5 is obtained from domain engineering (conceptual
product line model, core asset version graphs, packaging requirements).

cavID verNo

CreationDateName Descr

fileType

R1

dID Descr

parent
(0,1)

child
(0,*)

fID

R2 (1,1)(0,*)Domain

DigitalInformation
Product

Feature

filePath

cdID descrText

ChangeDescription

1

child
(0,*)

parent n

1

CoreAsset
Version

(0,*)

(0,*)

map
(R6)

derive
Version

(R5)

(E1) (E2)

(E4)

(E5)

(E7)

StereotypeID

(0,1)

(0,*)

n

1

CoreAsset
VersionGraph

R3

R4

cavgID

Descr

(1,1)

(1,1)

(0,*)

(1,1)

(E3)
pkgID

Package
(E6) (0,*)

1

Data completion during domain engineering

Data completion during application engineering

Name Descr StereotypeIDName

Descr

Name

Descr

Path

Name

minSelect

maxSelect

R7

(1,1)

(0,*)

Fig. 7.5. Data model for a product map template.

The data for E7, R6–R7, and for some attributes of E6, is known only later
in application engineering, and will be completed at that time. R6 captures
which features are realized in a package using which core asset versions. Figure
7.5 shows in white and gray shades when the respective data will be completed.

7.2.3 Physical Design: Defining the Construction Workflow Model

So far, the conceptual product line model and the product map template are
only capable to describe what products can be eventually built, but not how
they are built, in which order the features should be incorporated, or how the
content should be packaged. These specifications are more implementation-
dependent and thus delayed until physical design. Here, a workflow model is

7.2 Domain Design 119

designed for the product line as a whole, which means that each of its digital
information products can be created when this workflow model is executed.

The workflow model specifies the tasks of the construction process and
defines the sequences or options of how features can be incorporated into
products. PLANT assumes that the tasks in the workflow model call helper
programs with some parameters, and that a feature of the conceptual product
line model is realized by one task. The definition of such a workflow model
for the hole product line guarantees that digital information products can
be built only in a predefined way. In principle, the construction of a specific
product (later in application engineering) corresponds to a specific path taken
in the workflow model, and a product variant can be specified precisely by
enumerating the respective tasks; more details are presented next.

The Workflow Model

The workflow model is basically the counterpart of the construction specifica-
tion C (cf. Def. 4.4) defined for software product lines. It is defined in PLANT
using Query and Program Execution Nets (QX nets) which can manipulate
and extract data from a relational database, and which can call helper pro-
grams with textual parameters obtained from the database. In the following, it
is assumed that the underlying database is that which was designed in logical
design (see Sect. 7.2.2). QX nets are an extension of workflow nets [AH02a]
which, in turn, are Petri nets [Pet62] with some additional constraints. The
definitions of Petri nets, workflow nets, and QX nets are introduced subse-
quently.

Petri Nets

Definition 7.1 (Petri Net). A Petri net N = (P, T, F) is a directed bi-
partite graph consisting of a finite set of places P , a finite set of transi-
tions T with P ∩ T = ∅, P ∪ T 6= ∅, and a set of directed arcs going from
places to transitions or transitions to places, represented by the flow relation
F ⊆ (P × T) ∪ (T × P).

Petri nets have two types of nodes, places and transitions (both are also
called net elements), and it is allowed to connect only places to transitions or
transitions to places. In a graphical notation, places are drawn as circles, tran-
sitions as rectangular boxes, and the flow relation as directed arrows between
elements. A place p is called an input place of a transition t if and only if there
is an arrow from p to t; a place p is called an output place of t if and only
if there is an arrow from t to p [AH02a]. As a further notational convention,
•t denotes the set of input places or pre-set of a transition t. Similarly, t•,
are called the output places or post-set of t. The sets •p and p• are defined
analogously for places.

120 7 Domain Engineering in PLANT

Definition 7.2 (Marked Petri Net). A marked Petri net (N, W, M) con-
sists of a Petri net N = (P, T, F), a weight function W : F → N, and the
marking M that is a mapping M : P → N ∪ {0}, which is represented by the
vector M = (M(p1), . . . , M(pn)) ∈ N

n
0 , with n = |P |.

Beyond their structural aspect, Petri nets have a dynamic aspect that
comes with the tokens that places can contain. A marking defines a state of
the Petri net. A marking M is a vector which shows the number of tokens
assigned to each place of the net. A Petri net N with an initial marking M0 is
denoted (N, W, M0). In a graphical notation, tokens are drawn as black dots
inside places; if there is more than one token inside a place, the number of
tokens can be written inside the place instead of the corresponding number
of black dots. In a marked Petri net, a weight number > 1 can be associated
with an arrow; the number appears besides an arrow if the weight is greater
than 1.

Definition 7.3 (Occurrence Rule). Given a marked Petri net (N, W, M).
A transition t is enabled under M if in every place p in •t there are at least as
many tokens as the weight W (p, t) denotes, i.e., M(p) ≥ W (p, t). An enabled
transition may occur, i.e., it decreases the number of tokens in each p in •t by
W (p, t) and increases the number of tokens in each place p′ in t• by W (t, p′).

It is assumed that places are passive elements that can hold tokens, and
that transitions are active elements that may change the number of tokens in
places, according to the fixed occurrence rule, as introduced in Def. 7.3. In this
context, transitions can be interpreted as workflow tasks that perform some
work, and places as repositories to store tokens that can symbolize signals
or events (other extensions are shown in [OS96] for different types of nets).
The term workflow instance denotes a copy of the workflow graph (i.e., Petri
net) created for execution, together with an initial marking and other sequel
markings obtained with the occurrence rule during execution.

Workflow Nets

In the sequel, a workflow net [AH02a] will be used to model the control flow
of the construction process for digital information products.

Definition 7.4 (Workflow Net (WF-net)). A Petri net N = (P, T, F) is
a WF-net if and only if:

• There is a source place i ∈ P such that •i = ∅;
• there is a sink place o ∈ P such that o• = ∅; and
• every node x ∈ P ∪ T is on a directed path from i to o.

The workflow net imposes additional constraints on a Petri net. It follows
from Def. 7.4 that there must be exactly one source place i and exactly one
sink place o, i.e., the corresponding control flow must have exactly one start

7.2 Domain Design 121

place that does not have arrows pointing to it, and one defined end with a place
that does not have outgoing arrows. Furthermore, no “dangling” transitions
are allowed, i.e., every transition (activity) must be on a path between start
and sink.

Query and Program Execution Nets (QX nets)

QX nets are used to model the construction workflow in PLANT, and are
defined in the following way:

Definition 7.5 (Query and Program Execution Net (QX net)). A QX
net (P, T, F, Progs, Params, DB, Q) is a WF-net (P, T, F) with the following
extensions:

• Progs := {p1, . . . , pk} is a set of executable programs, called helper pro-
grams

• Params is a set of strings representing parameters for programs p ∈
Progs. For par1, par2 ∈ Params the notation par1, par2 is used to denote
the concatenation.

• DB := (R|ΣR) is a relational database5 consisting of a set of relations
R = {ri : rel(Ai|Σi)|i = 1 . . . v} with rel(Ai|Σi) denoting the relation over
an attribute set Ai. The set Σi specifies intrarelational integrity constraints
over Ai; ΣR specifies interrelational integrity constraints over R.

• Q = QM ∪ QS is a set of SQL query strings representing queries which
can be executed on R in DB, where

– the queries QM := {qm1, . . . , qmj} are update queries. They are as-
sumed to modify the database state from one consistent state into an-
other (e.g., using operations like insert, update, delete); for qm ∈ QM ,
the notation exec(qm) is used to denote the execution of q in DB

– the queries QS := {qs1, . . . , qsn} produce a string as a result. For qs ∈
QS, the notation exec(qs) is used to denote the resulting string after
the execution of qs.

• Every transition t ∈ T has the form t = (tid, qpre, qpost, p, params) where

– tid is a unique ID of the transition
– qpre, qpost ∈ QM∪{λ} are SQL query strings and λ is the empty string.
– p ∈ Progs ∪ {λ}, where p is an executable program or an empty oper-

ation
– params = par1, . . . , park, exec(park+1), . . . , exec(parl) with

par1, . . . , park ∈ Params ∪ {λ} and park+1, . . . , parl ∈ QS ∪ {λ}
i.e., params is a string with parameters for the execution of program
p, which originate from the set of predefined parameters or from values
retrieved from the database DB.

5 This definition of a relational database is based on [SS83].

122 7 Domain Engineering in PLANT

The occurrence rule for QX nets is as follows: a transition t is enabled under
the same circumstances as in Def. 7.3. However, during the occurrence of t

additional steps are executed sequentially:

begin atomic

1. the number of tokens in all input places pi is decreased by W (pi, t)
2. exec(qpre)
3. execute program p with its respective parameters params

4. exec(qpost)
5. the number of tokens in all output places pj is increased by W (t, pj)

end atomic

The main idea of QX nets is that workflow nets are extended in such a way
that transitions (that represent tasks to perform construction work) can call
external programs with some parameters when they occur. The parameters
can be, if defined, fixed strings or strings that are extracted with SQL queries
from the relational database designed in logical design. In addition, data in the
database can be updated throughout the execution. Thus, configuration data
for different digital information products can be stored, modified, or updated
more efficiently in a relational database, and at the same time this data can
as well be used in the product construction process.

For a net with a given initial marking, a variant of a product can be de-
scribed by a sequence of transitions which leads to the (unique) final marking.
It is assumed that a feature in the conceptual product line model is realized
by one transition of the QX net6. This will suffice in most situations. If more
than one transition is needed to realize a feature, the concept of refinement of
a transition can be used, which is similar to the concept of a procedure call
in programming languages. Using refinement, the transition that is used to
realize a feature, will be replaced before execution by an associated transition-
bordered subnet (see [Bau96] for details). This concept is widely known and
applied for Petri nets, and can be used in a similar way for QX nets. For these
reasons, further details are omitted here (cf. [DO96, PS05a]).

The tool that executes the workflow model (cf. Chapter 9) is assumed to
make sure that the steps during an occurrence of a transition are executed
in an atomic way, i.e., similar to database transactions [WV01], either all of
them are executed successfully or none of them is executed. If any step fails,
then the previous consistent state of the database and that of the QX net
are restored. For example, the steps (2) and (4) can fail because an update
query may violate some constraints defined in the database and thus cannot
be successfully executed; this error is reported by the underlying database
management system. Step (3) can fail when a program cannot be executed;
this error can be caught with wrappers built around a program. To guarantee

6 Note that the converse it not true, as there might be transitions that do not have
a feature counterpart in the conceptual product line model, e.g., for control flow
regulation, etc.

7.2 Domain Design 123

atomicity, the changes in the database should only be committed after step
(5). The reversal of an aborted or failed program execution, however, is more
difficult, and there are several ways to technically deal with this. For example,
before the actual execution, the program with all inputs is first executed in an
identical copy of the specific execution environment to check if the execution
can be successful. Another possibility is the specification of a separate com-
pensation workflow that reverses unwanted results in case of failure. Finally,
it is important to mention that if there are no failures during the occurrence
of any transition of a QX net, this net behaves as a classical Petri net in Def.
7.3.

A Graphical Notation for QX nets

For the graphical notation of QX nets, the aforementioned notation of Petri
nets is used. In addition, the stereotypes << common >>, << optional >>,
<< alternative >> are introduced as comments that do not influence the
behavior of the net. The programs that are called inside transitions, and in-
ternal SQL statements are not depicted in order to avoid cluttering; if needed,
they can be added on separate sheets. Figure 7.6 shows typical workflow pat-
terns that are frequently needed. For the creation of an alternative feature, a
shorthand notation is used (called an alternative transition) which means that
inside this transition there are max transitions (min, max ∈ N, min ≤ max),
and at least min and at most max of them have to occur when the alternative
transition occurs. The respective internal transitions are also omitted and can
be specified on different sheets, however, the labels of the internal transitions
are depicted as a comment besides the stereotype, along with the min and
max numbers. In principle, an alternative transition is a shorthand notation
and can be expressed by several places and transitions.

create
common feature

create
optional feature

do NOT create optional feature

a) Workflow pattern for
 common features

b) Workflow pattern for
 an optional feature

c) Workflow pattern for
 alternative features

<<alternative>> (min,max)
Alternative 1, ...,
Alternative n

<<optional>><<common>>

create at least min and
at most max of the

alternative features

(A)

Fig. 7.6. Some basic workflow patterns used in QX nets.

124 7 Domain Engineering in PLANT

Example 7.3

As an example, a workflow model (i.e., a marked QX net) is shown in Fig. 7.7
that constructs digital information products with feature configurations as in the
conceptual product line model in Fig. 7.2.

It is assumed here that a digital information product will finally be realized as
a file in Powerpoint format. Furthermore, it is known that the content components
which it is assembled of are also files in Powerpoint format, and that there is a helper
program “pptAppend.exe” that can append two given Powerpoint files sequentially
one after another and produce a new file as a result, and a helper program “pptAp-
plytemplateAll.exe” that can apply a given layout template on all Powerpoint files
in a directory.

The control flow models which features can be chosen depending on the already
chosen ones, as well as the sequence in which they are incorporated into a digital
information product. This sequence is obtained from the packaging requirements.
Each feature is created here using one transition.

As can be seen, the common feature Introduction to IS and the common domain
Databases with the common features Introduction to DB, and ER Model, Relational
Model (as part of the common subdomain DB Modeling) are created for every prod-
uct, which is expressed in the sequential structure of the control flow. Then, for
Normalization and SQL, which are optional features, the control flow allows to pos-
sibly override their integration into a product (e.g., the transition do not create SQL
calls no program). Inside these transitions, it is specified that the chosen content
components will be stored in the database package. Thereafter, the control flow al-
lows to override optional domain Workflow and its features, and finally, weave in
the crosscutting features by calling the helper program “pptApplytemplateAll.exe”.

Inside one transition, e.g., create ER Model, basically the following things are
defined: 1) a pre-execution query that can add into a database relation a new tuple
that this feature was selected; 2) the helper program “pptAppend.exe” to be called
with the parameters a) “c:\product1\databases.ppt” (the package where the content
is to be added) and b) “c:\coreassets\ER-Ver1.ppt” (the content component used
to implement the feature). The parameter b) is obtained from the database using
a variable (see Chapter 9) which is bound during occurrence of the transition to
the result of the SQL query “SELECT FilePath FROM CoreAssetVersion WHERE
cavID=4”; however, this is only a preliminary value and the final definition of which
version is used to implement the feature is postponed to application engineering; 3)
a post-execution query adds a tuple in a relation of the database that the artifact
was successfully included. �

Differences From Traditional Workflow Modeling

The approach taken in PLANT partly differs from traditional workflow mod-
eling approaches. The latter target collaboration traditionally “in the large”
with many people and require the definition of role models that describe orga-
nizational details or restrictions on data access [LR99]. This approach would
be too “heavy weighted” in for PLANT, as it would require too many details.
By contrast, the scope in PLANT is much smaller and the focus is less on

7.2 Domain Design 125

P0: start

P14: stop

T1: create
’Introduction to IS’

T3: create
’Introduction to DB’

T5: create
’ER Model’

T6: create
’Relational Model’

T7: create
’Normalization’

T9: create
’SQL’

T11:create
’Workflow’

T18: merge
’Layout General’

T8: do not create
’Normalization’

T10: do not create
’SQL’

<<optional>>

T15: create
’WFMS

architecture’

T16:do NOT create
’WFMS Architecture’

"Workflow"

<<optional>>

crosscutting features

T12:do NOT create

’Workflow’

T2: create
’Databases’

T4: create
’DB Modeling’

T13: create
’Introduction to WF’

"Databases" <<common>>

<<optional>>
<<optional>><<alternative>> (1,2)

’Petri Nets’, ’EPC’

T14: create
’Petri nets’ or
’EPCs’ or both

(A)

T17

P9

P13

Fig. 7.7. Example for a construction workflow model.

collaboration, but more on an “agile”, structured and repeatable creation of
digital information products. Therefore, PLANT omits details such as role
models, and assumes that the workflow can be executed on the computer of
a single developer. The details of an associated tool, the Desktop Workflow
Engine (DWE), which can handle workflow modeling, execution, and reuse is
discussed in Chapter 9.

Reusable Workflow Modules

In the context of software product lines, the reuse of process models for
the construction of products is still in its infancy and is often neglected in
the literature. The need to reuse process assets has been also recognized in
[GSC+04, Rom05]. By contrast, the PLANT approach offers an explicit strat-
egy and the appropriate tools for the reuse of workflow modules.

In particular, a workflow warehouse serves as a repository of prefabricated
workflow modules (cf. Fig. 7.8) which can be reused. These modules are parts
of QX nets that may represent abstract patterns (similar to workflow patterns
[AH02b]) or frequently used workflows that solve a particular problem, such as
format conversion, addition of metadata, attachment of a digital artifact after
another one, etc. Moreover, the workflow modules are tested out and verified
before being deposited in the workflow warehouse, to make sure that they
operate correctly. The usage of workflow modules is intended to speed up the
development of the construction workflow model, reduce manual adaptations,
and make the workflow less error-prone.

The workflow warehouse is supposed to store a collection of workflow mod-
ules that are subject-oriented (i.e., for a special purpose), integrated (i.e., var-
ious developers can contribute suitable workflow modules for a certain area to

126 7 Domain Engineering in PLANT

Composition

Final Construction Workflow
for the Product Line

Repository of
Core Assets

Domain Req.
Documents

Models

Construction
Artifacts

Domain Test
Artifacts

Workflow Warehouse

Fig. 7.8. Reuse of workflow modules kept in a workflow warehouse.

a warehouse), non-volatile (i.e., the existing workflow modules in a warehouse
are not changed), and time-variant (i.e., modules are stored for a longer pe-
riod of time). In this respect, there are similarities with data warehouses (see
[Inm96, PS05a]).

The combination of places and transitions of copies of workflow modules
with those of the edited workflow can be described in a formal way with join
operators as defined in [PS05a]. Other details on the workflow warehouse and
the usage of workflow modules are given in Sect. 9.2.3.

7.3 Domain Realization

In domain realization all construction artifacts are created (e.g., content com-
ponents, helper programs, other digital artifacts). These artifacts are used
in application engineering to construct information products. In addition, the
environment is set up in which construction of a product will be done in appli-
cation engineering, the product map template is implemented as a relational
database, and the workflow model is implemented along with its interconnec-
tions to the database. The details of these activities are described next.

7.3.1 Realization of Content Components

All content components are created that are to be used within the product
line. They are built according to the content component model (see Sect.
7.2.1). The content components can be created either by forward engineering,
or by reengineering existing digital material in such a way that it adheres to
the requirements of the product line.

Forward Engineering

Forward engineering means that a content component can be implemented
by using the results obtained from domain engineering, such as content re-
quirements or the content component model (see Sect. 7.2.1), in a top-down

7.3 Domain Realization 127

manner. Starting with the requirements for a specific content component and
the uniform content component model, the content component (which con-
tains the actual information) is created, and the finished component is stored
in the repository of core assets.

Example 7.4

Some examples for content components (based on different content component
models):

• A Powerpoint file of a lecture on ER Models
• A Web page for a lecture on ER Models
• An XML file of a lecture on ER Models
• A PDF file of a lecture on ER Models
• A video file of a lecture on ER Models

�

Reengineering from Existing Material

The reengineering approach combines a bottom-up and a top-down approach
for the creation of content components. In some cases digital material is al-
ready available which could be used to create content components for a prod-
uct line. However, there are obstacles in practice which sometimes impede an
easy transfer, such as different file formats that possibly do not allow easy
modification of content, or diverging layouts and content structures. In such
cases, an adaptation of existing content to create content components that
satisfy the product line requirements can be as tedious as a creation from
scratch.

Reengineering can help in this context by automating some of the well-
structured tasks. The principle of reengineering involves, similar to reengineer-
ing of software [CI90], the phases reverse engineering (bottom-up) and forward
engineering (top-down), and is depicted in general for content artifacts in Fig.
7.9. At first, reverse engineering analyzes a given digital artifact, such as a
file containing some content, and extracts some data whose representation is
on a higher level of abstraction which allows for modifications. Thereafter,
forward engineering creates a content component according to the content
component model, which fits into the product line context, and the level of
abstraction is reduced. The difference between forward engineering alone as
described at the beginning of this section and reengineering, is that reengi-
neering has additionally the phase of reverse engineering that extracts some
useful data from existing artifacts, followed thereafter by forward engineering
which makes adaptations.

A more detailed process model for reengineering digital artifacts, which can
be used with the creation of content components, is shown in Fig. 7.10. The

128 7 Domain Engineering in PLANT

Digital
Artifact

Digital
Artifact

Reverse
Engineering

Forward
Engineering

A
b
s
tr

a
c
ti
o
n

L
e
v
e
l

Fig. 7.9. Principle of re-engineering of existing content (see also [PSV05]).

process model assumes that from existing artifacts, some kind of components
can be extracted, which can be for example, text, audio and video files, flash
animations, or layout specifications. The automated component identification
phase (which does reverse engineering) is performed automatically, and is
followed by the semi-automatic component qualification phase for forward
engineering.

Automated Component Identification
(Reverse Engineering)

Context Parsing
(Using Data Model)

Abstract Representation

Component Analysis
(Using Extraction Model)

Identified Components

Component Extraction
(Using Extraction Model)

Define Reusability Models

Semi-Automatic Component Qualification
(Forward Engineering)

Domain Engineer

Component Spec./Test
(Apply Reusability Metrics)

Component Classification
(Apply Taxonomy Model)

Packaging

Storage

Candidate
Repository

Core Assets
Repository

Candidates

Qualified, Reusable Components

Categorized Components

Packaged Components

PDF Text

HTML XML

Java Applets

other

Existing Sources
-Data Model
-Extraction Model
-Reusability Specs.
-Taxonomy Model

Transformation

Adapted Components

1)

2)

3)

4)

5)

6)

7)

8)

9)

Fig. 7.10. A reengineering process model for content components (cf. [PV05]).

At the beginning of the process, a domain engineer has to define the
reusability models that are used for automation (phase 1), such as the data

7.3 Domain Realization 129

model of the file which contains the data to be extracted (e.g., an XML DTD),
the extraction model that specifies what to extract (e.g., an XQUERY defi-
nition), reusability specifications to compute how well a piece was extracted
(e.g., syntax conformity, etc.). An optional taxonomy model can be defined
to help to categorize extracted candidates more easily when many candidates
are there. In phase 2, the data model is used to parse existing files and gain
a more abstract representation, such as an abstract syntax tree [ALSU07].
This representation is used in component analysis (phase 3) which applies the
extraction model to identify the parts of interest; these represent candidate
components which are stored in phase 4 into a temporary candidate repos-
itory. In practice, it is possible that the aforementioned conceptual reverse
engineering phases are not directly distinguishable when they are embedded
inside reverse engineering tools (e.g., [Cif94]).

The semi-automatic work that needs interaction with the domain engineer
begins in phase 5. At first, extracted candidates are automatically examined
with the available reusability specifications. In addition, the domain engineer
manually inspects and tests the extracted results to see if the components are
useful and, if not, go back to earlier phases. When a large number of com-
ponents need to be extracted and a taxonomy model was defined earlier, the
appropriate categorization of components can be done in phase 6 to simplify
their handling. In phase 7, extracted content components can be additionally
transformed to fit within the product line context, i.e., the content, layout,
structure, or granularity may be modified manually or with appropriate tools
to satisfy the requirements of the content component model. In phase 8, a
finished content component can be “packaged”, i.e., additional metadata can
be added if necessary, or the delivery format can be changed (e.g., to a com-
pressed file format to save space). Finally, the packaged content component is
stored in the core assets repository.

Reengineering is especially attractive when an organization has lost the
original source files of content components, which are only available in a binary
format that does not allow simple modifications, or when creation from scratch
is too expensive or not possible. Reverse engineering, however, can have many
intricate legal implications which can differ in various countries and license
agreements; these aspects are discussed in [Sam90, Hoe06]. Additional details
on the process model and its activities can be found in [PV05].

7.3.2 Realization of other Construction Artifacts

Other artifacts are possibly needed within a product line in order to be able
to create products. Depending on the chosen content component model, lay-
out specifications may be separately defined. If possible, such a separation
should be always be done, because it makes the individualization and the
maintenance of content easier. For example, Powerpoint layout specifications
can be separately saved in a master file; for HTML-based content one can

130 7 Domain Engineering in PLANT

create separate CSS files, for XML one can create formatting guidelines with
XSL-FO.

In many cases, programs need to be integrated within textual content. Such
programs are also created in domain realization. For example, programs that
are often embedded into content are Flash animations or Java applets (e.g.,
simulations, etc.).

Additional helper programs are created if the combination of content com-
ponents and other construction artifacts cannot be performed with available
tools, and especially if it is not possible to integrate the tools into an auto-
mated workflow. Helper programs need to be designed in such a way that the
construction of digital information products can be made by calling these pro-
grams with certain parameters. Helper programs can be for example format
converters or wrappers that provide for the workflow a standardized interface
for calling different programs. Helper programs are a critical part of the au-
tomation of the construction workflow model for digital information products.

Depending on the application domain, the testing of construction artifacts
may become tedious and inefficient when many different cases have to be
tested. If such cases can be derived in an algorithmic way, test case generators
can be created to simplify this task. Such generators are also reusable in
application testing.

Example 7.5

Some examples of other construction artifacts:

• Layout-specifications: A Powerpoint master file “master.pot”
• Helper programs:

– pptappend.exe: appends the slides of a Powerpoint file after the last slide of
another Powerpoint file; accepts 3 parameters: source file 1 and 2; 3) the
output file.

– pptapplytemplate.exe: applies a layout file to a Powerpoint file; accepts 2
parameters: 1) a Powerpoint file; 2) a Powerpoint master file

– pptextracttemplate.exe: for reengineering purposes, this program extracts a
layout specification from an existing Powerpoint file; accepts 2 parameters:
1) a Powerpoint file; 2) the file name in which the extracted master is to be
stored.

�

7.3.3 Realization of the Product Map Database

The product map template (see Fig. 7.5) is implemented as a relational
database. In addition, the data available from domain engineering is initially
entered into the appropriate tables (i.e., relations): the domains, features, core
asset version graphs for the construction artifacts, package data.

7.4 Domain Testing 131

7.3.4 Realization of the Construction Workflow Model

The model of the construction workflow for the product line that was designed
in physical design (see Sect. 7.2.3) is realized with a tool that can handle the
details of QX nets (see Chapter 9). The tool also represents the environment
in which digital information products are created in application engineering.
Predefined workflow modules can be reused from the workflow warehouse (Fig.
7.8).

7.4 Domain Testing

Domain testing in PLANT is concerned with the quality assurance of the core
assets developed in domain realization. In PLANT, testing is understood as
a process in which core assets, (esp. construction artifacts such as content
components or helper programs, and the construction workflow model) are
analyzed under specified conditions, and the results are observed, recorded,
and evaluated. The notion of testing is broader than in traditional software
development, since construction artifacts can be a mixture of content and
software, and therefore poses additional difficulties compared to pure soft-
ware testing techniques [Som04b, AM05, Pre05]. For parts that are pure soft-
ware (e.g., Java applets, etc.) traditional testing techniques as described in
[Som04b, AM05, Pre05] can be used; they are well-known and thus will not
be discussed here in detail. The remainder of this section therefore focuses
on information-product-specific aspects: content component testing, formal
verification of the construction workflow model, and the integration testing
of content components. Since content itself is typically not “executable”, this
kind of testing is often static.

7.4.1 Testing Content Components

Content component testing is done for all content components created in
domain realization, and focuses on single components only. The test cases
and other artifacts (such as reports) created in domain testing are stored in
the core asset repository, so that they can be reused in application engineering.

On a syntactical level, content components are checked to make sure that
their structure is as defined in the content component model. This task can
be automated with syntax checkers in cases in which the content component
model has a formal specification (e.g., a DTD when XML or HTML are used).
In addition, it is tested whether available layout specifications can be (auto-
matically) applied to content components, and it is validated that the results
are as expected, i.e., the component has the specified layout (e.g., colors,
text sizes, etc.), there are no new, unwanted text wraps or other unexpected
changes. Furthermore, tests are done to make sure that the content is cor-
rectly displayed in the target environment. This is especially critical for some

132 7 Domain Engineering in PLANT

file formats, such as HTML, since a valid HTML file can be displayed differ-
ently by different browsers in different screen resolutions. This is because the
respective standards do not specify all details of the rendering mechanisms
[W3C07a]. In this context, a possible criterion against which can be tested is
the degree to which the same file is displayed differently in different browsers;
this degree can be evaluated by automated searches in HTML code for known
incompatible constructs, or empirically by human testers according to certain
standardized criteria.

Finally, a domain engineer has to validate each content component by ask-
ing the questions: is this what was really desired? Is the content contained in
one component independent enough so that, when combined with other con-
tent components in different allowed configurations, the result makes sense?
Does the way the content is spread over different components make sense?
The testing of content components stops thereafter successfully if no errors
were encountered in any of the components; otherwise, a re-iteration of earlier
domain engineering phases is necessary.

7.4.2 Verifying the Construction Workflow Model

The verification of the QX net representing the construction workflow model
is a check which ensures that it can really generate only products with con-
figurations allowed by the conceptual product line model.

There are various techniques from the area of Petri nets which can be
applied in this context. As already mentioned, QX nets behave as traditional
Petri nets when the following assumptions hold: 1) in the analysis, alterna-
tive transitions behave like traditional transitions (i.e., it is abstracted away
that they might contain other transitions; such internal transitions are ig-
nored); 2) the correct functioning of an alternative transition is ensured by
other mechanisms; 3) programs called inside transitions are executed without
errors (ensured by other mechanisms); 4) queries in the database are executed
without errors.

Reachability analysis can ensure that a marking representing the state
that a certain feature was built can only be reachable from a marking repre-
senting that some other features were already built. This way, one can check
the satisfaction of the constraints of the conceptual product line model that
demand that some features can be chosen only when some features in parent
nodes were chosen (see Sect. 7.2.1). This analysis can be done by creating a
marking graph.

Analysis of the Marking Graph

The definition of the marking graph of a marked Petri net is based on arc-
labeled directed graphs [DR98].

Definition 7.6 (Arc-Labeled Directed Graph). An arc-labeled directed
graph is given by

7.4 Domain Testing 133

• a set V of vertices
• a set of labeled edges (v, l, v′), representing source vertex, label, target ver-

tex, where v, v′ ∈ V and l is a label of some given set L.

For a given labeled edge (v, l, v′), v′ is an immediate successor of v. A finite
or infinite sequence of labeled edges (v, l, v1), (v1, l, v2), . . . is called a path of
an arc-labeled graph. All vertices {v, v1, v2, . . .} are called successors of v.

Definition 7.7 (Marking Graph). Let (N, W, M0) be a marked Petri net
(cf. Def. 7.2) with N = (P, T, F). The marking graph of (N, W, M0) is an arc-
labeled directed graph with a distinguished initial vertex, and edges labeled by
transitions. Furthermore,

• the vertices represent the reachable markings,
• the distinguished initial vertex represents the initial marking M0,
• the labeled edges are triples (M, t, M ′) such that M, M ′ are reachable mark-

ings satisfying M
t
→ M ′, i.e., the occurrence of transition t ∈ T (which

is enabled under M) transforms the marking of the net from M to M ′

according to the occurrence rule.

In a graphical notation, the vertices of the marking graph are shown as
bullets, edges as labeled arrows between two bullets, and the initial marking
is distinguished by an additional arrow pointing to it.

The reachability problem can be stated as follows: given a marked Petri net
(N, W, M0) and a marking M ′, it should be decided whether M ′ is reachable
from M0. It has been shown by [May84] that this problem is decidable for the
types of Petri nets used here (see Defs. 7.1 – 7.3). Using the marking graph,
one can deduce various properties of a Petri net, e.g. [DR98],

• if the marking M ′ represented by a vertex v′ is reachable from M0, repre-
sented by v0, then there exists in the marking graph a finite directed path
(v0, t1, v1), (v1, t2, v2), . . . , (vi, ti, v

′); by definition, a marking of a vertex
vi is reachable from itself;

• a marked Petri net is called deadlock-free if every reachable marking en-
ables some transition; the net is deadlock-free if and only if its marking
graph has no vertex without outgoing edge; a marking that enables no
transition is called dead ;

• a marked Petri net (P,T,F) is called b-bounded (or simply bounded), if all
its places are b-bounded; a place p ∈ P is b-bounded if for each reachable
marking, the number of tokens it contains is ≤ b, with b ∈ N. A finite Petri
net is bounded if and only if its marking graph has finitely many vertices.

As discussed in Sect. 7.2.3, QX nets have exactly one sink place that does
not have outgoing arrows. This means that QX nets necessarily have exactly
one marking with a deadlock because there is one dead marking when the
workflow reaches a “stop” state. This insight can be used for verification
purposes; if a designer encounters other dead markings (i.e., in the marking

134 7 Domain Engineering in PLANT

graph there is more than one node without outgoing edges) this must be a
design error, and the QX net must be re-designed. In addition, the marking
graph reveals the preconditions in the control flow before a certain transition
can occur. By interpreting a marking as a state in which some features are
created, the marking graph can be used to ensure that only those product
configurations can be generated which were allowed by the conceptual product
line model, by checking the appropriate edges in the marking graph.

The verification is finished successfully if it is ensured that the QX net
has exactly one “stop” marking and if within the marking graph only desired
state changes are possible.

Example 7.6

As an example, the marking graph is constructed for the net in Fig. 7.7 with
its initial marking M0 shown there. In the corresponding marking graph in Fig.
7.11, each vertex represents a unique marking that is reachable from M0, and each
vertex is given a unique number. For clarity, the complete marking vector of a
marking is omitted. For example, M0 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), M1 =
(0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
M14 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).

M 0

T1

M 1

T2

M 2

T3

M 3

T4

M 4

T5

M 5

T6

M 6 M 7

T7

T8
M 8

T9

T10

T13

M 10

T14

M 11

T15

T16

T11

M 9 M 12

T18

M 14

T12

M 13

T17

Fig. 7.11. Marking graph for the net in Fig. 7.7.

As can be seen, the final marking M14 (where there is one token in the place
“stop”) is reachable from the initial marking M0. In addition, the net is bounded
because the marking graph has finitely many vertices. Furthermore, one can deduce
from the marking graph that for example the marking M10, where the feature “in-
troduction to workflow” was created by T13, will only be reachable if the creation
of the optional workflow domain was chosen before (T11). �

Unfortunately, there are some drawbacks of this method which are mainly
resulting from the computational complexity of Petri nets. The marking graph

7.4 Domain Testing 135

cannot always be computed efficiently; in terms of numbers of places, transi-
tions, arcs, and tokens, it requires for bounded Petri nets exponential space
[Lip76, May84, Sta90]. In addition, for some nets, the corresponding marking
graph can have an infinite number of vertices (e.g., for unbounded nets).

However, typical construction workflow models in PLANT seem to be
prevalently bounded and have a marking graph with a finite number of nodes
(see also case study in Chapter 10). It becomes visible here why the possible
types of constructs were limited in conceptual product line model: by allow-
ing only common, optional, and alternative features or domains, one can use
predefined workflow patterns (see Fig. 7.6) within the construction workflow
model, which help to obtain nets which are likely to be bounded. In addition,
marking graph analysis can be done for the reusable workflow modules stored
in the workflow warehouse (see Fig. 7.8), which are usually small enough to
make the computation feasible. If the marking graph approach becomes infea-
sible for complex nets, there are also other analysis techniques based on linear
algebra, which provide semi-decision algorithms with a weaker form of reach-
ability analysis [DR98]; other techniques are also discussed in [Sta90, DR98].

7.4.3 Integration Testing of Content Components

Integration testing in PLANT focuses on testing whether the combination
of different content components works, and if a product can be created as
a combination of different content components. This poses in PLANT sim-
ilar problems like domain integration testing in software product lines (see
Sect. 4.3.4), since after domain realization, there is not yet a finished digi-
tal information product that can be tested. In addition, there are potentially
many configurations of different core assets that can be assembled to different
information products, which makes an exhaustive integration testing almost
impossible, or indeed infeasible.

As a tradeoff, PLANT follows therefore for the integration testing of con-
tent components the sample application strategy approach (cf. Sect. 4.3.4).
This strategy creates one or more sample digital information products. For
this, the product map template is complemented with sample versions for ev-
ery feature in the product line. Thereafter, the construction workflow model
is executed.

The generation of a sample digital information product has the drawback
that only the creation of a specific feature configuration is tested, which poses
the question of which and how many configurations to test. PLANT uses the
marking graph of the construction workflow model (Sect. 7.4.2) to derive a
finite set of products with sample configurations that are to be tested. Simi-
lar to branch coverage testing of control flow graphs of software [Bal00], the
different sample products are generated here in such a way that each edge in
the marking graph of the construction workflow model is passed at least once.
The rationale behind this is that every state modification in the workflow is
tried out at least once (an example is shown in later Sect. 10.4). Integration

136 7 Domain Engineering in PLANT

testing is finished successfully when all sample products are generated suc-
cessfully. In case or errors, another iteration of domain engineering can be
used for corrections. Another related approach is described in [DOZZ97].

As already explained in Sect. 7.4.2, the marking graph could theoretically
have sometimes no finite representation or may be inefficient to compute,
which would mean that integration testing could not be done in this way.
However, as reasoned in the previous Section, marking graphs for the context
where PLANT is used are expected to have prevalently a finite representation.
This is also supported by the results of a case study carried out a “real-world”
context, to be presented in Sect. 10.

7.5 Summary and Discussion

The purpose of domain engineering in PLANT is to make all necessary prepa-
rations which are needed to generate concrete information products in appli-
cation engineering. This does not only include the capturing of requirements
and the creation of models (e.g., for allowed configurations, configuration man-
agement, assembly), but also the implementation of reusable construction ar-
tifacts (such as content components), and testing, validation, and verification
of components or models.

Similar to software product lines, most of the effort of creating information
products with PLANT has to be invested in domain engineering. However, it
will become evident in application engineering how this investment and the
restrictions introduced so far will pay off.

8

Application Engineering in PLANT

Repository of
Core Assets

1) Family Engineering

2) Domain Engineering 3) Application

Engineering

Domain Req.
Documents

Models

Construction
Artifacts

Domain Test
Artifacts

Process

1) Domain
Analysis

2) Domain
Design

3) Domain
Realization

4) Domain
Testing Product Repository

Process

5) Evalutation/Controlling

Repository

1) Feasibility/Risk Assessment

2) Economics/Evolution/Lifecycle

3) Configuration Management
Documents

2) Application

Design

3) Application

Realization

4) Application

Testing

1) Application

Analysis

4) Organization

D
ig

it
a

l

P
ro

d
u

c
t

1

D
ig

it
a

l

P
ro

d
u

c
t

n

Design

Digital

Artifacts

Test

Artifacts

Requirements

Documents

Application engineering focuses on the creation of a single digital informa-
tion product, using the core assets prepared in domain engineering. Applica-
tion analysis captures the product-specific content requirements, which ideally
must be a subset of the domain requirements. Application design thereafter
obtains a valid content configuration from the conceptual product line model.
A product map records for the chosen configuration which versions of which
core assets to use for realization. The actual generation of an information
product is done in application realization. There, the construction workflow
model that was defined in domain engineering is executed, and it uses the data
from the product map to call helper programs during execution. The result-
ing information product is tested in application testing, which complements
domain testing. The Chapter concludes with a summary and discussion.

138 8 Application Engineering in PLANT

8.1 Application Analysis

In PLANT, the objective of application analysis is to capture the requirements
for one single digital information product that is to be created with core assets
prepared in domain engineering. From the terminology of software product
lines, the term “application” is kept also in this context to emphasize that
a digital information product can indeed consist of a mixture of content and
software.

The primary source to obtain these product-specific requirements is a cus-
tomer or a group of customers who demand a certain product with some spe-
cial content configuration. All other requirements are obtained from domain
analysis (Sect. 7.1). In particular, application analysis collects product-specific
content requirements. The output of application analysis is one or more doc-
uments that capture in natural language these specific requirements for one
information product.

8.1.1 Capturing Product-Specific Content Requirements

The product-specific content requirements determine which content the con-
sidered information product should contain. Furthermore, they may specify
custom additions (e.g., cross-references, etc.) to be included manually after
the generation of a product out of core assets. These additions are assumed
to be minor, highly product-specific and require little realization effort com-
pared to the overall effort of application engineering. Therefore, they are not
included into the models of domain engineering, and the related changes are
not allowed to contradict the domain engineering models, for example by
changing the content in such a way that it would no longer represent a valid
configuration.

The main difference between traditional requirements engineering and ap-
plication requirements engineering in PLANT is that in PLANT only those
requirements can be realized, which are at the intersection of what is de-
manded by customers and technically feasible, and what is available in the
product line. This means that in PLANT the content requirements demanded
for a certain information product (except the custom additions) ideally need to
match a subset of the content requirements captured in domain engineering
(see Sect. 7.1.2). To ease the task of this assessment, the conceptual prod-
uct line model (created in domain design, see Sect. 7.2.1) can additionally
be used as a reference in application analysis1, as it already visualizes do-
main requirements on a higher level of abstraction. In cases with a mismatch,
an application designer must re-negotiate with a customer to achieve such a
subset, or stop application engineering and hand over to domain engineering
where additions can be made, such as the creation of other core assets and
the modification of the models.

1 Note that this connection is omitted in Fig. 5.1 to keep the figure clearly arranged.

8.2 Application Design 139

Of course, for some customers not all requirements will be fulfilled. The
rationale behind this approach is that on the one hand individualization is
limited to a certain degree, but on the other hand, synergy effects can be
realized which increase quality (because common components make updates
easier and less error-prone) and reduce production costs. If negotiations with
customers can only satisfy few of their requirements or if negotiations fail
entirely, e.g., because there are no adequate configurations or core assets, this
feedback is given to domain engineering for possible changes.

Example 8.1

Based on the example for domain requirements in Sect. 7.1.2, a special e-learning
course on “Information Systems” can have the following content requirements (ne-
gotiated with a customer group):

Content requirements:

1. The course on “Information Systems” has a general introduction “Introduction
to IS”.

2. The course needs the domain “databases” with “database modeling”.
3. The database domain has an introduction “Introduction to DB”.
4. The domain “database modeling” has the “ER model” and the “relational

model”.
5. The course needs the domain “workflow”, and the domain “workflow modeling”

with “Petri nets”.
6. The domain “workflow” has an introduction “Introduction to WF”.

�

8.2 Application Design

Using the requirements specified in application analysis, the objective of ap-
plication design is to create a product-specific model and a product map,
based on the conceptual product line model and core asset version graphs de-
veloped in domain engineering. The affected models and the tailoring process
are explained next.

8.2.1 Deriving a Product Model

The product model determines a specific content configuration that is se-
lected for one particular information product. In a general sense, the product
model defines the “architecture” of the specific information product. Using
the requirements from application design, the specific product configuration
is derived from the conceptual product line model.

140 8 Application Engineering in PLANT

The product model can be regarded as an instance of the conceptual prod-
uct line model. The rules that are presented in the sequel are used to derive
an instance, and thus, a content configuration that is valid according to the
product line constraints. From a general point of view, these represent the
semantics of the grammar introduced in Fig. 7.1. There are also conceptual
similarities between these rules and those presented in Def. 4.4 for software
products in software product lines. The rules also unveil how synergy effects
are achieved through the usage of common features or common domains.

1. A product model PM is a subtree of the conceptual product line model
CPLM .

2. By definition, the root domain of CPLM is included into PM .
3. A domain or feature of type common has to be included into PM if its

immediate predecessor was included, i.e., for any included common do-
main or common feature, all immediate successors of type common have
to be included in PM .

4. An optional domain or optional feature may be included into PM if its
immediate predecessor is included.

5. If the immediate predecessor of an alternative domain (which has at-
tributes min, max) was included in PM , then, the particular alternative
domain must also be included. Furthermore, if an alternative domain con-
tains only alternative features (see grammar in Fig. 7.1), at least min and
at most max of these features must be chosen; if an alternative domain
contains only other alternative domains, then at least min and at most
max of these domains must be included.

6. A crosscutting feature (which has no type) has to be included in PM if
its immediate predecessor was included.

Example 8.2

The application of the aforementioned rules is illustrated in this example which
uses the conceptual product line model introduced in Fig. 7.2. A product model (for
a product variant) should be derived that satisfies the specific content requirements
of the example in Sect. 8.1.1.

As shown in Fig. 8.1, we can proceed in a top-down manner to include the
appropriate domains and features from the conceptual product line model into one
concrete product model; included features or domains are checked off. By rule 2, the
root domain is included. Then, “Introduction to IS” is included (rule 3), “Layout-
General” (rule 6), and “Databases” (rule 3). As a consequence, “Introduction to
DB”, “DB Modeling”, “ER Model”, and “Relational Model” are included (rule 3).
By rule 4, “Workflow” is included. As a consequence, “Introduction to WF” must
be included (rule 3), and “Petri Nets” is chosen from “WF Modeling” (rule 5).

The resulting product model is depicted on the right side of the figure, and it has
a valid configuration. The crosscutting feature “Layout-General” will be weaved into
all atomic features of the domain where it is located, and all subdomains (see Sect.

8.2 Application Design 141

Information Systems

Petri Nets

<<alternative>>

Event-oriented
Process Chains

<<alternative>>

WF Implementation

<<optional>>

WF Modeling

<<alternative>> (1,2)

Workflow

<<optional>>

Databases

<<common>>

Introduction to DB

<<common>>

DB Modeling

<<common>>

ER Model

<<common>>

Relational Model

<<common>>

DB Theory

<<optional>>

Normalization

<<optional>>

DB Implementation

<<optional>>

SQL

<<optional>>

WFMS
Architecture

<<optional>>

Introduction to WF

<<common>>

Layout-GeneralIntroduction to IS

<<common>>

Information Systems

Petri Nets

<<alternative>>

WF Modeling

<<alternative>> (1,2)

Workflow

<<optional>>

Databases

<<common>>

Introduction to DB

<<common>>

DB Modeling

<<common>>

ER Model

<<common>>

Relational Model

<<common>>

Introduction to WF

<<common>>

Layout-GeneralIntroduction to IS

<<common>>

Conceptual Product Line Model Product Model

Product-specific Features

Introduction to IS

Introduction to DB

ER Model

Relational Model

Introduction to WF

Petri Nets

all with layout ‘‘Layout-General’’

Fig. 8.1. Example of a derivation of a product model from the conceptual product
line model of Fig. 7.2.

7.2). Looking at the product model, it becomes also clear which atomic features are
to be realized in this particular information product (lower left side of the figure),
and that their order is not yet important at this stage.

This example also clarifies that not every content configuration is allowed by
the product line specifications. For example, it is not allowed to select only “SQL”
and “WFMS Architecture”. The conceptual product line model imposes that if
these features are selected, then we must also select at least “Introduction to IS”,
“Layout-General”, “Databases” with “Introduction to DB”, and “Workflow” with
“Introduction to WF”. This way, a certain reuse context is guaranteed, and a con-
tent developer is aware of the possible configurations in which a certain content
component is reused. �

8.2.2 Creating a Product Map

The product model specifies so far only which domains or features have been
chosen for a specific information product. At this point, additional configura-
tion details are added: each product feature is assigned a predefined version
of its corresponding core asset version graph.

Essentially, the product map template that was prepared in domain design
(see Fig. 7.4) is now used to do this assignment. After the data for the partic-

142 8 Application Engineering in PLANT

ular product has been completed in the product map template, it is referred
to as the product map (of the particular product). The principle of how to
assign a version to a feature is shown conceptually in Fig. 8.2.

Domain Subdomain1 Subdomain2 Feature Digital

Information

Product:

Course 1

 Layout-General v. 1.0

 Introduction to IS C v. 1.2a

Databases C Introduction to DB C v. 1.1

DB Modeling C ER Model C v. 2.0

 Relational Model C v. 1.3

DB Theory O Normalization O

DB

Implementation

O SQL O

Workflow O Introduction to WF C v. 1.0

Modeling A

(1,2)

 Petri Nets A v. 2.1

 Event-oriented

Process Chains

A In
fo

rm
at

io
n

S

y
st

em
s

WF

Implementation

O WFMS

Architecture

O

V1.0 V1.1a V1.2a
change 1 change 2

V1.1b V1.2b
change 4

change 3

Introduction to IS

Core Asset Version Graphs

Package1

Package2

Package3

Fig. 8.2. Example of a product map for a specific product.

For each feature (atomic or crosscutting) that is contained in the product
model, exactly one version from its associated core asset version graph must
be chosen, which is written at the intersection of the row of the respective
feature and the column of the product. This assignment means that a feature
has be to realized by that particular version. This assignment is similar to the
built-from-relation discussed in Def. 4.4 for software product lines. Further-
more, it is indicated in the Figure how the atomic features will be grouped into
delivery packages, according to the packaging requirements captured in do-
main engineering. Technically, the data of the aforementioned assignments is
added to the product map database that was prepared in domain engineering
(Fig. 7.5).

8.3 Application Realization 143

8.3 Application Realization

Application realization creates the digital information product in a generative
manner with the feature configuration specified so far. This is done by an
application engineer who is executing the pre-defined construction workflow
model specified in domain engineering, using the tool introduced in Chapter
9. In particular, this workflow also specifies, in a pre-defined way, the order
in which features are integrated into the product, and uses the data of the
product map that was finalized in application design. The application engineer
is not allowed to modify the structure of the net.

8.3.1 Executing the Construction Workflow Model

The execution of the construction workflow model, which is a QX net (Sect.
7.2.3), is handled in the following way. For a given marking:

1. if no transition is enabled, the execution stops. In a well-designed, marked
net there must be exactly one marking with this property (when the work-
flow reaches the “stop” state).

2. if exactly one transition is enabled, it occurs automatically without user
interaction.

3. if more than one transition are simultaneously enabled, then the applica-
tion engineer must select exactly one of them to occur.

With these semantics, it becomes obvious how choices are made during
the construction of an information product. Optional and alternative features
or domains are modeled in a way, e.g., using patterns as in Fig. 7.6, such that
more than one transition will be enabled when the control flow reaches the
point where they are to be constructed. At that point, the application engineer
is asked to make a choice. This choice will depend upon the product model
derived in application design2. Generally speaking, the creation of different
variants of information products depends on the different choices that can be
made when more than one transition is enabled (recall that is was assumed
that one feature is created by one transition, see Sect. 7.2.3). Furthermore,
for the creation of different variants, different “paths” with different transi-
tions are taken through the workflow model during execution. However, the
workflow model is defined in such a way that only those paths can be taken
that construct configurations allowed by the conceptual product line model.

When the execution of the construction workflow is finished, its result are
the artifacts of the respective digital information product; the chosen content
components are contained within the appropriate packages.

Thereafter, an application engineer can perform minor manual adaptations
which do not violate the constraints of domain engineering. For example,

2 Figuratively, the “marking off” of features or domains in Fig. 8.1 corresponds
here to the choice which transition should occur.

144 8 Application Engineering in PLANT

such adaptations can be the insertion of individual cross-references inside the
content, completion of metadata, etc. Finally, the realized configuration is
reported to family engineering (cf. Sect. 6.3.2).

Example 8.3

As an example, the QX net shown in Fig. 7.7 is reconsidered. A figurative path is
shown in Fig. 8.3, which creates a concrete information product with the features
selected in Fig. 8.1.

P0: start

P14: stop

T1: create
’Introduction to IS’

T3: create
’Introduction to DB’

T5: create
’ER Model’

T6: create
’Relational Model’

T7: create
’Normalization’

T9: create
’SQL’

T11:create
’Workflow’

T18: merge
’Layout General’

T8: do not create
’Normalization’

T10: do not create
’SQL’

<<optional>>

T15: create
’WFMS

architecture’

T16:do NOT create
’WFMS Architecture’

"Workflow"

<<optional>>

crosscutting features

T12:do NOT create

’Workflow’

T2: create
’Databases’

T4: create
’DB Modeling’

T13: create
’Introduction to WF’

"Databases" <<common>>

<<optional>>
<<optional>><<alternative>> (1,2)

’Petri Nets’, ’EPC’

T14: create
’Petri nets’ or
’EPCs’ or both

(A)

T17

P9

P13

Fig. 8.3. Example of a path taken in the workflow model during execution.

In particular, one can see that the transitions occurred in the following order:
T1, . . . , T6, T8, T10, T11, T13, T14, T16, T17, T18. Inside these transitions, the pre-
defined helper programs are called with parameters obtained from the product map,
and create the artifacts of the information product. For the depicted path, most tran-
sitions occur automatically. The transitions chosen by the application engineer to
occur are: T8, T10, T11, “Petri nets” inside T14 (recall that an alternative transi-
tion is shorthand notation, see Sect. 7.2.3), and T16. The result is a course variant
of Information Systems. �

8.4 Application Testing

Application testing is concerned in a general sense with the quality assur-
ance of the concrete artifacts of the generated digital information product.
Although a part of this task has already been done from a more general per-
spective in domain engineering (see Sect. 7.4), application testing focuses on
the produced artifacts of a product, and reuses where possible test artifacts

8.5 Summary and Discussion 145

from domain engineering, such as test reports, test cases, test case generators,
syntax checkers, etc.

First of all, application testing checks whether the generated artifacts are
syntactically correct, e.g., by reusing appropriate specifications or programs
(e.g., syntax checkers) from domain testing. In cases where artifacts have a
binary, application-specific form (e.g., Powerpoint files), the syntactic correct-
ness of these artifacts has to be checked using the respective application (e.g.,
checking if the generated files can be opened with Powerpoint). Additionally,
it must be made sure that the generation has not introduced unwanted errors
(e.g., characters that were not there in the respective component in domain
engineering) into the content, and that other required properties are not lost
(e.g., animations in Powerpoint still function as in the components defined in
domain engineering).

Thereafter, it has to be checked whether the specific content configuration
of the created product is as demanded in application analysis. In addition, the
information product has to be validated by asking the questions: is this what
was really desired? Is the way the content is distributed in packages really
desired to be this way? If problems arise, then iterations to earlier phases of
application engineering should be considered, or appropriate feedback should
be given to domain engineering.

8.5 Summary and Discussion

Application engineering takes advantage of the preparations made in domain
engineering and thus simplifies and accelerates the creation of a digital infor-
mation product; this is the payback of the investment in domain engineering.
In addition, an information product is created in a systematic way and, due to
the predefined specifications and constraints, synergy effects can be realized
on a content reuse level through common features and feature configurations
planned in advance.

The generative approach used in PLANT application engineering differs
from other approaches (e.g., mass customization [HSI05]) in the sense that it
is not possible to generate every conceivable information product. Restrictions
for possible configurations come from the conceptual product line model, and
features can be realized only with available versions from the respective core
asset version graphs. These decisions are related to the philosophy of product
lines that intentionally offer only a certain degree of individualization, and
which restrict the overall variability in order to make the reuse of core assets
more efficient, simplify the construction and maintenance, and thus increase
the quality of generated artifacts.

Part III

Tool Support & Case Study

9

The Desktop Workflow Engine

This Chapter presents the Desktop Workflow Engine (DWE), a tool used to
design and execute the construction workflow model in order to create digital
information products. In particular, the purpose and the user interface are
described, along with concepts which facilitate variant creation. Furthermore,
the typical usage scenario and the internal tool architecture are outlined. The
novel concepts are summarized and discussed at the end of the Chapter.

9.1 Purpose

The DWE focuses on the systematic support of the technical construction
process (or build process) of information products. It is used throughout the
physical design phase in domain engineering as well as in application engi-
neering. The DWE is a tool implemented in Java, and is intended to run on
the personal desktop of a developer, e.g., of a domain engineer or application
engineer.

In domain engineering, the DWE is used to create a workflow model,
i.e., a QX net (Sect. 7.2.3), which represents the construction specification
of the product line. The tool implements analysis algorithms to support the
developer with the verification of the workflow model to make sure that only
products with configurations allowed by the conceptual product line model
can be constructed.

In application engineering, the DWE is used to make application-specific
customizations and execute the workflow in order to construct a concrete digi-
tal information product. The DWE contains a seamlessly integrated relational
database management system (DBMS), to support QX nets (recall that a QX
net consists of an extension of workflow nets, and an associated relational
database; see Def. 7.5). The usage of the DWE from the user interface point
of view is presented next.

150 9 The Desktop Workflow Engine

9.2 User Interface

The user interface as seen by domain and application engineers is shown in
Fig. 9.1. At the top, there is a toolbar with buttons needed for workflow
editing and execution. Furthermore, the user interface is divided into three
areas: 1) the area of the workflow editor; 2) an area at the bottom in which
the user can see the content of different tabs, such as documentation, database
editor, or log viewer; 3) an area on the left showing the contents of a workflow
warehouse. The usage of each of these areas is described in turn.

1) Workflow
Editor

2) Database
Editor

3) Workflow
Warehouse

Fig. 9.1. Screenshot of the DWE as seen by domain and application engineers.

9.2.1 The Workflow Editor

The workflow editor can be in one of two modes: editing mode or execution
mode. The editing mode is used in domain design to model the workflow. The
execution mode is used for testing purposes in domain design, as well as in
application realization to enact the workflow and construct an information
product.

9.2 User Interface 151

Editing Mode

In this mode, the workflow editor is used to draw or delete the places, transi-
tions, arcs, and tokens of a QX net interactively with the mouse. It supports
zoom-in/zoom-out and grouping of subnets; for the combination of existing
workflow models with the currently edited workflow, the DWE uses join op-
erators that are similar to those introduced in [PS05a].

The editor automatically assigns a ID number to each place or transition,
which is unique in the currently edited model. Labels with a textual descrip-
tion can be attached by the user to places or transitions. For each transition,
additional properties can be specified (as demanded in Def. 7.5): pre-SQL and
post-SQL queries, a path to a program that is executed when the respective
transition occurs, and parameters for the program, which can also be queried
from the database. More details on properties are discussed in Sect. 9.3.1.

The designer is responsible that the workflow model can only construct
information products with feature configurations allowed by the conceptual
product line model. The DWE supports the designer in various ways to achieve
this goal. The designer can reuse workflow patterns (e.g., as in Fig. 7.6) or
predefined workflow modules, which are both stored in the workflow warehouse
(Sect. 9.2.3). In addition, the DWE offers the possibility to create a marking
graph based on the edited workflow1. There are additional in-editing-checks
that make sure that the workflow model has also the properties of a workflow
net (see Def. 7.4); for example, the user is presented in the toolbar traffic lights
that signalize either in red or green if the respective properties are satisfied,
and the execution mode is enabled or disabled accordingly.

Execution Mode

When the DWE is in execution mode, it supports the enactment of the QX
net according to the occurrence rule for QX nets specified in Sect. 7.2.3. Based
on the occurrence rule, an internal scheduler determines all transitions that
are enabled under the current marking, and execution is done in the following
way:

• if no transition is enabled, the execution stops;
• if exactly one transition is enabled, the transition is scheduled to occur

(i.e., the associated SQL queries and the program are executed);
• if a conflict situation arises in which more than one transition is enabled at

the same time, then the user is asked to chose exactly one of the enabled
transitions to occur (see Fig. 9.2). In this situation, the user decides how
the control flow should go on.

1 Remark: there is an upper bound of displayable vertices depending on the avail-
able memory.

152 9 The Desktop Workflow Engine

Fig. 9.2. When more than one transition is enabled under a given marking in
execution mode, the user is asked to chose one of the enabled transitions to occur.

When the scheduling is done in the aforementioned way, there are no tran-
sitions that are executed concurrently, and the execution of such transitions
is “serialized”. Throughout the execution, the DWE automatically creates a
system log which shows the order of occurrence of transitions (see Fig. 9.3).

Fig. 9.3. The DWE automatically records a log of occurring transitions.

The DWE stops the execution of a workflow in case of exceptions, e.g., if
a program that is to be executed throws exceptions, or if SQL queries cannot
be executed because of constraint violations in the database. The system log
can be used in such cases to trace back the origin of the exceptions.

9.2 User Interface 153

9.2.2 The Database Editor

The database editor provides a graphical interface to the database manage-
ment system (DBMS) that is seamlessly integrated into the DWE. The DBMS
is based on HSQLDB [ST05], which is a full-fledged relational DBMS imple-
mented in Java, and its functionality is available within the DWE. The reader
is referred to the handbook of HSQLDB [ST05] for details on features of the
HSQLDB.

A specific database with its relations and integrity constraints is always
associated to a specific QX net whose control flow is shown in the workflow
editor, and the database is opened and saved together with the QX net2.
Within the database editor, a user can execute SQL DDL commands [ST05]
to create a database schema with appropriate constraints, or insert data tuples
into the relational database. All names of existing relations in the database
are shown within the database tab on the left side. A relation name can be
selected with the mouse, and the content of the respective relation will be
displayed with the attributes and values in a tabular form (Fig. 9.1).

For testing purposes, a user can also execute SQL selection commands
[ST05] and display the results. Modification of tuples can be done via SQL
update statements [ST05], or via the graphical user interface where the at-
tribute values of a tuple can be modified by clicking on them and entering
a new value. Such an easy update of data is important for application engi-
neering, as pre-configured values defined in domain engineering remain easily
adaptable in application engineering.

For example, a file path specification defined as an attribute value in a
tuple can be adapted in the aforementioned way, and if the path value is
queried inside one or more transitions during execution (e.g., to be passed
as a parameter to some program), the updated value will be received. The
advantage of separating such data from the internals of the control flow is
that a domain engineer can specify the control flow in the workflow editor
and initial parameter data in the database, while an application engineer is
able to modify the data more easily in application engineering, without having
to look at all internals of the construction process.

9.2.3 The Workflow Warehouse

The workflow warehouse acts as a repository for predefined workflow modules
or workflow patterns, and is independent of the currently edited QX net or
database. The workflow warehouse can be saved and exchanged separately,
and thus supports the reuse of frequently needed process parts (the usage
scenario will be discussed in Sect. 9.4).

Inside the workflow warehouse, the user can define a hierarchical structure
of folders which can contain workflow modules or other folders. A workflow

2 The DWE even saves the workflow net and the database in the same file.

154 9 The Desktop Workflow Engine

module in the warehouse is created by marking in the workflow editor a subnet
and duplicating it into the warehouse; the DWE automatically stores also the
properties of the respective places and transitions in the warehouse. It is also
possible to copy places and transitions with empty properties, so that the
created workflow module represents a workflow pattern that can be extended
later. To reuse a workflow module from the warehouse, it has to be selected
by the user and copied to the editor area. The DWE inserts the module
into the edited workflow; at first, it is placed on an empty area and stays
disconnected, and the DWE reassigns its IDs of places and transitions so that
they do not collide with existing ones. Thereafter, the user has to make the
desired connections between the existing workflow and the inserted module.

The easy creation and access of the documentation of workflow modules is
vital for their reuse. The DWE supports this with the documentation tab at
the bottom area, which shows the documentation of the currently highlighted
folder or workflow module in the workflow warehouse (Fig. 9.4). It is also
possible to edit and modify the documentation right away; it is finally stored
together with the workflow warehouse.

Paste workflow module
into workflow editor area

Visible documentation
synchronized according

to selection

Fig. 9.4. The integrated documentation of the workflow warehouse.

9.3 Concepts Supporting Parametrization and the Creation of Variants 155

9.3 Concepts Supporting Parametrization and the
Creation of Variants

The DWE supports the creation of variants on an implementation level with
various concepts that are discussed next.

9.3.1 Transition Properties

It has already been mentioned that transitions have internal properties. An
example configuration dialog for one transition with its internal properties is
depicted in Fig. 9.5.

Transition
......

2) Variable
Names

3) Variable
Types 4) Variable

Values

1) Execution
String

Fig. 9.5. Properties of a transition.

The “Execute” input line can store a string with the path of an executable
program and its related execution parameters; the program is executed when
the transition occurs. For example, “c:\pptappend.exe file1.ppt file2.ppt 2 -
overwrite -close” would call a program that first converts the layout of the
slides of file1 to the layout of file2, appends thereafter all slides of file2 after
the last slide of file1, and finally saves the modifications made in file1. This
“hard coded” definition works, however, it is difficult to update when for
example different file names have to be used for different product variants.

156 9 The Desktop Workflow Engine

Local and Global Variables

To simplify variant creation, local variables can be defined within a transition,
using the transition configuration dialog. Each variable has a name, a type,
and a value. Name and value must be a string, and possible types are “text”
or “SQL”. The variable values are not allowed to contain references to other
variables. At design time, placeholders for variables (e.g., “$(s1)” for variable
“s1”) are inserted by the developer in the execution string. At run-time, when
the transition occurs, the DWE replaces the placeholders by the string values
bound to the respective variables3. The variables are evaluated in the order of
definition, and the placeholders are replaced with the respective value also in
this order. This replacement is done before the execution string is executed.

For a variable of type “text”, its name is bound to a fixed string value,
e.g., the variable “master” in Fig. 9.5 is permanently bound to the string “2”.
Such variables (which are actually constants) may help to convey the meaning
of certain parameter values within the execution string.

For a variable of type “SQL”, a valid SQL query is specified at design-time
in its value field, whose result after execution in the database must be a string.
At run-time, the name of the SQL-type variable is bound to the string which
results from the execution of the query. For example, the query associated to
the variable “ProgAppend” in Fig. 9.5 could evaluate at run-time to the string
“c:\coreassets\HelperPrograms\pptAppend.exe”, which is obtained from the
respective relation in the database.

A similar dialog allows the definition of global variables that are accessible
from all transitions in the workflow. Similar to local variables, global variables
have a name, type, and value. The type can be either “text” or “SQL”, and
a value is not allowed to contain references to other variables. The global
variables are evaluated when the workflow execution is initiated. During the
replacement of placeholders in the execution string of a transition, its local
properties environment with local variables is searched first, i.e., if there is a
local and global variable with the same name, the value of the local one will
be taken; if a variable name is not found in the local properties but declared
as a global variable, the respective global value is taken. Should the execution
string of a transition contain a variable name that is neither declared locally
nor globally, an error message is shown and the workflow execution is stopped.

The concept of variables, especially that of SQL-type variables that ob-
tain values from the database, simplifies the variant creation for information
products. Especially parameter data that is passed on to helper programs
can now be stored and modified separately in the database. This data can be
modified independently of the control flow structure, without having to look
at the internal details of transitions. In addition, an updated attribute value
is automatically used in all locations querying the respective data. Finally,
the database has at the same time a documentation function.

3 This corresponds to a call by value (see [Lou02, ALSU07]).

9.3 Concepts Supporting Parametrization and the Creation of Variants 157

Pre-SQL and Post-SQL Statements

Pre-SQL and post-SQL statements are SQL update statements [ST05] which
can be defined within one transition (see also 7.2.3). If specified, a pre-SQL
statement is executed before the execution of the respective execution string,
and a post-SQL statement after it.

When a particular information product is created in execution mode, dif-
ferent sets of transitions may be executed, depending on the choices made by
the application engineer. Pre-SQL and post-SQL statements can be used to
maintain a more detailed execution log, and to document in an automated
way the features selected for a variant. For example, a pre-SQL statement
could insert in the log a tuple with details on the selected features, and the
post-SQL statement logs the successful creation. Using a delete statement in
the pre-SQL of a transition at the start of the workflow, the execution log can
be automatically cleared in case that the workflow is re-executed.

9.3.2 Helper Programs

The adaptivity of the DWE to different application areas is achieved by sep-
arating the workflow engine from the programs that actually create a variant
of an information product. These helper programs are called by the workflow
engine (similar to [Hol95]), and their behavior is controlled by the parameters
passed on to them.

The helper programs are used for example to compose a variant out of
construction artifacts, to convert or copy files, add metadata, etc. Helper pro-
grams can also be wrappers constructed around other applications that should
be integrated into the automated workflow, without the user being aware of
them. Conceptually, such wrappers are an additional software layer between
the DWE and an external application. Technically, wrappers are themselves
executable programs that expose a predefined interface to the DWE. When
executed by the DWE, a wrapper internally calls the external application,
possibly passing data to it and processing results (see Fig. 9.6). The wrapper
also catches exit codes from the application after its execution and reports
the success or possible exceptions to the DWE.

An example of such a wrapper is the “pptAppend.exe” program which is
used to integrate the MS-Powerpoint application into an automated workflow.
This program can be called with two PPT files as parameters, and the slides
of the second file are appended to the first file. Internally, this is accomplished
by calling the installed Powerpoint application; this automation is based on
the Component Object Model (COM) [Tur00].

158 9 The Desktop Workflow Engine

Desktop Workflow
Engine (DWE)

pptAppend.exe

MS Powerpoint

COM Interface

Wrapper Program

Other Application

call & wait
for execution

call & wait
for execution

exit code

exit code

Fig. 9.6. Integrating external applications with wrappers into the DWE.

9.4 Usage Scenario

The typical usage scenario of the DWE is depicted in Fig. 9.7 from a logical
point of view which also clarifies how, with which data, and by whom the
DWE is used.

Domain Engineering

D
ig

it
a
l

In

fo
rm

a
ti
o
n

P

ro
d
u
c
t

Design

Digital

Artifacts

Test

Artifacts

Requirements

Documents

QX Net for
Product Line i

Workflow Model

DB with
Config Data

Repository of
Core Assets (excerpt)

Models (excerpt)

Construction Artifacts
(excerpt)

Helper Programs

Content Components

Other Artifacts

. . .

load/
save

use

Domain Engineer

create & validate QX Net,
create test products

create Test
Products

Test Digital
Information Product . . .

Application Engineering

Product Repository

save QX net
with
adapted DB

create product

Desktop Workflow
Engine (DWE)

DBMS

Local DB

<<copy 1>>

Execution Engine

Desktop Workflow
Engine (DWE)

DBMS

Local DB

<<copy n>>

Execution Engine

Application Engineer

complete/adapt database data,
execute workflow,
create a digital information product

callscalls

QX Net for
Product Line i

Workflow Model

DB with
Config Data

Local Copy of
Core Assets (excerpt)

Models (excerpt)

Construction Artifacts
(excerpt)

Helper Programs

Content Components

Other Artifacts

. . .

. . .

use

replicate
locally

replicate
locally

 load

 communicate

Fig. 9.7. Scenario for the usage of the DWE.

Every developer (i.e., domain or application engineer) is intended to have
a copy of the DWE that runs on his/her personal desktop. The data that is

9.4 Usage Scenario 159

needed by the DWE has to be available locally, and the DWE produces only
local data that can be thereafter copied by the developer to other locations.

A domain engineer creates a QX net specifying the construction workflow
model for all products in one product line. The result output by the DWE is a
file that contains both the workflow model and the associated database with
configuration data. Sample information products are created in domain test-
ing in order to assess the construction workflow model. The artifacts that are
needed during the execution of the QX net, e.g., helper programs or other arti-
facts, come from the construction artifacts section of the core assets repository
(see Figs. 5.1 and 9.7). The final file of the QX net that is eventually released
for application engineering is stored in the models section of the repository of
core assets (cf. Figs. 5.1 and 9.7).

In application engineering, an application engineer replicates the core asset
base of domain engineering locally. Thereafter, he or she loads the QX net into
his local DWE and adapts the data in the database (e.g., the product map;
Fig. 7.5) to suit the individual product. The adapted QX net and the artifacts
of the product resulting from the execution of the QX net are stored in an
individual product repository. Finally, the application engineer reports the
product configuration to the person responsible for family engineering4.

In some scenarios it is possible that only one single person does both do-
main and application engineering, so that replication or coordination is not
problematic. However, in collaborative scenarios several several people will
access the core asset repository, and each application engineer who creates a
product variant will have his own locally replicated application engineering
environment (depicted in the right part of Fig. 9.7). In such situations, concur-
rency control or consistency problems arise. These aspects are not discussed
here in detail, since various tools and protocols already exist to handle such
problems (e.g., see [Fei91, CSFP04]).

9.4.1 Differences from Traditional Workflow Management
Approaches

Traditional workflow modeling approaches focus on the automation of business
processes in collaborative scenarios with well-structured processes5 [LR99,
AH02a]. In such contexts, the workflow model is assumed to be stable, and
the automation is based on exactly one centralized workflow model. In addi-
tion, such workflow models are often extended by role models which specify
who should perform certain tasks. The typical architecture is designed with

4 Note: this connection is omitted in Figs. 9.7 and 5.1 to avoid an overload of
connections.

5 By contrast, if collaboration is not structured or predictable at all, groupware
systems are frequently employed, which do not control a process execution and
which typically focus more on various forms of group communication (cf. [LR99,
AH02a]).

160 9 The Desktop Workflow Engine

a centralized workflow engine which has total control to enact the model. At-
tached clients are controlled by the engine that assigns them pieces of work;
these are to be processed by persons using the clients.

This traditional approach is considered to be too “heavy weighted” and in-
flexible for the PLANT context for several reasons. PLANT does not attempt
to model the complete development process, but concentrates only on the well-
structured build process of information products, and thus has a smaller and
more specialized focus. In this context, a centralized workflow model with
centralized enactment is unsuitable. Other approaches with a decentralized
enactment (e.g., [VW99]) do not fit well enough into the specific context of
product lines, as configurations of variants were not in the original focus.

Product lines delay product-specific decisions up to the latest possible
point in application engineering. Despite the fixed control flow structure of
the workflow model, the product map (which is used within the workflow)
needs to be configured individually for every product, as already shown, in
order to create an information product out of the specifically desired versions
of core assets. Thus, it would be inefficient to model all possibilities in a
centralized fashion right away, since until application engineering, it is not
known which versions of core assets will be used to implement which product
features.

PLANT therefore follows a novel approach and splits up the workflow
model development. In domain engineering, the workflow model is prepared
for later execution. Then, in application engineering, adaptations are made
with respect to the data that is to be used, and the model is enacted to
construct products. Because of its specialized focus, the workflow model does
not use role models. The control is decentralized, as every developer can use a
DWE (Fig. 9.7) – this differs also from traditional approaches that have only
one centralized workflow engine. Although product-specific adaptations of the
QX net are made locally, this does not mean that inconsistencies are produced,
because application engineers are only allowed to add or change certain data
in the database (see Fig. 7.5). In addition, predefined integrity constraints
in the database prohibit invalid changes. Due to the specialized focus of the
construction workflow model in PLANT, fewer participating persons can be
expected, compared to traditional workflow management scenarios.

9.5 Outline of the Internal Architecture

The internal architecture of the DWE is briefly outlined using a UML package
diagram (Fig. 9.8). The packages contain Java classes and/or other packages,
and the dashed arrows show dependencies between the packages based on
method calls or field access (obtained using [Cre06]).

Internally, it is distinguished between the model part that deals with con-
ceptual data, the view part that displays model data, and the control part

9.5 Outline of the Internal Architecture 161

Document

Analysis

Graph

Utils

Application

GUI Models

Plugins Utils

Drawing

Control Decorators

Controller

Configuration Plugins

Dependency via method call or field access
Legend:

Fig. 9.8. Package diagram outlining the architecture of the DWE.

that manipulates model data and which sends it to display. An excerpt of the
functionality that is implemented by each package is described next:

Application package. Contains: the main class of the application, the
Database Management System (DBMS) based on HSQLDB [ST05], and
various data structures from the Jakarta Commons library [Jak06]. The
subpackage GUI contains the classes for the Graphical User Interface
(GUI) based on Java SWING [EEL+02], such as editor frame, workflow
warehouse tree, SQL editor, configuration panels. The subpackage Mod-
els contains the application model with data that does not belong to the
document model. The subpackage Utils has classes implementing copy
& paste functionality for workflow modules from the warehouse to the
workflow editor and vice-versa. The subpackage Plugins contains various
elements used in the main application windows, e.g., the menu bar, or the
tool bar.

Document package. Contains: classes with data of the workflow graph, its
layout and tokens, the associated relational database, and storage rou-
tines.

162 9 The Desktop Workflow Engine

Graph package. Contains: the data related to a graph, such as classes for
edge, vertex, place, transition, tokenlist; it extends classes from the JUNG
framework [JUN06]. The contained package Utils provides functionality
related to the logical structure of the graph, e.g., the check that a work-
flow model satisfies the conditions of a workflow net.

Drawing package: Contains: classes for visualization of model data, the
drawing panel of the workflow editor, picking and grouping of graph ele-
ments; it is based on the JUNG framework. The subpackage Control en-
capsulates the logic for user interaction, e.g., reacting to mouse events. The
subpackage Decorators influences the appearance of nodes in the graph,
for example depending whether they are selected in the editor area or not.

Controller package: Contains: classes implementing different schedulers for
workflow execution, e.g., for execution step-by-step (for debugging pur-
poses) or automatic execution (for regular execution) until more than one
transition is enabled. The subpackage Configuration provides helper rou-
tines needed during execution, e.g., which transitions are enabled under
a given marking. The subpackage Plugins provides, based on an extensi-
ble architecture, the logic defining what should happen during execution,
and how to handle errors. Finally, the controller package contains classes
maintaining the state of the workflow, the symbol table for variables, the
execution logic for SQL statements, and logging capabilities (supported
by the Log4J framework [LOG06]).

Analysis package: Contains: classes that implement analysis algorithms on
the workflow model, e.g., construction and display of a marking graph,
reachability analysis with linear-algebraic techniques (based on [Mur89,
DR98]). This functionality can be used by domain engineers during the
creation of a workflow model.

9.6 Summary and Discussion

This Chapter illustrates the Desktop Workflow Engine which is a tool that
is used to create the construction workflow model for information products
in domain engineering, and to enact this model in order to create individual
products in application engineering. The DWE focuses entirely on the tech-
nical build-process of products and integrates various concepts that facilitate
the variant creation on an implementation level. In addition, the DWE sim-
plifies process reuse, as the files of a workflow warehouse or a QX net can be
simply exchanged, for example even by e-mail or through Web repositories.
The adaptation of such exchanged processes to the local context of a devel-
oper is eased through the concepts of variables, as a developer only has to

9.6 Summary and Discussion 163

modify the appropriate values (e.g., for program path specifications), and not
the structure of the workflow model.

The DWE is designed to be extensible for future additions. For example,
additional schedulers can be added that handle the execution of the workflow
model in a different way, which can execute it without user interaction or
with concurrency (e.g., by defining for a certain model an execution plan in
advance). Additional types of variables such as system-defined variables can
also be introduced, which are bound for example to the current time, date, or
version of used operating system; such variables can be used to pass on system
context values to the called programs. The analysis capabilities are extensible
as well, for example with respect to additions when concurrent execution is
to be allowed.

The concepts of the Desktop Workflow Engine are general enough to be ap-
plied also in other contexts. For example, in a single source publishing context
[TR05] the DWE can be used to implement the logic of content composition,
transformation, and publication. The DWE can also be used in conjunction
with the Personal Software Process [Hum02]. For software product lines, the
DWE could replace other build-tools (e.g., [The07]) and simplify the creation
of software products, as the called helper programs could be code generators
or compilers. When conditional compilation is used to create different software
products (see also Sect. 4.3.3), the appropriate parameters can be obtained
from the database associated to a QX net. The analysis capabilities of the
DWE also fill an existing gap in the software product line research, where the
analysis of the technical build-process of products is often neglected.

10

Case Study

This Chapter presents a case study which shows how the PLANT approach
has been applied in a real-life context. It focuses on the creation of one product
line for digital information products in an educational context at the Business
Information and Communication Systems Group in the AIFB Institute at
the University of Karlsruhe, Germany. The purpose of this case study is to
describe a specific example in a detailed way, to demonstrate the applicability
of PLANT, and to validate the proposed approach. Finally, the results of the
application of PLANT are evaluated.

10.1 Preparation

This case study follows the guidelines proposed in [Yin03, ZMM06]. The main
research question that is to be answered is how exactly PLANT is applied to
create a product line for digital information products in a “real world” situ-
ation. Although the case study is mostly descriptive, it has also explanatory
aspects, as it explains at certain points why some specific decisions are made,
as well as the rationale behind the respective choice.

The unit of analysis is one product line of digital information products in
the specific educational context that is presented in the sequel. It is considered
that this context reflects in most parts the typical problems encountered when
a product line of digital information products is created.

Validity is constructed by collecting evidence from the following sources:
application context, artifacts created with PLANT (e.g., models created by a
domain engineer, artifacts created with the DWE tool presented in Chapter
9), available documents where PLANT has been applied and where it has
not been applied, observation of improvements (in qualitative or quantitative
terms).

To evaluate the PLANT Approach, the observation of improvements (in
qualitative or quantitative terms) are compared to those in the situation with-
out PLANT.

166 10 Case Study

10.2 Usage Context and Encountered Problems

This case study is conducted within the Business Information and Commu-
nication Systems Group (BIC) at the AIFB Institute of the University of
Karlsruhe, Germany. The BIC group offers several lectures related to the area
of Information Systems. The ones of interest in this study are: Applied In-
formatics I, Workflow Management, and Database Systems. In addition to
the lectures in Karlsruhe, the group offers a Database Systems course with a
different topic emphasis at the Vienna University of Economics and Business
Administration.

The educational material for these lectures is created in MS Powerpoint
format. A Powerpoint file typically contains the content for a certain topic,
and constitutes a learning object. The Powerpoint content format is used by
lecturers and assistants, and the files are often converted to the PDF format
and stored on a Web server for delivery to students. Metadata is captured
with the metadata attributes of the Powerpoint or PDF format. The students
have the opportunity to do blended learning, i.e., they can either do e-learning
at home by using only the PDF files, attend the lecture with the slides printed
out, or both.

The aforementioned lectures have commonalities in some parts, which
cause problems when the content has to be updated by different assistants, as
it is often the case that the updates of common parts are not propagated to
the other lectures systematically enough. For example, typical updates which
occur rather often are: corrections, insertion of suggestions, improvements of
parts that were difficult to understand, or additions with new developments
in the fields. Another problem is that the content of the common parts may
be reworked in a different way by different assistants, so that the appearance
of the common parts may diverge as well during the evolution of the content.
Finally, the creation and update of educational material with commonalities
is inefficient, as these commonalities are not used somehow to achieve synergy
effects.

10.3 Family Engineering

This Section illustrates how family engineering (see Chapter 6) was performed
for this special case. The created family engineering overview document is
presented and explanations are given for the choices.

Feasibility and Risk Assessment

Figure 10.1 shows the initial part of the family engineering overview document,
which focused on feasibility assessment and risk assessment. The rationale
behind the choices in the context of the case study is explained below.

10.3 Family Engineering 167

PLANT - Family Engineering Overview Document

Product line identifier 1

Main domain of intended use Information Systems

Description Products are variants of courses in Information Systems

Date of inspection of this document

Date of next planned inspection

Feasibility

a) infeasible a) unknown or unpredictable

b) almost completely infeasible b) only partly known or unpredictable

c) unsure c) unsure

d) feasible, but with restrictions X d) most known, rest predictable

X e) completely feasible X e) all known in advanc

a) infeasible

b) many arguments against it;

resources not available

c) unsure

d) feasible, some management support

X e) feasible, strong management support

Risk Assessment

a) often a) no advantages expected

b) very likely b) overall strategy is unclear

c) unsure c) unsure

X d) rarely X
d) strategy is in most parts defined and

advantages are expected

e) never X
e) strategy is defined and advantages

are expected

a) no commonalities

b) some commonalities, but which

cannot be technically exploited

a) not predictable at all

c) unsure

d) some commonalities that can be

technically exploited

e) many commonalities that can be

technically exploited

b) hardly predictable

c) unsure

d) predictable

e) known for sure

3) Are there strategic advantages

that are expected from a product

line approach?

4) Is the product line

organizationally feasible?

Feasibility & Risk Assessment

01.12.2006

28.02.2007

1) In the domain where PLANT is to

be applied, how often are radical

changes expected to occur?

2) Is the demand for information

products predictable?

3) Are the variable parts of

information products known?

1) Is the product line

technically feasible?

2) Do information products in the

product line have commonalities?

Fig. 10.1. The “feasibility and risk assessment” part of the family engineering
overview document.

Feasibility

• 1) Is the product line technically feasible?
Choice: e) completely feasible
Explanation: the relevant file formats (Powerpoint PPT, PDF) could be
handled; wrapper programs for Powerpoint existed which could append files
or apply a given layout template automatically; conversion of PPT to PDF
was possible; PPT files of current courses were available; the necessary
technical infrastructure existed

168 10 Case Study

• 2) Do information products in the product line have commonal-
ities?
Choice: e) many commonalities that can be technically exploited
Explanation: after inspecting the available material, the existing courses
were found to have in several parts slides that occur identically or almost
identically in different courses; these slides could be extracted and modu-
larized; therefore, there was potential for synergy effects.

• 3) Are the variable parts of information products known?
Choice: d) most known, rest predictable;
Explanation: there existed regularities between the common and differing
parts in courses, and they could also be described on a conceptual level; the
parts of the required variants could be deduced from the conception of the
courses

• 4) Is the product line organizationally feasible?
Choice: e) feasible, strong management support
Explanation: the necessary staff resources were available, the product line
strategy was accepted and supported.

Risk assessment

• 1) In the domain where PLANT is to be applied, how often are
radical changes expected to occur?
d) rarely;
Explanation: the domain was typically stable and expected to remain stable,
as the courses were part of a curriculum that was in line with the overall
department and faculty strategy. The employed file formats were widely
used and were likely to be available in the future.

• 2) Is the demand for information products predictable?
d) predictable
Explanation: the demand for certain course variants was predictable, as
the courses were integrated in a curriculum and offered on a regular basis.

• 3) Are there strategic advantages that are expected from a prod-
uct line approach?
e) strategy is defined and advantages are expected
Explanation: main aspects of the strategy were to ease the creation of
course variants, make the creation process easier and less error prone.

According to the criterion defined in Sect. 6.1, all answers were either d) or
e), so that the feasibility and risk of this product line were within acceptable
ranges.

10.3 Family Engineering 169

Economic, Evolution, Lifecycle Aspects

Figure 10.2 illustrates the part of the family engineering overview document
that focused on a quantitative effort estimation and comparison with/without
PLANT. The total effort with/without PLANT was calculated according to
the formulas discussed in Sect. 6.2.1 and 6.2.21.

2) Economic / Evolution / Lifecycle Aspects

N: Number of information products

j: Number of content update-cycles

Effort

Assumptions: month has 20 work days with 8 hours

with PLANT
Eorg

Ecab

Eupdate (one cycle, estimated average)

Eunique (estimated average)

Ereuse (estimated average)
Result:

without PLANT
E_unique_without (estimated average)

E_update_without (estimated average)
Result:

Ranges: ok if: effort with PLANT< effort without PLANT

5,20

1

4

2,00Savings with PLANT:

[person months]

2

0,1

0,05

0,05

0,15

1

1

3,20

Fig. 10.2. The part on economic, evolution, lifecycle aspects of the family engineer-
ing overview document.

The rationale behind the estimation was as follows:

• there were 4 courses mentioned in Sect. 10.2, which made up at the begin-
ning 4 information products in the product line

• the number of update cycles was derived from the context, and it was
assumed that there would be 2 content update cycles, e.g., after each
semester

• Eorg, Ecab, Eupdate, Eunique, Ereuse were estimated by a domain expert
(only one was available) after viewing existing material.

1 Reminder:

Ewith := Eorg + Ecab + N ∗ (Ereusewith
+ Euniquewith

+ j ∗ Eupdatewith
)

Ewithout := N ∗ (Euniquewithout
+ j ∗ Eupdatewithout

)

170 10 Case Study

• the effort estimations without PLANT were based upon experience of the
domain expert and his observations during the last three years before this
case study.

It was estimated that in this case the savings with PLANT were about
2 person months. As an aside, the average effort to create one additional
product with PLANT was: Ereusewith

+ Euniquewith
+ j ∗ Eupdatewith

= 0.3
person months; the average effort to create one additional product without
PLANT was: Euniquewithout

+ j ∗ Eupdatewithout
= 1.3 person months. This

meant that even if the number of information products in the product line
increased during the evolution, the effort with PLANT would be lower than
that without PLANT.

Configuration Management

During the initiation of PLANT there were no configurations there yet for the
market-based view and product-based view, and the evaluation of a match
between the market-based and product-based view was overridden at that
point.

After the first pass of application engineering (to be described in Sect.
10.5) it was evaluated that the realized product configuration indeed matched
the market-based view of demanded configurations (to be described in Sect.
10.4), and “match” meant that all features from the market-based view were
contained also in the product-based view.

Organization

The product line in this case study had few products, and for the presented
context the development department model was chosen as the organizational
form (cf. Sect. 4.5.2) in which every staff member can do any type of work.
The effort for the required tasks could be handled by one single person who
was responsible for family engineering, domain engineering, and application
engineering.

Evaluation and Controlling

Figure 10.3 shows the section of the family engineering overview document
which summarized the previous results during the initiation of PLANT, to ease
the decision making whether to create a product line or not. As feasibility and
risk were within acceptable ranges and the usage of PLANT brought effort
savings, the decision was in favor of PLANT.

The data was re-evaluated for controlling purposes after the first pass of
domain engineering (to be described in Sect. 10.4) and the first pass of appli-
cation engineering (to be described in Sect. 10.5). After domain engineering,
there were no changes to the aforementioned data, and the product line proved

10.4 Domain Engineering 171

5) Evaluation / Controlling
Feasibility: OK

Risk: OK

Estimated savings with PLANT: 2,00 PM

Configuration management: no evaluation, since domain &

 application engineering not done yet

Fig. 10.3. The “evaluation and controlling” part of the family engineering overview
document (during initiation of PLANT).

to be feasible. After application engineering, configuration management data
was available for the product-based view, and as already mentioned it was
evaluated that configurations from product-based view and market-based view
matched.

10.4 Domain Engineering

This section illustrates how domain engineering (see Chapter 7) has been
applied.

Domain Analysis

• Domain scoping
– Product portfolio scoping: the information products of the product line

were variants of Information Systems courses that were adapted to the
special context of the curriculum for which the department had to offer
courses.

– Information domain scoping: the information domains relevant for this
special educational context are sketched in Fig. 10.4, and Information
Systems was the root domain.

Information Systems

Data View

Process View

DB Modeling

DB Theory

DB Implementation

Petri Nets

Workflow Management

Workflow Modeling

Workflow Systems

Fig. 10.4. Relevant domains obtained during information domain scoping.

172 10 Case Study

– Asset scoping: the core assets that were content components were slides
in Powerpoint format.

Next, the requirements for the product line were captured. For the content
requirements, Fig. 10.5 depicts the topics which were treated in available
courses, and groups them according to the domains obtained in information
domain scoping. In addition, other conceivable combinations which were useful
in the department were captured as well, e.g., an information product that
contained all components (which could be used for reference purposes), or a
product that contained only the preliminaries (used for example in lectures
where some tool was demonstrated). More details on the requirements are
described in the following list, which resulted from a first investigation, in
natural language; this list was used later to create more abstract models:

Content

Applied

Informatics I

Workflow

Management

Database

Systems

(Karlsruhe)

Database

Systems

(Vienna)

Overview Data

& Process

Complete

Reference

Practice/

Demo

Preliminaries X X X X X X X

Data View Domain
 DB-Introduction X X X X

 DB Modeling Domain
 DB-ER-Model X X X X X

 DB-Relational-Model X X X X X

 DB-Design X X X X

 DB Theory Domain
 DB-Normalization X X X X

 DB-Data-Design X X X

 DB Implementation Domain
 DB-SQL X X X

 DB-Transactions X X

 DB-Recovery X X

 DB-DataOrganization X X

Process View Domain

 Petri Nets Domain
 PN-Introduction X X X X

 PN-Transformations X X X

 PN-Dynamics X X X

 PN-Analysis-Basics X X

 PN-Analysis-Advanced X X

 PN-LinearAlgebra X X

 PN-Extensions X X

 Workflow Management Domain
 WF-Introduction X X X

 WF-ProcessManagement X X X

 WF-ProcessModelingIntro X X

 Workflow Modeling Domain
 WF-Modeling-PetriNets X X X

 WF-Modeling-UML X X

 WF-Modeling-EPC X X

 Workflow Systems Domain
 WFMS-Architecture X X

 INCOME-Designer X X

Available Courses Other conceivable combinations

Fig. 10.5. Some of the required content configurations as seen from the demand-side
perspective.

The detailed requirements are shown next. They were used as a basis to
create more abstract models, such as the conceptual product line model or
the construction specification (cf. Figs. 10.6 and 10.8).

• Content requirements
– Common requirements:

all courses had Preliminaries with organizational details; courses with
DB Modeling Domain contained DB-ER-Model and DB-Relational-
Model ; courses with the Petri Nets Domain contained PN-Introduction

10.4 Domain Engineering 173

in common; courses with the Workflow Management Domain com-
monly covered WF-Introduction and WF-ProcessManagement ; courses
with Workflow Modeling Domain had WF-Modeling-PetriNets in com-
mon;

– Optional requirements:
in the Data View Domain, DB-Introduction was optional; in the
DB Modeling Domain, DB-Design was optional; in the DB Theory
Domain, DB-Normalization and DB-Data-Design were optional; in
the DB Implementation Domain, DB-SQL, DB-Transactions, DB-
Recovery, DB-DataOrganization were optional; in the Petri Nets Do-
main, PN-Transformations, PN-Dynamics, PN-Analysis-Basics, PN-
Analysis-Advanced, PN-LinearAlgebra, PN-Extensions were optional;
in the Workflow Management Domain, WF-ProcessModelingIntro was
optional; in the Workflow Modeling Domain, WF-Modeling-UML, WF-
Modeling-EPC were optional; in the Workflow Systems Domain, WFMS-
Architecture,
INCOME-Designer were optional.

– Constraints:
if Data View Domain was treated, then the DB Modeling Domain had
to be treated, too; if the Process View Domain was treated, then the
Petri Nets Domain had to be treated; if the Workflow Management
Domain was treated, then the Workflow Modeling Domain had to be
treated

– Content component model requirements:
a content component had to be realized as a Powerpoint file.

– Crosscutting concerns:
a specific course had to use a predefined layout template, which was
available as a Powerpoint master file.

• Packaging requirements
A package was a Powerpoint file with an empty layout, which contained
only one title slide. The package file was used to append content com-
ponents into it, using a predefined sequence. The sequence of content
components within a package had to be preserved even if some optional
components were not included. In case that a package remained empty
(because the chosen content configuration did not select a component),
the package was deleted. The list below lists the packages that had to be
created, along with the specification which potential content components
(from Fig. 10.5) they could contain, as well as the sequence of occurrence
of the content components within the packages. An optional requirement
was that a package could contain a table of contents at the beginning,
which has to be updated depending on the contained content components.

Package 1 file: Preliminaries.ppt; contains: Preliminaries;
Package 2 file: DB-Intro.ppt; contains: DB-Introduction;
Package 3 file: DB-ER.ppt; contains: DB-ER-Model;

174 10 Case Study

Package 4 file: DB-RelM.ppt; contains: DB-Relational-Model;
Package 5 file: DB-Design.ppt; contains: DB-Design;
Package 6 file: DB-Theory.ppt; contains: DB-Normalization,

DB-Data-Design;
Package 7 file: DB-SQL.ppt; contains: DB-SQL;
Package 8 file: DB-Transactions.ppt; contains: DB-Transactions;
Package 9 file: DB-Recovery.ppt; contains: DB-Recovery;
Package 10 file: DB-DataOrganization.ppt; contains: DB-DataOrganization;
Package 11 file: PetriNets.ppt; contains: PN-Introduction,

PN-Transformations, PN-Dynamics, PN-Analysis-Basics,
PN-Analysis-Advanced, PN-LinearAlgebra, PN-Extensions;

Package 12 file: WF-Intro.ppt; contains: WF-Introduction;
Package 13 file: WF-ProcMgmt.ppt; contains: WF-ProcessManagement,

WF-ProcessModelingIntro;
Package 14 file: WF-Modeling.ppt; contains: WF-Modeling-PetriNets,

WF-Modeling-UML, WF-Modeling-EPC;
Package 15 file: WF-MS.ppt; contains: WFMS-Architecture,

INCOME-Designer;

• Requirements for software artifacts
– Helper programs2

1. pptappend.exe: this program is called with two Powerpoint files
p1, p2 as parameters, and appends the slides of p2 after the last
slide of p1, and saves the changed version of p1.

2. pptApplyTemplate.exe: this program is called with two parameters
master, p, where master is a Powerpoint master file defining a
layout, and p a Powerpoint file. The layout of master is applied to
p, and p is saved.

3. pptApplyTemplateAll.exe: this program is called with two parame-
ters master, dir, where master is a Powerpoint master file defining
a layout and dir is a directory that contains Powerpoint files. The
program applies master on all Powerpoint files it finds in the first
directory level, and saves the modified files.

4. pptTableOfContent.exe: this program is called with two parameters
p, index, where p is a Powerpoint file and index a number indicat-
ing a slide number in p. The program generates a table of contents
(TOC) for p based on the headings on each slide and the respec-
tive slide numbers. If the TOC fits on one slide, all slide numbers
starting from position index are increased by one, and a new TOC
slide is inserted at position index. Similarly, if the TOC consists
of more than one slide, the numbers of the slides starting from po-
sition index are increased by the number of TOC slides, and the
new TOC slides are inserted starting at index. After the insertion

2 Remark: 1–6 were wrapper programs that automated Powerpoint tasks in domain
engineering, which required MS Powerpoint 2000, XP, or 2003 installed.

10.4 Domain Engineering 175

of TOC slides, the slide numbers in the TOC are updated, and p is
saved with the modifications.

5. pptTOCall.exe: this program is called with two parameters dir,
index, where dir is a directory and index a number indicating a
slide number. This program works as pptTableOfContent.exe, ex-
cept that it inserts a table of contents in each Powerpoint file that
it finds on the first level of dir.

6. pptToHTML.exe: this program can be called with two parameters
p, h, where p is a Powerpoint file and h an HTML file that will be
created by converting p into HTML.

7. acrobat.exe: this program can be used in application engineering to
convert PPT files to PDF format. This is done through direct user
interaction.

8. showparams.exe: this program displays on screen all parameters
that are passed to it when it is called. It serves testing purposes
in domain testing.

Domain Design

Based on the results from domain analysis, the following models were derived
in domain design:

• the conceptual product line model with the respective domains and fea-
tures, as depicted in Fig. 10.6.

• the chosen content component model was the application-specific model of
MS Powerpoint files. All content components in this product line adhered
to this model. Metadata was stored in the documents properties section
of Powerpoint files.

• core asset version graph models: initially, the core asset version graph of
each content component had only one node (“v1.0”), as there was only
one file for each component; these graphs are therefore omitted from the
presentation. For the layout specifications associated to the Layout feature
(cf. Fig. 10.6), there were three layout versions available, as shown in Fig.
10.7; the layouts differed slightly in the appearance of title slides, logos,
and colors.

• the used product map template was the database schema presented earlier
in Fig. 7.5. The data of the conceptual product line model, the core assets,
and the core asset version graph were added in domain realization.

• the construction specification was defined by the workflow model in Fig.
10.8.

• reusable workflow modules: workflow patterns for the creation of common
features and optional features were prepared, similar to Fig. 7.6 a) and b);
their repeated presentation is omitted here.

176 10 Case Study

Information Systems

Process View

<<optional>>

Data View

<<optional>>

DB-Introduction

<<optional>>

DB Modeling

<<common>>

DB-ER-Model

<<common>>

DB-Relational-Model

<<common>>

DB Theory

<<optional>>

DB-Normalization

<<optional>>

DB-SQL

<<optional>>

Layout

DB-Design

<<optional>>

DB-Data-Design

<<optional>>

Petri Nets

<<common>>

PN-Introduction

<<common>>

PN-Transformations

<<optional>>

PN-Dynamics

<<optional>>

PN-Analysis-Basics

<<optional>>

PN-Analysis-Advanced

<<optional>>

PN-LinearAlgebra

<<optional>>

PN-Extensions

<<optional>>

Workflow Management

<<optional>>

WF-Introduction

<<common>>

WF-ProcessManagement

<<common>>

WF-ProcessModelingIntro

<<optional>>

WF Modeling

<<common>>

WF-Modeling-PetriNets

<<common>>

WF-Modeling-UML

<<optional>>

WF Systems

<<optional>>

WFMS-Architecture

<<optional>>

INCOME-Designer

<<optional>>

WF-Modeling-EPC

<<optional>>

Preliminaries

<<common>>

DB Implementation

<<optional>>

DB-Transactions

<<optional>>

DB-Recovery

<<optional>>

DB-DataOrganization

<<optional>>

Fig. 10.6. The conceptual product line model.

V1.0 V1.1 V1.2
change 1 change 2

Fig. 10.7. The core asset version graph associated to the layout feature (for details
on nodes and edges see Appendix A.2.1).

Domain Realization

In domain realization, the construction artifacts needed for the product line
were created. Throughout the case study, a directory structure as shown in
Fig. 10.9 was used to organize the various artifacts; it had the subdirectories
DE for domain engineering, AE for application engineering, FE for fam-
ily engineering, and DWE for the files of the Desktop Workflow Engine. The
CoreAssets subdirectory contained various types of core assets, such as docu-
mentation, empty package files, helper programs, models (e.g., the conceptual

10.4 Domain Engineering 177

P1

start

T1

initialize

P2 T2

create empty
packages

P3 T3

create preliminaries
(FID: 2)

P4

T4

yes: data
view domain

T29

no: data
view domain

P5

T5

yes: DB-Introduction
(FID: 3)

T6

no: DB-Introduction

P6 T7

yes: DB
Modeling Domain

P7 T8

yes: ER-Model
(FID: 4)

P8 T9

yes: RelationalModel
(FID: 5)

P9

T10

yes: DB-Design
(FID: 6)

T11

no: DB-Design

P10
T12

yes: DB Theory
Domain

T17

no: DB Theory
Domain

P11

T13

yes: Normalization
(FID: 7)

T14

no: Normalization

P12

T15

yes: Data Design
(FID: 8)

T16

no: Data
Design

P19

Data View Domain
finished

T30

yes: Process View
Domain

T65

no: Process
View Domain

T66

add table of contents
to all packages

T67

do NOT add table of
contents to all
packages

P42P41

process view domain
finished

T68

apply Layout
(FID: 1)

P43

stop

P20

T31

yes: Petri Nets
Domain

P21 T32

yes: PN-Introduction
(FID: 13)

P22

T33

yes: PN-
Transformations
(FID: 14)

T34

no: PN-
Transformations

P23

T35

yes: PN-Dynamics
(FID: 15)

T36

no: PN-Dynamics

P24

T37

yes: PN-Analysis-
Basics (FID: 16)

T38

no: PN-Analysis-
Basics

P25

T39

yes: PN-Analysis-
Advanced (FID: 17)

T40

no: PN-Analysis-
Advanced

P26

T41

yes: PN-
LinearAlgebra
(FID: 18)

T42

no: PN-LinearAlgebra

P27

T43

yes: PN-Extensions
(FID: 19)

T44

no: PN-Extensions

P28

Petri Nets Domain
finished

T45

yes: Workflow
Management Domain

T63

no: Workflow
Management Domain

P29 T46

yes: WF-Introduction
(FID: 20)

P30 T47

yes: WF-
ProcessManagement
(FID: 21)

P31

T48

yes:
ProcessModelingIntro
(FID: 22)

T49

no:
ProcessModelingIntro

P32

T50

yes: WF-Modeling
Domain

P33 T51

yes: WF-Modeling-
PetriNets (FID: 23)

P34

T52

yes: WF-Modeling-
UML (FID: 24)

T53

no: WF-Modeling-
UML

P35

T54

yes: WF-Modeling-
EPC (FID: 25)

T55

no: WF-Modeling-
EPC

P36

WF-Modeling
Domain finished

T56

yes: WF-Systems
Domain

T61

no: WF-Systems
Domain

P37

T57

yes: WFMS-
Architecture (FID: 26)

T58

no: WFMS-
Architecture

P38

T59

yes: INCOME
Designer (FID: 27)

T60

no: INCOME
Designer

P39

WF-Systems Domain
finished

P40

Workflow
Management Domain
finished

T64

P13

DB Theory Domain
finished

T18

yes: DB
Implementation
Domain

T27

no: DB Implementation
Domain

T62

Workflow
Management
Domain

Data View Domain

Petri Nets Domain

T19

yes: SQL
(FID: 9)

T20

no: SQL

P14

T21

yes:
DB-Transactions
(FID: 10)

T22

no: DB-Transactions

P15

T23

yes:
DB-Recovery
(FID: 11)

T24

no: DB-Recovery

P16

T25

yes: DB-Data
Organization
(FID: 12)

T26

no: DB-
DataOrganization

P17
P18

DB Implementation
Domain finished

T28

Process View Domain

Fig. 10.8. The workflow model that represented the construction specification of
the product line.

178 10 Case Study

product line model, the workflow model, the SQL DDL statements (cf. [ST05])
to create the database schema representing the product map template), and
the slides (which were the content components in this case). The CoreAssets-
Reengineering subdirectory was used for reengineering of existing material,
i.e., to store original material, extracted components, and reengineered con-
tent components. The DomainTesting subdirectory stored artifacts that were
needed for or resulting from testing, and provided a predefined testing envi-
ronment with various batch files.

PLANT

DE

CoreAssets

Documentation

EmptyPackageFiles

HelperPrograms

Layouts

Models

Slides

Databases

Preliminaries

ProcessModeling

CoreAssets-Reengineering

DomainTesting

ContentComponentTesting

IntegrationTesting

AE

DIP1

FE

DWE

Fig. 10.9. Outline of the directory structure created to organize the artifacts of
PLANT.

• Realization of content components
In the context of this case study, content components were Powerpoint
files that covered a topic specified by the atomic features of the concep-
tual product line model. The content components were created based on
material of existing lectures. To create one content component, appropri-
ate slides were extracted from existing files. Thereafter, each component
candidate was overworked as follows: the layout was made uniform for all
content components, absolute page numbers and chapter numbers in the
headlines were deleted, macros and other absolute slide references were
deleted, metadata was updated, and the file was saved in one of appro-
priate subdirectories of the slides directory. The content component for
Preliminaries was created based on existing slides and was a PPT file
that contained placeholders for organizational guidelines needed in each
lecture; these could be completed later in application engineering with the
specific data of a lecture.

• Realization of other construction artifacts
The necessary layout files were realized as Powerpoint master templates.
Among others, they contained for example the logo of the institute. The re-
quired helper programs were already available from a previous project. The

10.4 Domain Engineering 179

wrapper programs for Powerpoint were copied to the HelperPrograms di-
rectory.

• Realization of the database
The database was realized with the database editor of the DWE tool (cf.
Fig. 9.1). SQL statements were executed to create the empty database of
the product map template, based on Fig. 7.5. Thereafter, the data that
was derived from the conceptual product line model, and the core assets
and their version graphs was inserted into the tables: Domain, Feature,
CoreAssetV ersionGraph, CoreAssetV ersion, ChangeDescription,
deriveV ersion, Package. For the tables map and DigitalInformation

Product preliminary data was inserted to make domain testing possible;
this data could be changed later in application engineering. In addition,
other tables were created, which were needed only on the physical level:
the table Log was created for documentation purposes during workflow
execution; the table Stereotypes held textual descriptions for stereotype
IDs. The views ViewCPLM, ViewDerivedVersions, ViewMapDetails were
supplementary and could show different helpful views on the data of the
aforementioned tables. The data contained in the database tables is listed
in Figures A.1 – A.13 of the Appendix.

• Realization of the construction workflow model
The model depicted in Fig. 10.8 was implemented in the DWE tool. Fur-
thermore, internal variables were specified inside transitions, so that helper
programs could be called with parameters obtained from the database. An
extract of transitions with details about their internal properties is shown
in Appendix A.2.2. The completed workflow model and the associated
database were stored with the DWE in one single file, in the DWE-specific
format.

Domain Testing

• Testing the content components
For each of the created content components, i.e., Powerpoint file, it was
tested whether it was a valid PPT file (by opening it in Powerpoint),
whether the predefined layouts could be automatically applied with the
helper programs pptApplyTemplate.exe and pptApplyTemplateAll.exe and
whether the files had thereafter the specified layout (with respect to char-
acters, line breaks, text positions, colors, font sizes), whether a table of
contents could be correctly generated with pptTableOfContent.exe and ppt-
TOCall.exe, and whether a PDF/HTML file was correctly produced with
pptToHTML.exe or acrobat.exe. Visual checks assured that no unwanted
changes were introduced (according to the criteria mentioned above). This
testing procedure has revealed wrong formatting in 4 content components,
which were re-designed accordingly. Finally, the content components were

180 10 Case Study

validated by checking whether the content was useful in the way it was
created.

• Verifying the construction workflow model
During the implementation of the workflow model in the DWE, the tool
checked instantly whether the properties of a workflow net held (according
to Def. 7.4). This revealed instantly about 3 design errors (which other-
wise would have lead to inconsistent stop markings) during the creation
of the model. These errors resulted mainly from the fact that the model
was bigger than the visible area on the screen, and could be corrected
right away. In addition, the model of the construction workflow was veri-
fied to make sure that only desired markings were reachable, which meant
that only desired product configurations were realizable when the work-
flow would be executed. For this, a marking graph was created for the
workflow model with the initial marking as shown in Fig. 10.8. The re-
sulting marking graph3 is depicted in Fig. 10.10. The marking graph had
exactly one marking which was dead, which meant that the workflow had
a well-defined “stop” state; in addition, the marking graph had finitely
many nodes, which meant that the number of tokens was bounded in any
place. The marking graph was used to check that only desired markings
were reachable from other desired markings, and that a marking could lead
only to other desired markings. The marking graph helped to identify and
correct 2 control flow errors.

• Integration testing of content components
To test whether the content components could be combined to create infor-
mation products and whether the database, the workflow, and the called
programs produced intended results, 5 sample information products were
created. These sample products and their configuration were derived from
the marking graph in such a way that each edge in the marking graph
was passed (i.e., covered) at least once; a total of 5 different product con-
figurations had to be created, so that every edge in the marking graph
was passed at least once. The creation of sample products helped to iden-
tify 5 errors during the execution of the workflow, which resulted from
wrong or missing execution parameters inside transitions. The sequence of
transitions for the creation of these sample products is listed below:

– Sample product 1:
T1 . . . T5, T7 . . . T10, T12, T13, T15, T18, T19, T21, T23, T25, T28, T30

. . . T33, T35, T37, T39, T41, T43, T45 . . . T48, T50 . . . T52, T54, T56,

T57, T59, T62, T64, T66, T68

– Sample product 2:
T1 . . . T3, T29, T65, T67, T68

3 Remark: The labels of nodes and edges of the marking graph were computed by
the DWE tool; the layout of the marking graph was changed for presentation.

10.5 Application Engineering 181

M 0 M 1 M 2 M 3

M 5

M 4 M 6 M9 M 12 M 15 M 17

M 19 M 22

M 20

M 7

M 10

M 13

M 8 M 11 M 14 M 16 M 18 M 21 M 25 M 27 M 29

M 32 M 33 M 34 M 35 M 36 M 37

M 38

M 39

M 41

M 40 M 42

M 31

T1 T2 T3 T4
T5

T6

T7 T8 T9
T10

T11
T17

T13

T14

T16
T15

T30

T45

T31 T32
T33 T35 T37 T39 T41 T43

T34 T36 T38 T40 T42 T44

T63

T46 T47 T50 T51
T48

T49

T52

T53

T55
T54

T61

T56

T57

T58

T60
T59

T62 T64

T65

T67T66

T68

T29

T12

M 23M 24 M 26 M 28 M 30

T18
T19

T20

T21

T22

T23

T24

T25

T26 T28

T27

Fig. 10.10. Marking graph for the workflow model in Fig. 10.8.

– Sample product 3:

T1 . . . T4, T6 . . . T9, T11, T12, T14, T16, T18, T20, T22, T24, T26, T28,

T30 . . . T32, T34, T36, T38, T40, T42, T44, T63, T64 ,T66, T68

– Sample product 4:
T1 . . . T4, T6 . . . T9, T11, T17, T27, T28, T30 . . . T32, T34, T36, T38,

T40, T42, T44, T45 . . . T47, T49 . . . T51, T53, T55, T56, T58, T60, T62,

T64, T67, T68

– Sample product 5:
T1 . . . T3, T29, T30 . . . T32, T34, T36, T38, T40, T42, T44, T45 . . . T47,

T49, T50, T51, T53, T54, T61, T62, T64, T67, T68

10.5 Application Engineering

This section illustrates how application engineering (see Chapter 8) has been
carried out. For the case study, a concrete information product was generated
for the course “Applied Informatics 1 (AI-1)”. The steps are described next.

182 10 Case Study

Application Analysis

The specific requirements for the AI-1 course were derived from the curricu-
lum.

• Product-specific content requirements

– the course had to contain a preliminaries part with organizational de-
tails.

– the course had to cover the data view domain with the ER model, the
relational model, database design, and normalization.

– the course had to cover the process view domain with an introduction
to Petri nets, transformations on Petri nets, dynamics of Petri nets,
and basic analysis techniques for Petri nets.

– each package had to have a table of contents.
– Powerpoint files were required for the lecture in class; for the delivery

to students, they had to be converted to PDF files and had to be put
on a Web server.

The content requirements were in line with the domain requirements, and
were thus realizable with the product line.

Application Design

Based on the requirements from application analysis and the conceptual prod-
uct line model created during domain engineering (Fig. 10.6), the specific
product model was derived for the AI-1 course (Fig. 10.11).

The product map for the AI-1 course is depicted in Fig. 10.12, which shows
the data of the respective feature IDs, core asset version IDs, and package IDs
that were used in the table map of the database that was created in domain
engineering (cf. Appendix A.1).

Application Realization

During application realization, the DWE was used to adapt the database
created in domain engineering to the requirements of the AI-1 course. In
particular, it was ensured that the table map contained the IDs specified
in application design. Furthermore, the output directory of the product,
“C:\PLANT\AE\DIP1” was created, and this directory was ensured to be
registered as the base directory for outputs in the table package (see Ap-
pendix Fig. A.8).

Thereafter, the workflow was executed with the DWE tool to create the
AI-1 product. The following sequence of transitions was used to create it (see
also Fig. A.14 for details):

10.5 Application Engineering 183

Information Systems

Process View

<<optional>>

Data View

<<optional>>

DB Modeling

<<common>>

DB-ER-Model

<<common>>

DB-Relational-Model

<<common>>

DB Theory

<<optional>>

DB-Normalization

<<optional>>

Layout

DB-Design

<<optional>>

Petri Nets

<<common>>

PN-Introduction

<<common>>

PN-Transformations

<<optional>>

PN-Dynamics

<<optional>>

PN-Analysis-Basics

<<optional>>

Preliminaries

<<common>>

Fig. 10.11. The product model for the AI-1 course.

FID CAVID PKGID

1 1 0
2 2 1
4 4 3
5 5 4
6 6 5
7 7 6

13 13 11
14 14 11
15 15 11
16 16 11

Fig. 10.12. The data of the product map for the AI-1 course, which was used in
the table map of the database (cf. Fig. 7.5). The data of the related tables feature,
package, coreassetversion is shown in Appendix A.2.1

184 10 Case Study

• T1 . . . T4, T6, T7 . . . T10, T12, T13, T16, T27, T28, T30 . . . T33, T35,
T37, T40, T42, T44, T63, T64, T66, T68.

The DWE produced 6 Powerpoint files in the aforementioned directory,
which contained the product-specific content: Preliminaries.ppt, DB-ER.ppt,
DB-RelM.ppt, DB-Design.ppt, DB-Theory.ppt, PetriNets.ppt. As defined by
the workflow model in domain engineering, the content of the feature DB-
ER-Model was inserted in the file DB-ER.ppt, DB-Relational-Model in the
file DB-RelM.ppt, DB-Design in the file DB-Design.ppt, DB-Normalization
in the file DB-Theory.ppt, and the content of the features PN-Introduction,
PN-Transformations, PN-Dynamics, and PN-Analysis-Basics were inserted
in this sequence in the file PetriNets.ppt.

A first iteration of application testing followed, and thereafter another it-
eration of application realization was done to finish the product-specific tasks
that were not automated in the workflow. In particular, the specific organiza-
tional details were completed in the file Preliminaries.ppt, and product-specific
metadata was added to the generated Powerpoint files (e.g., course name, cre-
ator, date). Furthermore, the Powerpoint files were converted to PDF. For
the PDF files, a second iteration of application testing was done, and back
in application realization, the PDF files were completed with metadata and
published on the lecture Web site.

Application Testing

In the first iteration of application testing all created Powerpoint files were
checked to have a valid file format by opening them in the Powerpoint appli-
cation and checking them in presentation mode. Visual checks ensured that
no unwanted changes were introduced and that existing effects worked as in-
tended. The content and the combination of content was checked to be as
specified.

The second iteration of application testing checked the PDF files to have
a valid format. Visual checks were performed as well.

10.6 Evaluation

For evaluation of the PLANT Approach, the improvements (in qualitative
or quantitative terms) with PLANT are compared to the situation before
PLANT was applied (cf. Sect. 10.2).

One main improvement with PLANT was that the number of slides which
had to be maintained and updated regularly was reduced. Before PLANT,
the courses Applied Informatics I, Workflow Management, Database Systems
(at Karlsruhe), Database Systems (at Vienna) had a total of 2197 Powerpoint
slides. With PLANT, core assets (i.e., content components, layout specifica-
tions) were created out of the existing slides. The conceptual product line

10.6 Evaluation 185

model was conceived in such a way that the existing courses could be gen-
erated to be with the same content as before, and in addition, other useful
variants could be generated as well. The total number of slides of the content
components was reduced to 1057. This is due to realized synergy effects, i.e.,
slides that occurred identically in several products were stored only once in
the core asset base, and the DWE was used to insert them in a predefined
way into the right products.

Because of these synergy effects, it became possible to improve the updat-
ing of content parts that were identical in several information products and
make updating easier, because the respective slides could be modified only
once in the core asset repository. In addition, the construction specification
guaranteed that only products with predefined content configurations could
be generated, and that updates of common components were propagated sys-
tematically to the respective parts in newly generated products.

PLANT has also brought improvements with respect to the evolution of
content and future extensions. Through its models, PLANT made the as-
sumptions about content and the reuse of content explicit, i.e., there was a
uniform component model for content in the product line, the composition
technique defined within the product line was working with the chosen com-
ponent model, and the composition language was aligned to the component
model and composition technique (cf. Sect. 3.3.4). In this case study, the com-
ponent model was based on the application-specific format of Powerpoint, the
composition technique was realized by wrapper programs that could append
slides in one file after slides in another file, and the composition language
was defined in principle by the construction specification. If future content
components adhered to these assumptions of the product line, they could be
integrated more easily to extend the product line.

10.6.1 Possibilities for Generalization of the Results

Having shown that PLANT worked for one product line in the presented
context, arguments are now given to explain how PLANT can be applied to
create other product lines in other domains, e.g., as introduced in Sect. 5.4.5.

As mentioned in Sect. 5.4.3, PLANT assumes that the following models
remain fixed for each product line: the product line metamodel, the core asset
version graph model, and the database schema of the product map template.
To apply PLANT in a certain domain, it must be possible to express the
special requirements of that domain by the conceptual product line model, the
construction specification, the content component model, and the construction
and test artifacts.

The presented product line used the application-specific content compo-
nent model of MS Powerpoint, which is represents one of the more difficult
cases where the content component model has a binary format and is closely
tied to one application. It has been shown that it is possible to construct
helper programs that are wrappers around a specific application, which can

186 10 Case Study

help to automate the construction of products in a product line. Furthermore,
an empirical study [NTD03] has shown that indeed Powerpoint is one of the
most frequently used formats for information products in an educational con-
text. Sticking to the application-specific model of Powerpoint for the content
components, other product lines can be constructed by re-using the afore-
mentioned helper programs and creating a different conceptual product line
model, product map, and an adjusted construction specification.

PLANT is also applicable in areas where the formats of content compo-
nents are based for example on HTML or XML. The helper programs have to
be adapted accordingly to perform the necessary operations (e.g., append con-
tent components, apply a layout template, etc.) on the respective file formats,
and the helper programs are called as before during the execution of the con-
struction workflow model. The HTML and XML file format are widely used
for information products, tools are readily available, or it is feasible to imple-
ment the needed tools due to the standardized specifications of these formats
(cf. [HM04]). Other content component models and formats can be handled
in PLANT only if helper programs can be constructed which automate the
operations needed to create information products.

10.7 Summary and Discussion

This case study has shown the applicability of PLANT in a real-life context
and demonstrated that PLANT indeed worked in practice. Furthermore, it
was documented that for this special case, PLANT has produced measurable
improvements of synergy effects by reducing the amount of content that had
to be maintained on a regular basis.

11

Conclusion and Outlook

This Chapter summarizes and discusses the results of the thesis, and contrasts
the initial situation with the respective deficits to the new contributions and
improvements with PLANT. Furthermore, an outlook is given on opportuni-
ties for further research.

11.1 New Contributions and Improvements with PLANT

The thesis has shown that digital information products are emerging as a
new kind of product, which are becoming more and more important. Due to
the specific properties of these products, the creation of variants was shown
to be unavoidable, especially when saturation effects in markets have to be
compensated.

However, the creation of variants of digital information products is cur-
rently not done systematically enough, commonalities are often not exploited,
and the success of component reuse is very limited or not there at all, despite
the existence of standards. This has been exemplified in detail for the area
of e-learning. From a new and more general perspective, it has been worked
out that the problems have various sources which are of technical, economic,
and organizational nature. Nevertheless, little interdisciplinary work has been
done so far to deal with these problems in an integrated way.

The thesis hooks in at this point and introduces a new approach, called
Product Lines for Digital Information Products (PLANT), which provides an
engineering foundation for the creation of variants of digital information prod-
ucts, and which has different levels, such as strategy, process model, and tools.
PLANT unifies and adapts concepts from different fields, e.g., software engi-
neering, information systems, workflow management, databases, economics,
or management, in order to tackle the aforementioned problems in a new way
that suits the interdisciplinary context.

The main contributions of PLANT are related to the adaptation and exten-
sion of concepts from software product lines to fit the new context of digital

188 11 Conclusion and Outlook

information products. Similar to software product lines, PLANT makes for
information products the tradeoff between standardization and individualiza-
tion of product variants explicit. As a difference from software product lines,
PLANT focuses on the information aspect and the configuration of content
in information products, and makes appropriate extensions.

In its process model, PLANT distinguishes between family engineering
(with an organizational view), domain engineering (with a view on all infor-
mation products in one product line), and application engineering (with the
view on one single product that can be derived from the artifacts prepared in
domain engineering). The models introduced in domain engineering prepare
in a systematic and proactive way the production of information product vari-
ants in application engineering. In addition, the introduced models make it
now possible to give certain guarantees, for example that a produced variant
has indeed an allowed content configuration. Moreover, other unique charac-
teristics of PLANT are:

• homogeneous assumptions are imposed on the content components used to
build product variants. This ensures that existing components will indeed
fit together when information products are built. Furthermore, variants
can only contain content from these predefined content components.

• the conceptual product line model gives an overview of possible configu-
rations and the context of reuse of content components. With this model,
content developers know from the beginning in which situations certain
content is reused. Common content parts are planned from the beginning;
this helps to realize synergy effects and also make updates easier. It is now
possible to separate crosscutting features (e.g., layout) conceptually as well
as technically in the construction process; this simplifies the creation and
update of information products for different target groups.

• PLANT has a novel approach to the management of product configura-
tions and parametrization: configuration data (e.g., of the available content
components) is stored in a relational database, and the construction work-
flow model uses this data in an integrated way to automate the creation
of an information product. Changes of parameters can be done separately
in the database, without having to take all internal details of the workflow
model into account. The control flow defined by the construction workflow
model can be verified in advance to guarantee that only desired product
configurations can be created.

• information products with old configurations can be re-created at any
time, as the configuration data is kept in the database and old versions of
core assets remain at their specified locations. The data in the database
can be systematically analyzed for example for traceability purposes, e.g.,
to maintain the connections between models, content components, and
other artifacts. The database helps to track and proactively control the
evolution of information products. The Desktop Workflow Engine realizes

11.2 Outlook 189

these concepts and represents a solution to what has been identified in
[PBvdL05] and Sect. 4 as a research issue.

• PLANT is not limited only to one content format. It can be used also
with other file formats (e.g., XML, HTML) and even with binary content
formats, such as Powerpoint. The feasibility of the more difficult case with
an application-specific, binary format has been demonstrated in the case
study.

However, PLANT has also limitations which are incorporated in its as-
sumptions:

• all developed information products must belong to exactly one product
line.

• it must be possible to exploit commonalities between similar variants of in-
formation products; common content parts must be large enough to justify
an investment, and variable parts must be small and predictable.

• it must be often the case that new content of product variants builds upon
content already existing in the product line.

The thesis has shown a validation of the proposed approach in a case study,
which has also demonstrated the feasibility and advantages of PLANT in a
real-life context.

The main challenge was the interdisciplinary nature of the topic of prod-
uct lines for digital information products. Methods and models from different
areas had to be examined, adapted, extended, or combined, e.g., from the
areas of software engineering, information systems, workflow management,
databases, economics, management, and e-learning. Another particular chal-
lenge was the development of the conceptual foundation of PLANT in a way
so that it can be used with different content formats (now and in the future)
without being bound to a specific format. It was demonstrated that the con-
cepts are applicable even in an extreme (but realistic) case where the content
used for products in a product line was available in Powerpoint format, which
is a binary and application-specific format that is widely used, and that au-
tomation can be achieved also in this case. The Desktop Workflow Engine
eases and supports the management of product configurations in a novel way,
as well as the integration and usage of configuration data into the construction
workflow model.

11.2 Outlook

The thesis provides at several points opportunities for further research, and
its interdisciplinary nature also opens new doors for research in related areas:

• at the moment, parametrization in PLANT is supported by the Desktop
Workflow Engine which can manage parameter data and pass it on during

190 11 Conclusion and Outlook

the construction process of a product. However, parts inside content com-
ponents are not yet conceived to be parameterizable, since PLANT builds
upon existing content component models which are not parameterizable
at the moment. Although a specific parameterizable content component
model could be created, a more general approach should be investigated in
order to avoid compatibility problems. Nevertheless, PLANT is extensible
in this respect. A possible direction is to develop a general metalanguage
for content parametrization (e.g., similar to [Bas96]) which can be em-
bedded into existing content component models and file formats such as
HTML, XML, or Powerpoint, by using a certain syntax and recognizable
marker symbols that delimit what belongs to the metalanguage. Then,
during construction of an information product, the Desktop Workflow En-
gine can call appropriate helper programs that parse the appropriate files
and insert for example some text or other content in some previously
marked places. With such a general solution it would be possible to con-
tinue to use widely-spread, as well as application-specific content formats
like Powerpoint, and at the same time adapt them more to the product
line context.

• traditional workflow management systems are often criticized that due to
their centralized architecture, too much supervision of employees is possi-
ble at the workplace. The approach taken in this thesis where each devel-
oper has an own, local Desktop Workflow Engine under his own control
could be investigated further and adapted to suitable business contexts.

• as another extension, it is conceivable to automate further the creation of
core assets (especially content components) for the product line of informa-
tion products in cases where some digital artifacts are already available.
For example, existing Web pages, PDF files, or Powerpoint files could
be searched to extract the common content that occurs identically in sev-
eral locations, and create appropriate content components for the common
parts and differing parts. In addition, a preliminary conceptual product
line model could be created during this process in an automated way.

• more sophisticated automation can enhance the work in various ways. For
example, automated analysis and consistency checks can be done between
the available models, like the conceptual product line model and the con-
struction workflow model; it is also conceivable to preliminarily generate a
construction workflow model out of a given conceptual product line model,
which is thereafter modified or extended manually.

• another area deserving more attention is the search and retrieval of work-
flow modules in a large workflow warehouse, which suit in the context of
the currently edited workflow model.

• as information products are often made available on the Internet, a topic
for further research would be to use tracking techniques in order to as-
sess which variants are accessed most, and which extensions are probably
needed in the future. This way, the evolution of the product line for infor-
mation products can be controlled in a proactive way. In addition, such

11.2 Outlook 191

insights would provide additional support in family and domain engineer-
ing whether to remove a certain variant and modify the conceptual product
line model.

• in domain testing, the integration testing of content components deserves
further research for the special case where the marking graph has infinitely
many nodes. In such a case, valid product configurations could be obtained
with statistical methods. However, it must be assessed how many sample
products to create, and which guarantees can be given depending on this
number.

• for the e-learning context, the conceptual product line model could be
enhanced with additional context-specific data which helps domain and
application engineers in a faculty to automatically estimate the effort re-
quired for students who enroll in a certain lecture variant, or how many
credit points it is worth. It could also be assessed how the conceptual
product line model could be used to model a curriculum.

• as a project, a Web-based core asset repository of e-learning material could
be created in which all core assets adhere to some product line constraints.
The empirical data of the usage of such a repository could provide impor-
tant insights on the wide-scale usage of product lines for digital information
products.

• further research can be done to evaluate QX nets and the Desktop Work-
flow Engine for the creation of software product lines. In particular, it can
be investigated how QX nets should be used to call compilers with pa-
rameters in the context of conditional compilation, and to what extent the
analysis of the construction workflow model can improve the development
of software product lines.

• from a management perspective, organizational change management plays
an important role when PLANT is to be introduced. For example, a par-
ticular question that needs to be answered is how to (psychologically)
motivate people to use the product line approach for digital information
products. Also related, details can be worked out when PLANT is to be
used in collaborative, inter-organizational scenarios.

A

Appendix

A.1 Implementation Example for the Product Map
Template

Relations

Primary keys are underlined.

E1 Domain (dID, name, descr, stereotypeID, minSelect, maxSelect,
parentdID)
foreign key parentdID references Domain.dID

E2 Feature (fID, name, descr, stereotypeID, dID,cavgID)
foreign key dID references Domain.dID
foreign key cavgID references CoreAssetVersionGraph.cavgID

E3 CoreAssetVersionGraph (cavgID, descr)
E4 CoreAssetVersion (cavID, name, descr, verNo, filetype, filepath,

cavgID)
foreign key cavgID references CoreAssetVersionGraph.cavgID

E5 ChangeDescription (cdID, descrtext)
E6 Package (pkgID, name, descr, path, dipName)

foreign key dipName references DigitalInformationProduct.Name
E7 DigitalInformationProduct (name, creationDate, descr)

R5 deriveVersion (childCavID, parentCavID, cdID)
foreign key childCavID references CoreAssetVersion.cavID
foreign key parentCavID references CoreAssetVersion.cavID
foreign key cdID references ChangeDescription.cdID

R6 map (fID, cavID, pkgID)
foreign key fID references Feature.fID
foreign key cavID references CoreAssetVersion.cavID
foreign key pkgID references Package.pkgID

194 A Appendix

A.2 Case Study – Additional Details

A.2.1 Database used in the Case Study

DID NAME DESCR STEREOTYPE MINSELECT MAXSELECT PARENTDID

1 Information Systems root domain 0

2Data View focuses on data aspects 2 1

3DB Modeling contains features related to data modeling 1 2

4DB Theory contains features related to database theory 2 2

5DB Implementation contains features related to database implementation 2 2

6Process View focuses on process aspects 2 1

7Petri Nets contains material for Petri Nets 1 6

8Workflow Management contains material for Workflow Management 2 6

9WF Modeling concentrates on techniques for Workflow Modeling 1 8

10WF Systems details on systems architecture 2 8

Fig. A.1. Data in the table Domain

FID NAME DESCR STEREOTYPE DID CAVGID

1Layout Layout-Template 4 1 1

2Preliminaries Preliminaries for each course, such as organizational details 1 1 2

3DB-Introduction Introductory part for DB 2 2 3

4DB-ER-Model Entity-Relationship-Model 1 3 4

5DB-Rel-Model Relational Model 1 3 5

6DB-Design ER-Model to Relational Model 2 3 6

7DB-Normalization Functional dependencies; 1NF, 2NF, 3NF, BCNF 2 4 7

8DB-Data-Design Algorithms for 3NF 2 4 8

9DB-SQL Structured Query Language 2 5 9

10DB-Transactions Synchronization, transactions 2 5 10

11DB-Recovery Recovery techniques 2 5 11

12DB-DataOrganization Physical data organization in databases 2 5 12

13PN-Introduction Basics of Petri Nets; formal representation 1 7 13

14PN-Transformations Morphisms; folding 2 7 14

15PN-Dynamics marked Petri nets; marking graph 2 7 15

16PN-Analysis-Basics Structural theory; concurrency 2 7 16

17PN-Analysis-Advanced coverability graph 2 7 17

18PN-LinearAlgebra Incidence matrix; matrix operations 2 7 18

19PN-Extensions Petri Net extensions with time, etc. 2 7 19

20WF-Introduction Motivation for workflow management 1 8 20

21WF-ProcessManagement Details on process management 1 8 21

22WF-ProcessModelingIntro Motivation for process modeling 2 8 22

23WF-Modeling-PetriNets Link between workflow modeling and Petri Nets 1 9 23

24WF-Modeling-UML Workflow modeling with UML 2 9 24

25WF-Modeling-EPC Workflow modeling with Event-driven Process Chains 2 9 25

26WF-WFMS-Architecture WFMC architecture 2 10 26

27WF-INCOME-Designer Example of a special system 2 10 27

Fig. A.2. Data in the table Feature

SID NAME

0root

1common

2optional

3alternative

4crosscutting

Fig. A.3. Data in the table Stereotypes

A.2 Case Study – Additional Details 195

CAVGID DESCR

1CAVG for Layout

2CAVG for Preliminaries

3CAVG for DB-Introduction

4CAVG for DB-ER-Model

5CAVG for DB-Rel-Model

6CAVG for DB-Design

7CAVG for DB-Normalization

8CAVG for DB-Data-Design

9CAVG for DB-SQL

10CAVG for DB-Transactions

11CAVG for DB-Recovery

12CAVG for DB-DataOrganization

13CAVG for PN-Introduction

14CAVG for PN-Transformations

15CAVG for PN-Dynamics

16CAVG for PN-Analysis-Basics

17CAVG for PN-Analysis-Advanced

18CAVG for PN-LinearAlgebra

19CAVG for PN-Extensions

20CAVG for WF-Introduction

21CAVG for WF-ProcessManagement

22CAVG for WF-ProcessModelingIntro

23CAVG for WF-Modeling-PetriNets

24CAVG for WF-Modeling-UML

25CAVG for WF-Modeling-EPC

26CAVG for WF-WFMS-Architecture

27CAVG for WF-INCOME-Designer

28CAVG for initial empty packages

29CAVG for pptappend

30CAVG for pptApplyTemplate

31CAVG for pptApplyTemplateAll

32CAVG for pptToHTML

33CAVG for pptTableOfContent

34CAVG for pptTOCall

35CAVG for showparams

36CAVG for createPDF

Fig. A.4. Data in the table CoreAssetV ersionGraph

CoreAssetVersion:

CAVIDNAME DESCR VERNOFILETYPEFILEPATH CAVGID

1 layout.pot Master te 1.0 POT C:\PLANT\DE\coreAssets\Layouts\layout.pot 1

2Preliminaries.ppt Powerpoi 1.0 PPT C:\PLANT\DE\coreAssets\Slides\Preliminaries\Preliminaries.ppt 2

3DB-Introduction.ppt Powerpoi 1.0 PPT C:\PLANT\DE\coreAssets\Slides\Databases\DB-Introduction.ppt 3

4DB-ER-Model.ppt Powerpoi 1.0 PPT C:\PLANT\DE\coreAssets\Slides\Databases\DB-ER-Model.ppt 4

5DB-Rel-Model.ppt Powerpoi 1.0 PPT C:\PLANT\DE\coreAssets\Slides\Databases\DB-Rel-Model.ppt 5

6DB-Design.ppt Powerpoi 1.0 PPT C:\PLANT\DE\coreAssets\Slides\Databases\DB-Design.ppt 6

7DB-Normalization.ppt Powerpoi 1.0 PPT C:\PLANT\DE\coreAssets\Slides\Databases\DB-Normalization.ppt 7

8DB-DataDesign.ppt Powerpoi 1.0 PPT C:\PLANT\DE\coreAssets\Slides\Databases\DB-DataDesign.ppt 8

9DB-SQL.ppt Powerpoi 1.0 PPT C:\PLANT\DE\coreAssets\Slides\Databases\DB-SQL.ppt 9

10DB-Transactions.ppt Powerpoi 1.0 PPT C:\PLANT\DE\coreAssets\Slides\Databases\DB-Transactions.ppt 10

11DB-Recovery.ppt Powerpoi 1.0 PPT C:\PLANT\DE\coreAssets\Slides\Databases\DB-Recovery.ppt 11

12DB-physDataOrg.ppt Powerpoi 1.0 PPT C:\PLANT\DE\coreAssets\Slides\Databases\DB-physDataOrg.ppt 12

13PN-Introduction.ppt Powerpoi 1.0 PPT C:\PLANT\DE\coreAssets\Slides\ProcessModeling\PN-Introduction.ppt 13

14PN-Transformations.ppt Powerpoi 1.0 PPT C:\PLANT\DE\coreAssets\Slides\ProcessModeling\PN-Transformations.ppt 14

15PN-Dynamics.ppt Powerpoi 1.0 PPT C:\PLANT\DE\coreAssets\Slides\ProcessModeling\PN-Dynamics.ppt 15

16PN-Analysis-Basics.ppt Powerpoi 1.0 PPT C:\PLANT\DE\coreAssets\Slides\ProcessModeling\PN-Analysis-Basics.ppt 16

17PN-Analysis-Advanced.ppt Powerpoi 1.0 PPT C:\PLANT\DE\coreAssets\Slides\ProcessModeling\PN-Analysis-Advanced.ppt 17

18PN-LinearAlgebra.ppt Powerpoi 1.0 PPT C:\PLANT\DE\coreAssets\Slides\ProcessModeling\PN-LinearAlgebra.ppt 18

19PN-Extensions.ppt Powerpoi 1.0 PPT C:\PLANT\DE\coreAssets\Slides\ProcessModeling\PN-Extensions.ppt 19

20WF-Introduction.ppt Powerpoi 1.0 PPT C:\PLANT\DE\coreAssets\Slides\ProcessModeling\WF-Introduction.ppt 20

21WF-ProcessMgmt.ppt Powerpoi 1.0 PPT C:\PLANT\DE\coreAssets\Slides\ProcessModeling\WF-ProcessMgmt.ppt 21

22WF-ProcModeling-Intro.ppt Powerpoi 1.0 PPT C:\PLANT\DE\coreAssets\Slides\ProcessModeling\WF-ProcModeling-Intro.ppt 22

23WF-WorkflowModeling-Petri.ppt Powerpoi 1.0 PPT C:\PLANT\DE\coreAssets\Slides\ProcessModeling\WF-WorkflowModeling-Petri.ppt 23

24WF-WorkflowModeling-UML.ppt Powerpoi 1.0 PPT C:\PLANT\DE\coreAssets\Slides\ProcessModeling\WF-WorkflowModeling-UML.ppt 24

25WF-WorkflowModeling-EPC.ppt Powerpoi 1.0 PPT C:\PLANT\DE\coreAssets\Slides\ProcessModeling\WF-WorkflowModeling-EPC.ppt 25

26WF-WFMS.ppt Powerpoi 1.0 PPT C:\PLANT\DE\coreAssets\Slides\ProcessModeling\WF-WFMS.ppt 26

27WF-INCOME.ppt Powerpoi 1.0 PPT C:\PLANT\DE\coreAssets\Slides\ProcessModeling\WF-INCOME.ppt 27

28EmptyPackageFiles directory 1.0 DIR C:\PLANT\DE\coreAssets\EmptyPackageFiles 28

29pptappend.exe appends 1.0 EXE C:\PLANT\DE\coreAssets\HelperPrograms\pptappend.exe 29

30pptApplyTemplate.exe apply PO 1.0 EXE C:\PLANT\DE\coreAssets\HelperPrograms\pptApplyTemplate.exe 30

31pptApplyTemplateAll.exe apply PO 1.0 EXE C:\PLANT\DE\coreAssets\HelperPrograms\pptApplyTemplateAll.exe 31

32pptToHTML.exe converts 1.0 EXE C:\PLANT\DE\coreAssets\HelperPrograms\pptToHTML.exe 32

33pptTableOfContent.exe generate 1.0 EXE C:\PLANT\DE\coreAssets\HelperPrograms\pptTableOfContent.exe 33

34pptTOCall.exe generate 1.0 EXE C:\PLANT\DE\coreAssets\HelperPrograms\pptTOCall.exe 34

35showparams.exe program 1.0 EXE C:\PLANT\DE\coreAssets\HelperPrograms\showparams.exe 35

36acrobat.exe creates P 1.0 EXE C:\Programme\Adobe\Acrobat 7.0\Acrobat\Acrobat.exe 36

37 layout-1-1.pot Template 1.1 POT C:\PLANT\DE\coreAssets\Layouts\layout-1-1.pot 1

38 layout-1-2.pot Template 1.2 POT C:\PLANT\DE\coreAssets\Layouts\layout-1-2.pot 1

Fig. A.5. Data in the table CoreAssetV ersion

196 A Appendix

CDID DESCRTEXT

1Layout modified to have green background

2Layout modified to have light blue background; logo made smaller; added university logo to title page

Fig. A.6. Data in the table ChangeDescription

CHILDCAVID PARENTCAVID CDID

37 1 1

38 37 2

Fig. A.7. Data in the table DeriveV ersion

PKGID NAME DESCR PATH DIPNAME

0PKG-basedir Base directory for product packges C:\PLANT\AE\DIP1 DIP1

1PKG-Preliminaries Package with preliminaries C:\PLANT\AE\DIP1\Preliminaries.ppt DIP1

2PKG-DB-Intro Package with introductory DB topics C:\PLANT\AE\DIP1\DB-Intro.ppt DIP1

3PKG-DB-ER Package with ER-Modeling C:\PLANT\AE\DIP1\DB-ER.ppt DIP1

4PKG-DB-RelM Package with Relational Model C:\PLANT\AE\DIP1\DB-RelM.ppt DIP1

5PKG-DB-Design Package with Database Design C:\PLANT\AE\DIP1\DB-Design.ppt DIP1

6PKG-DB-Theory Package with Database Theory C:\PLANT\AE\DIP1\DB-Theory.ppt DIP1

7PKG-DB-SQL Package with Database SQL C:\PLANT\AE\DIP1\DB-SQL.ppt DIP1

8PKG-DB-Transactions Package with Database SQL C:\PLANT\AE\DIP1\DB-Transactions.ppt DIP1

9PKG-DB-Recovery Package with Database SQL C:\PLANT\AE\DIP1\DB-Recovery.ppt DIP1

10PKG-DB-DataOrganization Package with Database SQL C:\PLANT\AE\DIP1\DB-DataOrganization.ppt DIP1

11PKG-Petri Package with Petri Nets C:\PLANT\AE\DIP1\PetriNets.ppt DIP1

12PKG-WF-Intro Package with Workflow Management Introduction C:\PLANT\AE\DIP1\WF-Intro.ppt DIP1

13PKG-WF-Process Package with Workflow- Process Management C:\PLANT\AE\DIP1\WF-ProcMgmt.ppt DIP1

14PKG-WF-Modeling Package with Workflow Modeling Techniques C:\PLANT\AE\DIP1\WF-Modeling.ppt DIP1

15PKG-WF-Systems Package with Workflow Management Systems C:\PLANT\AE\DIP1\WF-MS.ppt DIP1

Fig. A.8. Data in the table Package

NAME DESCR CREATIONDATE

DIP1 Applied Informatics 1; AIFB Institute 25.11.2006

Fig. A.9. Data in the table DigitalInformationProduct

FID CAVID PKGID

1 1 0

2 2 1

3 3 2

4 4 3

5 5 4

6 6 5

7 7 6

8 8 6

9 9 7

10 10 8

11 11 9

12 12 10

13 13 11

14 14 11

15 15 11

16 16 11

17 17 11

18 18 11

19 19 11

20 20 12

21 21 13

22 22 13

23 23 14

24 24 14

25 25 14

26 26 15

27 27 15

Fig. A.10. Data in the table Map

A.2 Case Study – Additional Details 197

DID DOMAIN CONTAINS ID WHAT STEREOTYPE

1 Information Systems Layout 1Feature crosscutting

1 Information Systems Preliminaries 2Feature common

1 Information Systems Data View 2Domain optional

1 Information Systems Process View 6Domain optional

2Data View DB-Introduction 3Feature optional

2Data View DB Modeling 3Domain common

2Data View DB Theory 4Domain optional

2Data View DB Implementation 5Domain optional

3DB Modeling DB-ER-Model 4Feature common

3DB Modeling DB-Rel-Model 5Feature common

3DB Modeling DB-Design 6Feature optional

4DB Theory DB-Normalization 7Feature optional

4DB Theory DB-Data-Design 8Feature optional

5DB Implementation DB-SQL 9Feature optional

5DB Implementation DB-Transactions 10Feature optional

5DB Implementation DB-Recovery 11Feature optional

5DB Implementation DB-DataOrganization 12Feature optional

6Process View Petri Nets 7Domain common

6Process View Workflow Management 8Domain optional

7Petri Nets PN-Introduction 13Feature common

7Petri Nets PN-Transformations 14Feature optional

7Petri Nets PN-Dynamics 15Feature optional

7Petri Nets PN-Analysis-Basics 16Feature optional

7Petri Nets PN-Analysis-Advanced 17Feature optional

7Petri Nets PN-LinearAlgebra 18Feature optional

7Petri Nets PN-Extensions 19Feature optional

8Workflow Management WF Modeling 9Domain common

8Workflow Management WF Systems 10Domain optional

8Workflow Management WF-Introduction 20Feature common

8Workflow Management WF-ProcessManagement 21Feature common

8Workflow Management WF-ProcessModelingIntro 22Feature optional

9WF Modeling WF-Modeling-PetriNets 23Feature common

9WF Modeling WF-Modeling-UML 24Feature optional

9WF Modeling WF-Modeling-EPC 25Feature optional

10WF Systems WF-WFMS-Architecture 26Feature optional

10WF Systems WF-INCOME-Designer 27Feature optional

Fig. A.11. Data in the view V iewCPLM

VERSIONGRAPHID PARENT_CAVID PARENT CHILD_CAVID DERIVED_CHILD CDID CHANGE_DESCRIPTION

1 1 layout.pot 37 layout-1-1.pot 1Layout modified to have�

1 37 layout-1-1.pot 38 layout-1-2.pot 2Layout modified to have�

Fig. A.12. Data in the view V iewDerivedV ersions

198 A Appendix

FID FEATURE CAVID COREASSET PKGID PACKAGE

1Layout 1 layout.pot 0PKG-basedir

2Preliminaries 2Preliminaries.ppt 1PKG-Preliminaries

3DB-Introduction 3DB-Introduction.ppt 2PKG-DB-Intro

4DB-ER-Model 4DB-ER-Model.ppt 3PKG-DB-ER

5DB-Rel-Model 5DB-Rel-Model.ppt 4PKG-DB-RelM

6DB-Design 6DB-Design.ppt 5PKG-DB-Design

7DB-Normalization 7DB-Normalization.ppt 6PKG-DB-Theory

8DB-Data-Design 8DB-DataDesign.ppt 6PKG-DB-Theory

9DB-SQL 9DB-SQL.ppt 7PKG-DB-SQL

10DB-Transactions 10DB-Transactions.ppt 8PKG-DB-Transactions

11DB-Recovery 11DB-Recovery.ppt 9PKG-DB-Recovery

12DB-DataOrganization 12DB-physDataOrg.ppt 10PKG-DB-DataOrganization

13PN-Introduction 13PN-Introduction.ppt 11PKG-Petri

14PN-Transformations 14PN-Transformations.ppt 11PKG-Petri

15PN-Dynamics 15PN-Dynamics.ppt 11PKG-Petri

16PN-Analysis-Basics 16PN-Analysis-Basics.ppt 11PKG-Petri

17PN-Analysis-Advanced 17PN-Analysis-Advanced.ppt 11PKG-Petri

18PN-LinearAlgebra 18PN-LinearAlgebra.ppt 11PKG-Petri

19PN-Extensions 19PN-Extensions.ppt 11PKG-Petri

20WF-Introduction 20WF-Introduction.ppt 12PKG-WF-Intro

21WF-ProcessManagement 21WF-ProcessMgmt.ppt 13PKG-WF-Process

22WF-ProcessModelingIntro 22WF-ProcModeling-Intro.ppt 13PKG-WF-Process

23WF-Modeling-PetriNets 23WF-WorkflowModeling-Petri.ppt 14PKG-WF-Modeling

24WF-Modeling-UML 24WF-WorkflowModeling-UML.ppt 14PKG-WF-Modeling

25WF-Modeling-EPC 25WF-WorkflowModeling-EPC.ppt 14PKG-WF-Modeling

26WF-WFMS-Architecture 26WF-WFMS.ppt 15PKG-WF-Systems

27WF-INCOME-Designer 27WF-INCOME.ppt 15PKG-WF-Systems

Fig. A.13. Data in the view V iewMapDetails

EVENTID COMMENT

2006-11-29 13:52:13.125000000 created: Preliminaries
2006-11-29 13:52:14.421000000 created: Data View Domain
2006-11-29 13:52:23.578000000 created: DB Modeling Domain
2006-11-29 13:52:25.484000000 --created: DB-ER-Model
2006-11-29 13:52:27.812000000 --created: DB-Relational-Model
2006-11-29 13:52:37.109000000 --created: DB-Design
2006-11-29 13:52:41.125000000 -created: DB Theory Domain
2006-11-29 13:52:48.937000000 --created: DB-Normalization
2006-11-29 13:53:09.390000000 created: Process View Domain
2006-11-29 13:53:09.390000000 -created: Petri Nets Domain
2006-11-29 13:53:10.781000000 --created: PN-Introduction
2006-11-29 13:53:17.500000000 --created: PN-Transformations
2006-11-29 13:53:21.687000000 --created: PN-Dynamics
2006-11-29 13:53:30.046000000 --created: PN-Analysis-Basics

Fig. A.14. Data in the table Log, after the generation of the product with the
product model in Fig. 10.11

A.2 Case Study – Additional Details 199

A.2.2 Internals of the Workflow Model

Variable Name Type Value

Global variables

(name; type; value): copy Text

delete Text

append SQL

ProductPackageDirectory SQL

showparams SQL

SELECT filepath FROM coreassetversion

WHERE cavid=29

SELECT path FROM package WHERE pkgid=0

SELECT filepath FROM coreassetversion

WHERE cavid=35

cmd /c copy

cmd /c del

Fig. A.15. Global variables accessible in all transitions.

200 A Appendix

T1 Description: initialize

Pre-SQL:

Execution String:

T2 Description: create empty packages

Execution String: cmd /C copy $(emptyPackagesDirectory)*.ppt $(ProductPackageDirectory)

Variables

(name; type; value): emptyPackagesDirectory SQL

T3 Description: create Preliminaries (FID:2)

Execution String:

Variables

(name; type; value): coreasset SQL

package SQL

Post-SQL:

T4 Description: yes: Data View Domain

Post-SQL:

T5 Description: yes: DB-Introduction (FID:3)

Execution String:

Variables

(name; type; value): coreasset SQL

package SQL

Post-SQL:

T6 Description: no: DB-Introduction

Execution String:

Variables

(name; type; value): DBIntroPackage SQL

T66 Description: add table of contents to all packages

Execution String:

Variables

(name; type; value): PKGdir SQL

TOCprogram SQL

indexpos Text

T68 Description: apply Layout (FID: 1)

Execution String:

Variables

(name; type; value): applyProg SQL

coreasset SQL

packageStartingPoint SQL

$(TOCprogram) $(PKGdir) $(indexpos)

SELECT path FROM package WHERE pkgid=0

SELECT filepath FROM coreassetversion

WHERE cavid=34

$(applyProg) $(packageStartingPoint) $(coreasset)

SELECT filepath FROM coreassetversion

WHERE cavid=31

SELECT filepath FROM coreassetversion

WHERE cavid=(SELECT cavid FROM map

WHERE fid=1)

SELECT path FROM package WHERE

pkgid=(SELECT pkgid FROM map WHERE

fid=1)

2

$(delete) $(DBIntroPackage)

SELECT path FROM package WHERE

pkgid=(SELECT pkgid FROM map WHERE

fid=3)

SELECT filepath FROM coreassetversion

WHERE cavid=(SELECT cavid FROM map

WHERE fid=3)

SELECT path FROM package WHERE

pkgid=(SELECT pkgid FROM map WHERE

fid=3)

$(append) $(package) $(coreasset) 2 -overwrite -close

INSERT INTO log VALUES (current_timestamp,’-created: DB-Introduction’)

INSERT INTO log VALUES (current_timestamp,’created: Preliminaries’)

delete from log

$(delete) $(ProductPackageDirectory)*.ppt

INSERT INTO log VALUES (current_timestamp,’created: Data View Domain’)

SELECT filepath FROM coreassetversion

WHERE cavid=28

SELECT filepath FROM coreassetversion

WHERE cavid=(SELECT cavid FROM map

WHERE fid=2)

SELECT path FROM package WHERE

pkgid=(SELECT pkgid FROM map WHERE

fid=2)

$(append) $(package) $(coreasset) 2 -overwrite -close

Fig. A.16. An extract of the transitions with local properties.

References

[AB05] J. Andersson, J. Bosch. Development and use of dynamic product-line
architectures. IEE Proceedings-Software, 152(1):13–26, 2005.

[ACP01] H. H. Adelsberger, B. Collis, J. M. Pawlowski. Handbook on Infor-
mation Technologies for Education and Training. International Hand-
books on Information Systems. Springer Verlag, 2001.

[ADH+00] M. Ardis, N. Daley, D. Hoffman, H. Siy, D. Weiss. Software product
lines: a case study. Software: Practice and Experience, 30(7):825–847,
2000.

[Ado05] Adobe. PDF reference, fifth edition: Adobe portable document format
version 1.6. Technical report, Adobe Systems Incorporated, 2005.

[AG01] M. Anastasopoulos, C. Gacek. Implementing product line variabilities.
In Proceedings of the 2001 Symposium on Software Reusability (SSR
’01), pages 109–117, New York, NY, USA, 2001. ACM Press.

[AH02a] W. Aalst, K. Hee. Workflow Management. Models, Methods, and Sys-
tems. MIT Press, 2002.

[AH02b] W. Aalst, A. Hofstede. Workflow patterns: On the expressive power of
(petri-net-based) workflow languages. In K. Jensen, editor, Proceedings
of the Fourth Workshop on the Practical Use of Coloured Petri Nets and
CPN Tools (CPN 2002), volume 560 of DAIMI, pages 1–20, Aarhus,
Denmark, August 2002. University of Aarhus.

[ALSU07] A. V. Aho, M. S. Lam, R. Sethi, J. D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley, second edition, 2007.

[AM05] A. Abran, J. W. Moore, editors. Guide to the Software En-
gineering Body of Knowledge (SWEBOK R©). IEEE Com-
puter Society Professional Practices Committee, February 16 2005.
http://www.swebok.org.

[AN03] U. Aßmann, R. Neumann. Quo vadis Komponentensysteme? Von Mo-
dulen zu grauen Komponenten. HMD Praxis der Wirtschaftsinfor-
matik, 231:19–27, 2003.

[Ara94] G. Arango. Domain analysis. In J. Marciniak, editor, Encyclopedia of
Software Engineering, volume 1, pages 424–434. Wiley, 1994.

[ARI07] ARIADNE. ARIADNE Foundation. http://www.ariadne-eu.org, Jan-
uary 2007.

[Aßm03] U. Aßmann. Invasive Software Composition. Springer Verlag, 2003.

202 References

[Ate04] K. Ateyeh. Reuse-Driven Courseware Engineering. PhD thesis, Uni-
versität Fridericiana zu Karlsruhe (TH), Germany, 2004.

[Aud07] Audiowalk. The audible city walk. http://www.audiowalk.net, January
2007.

[Avi07] Aviation Industry CBT Committee (AICC). AICC guidelines and rec-
commendations. http://www.aicc.org, January 2007.

[Bal00] H. Balzert. Lehrbuch der Software-Technik. Software-Management,
Software-Qualitätssicherung, Unternehmensmodellierung. Spektrum
Akademischer Verlag, second edition, 2000.

[Bas96] P. G. Bassett. Framing Software Reuse. Lessons from the real world.
Yourdon Press Computing Series, 1996.

[Bat05] D. S. Batory. Feature models, grammars, and propositional formu-
las. In Software Product Lines: 9th International Conference (SPLC
2005), volume 3714 of Lecture Notes in Computer Science, pages 7–20.
Springer Verlag, 2005.

[Bau96] B. Baumgarten. Petri-Netze. Grundlagen und Anwendungen. Spek-
trum Akademischer Verlag, 1996.

[Bau05] P. Baumgartner. Wie man das richtige Content Manage-
ment Tool für ein bestimmtes Lernmodell auswählt. http://
www.elearningeuropa.info, May 17 2005.

[BBRC06] D. Batory, D. Benavides, A. Ruiz-Cortes. Automated analysis of fea-
ture models: challenges ahead. Commun. ACM, 49(12):45–47, 2006.

[BBSS01] A. Back, O. Bendel, D. Stoller-Schai. E-Learning im Unternehmen.
Grundlagen - Strategien - Methoden - Technologien. Orell Füssli Verlag,
2001.

[BBZ04] H. Balzert, H. Balzert, O. Zwintzscher. Die E-Learning-Plattform W3L
- Anforderungen, Didaktik, Ergonomie, Architektur, Entwicklung, Ein-
satz. Wirtschaftsinformatik, 46(2):129–138, 2004.

[BCM+04] G. Böckle, P. Clements, J. D. McGregor, D. Muthig, K. Schmid. Cal-
culating ROI for software product lines. IEEE Software, 21(3):23–31,
2004.

[BCR02] V. R. Basili, G. Caldiera, D. H. Rombach. Goal Question Metric
(GQM) Approach. In J. Marciniak, editor, Encyclopedia of Software
Engineering, volume 1, pages 578–583. Wiley, second edition, 2002.
revision by Rini van Solingen.

[Bec04] M. Becker. Anpassungsunterstützung in Software-Produktfamilien.
PhD thesis, Technische Universität Kaiserslautern, Kaiserslautern,
Germany, 2004.

[BFK+99] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid,
T. Widen, J.-M. DeBaud. Pulse: a methodology to develop software
product lines. In Proceedings of the 1999 symposium on Software
reusability (SSR ’99), pages 122–131, New York, NY, USA, 1999. ACM
Press.

[BHST04] Y. Bontemps, P. Heymans, P.-Y. Schobbens, J.-C. Trigaux. The se-
mantics of foda feature diagrams. In Workshop on Software Variabil-
ity Management for Product Derivation, Boston, MA, August 2004.
Helsinki University of Technology.

[BIT05] BITKOM. Daten zur Informationsgesellschaft. BITKOM, 2005.
[BIT06] BITKOM. Daten zur Informationsgesellschaft. BITKOM, 2006.

References 203

[BK98] P. Buxmann, W. König. Das Standardisierungsproblem: Zur
ökonomischen Auswahl von Standards in Informationssystemen.
Wirtschaftsinformatik, 40(2):122–129, 1998.

[BKPS04] G. Böckle, P. Knauber, K. Pohl, K. Schmid. Software-Produktlinien.
Dpunkt Verlag, 2004.

[BL01] C. Barritt, D. Lewis. Reusable learning object strategy. definition,
creation process, and guidelines for building. Technical report, Cisco
Systems, Inc., April 22 2001. Version 3.1.

[BMB04] Kursbuch eLearning 2004. Produkte aus dem Förderprogramm. Bun-
desministerium für Bildung und Forschung, 2004.

[BMM99] R. A. Brealey, S. C. Myers, A. J. Marcus. Fundamentals of Corporate
Finance. McGraw-Hill/Irwin, 1999.

[Boe81] B. W. Boehm. Software Engineering Economics. Prentice Hall, 1981.
[Boe88] B. W. Boehm. A spiral model of software development and enhance-

ment. Computer, 21(5):61–72, 1988.
[Bos00] J. Bosch. Design and Use of Software Architectures. Addison-Wesley,

2000.
[Bos01] J. Bosch. Software product lines: Organizational alternatives. In 23rd

International Conference on Software Engineering (ICSE2001), pages
91–100, 2001.

[Bos02] J. Bosch. Maturity and evolution in software product lines: Ap-
proaches, artefacts and organization. In Software Product Lines: Sec-
ond International Conference (SPLC 2), volume 2379 of Lecture Notes
in Computer Science, pages 257–271. Springer Verlag, January 2002.

[Bos03] N. Boskic. Learning objects design: what do educators think about the
quality and reusability of learning objects? In Proceedings. The 3rd
IEEE International Conference on Advanced Learning Technologies,
pages 306–307, 9–1 July 2003.

[Bro92] Brockhaus Enzyklopädie, 19. Auflage., Band 17: Pes-Rac. Brockhaus,
Mannheim, 1992.

[Bro95] F. P. Brooks. The Mythical Man-Month: Essays on Software Engineer-
ing. Addison-Wesley, 20th anniversary edition, 1995.

[Bro99] K. Brockhoff. Produktpolitik. UTB, Stuttgart, 1999.
[BS73] F. Black, M. Scholes. The pricing of options and corporate liabilities.

The Journal of Political Economy, 81(3):637–654, 1973.
[Bun04] Bundesministerium des Inneren. V-Modell R© XT. http://www.v-

modell-xt.de, 2004.
[BW95] R. Benjamin, R. Wigand. Electronic markets and virtual value chains

on the information superhighway. Sloan Management Review, 36(2):62–
72, Winter95 1995.

[CA04] J.-A. Christiansen, T. Anderson. Feasibility of course development
based on learning objects: Research analysis of three case studies. In-
ternational Journal of Instructional Technology and Distance Educa-
tion, 1(3), April 2004.

[Can04] CanCore. CanCore metadata standard. http://www.cancore.ca/
guidelines/CanCore Guidelines Introduction 2.0.pdf, April 2004.

[CAR07] CAREO. Campus Alberta Repository of Educational Objects
(CAREO). http://careo.netera.ca, January 2007.

204 References

[CD02] F. Casati, U. Dayal, editors. Special Issue on Web Services, volume 25.
IEEE Bulletin of the Technical Committee on Data Engineering, De-
cember 2002.

[CE00] K. Czarnecki, U. Eisenecker. Generative Programming: Methods, Tools,
and Applications. Addison-Wesley, 2000.

[CEN07] CEN. CEN/ISSS learning technologies workshop. http://
www.cenorm.be/cenorm/index.htm, January 2007.

[CHE04] K. Czarnecki, S. Helsen, U. W. Eisenecker. Staged configuration us-
ing feature models. In Software Product Lines: Third International
Conference (SPLC 2004), volume 3154 of Lecture Notes in Computer
Science, pages 266–283. Springer Verlag, 2004.

[CI90] E. Chikofsky, J. C. II. Reverse engineering and design recovery: A
taxonomy. IEEE Software, 7(1):13–17, January 1990.

[Cif94] C. Cifuentes. Reverse Compilation Techniques. PhD thesis, Queensland
University of Technology, School of Computing Science, July 1994.

[CKK06] K. Czarnecki, C. H. P. Kim, K. T. Kalleberg. Feature models are
views on ontologies. In Software Product Lines: 10th International
Conference (SPLC 2006), pages 41–51, 2006.

[Cle96] P. Clements. A survey of architecture description languages. In Pro-
ceedings of the 8th International Workshop on Software Specification
and Design, 22-23 March 1996.

[CM02] G. Chastek, J. D. McGregor. Guidelines for developing a product
line production plan. Technical report, Software Engineering Institute
(SEI), Carnegie Mellon University, June 2002. CMU/SEI-2002-TR-06,
ESC-TR-2002-006.

[CMS05] CMS Works, Inc. The CMS report. http://www.cmswatch.com/
CMS/Report, Summer 2005.

[CN02] P. Clements, L. M. Northrop. Software Product Lines: Practices and
Patterns. The SEI Series in Software Engineering. Addison-Wesley,
August 20 2002.

[Coc05] T. Cochrane. Podcasting: Do It Yourself Guide. Wiley, 2005.
[Coh03] S. Cohen. Predicting when product line investment pays. Technical

Report CMU/SEI-2003-TN-017, Software Engineering Institute (SEI),
Carnegie Mellon University, 2003.

[Cre06] Creole Eclipse Plugin. http://www.thechiselgroup.org/creole, Decem-
ber 2 2006.

[CSFP04] B. Collins-Sussman, B. W. Fitzpatrick, C. M. Pilato. Version Control
with Subversion. O’Reilly, 2004.

[CSW97] S.-Y. Choi, D. O. Stahl, A. B. Whinston. The Economics of Electronic
Commerce. MacMillan Publishing Company, 1997.

[CW85] L. Cardelli, P. Wegner. On understanding types, data abstraction, and
polymorphism. ACM Computing Surveys, 17(4):471–523, 1985.

[CW98] R. Conradi, B. Westfechtel. Version models for software configuration
management. ACM Computing Surveys, 30(2):232–282, 1998.

[dAFGD02] R. de Almeida Falbo, G. Guizzardi, K. C. Duarte. An ontological ap-
proach to domain engineering. In Proceedings of the 14th international
conference on Software engineering and knowledge engineering (SEKE
’02), pages 351–358, New York, NY, USA, 2002. ACM Press.

References 205

[Dan05] Danish Technological Institute. Study of the e-learning suppliers “mar-
ket” in europe. Technical report, Danish Technological Institute, Inde-
pendent consultant Jane Massy, Alphametrics Ltd, Heriot-Watt Uni-
versity, January 2005.

[DDL01] N. Dholakia, R. R. Dholakia, M. Laub. Electronic commerce and the
transformation of marketing. In Global E-Commerce and Online Mar-
keting: Watching the Evolution, page 43. Quorum/Greenwood, 2001.

[DEH+00] P. Dourish, W. K. Edwards, J. Howell, A. LaMarca, J. Lamping, K. Pe-
tersen, M. Salisbury, D. Terry, J. Thornton. A programming model for
active documents. In UIST ’00: Proceedings of the 13th annual ACM
symposium on User interface software and technology, pages 41–50,
New York, NY, USA, 2000. ACM Press.

[Des07] DescribeThis. Automatic parser and generator of dublin core metadata
for online resources. http://www.describethis.com/, January 2007.

[DH03] E. Duval, W. Hodgins. A LOM research agenda. In Proceedings of the
12th international conference on World Wide Web, pages 1–9, 2003.

[Dij72] E. W. Dijkstra. Notes on structured programming. In O. J. Dahl, E. W.
Dijkstra, C. A. R. Hoare, editors, Structured Programming. Academic
Press, 1972.

[DK73] M. Darby, E. Karni. Free competition and the optimal amount of fraud.
Journal of Law & Economics, 16(1):67–88, 1973.

[DO96] J. Desel, A. Oberweis. Petri-Netze in der Angewandten Informatik.
Wirtschaftsinformatik, 38(4):359–367, 1996.

[Doc07] Official homepage for DocBook: The Definitive Guide. http://
docbook.org, January 2007.

[Dod02] M. H. Dodani. The dark side of object learning: Learning objects.
Journal of Object Technology, 1(5):37–42, 2002. ETH Zürich.

[Dow03] S. Downes. Design and reusability of learning objects in an academic
context: A new economy of education? USDLA Journal, 17(1), January
2003.

[Dow04] S. Downes. The rise of learning objects. International Journal of
Instructional Technology and Distance Education, 1(3), April 2004.

[DOZZ97] J. Desel, A. Oberweis, T. Zimmer, G. Zimmermann. Validation of
information system models: Petri nets and test case generation. In
IEEE International Conference on Systems, Man, and Cybernetics,
pages 3401–3406, 1997.

[DR98] J. Desel, W. Reisig. Place/transition petri nets. In Lectures on Petri
Nets I: Basic Models: Advances in Petri Nets, volume 1491 of Lecture
Notes in Computer Science, pages 122–173. Springer Verlag, June 1998.

[DS99] J.-M. DeBaud, K. Schmid. A systematic approach to derive the scope
of software product lines. In Proceedings of the 21st international con-
ference on Software engineering (ICSE), pages 34–43, Los Alamitos,
CA, USA, 1999. IEEE Computer Society Press.

[DSB04] S. Deelstra, M. Sinnema, J. Bosch. Experiences in software product
families: Problems and issues during product derivation. In Software
Product Lines: Third International Conference (SPLC 2004), volume
3145 of Lecture Notes in Computer Science, pages 165–182. Springer
Verlag, 2004.

206 References

[DT06a] P. Dodds, S. E. Thropp. Advanced Distributed Learning (ADL)
Sharable Content Object Reference Model (SCORM)r 2004. Con-
tent Aggregation Model (CAM). http://www.adlnet.org, November
16 2006. 3rd edition.

[DT06b] P. Dodds, S. E. Thropp. Advanced Distributed Learning (ADL)
Sharable Content Object Reference Model (SCORM)r 2004.
http://www.adlnet.org, November 16 2006. 3rd edition.

[DTA05] O. Dı́az, S. Trujillo, F. I. Anfurrutia. Supporting production strategies
as refinements of the production process. In Software Product Lines:
9th International Conference (SPLC 2005), volume 3714 of Lecture
Notes in Computer Science, pages 210–221. Springer Verlag, 2005.

[Duv04] E. Duval. Learning technology standardization: Making sense of it
all. Computer Science and Information Systems, 1(1):33–43, February
2004. ComSIS Consortium.

[EdN06] EdNA. EdNA (Education Network Australia) metadata standard.
http://www.edna.edu.au/edna/go/resources/metadata, October 2006.

[EdN07] EdNA. Education Network Australia (EdNA online). http://
www.edna.edu.au, January 2007.

[EEL+02] J. Elliott, R. Eckstein, M. Loy, D. Wood, B. Cole. Java Swing. O’Reilly,
2nd edition, 2002.

[EER02] Industry profit margins improve as educational tech. companies strive
for viable business models. Electronic Education Report, Vol. 9(6),
3/26 2002. p. 1-3.

[EIT03] EITO. European Information Technology Observatory. European Eco-
nomic Interest Grouping, 2003.

[EIT05] EITO. European Information Technology Observatory. European Eco-
nomic Interest Grouping, 2005.

[eMa05] eMarketer. Reports online publishing: Focus on newspapers.
www.emarketer.com, August 2005.

[ESK04] M. El-Sherbini, G. Klim. Metadata and cataloging practices. The
Electronic Library, 22(3):238, 2004. Emerald.

[ESSW01] D. Ehrenberg, A.-W. Scheer, M. Schumann, U. Winand. Imple-
mentierung von interuniversitären Lehr- und Lernkooperationen: Das
Beispiel WINFOLine. Wirtschaftsinformatik, 43(1):5–11, 2001.

[Eur97] European Commission. Strategic developments for the European pub-
lishing industry towards the year 2000: Europe’s multimedia challenge.
European Commission, DG XIII-E, Luxembourg, 1997. EUO-OP Ref-
erence: CD-09-97-001-EN-C, Euroabstract Number: 35/533.

[Eur04] Report on the consultation workshops “Access Rights for e-Learning
Content” & “Creating, sharing and reusing e-Learning Content”, Brus-
sels, October 27–28 2004. European Commission. Directorate-General
for Education and Culture.

[FECA04] R. Filman, T. Elrad, S. Clarke, M. Aksit. Aspect-Oriented Software
Development. Addison-Wesley, October 6 2004.

[Fei91] P. H. Feiler. Configuration management models in commercial en-
vironments. Technical Report CMU/SEI-91-TR-7, Carnegie Mellon
University, March 1991.

[FFF98] J. M. Favaro, K. R. Favaro, P. F. Favaro. Value based software reuse
investment. Annals of Software Engineering, 5(0):5–52, January 1998.

References 207

[FLT04] R. G. Farrell, S. D. Liburd, J. C. Thomas. Dynamic assembly of learn-
ing objects. In Alternate track papers & posters of the 13th interna-
tional conference on World Wide Web, pages 162–169. ACM Press,
2004.

[Fri04a] N. Friesen. Final report on the “international LOM survey”. Technical
report, ISO/IEC JTC1 SC36 N0871, September 8 2004.

[Fri04b] N. Friesen. Three objections to learning objects. In R. McGreal (Ed.).
Online Education Using Learning Objects. London: Routledge/Falmer,
2004.

[FS86] J. Farrell, G. Saloner. Installed base and compatibility: Innovation,
product preannouncements, and predation. The American Economic
Review, 76(5):940–955, 1986.

[Gab04] Gabler Wirtschaftslexikon. Dr. Th. Gabler Verlag, 2004.
[GFd98] M. Griss, J. Favaro, M. d’Alessandro. Integrating feature modeling

with the RSEB. In 5th International Conference on Software Reuse,
pages 76–85, Vancouver, BC, Canada, June 1998.

[GHJV95] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[GM05] R. J. Glushko, T. McGrath. Document engineering: analyzing and
designing documents for business informatics & Web services. MIT
Press, 2005.

[Gom05] H. Gomaa. Designing Software Product Lines with UML. Addison-
Wesley, 2005.

[Goo07] Google. Google Earth - A 3D interface to the planet. http://
earth.google.com, January 2007.

[GSC+04] J. Greenfield, K. Short, S. Cook, S. Kent, J. Crupi. Software Facto-
ries: Assembling Applications with Patterns, Models, Frameworks, and
Tools. Wiley, 2004.

[GSMK04] K. Götzer, U. Schneiderath, B. Maier, T. Komke. Dokumenten-
Management. Dpunkt Verlag, 2004.

[GSNHS03] A. Geyer-Schulz, A. Neumann, A. Heitmann, K. Stroborn. Strategic
positioning options for scientific libraries in markets of scientific and
technical information - the economic impact of digitization. The Jour-
nal of Digital Information, 4(2):Article No. 168, 2003-05-09 2003.

[Gun78] R. C. Gunther. Management methodology for software product engi-
neering. Wiley, 1978.

[HC00] W. Hodgins, M. Conner. Everything you ever wanted to know about
learning standards but were afraid to ask. http://www.linezine.com
/2.1/features/wheyewtkls.htm, Fall 2000.

[Hil03] M. R. Hilbert. From Industrial Economics to Digital Economics: An
Introduction to the Transition: Productive Development. Number 100
in Series Productive Development. United Nations Publications, 2003.

[HK03] A. Hettrich, N. Korolova. Marktstudie Learning Management Sys-
teme (LMS) und Learning Content Management Systeme (LCMS).
Fokus deutscher Markt. Technical report, Fraunhofer Institut für Ar-
beitswirtschaft und Organisation IAO, June 2003.

[HM04] E. R. Harold, W. S. Means. XML in a Nutshell. O’Reilly, third edition,
2004.

[Hoe06] T. Hoeren. Skriptum Internetrecht. http://www.uni-muenster.de/
Jura.itm/hoeren/material/Skript/skript Juni2006.pdf, June 2006.

208 References

[Hol95] D. Hollingsworth. Workflow management coalition. the workflow ref-
erence model. WFMC-TC-1003, January 19 1995.

[HP03] G. Halmans, K. Pohl. Communicating the variability of a software-
product family to customers. Software and Systems Modeling, 2(1):15–
36, March 2003. Springer Verlag.

[HREW04] M. Hatala, G. Richards, T. Eap, J. Willms. The interoperability of
learning object repositories and services: standards, implementations
and lessons learned. In Alternate track papers & posters of the 13th in-
ternational conference on World Wide Web, pages 19–27. ACM Press,
2004.

[HSI05] G. Q. Huang, T. W. Simpson, B. J. P. II. The power of product
platforms in mass customisation. International Journal of Mass Cus-
tomisation (IJMASSC), 1(1):1–13, 2005.

[Hum02] W. S. Humphrey. Personal software process. In J. Marciniak, editor,
Encyclopedia of Software Engineering, volume 2, pages 949–961. Wiley,
2nd edition, 2002.

[HWV96] M. Hämäläinen, A. B. Whinston, S. Vishik. Electronic markets for
learning: education brokerages on the internet. Communications of the
ACM, 39(6):51–58, 1996.

[IBK+06] H. P. In, J. Baik, S. Kim, Y. Yang, B. Boehm. A quality-based cost
estimation model for the product line life cycle. Commun. ACM,
49(12):85–88, 2006.

[IBM07] IBM. Rational Unified Process. http://www-306.ibm.com/software/
awdtools/rup/, January 2007.

[IEE90] IEEE. Standard glossary of software engineering terminology. IEEE
Std 610.12-1990, September 28 1990.

[IEE02] IEEE Computer Society. IEEE Standard for Learning Object
Metadata. http://standards.ieee.org, IEEE Std P1484.12.1TM-2002,
September 6 2002.

[IEE05] IEEE LTSC. IEEE Learning Technology Standards Committee.
http://ltsc.ieee.org, December 2005.

[IMS04] IMS Global Learning Consortium, Inc. IMS content packag-
ing information model, version 1.1.4. http://www.imsglobal.org/
content/packaging/index.html, October 2004.

[IMS07] IMS Global Learning Consortium, Inc. IMS Global Learn-
ing Consortium, Inc. - Specifications. http://www.imsglobal.org/
specifications.html, January 2007.

[Inm96] W. Inmon. Building the Data Warehouse. Wiley, 2nd edition, 1996.
[Int07] Intute. Web resources for education and research. http://

www.intute.ac.uk, January 2007.
[ISO96] ISO/IEC. Information technology - Syntactic metalanguage - Ex-

tended BNF. International Standard. http://standards.iso.org/ittf/
PubliclyAvailableStandards, December 15 1996. ISO/IEC 14977:1996.

[ISO03a] ISO. Information and documentation – The Dublin Core metadata
element set. ISO 15836:2003(E), February 26 2003.

[ISO03b] ISO/IEC. Introduction of the core elements set in localized LOM
model. http://mdlet.jtc1sc36.org/doc/SC36 WG4 N0059.pdf, Septem-
ber 9 2003. ISO/IEC JTC1 SC36 working document.

References 209

[ISO05] ISO. ISO/IEC JTC1 SC36. Standards for: Information Technology
for Learning, Education, and Training (ITLET). http://jtc1sc36.org/,
December 2005.

[Iss02] L. J. Issing. Instruktions-Design für Multimedia. In L. J. Issing,
P. Klimsa, editors, Information und Lernen mit Multimedia und In-
ternet. Verlagsgruppe Beltz, 2002.

[Jak06] Jakarta Commons. http://jakarta.apache.org/commons, September
2006.

[JF88] R. Johnson, B. Foote. Designing reusable classes. Journal of Object-
Oriented Programming (JOOP), 1(2):22–35, June/July 1988.

[JGJ97] I. Jacobson, M. Griss, P. Jonsson. Software reuse: architecture, process
and organization for business success. ACM Press/Addison-Wesley,
1997.

[Jon04] R. Jones. Designing adaptable learning resources with learning object
patterns. Journal of Digital Information, 6(1):Article No. 305, 2004.

[JUN06] Java Universal Network/Graph Framework (JUNG). http://
jung.sourceforge.net, December 2006.

[KA05] P. Kotler, G. Armstrong. Principles of Marketing. Prentice Hall, 11th
edition, 2005.

[KCHP90] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. N. A. S. Peterson. Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Technical Re-
port CMU/SEI-90-TR-21, ESD-90-TR-222, Software Engineering In-
stitute (SEI), Carnegie Mellon University, Pittsburgh, Pennsylvania,
November 1990.

[KD05] H. Kosch, M. Döller. MPEG: Überblick und Integration in Multimedia-
Datenbanken. Datenbank-Spektrum, 15:36–43, 2005.

[KD06] T. Käkölä, J. C. Duenas, editors. Software Product Lines. Research
Issues in Engineering and Management. Springer Verlag, 2006.

[KL05] E. Kaplan-Leiserson. American Society for Training and De-
velopment (ASTD). Learning Circuits - Glossary. http://
www.learningcircuits.org/glossary, November 2005.

[KLD02] K. Kang, J. Lee, P. Donohoe. Feature-oriented product line engineer-
ing. IEEE Software, 19(4):58–65, 2002.

[Kle02] M. Klein. Courseware Engineering – ein Vorgehensmodell zur Erstel-
lung von wiederverwendbaren, hypermedialen Kursen. PhD thesis, Uni-
versity of Karlsruhe, 2002.

[KN06] T. Kishi, N. Noda. Formal verification and software product lines.
Commun. ACM, 49(12):73–77, 2006.

[Kno04] G. Knolmayer. E-Learning Objects. Wirtschaftsinformatik, 46(3):222–
224, 2004.

[Knu68] D. E. Knuth. Semantics of context-free languages. Mathematical Sys-
tems Theory, 2(2):127–145, 1968. Correction: Mathematical Systems
Theory 5(1): 95-96(1971).

[Koo92] Koordinierungs- und Beratungsstelle der Bundesregierung für Informa-
tionstechnik in der Bundesverwaltung. Vorgehensmodell, volume 27.
Bundesanzeiger, August 1992.

[KR00] R. Kalakota, M. Robinson. e-Business 2.0. Addison-Wesley, 2000.
[KRS04] H.-B. Kittlaus, C. Rau, J. Schulz. Software-Produkt-Management.

Springer Verlag, 2004.

210 References

[Kru92] C. W. Krueger. Software reuse. ACM Computing Surveys, 24(2):131–
183, 1992.

[KS00] J. Kuusela, J. Savolainen. Requirements engineering for product fami-
lies. In ICSE ’00: Proceedings of the 22nd international conference on
Software engineering, pages 61–69, New York, NY, USA, 2000. ACM
Press.

[KT02] G. Kazakevich, L. Torlina. Consumer choice, information product
quality, and market implications. Technical report, Deakin University.
School of Information Systems. Working Paper 2002/61, 2002.

[KWB03] A. Kleppe, J. Warmer, W. Bast. MDA Explained: The Model Driven
Architecture–Practice and Promise. Addison-Wesley, April 2003.

[L’A97] J. J. L’Allier. A frame of reference: NETg’s map to its products, their
structures and core beliefs, 1997.

[Leo01] U. Leonhardt. Digitales Produkt - Beispiel einer Integrationsplattform
für Technik- und Verkaufsprozesse mittels Informations- und Visuali-
sierungstechnologien. PhD thesis, ETH Zürich, 2001.

[Lev81] T. Levitt. Marketing intangible products and product intangibles. Har-
vard Business Review, 59(3):94–102, May/June 1981.

[Lik32] R. Likert. A technique for the measurement of attitudes. Archives of
Psychology, 140, 1932.

[Lip76] R. Lipton. The reachability problem requires exponential space. Tech-
nical Report YALE/DCS/TR063, Dept. Computer Science, 1976.

[LL03] J. Laudon, K. Laudon. Management Information Systems. Prentice
Hall, 8th international edition, 2003.

[LMQS03] E. Law, K. Maillet, J. Quemada, B. Simon. Educanext: A service for
knowledge sharing. In Proceedings of the 3rd Annual Ariadne Confer-
ence. ARIADNE Foundation, 2003.

[Loe00] C. Loebbecke. Online delivered content - the core of the intangible
economy. In S. Barnes, B. Hunt, editors, E-Commerce and V-Business:
Business Models for Global Success. Elsevier, 2000.

[LOG06] Apache Log4j Project. http://logging.apache.org/log4j, September
2006.

[Lou02] K. C. Louden. Programming Languages: Principles and Practice.
Thomson Brooks/Cole, second edition, 2002.

[LR99] F. Leymann, D. Roller. Production Workflow: Concepts and Tech-
niques. Prentice Hall, September 1999.

[LVS+03] P. Lyman, H. R. Varian, K. Swearingen, P. Charles, N. Good,
L. L. Jordan, J. Pal. How much information 2003? http://
www.sims.berkeley.edu/research/projects/how-much-info-2003, 2003.
reviewed January 2007.

[Mac03] Macromedia. Macromedia Flash (SWF) file format specification, ver-
sion 7. Technical report, Macromedia, 2003.

[May84] E. Mayr. An algorithm for the general petri net reachability problem.
SIAM Journal on Computing, 13(3):441–460, 1984.

[McG01] J. D. McGregor. Testing a software product line. Technical Re-
port CMU/SEI-2001-TR-022, Software Engineering Institute (SEI),
Carnegie Mellon University, 2001.

[McG04] J. D. McGregor. Product production. Journal of Object Technology,
3(10):89–98, November/December 2004. ETH Zürich.

References 211

[McI68] M. McIlroy. Mass-produced software components. In Proceedings of
the NATO Conference on Software Engineering, Garmisch, Germany,
1968.

[Mec04] R. Mecklenburg. Managing Projects with GNU Make (Nutshell Hand-
books). O’Reilly, 2004.

[Mef00] H. Meffert. Marketing. Gabler Verlag, 2000.
[Mer02] M. Merz. E-Commerce und E-Business. Dpunkt Verlag, 2002.
[MER07] MERLOT. Multimedia educational resource for learning and online

teaching (MERLOT). http://www.merlot.org, January 2007.
[MHS05] M. Mernik, J. Heering, A. M. Sloane. When and how to develop

domain-specific languages. ACM Computing Surveys, 37(4):316–344,
2005.

[Mic07] Microsoft. Microsoft office online home page. http://office.
microsoft.com, January 2007.

[Mor00] J. Moran. Top ten e-learning myths. Training & Development, 54(9):32,
2000.

[MS98] M. H. Meyer, R. Seliger. Product platforms in software development.
Sloan Management Review, 40(1):61–74, Fall 1998.

[Mur89] T. Murata. Petri nets: Properties, analysis and applications. In Pro-
ceedings of the IEEE, volume 77, pages 541–580, 1989.

[Mut03] D. Muthig. A light-Weight Approach Facilitating an Evolutionary
Transition Towards Software Product Lines. PhD thesis, University
of Kaiserslautern, 2003. Fraunhofer IRB-Verlag.

[MYB89] T. W. Malone, J. Yates, R. I. Benjamin. The Logic of Electronic
Markets. Executive Summary. Harvard Business Review, 67(3):ES24,
May/June 1989.

[MZ96] M. H. Meyer, M. H. Zack. The design and development of information
products. Sloan Management Review, 37(3):43–59, Spring 1996.

[NDTN03] J. Najjar, E. Duval, S. Ternier, F. Neven. Towards interoperable learn-
ing object repositories: the ARIADNE experience. In Proceedings of
the IADIS International Conference WWW/Internet 2003, volume 1,
pages 219–226, Algarve, Portugal, 5-8 November 2003. IADIS.

[Nei80] J. M. Neighbors. Software Construction Using Components. PhD the-
sis, University of California at Irvine, 1980. ICS-TR-160.

[Nel70] P. Nelson. Information and consumer behavior. The Journal of Political
Economy, 78(2):311–329, Mar.-Apr. 1970.

[Ng01] S. Ng. Learning resource identification. http://www.itsc.org.sg/
standards news/2001-10/SamuelNg-LRI.pdf, October 2001.

[NHHMA03] H. Niegemann, S. Hessel, D. Hochscheid-Mauel, K. Aslanski. Kom-
pendium E-Learning. Springer Verlag, 2003.

[NM05] L. Neal, D. Miller. The basics of e-learning: an excerpt from handbook
of human factors in web design. ACM eLearn, 2005(8):2, 2005.

[NTD03] J. Najjar, S. Ternier, E. Duval. The actual use of metadata in
ARIADNE: an empirical analysis. In Proceedings of the 3rd Annual
ARIADNE Conference, pages 1–6. ARIADNE Foundation, 2003.

[Obj07] Object Management Group (OMG). Unified modeling language.
http://www.uml.org, January 2007.

[OPS05] A. Oberweis, V. Pankratius, W. Stucky. Product lines in e-learning.
Technical Report 501, Institute of Applied Informatics and Formal De-
scription Methods, University of Karlsruhe, Germany, August 2005.

212 References

[OPS06] A. Oberweis, V. Pankratius, W. Stucky. Product lines for digital in-
formation products. Information Systems, 2006. accepted: Sept. 28,
2006; available online Nov. 2, 2006; in press.

[OS96] A. Oberweis, P. Sander. Information system behavior specification
by high level petri nets. ACM Transactions on Information Systems,
14(4):380–420, 1996.

[Oxf98] The Oxford Dictionary for International Business. Oxford University
Press, 1998. Compiled by Market House Books Ltd.

[PA01] J. M. Pawlowski, H. H. Adelsberger. Standardisierung von Lerntech-
nologien. Wirtschaftsinformatik, 43(1):57–68, 2001.

[Pan05] V. Pankratius. Aspect-oriented learning objects. In 4th IASTED In-
ternational Conference on Web-based Education, Grindelwald, Switzer-
land, February 2005. ACTA Press.

[Par01] D. L. Parnas. On the design and development of program families.
In D. M. Hoffmann, D. M. Weiss, editors, Software Fundamentals.
Collected Papers by David L. Parnas, pages 193–213. Addison-Wesley,
2001.

[PBvdL05] K. Pohl, G. Böckle, F. J. van der Linden. Software Product Line En-
gineering : Foundations, Principles and Techniques. Springer Verlag,
2005.

[Pet62] C. A. Petri. Kommunikation mit Automaten. PhD thesis, Schriften des
Instituts für instrumentelle Mathematik, University of Bonn, Germany,
1962.

[Poh97] K. Pohl. Requirements engineering. In A. Kent, J. Williams, C. Hall,
editors, Encyclopedia of Computer Science and Technology, volume 36,
pages 345–386. M. Dekker, New York, 1997.

[Pol03] P. R. Polsani. Use and abuse of reusable learning objects. Journal of
Digital Information, 3(4):Article No. 164, 2003-02-19 2003.

[Por80] M. E. Porter. Competitive Strategy. Free Press, 1980.
[POS05] V. Pankratius, A. Oberweis, W. Stucky. Lernobjekte im E-Learning -

Eine kritische Beurteilung zugrunde liegender Konzepte anhand eines
Vergleichs mit komponentenbasierter Software-Entwicklung. In 9.
Workshop Multimedia in Bildung und Wirtschaft, Ilmenau, Germany,
September 2005. Technische Universität Ilmenau.

[Pou96] J. S. Poulin. Measuring Software Reuse: Principles, Practices, and
Economic Models. Addison-Wesley, 1996.

[Pre05] R. S. Pressman. Software Engineering: A Practitioner’s Approach.
McGraw-Hill, international edition, 2005.

[Pro06] Produkthaftungsgesetz. http://beck-gross.digibib.net, November 2006.
[PS05a] V. Pankratius, W. Stucky. A formal foundation for workflow compo-

sition, workflow view definition, and workflow normalization based on
petri nets. In S. Hartmann, M. Stumptner, editors, Second Asia-Pacific
Conference on Conceptual Modelling (APCCM2005), volume 43 of CR-
PIT, pages 79–88, Newcastle, Australia, 2005. ACS.

[PS05b] V. Pankratius, W. Stucky. Information systems development at the
virtual global university: an experience report. In ICSE ’05: Proceed-
ings of the 27th international conference on Software engineering, pages
639–640, New York, NY, USA, 2005. ACM Press.

References 213

[PS06] V. Pankratius, W. Stucky. A strategy for content reusability with
product lines derived from experience in online education. In Software
Engineering Education in the Modern Age: Challenges and Possibili-
ties, volume 4309 of Lecture Notes in Computer Science, pages 128–146.
Springer Verlag, 2006.

[PSS04] V. Pankratius, O. Sandel, W. Stucky. Retrieving content with agents
in web service e-learning systems. In The Symposium on Professional
Practice in AI, IFIP WG12.6 – First IFIP Conference on Artificial
Intelligence Applications and Innovations (AIAI), Toulouse, France,
August 2004.

[PSV05] V. Pankratius, W. Stucky, G. Vossen. Aspect-oriented reengineering of
e-learning courseware. The Learning Organization: An International
Journal, 12(5):457–470, 2005. Emerald Group Publishing.

[Pus02] M. Pussinen. A survey on software product-line evolution. Techni-
cal Report 32, Institute of Software Systems, Tampere University of
Technology, 2002.

[PV03] V. Pankratius, G. Vossen. Towards e-learning grids: Using grid comput-
ing in electronic learning. In IEEE Workshop on Knowledge Grid and
Grid Intelligence (in conjunction with 2003 IEEE/WIC International
Conference on Web Intelligence), pages 4–15, Halifax, Nova Scotia,
Canada, October 2003. Saint Mary’s University.

[PV05] V. Pankratius, G. Vossen. Reengineering of educational material: A
systematic approach. International Journal of Knowledge and Learning
(IJKL), 1(3):229–248, 2005.

[PW98] T. A. Phelps, R. Wilensky. Multivalent documents: A new model for
digital documents. Technical Report CSD-98-999, Division of Com-
puter Science, University of California at Berkeley, Berkeley, CA, USA,
1998.

[Rom05] D. Rombach. Integrated software process and product lines. In In-
ternational Software Process Workshop (SPW 2005), volume 3840 of
Lecture Notes in Computer Science, pages 83–90, Beijing, China, May
2005. Springer Verlag.

[Roy70] W. W. Royce. Managing the development of large software systems.
In Proc. IEEE WESTCON, pages 1–9, Los Angeles, CA, August 1970.
Reprinted in Proc. of the Ninth International Conference on Software
Engineering, March 1987, pp. 328-338.

[RRKP06] A. Reuys, S. Reis, E. Kamsties, K. Pohl. The ScenTED method for
testing software product lines. In Käkölä and Duenas [KD06], pages
479–520.

[RU98] D. Robertson, K. Ulrich. Planning for product platforms. Sloan Man-
agement Review, 39(4):19–31, 1998.

[Sam90] P. Samuelson. Reverse-engineering someone else’s software: is it legal?
IEEE Software, 7(1):90–96, January 1990.

[SBF96] S. Sparks, K. Benner, C. Faris. Managing object oriented framework
reuse. Computer, 29(9):52–61, 1996.

[Sch03a] M. C. Schlembach. Information Practice in Science and Technology:
Evolving Challenges and New Directions. Haworth Information Press,
2003.

214 References

[Sch03b] K. Schmid. Planning Software Reuse - A disciplined Scoping Approach
for Software Product Lines. PhD thesis, University of Kaiserslautern,
2003. Fraunhofer IRB-Verlag.

[Sch04] K. Schmid. Scoping als Basis optimierter Wiederverwendung. In Böckle
et al. [BKPS04], pages 43–53.

[Scu03] A. Scupola. Organization, strategy and business value of electronic
commerce: the importance of complementaries. In In: J. Mariga
(Ed.), Managing E-Commerce and Mobile Computing Technologies.
IRM Press, 2003.

[SG96] M. Shaw, D. Garlan. Software Architecture: Perspectives on an Emerg-
ing Discipline. Prentice Hall, 1996.

[SG00] K. Schmid, C. Gacek. Implementation issues in product line scoping. In
W. B. Frakes, editor, 6th International Conference on Software Reuse,
volume 1844 of Lecture Notes in Computer Science, pages 170–189.
Springer Verlag, 2000.

[SGM02] C. Szyperski, D. Gruntz, S. Murer. Component Software. Beyond
Object-Oriented Programming. Addison-Wesley, second edition, 2002.

[SHT04] H. M. Sneed, M. Hasitschka, M.-T. Teichmann. Software-
Produktmanagement. Dpunkt Verlag, 2004.

[Sie04] G. Siemens. Learning management systems: The wrong place to
start learning. http://www.elearnspace.org/Articles/lms.htm, Novem-
ber 2004.

[Sim95] M. A. Simos. Organization domain modeling (ODM): formalizing the
core domain modeling life cycle. In Proceedings of the 1995 Symposium
on Software reusability (SSR ’95), pages 196–205, New York, NY, USA,
1995. ACM Press.

[SLS02] C. Schlueter-Langdon, M. J. Shaw. Emergent patterns of integration
in electronic channel systems. Commun. ACM, 45(12):50–55, 2002.

[SME07] SMETE. Science, mathematics, engineering and technology education
(SMETE) digital library. http://www.smete.org/smete, January 2007.

[Som04a] D. Sommer. Qualitätsinformationssysteme für E-Learning-
Anwendungen. PhD thesis, University of Karlsruhe, 2004.

[Som04b] I. Sommerville. Software Engineering. International Computer Science
Series. Addison-Wesley, 7th edition, 2004.

[SS83] G. Schlageter, W. Stucky. Datenbanksysteme: Konzepte und Modelle.
Teubner, 1983. 2nd edition.

[SS97] C. Schlueter, M. Shaw. A strategic framework for developing electronic
commerce. IEEE Internet Computing, 1(6):20–28, 1997.

[SS03] S. Sánchez, M.-A. Sicilia. Expressing preconditions in learning object
contracts. In Proceedings of the Second International Conference on
Multimedia and Information & Communication Technologies in Edu-
cation (m-ICTE2003), Badajoz, Spain, December 3-6 2003.

[ST05] B. Simpson, F. Toussi. HSQLDB user guide. http://hsqldb.org, July
25 2005.

[Sta90] P. H. Starke. Analyse von Petri-Netz-Modellen. Teubner Verlag, 1990.
[STBZ+05] K.-D. Schewe, B. Thalheim, A. Binemann-Zdanowicz, R. Kaschek,

T. Kuss, B. Tschiedel. A conceptual view of web-based e-learning
systems. Education and Information Technologies, 10(1 - 2):83–110,
January 2005.

References 215

[Sun07] Sun. Sun developer network. http://java.sun.com, January 2007.
[SV99] C. Shapiro, H. R. Varian. Information rules: a strategic guide to the

network economy. Harvard Business School Press, 1999.
[SV02] K. Schmid, M. Verlage. The economic impact of product line adoption

and evolution. IEEE Software, 19(4):50–57, 2002.
[SvGB05] M. Svahnberg, J. van Gurp, J. Bosch. A taxonomy of variability real-

ization techniques. Software: Practice and Experience, 35(8):705–754,
April 2005.

[SW05] J. Sandrock, C. Weinhardt. System dynamics business models for e-
learning content providers. In The 2005 International Conference of
the System Dynamics Society, Boston, 2005.

[TDN03] S. Ternier, E. Duval, F. Neven. Using a P2P architecture to provide in-
teroperability between learning objects. In Proceedings of ED-MEDIA
2003 World Conference on Educational Multimedia, Hypermedia, and
Telecommunications, pages 148–151. AACE, 2003.

[TGTG05] P. Tessier, S. Gérard, F. Terrier, J.-M. Geib. Using variation propaga-
tion for model-driven management of a system family. In Software
Product Lines: 9th International Conference (SPLC 2005), volume
3714 of Lecture Notes in Computer Science, pages 222–233. Springer
Verlag, 2005.

[The07] The Apache Software Foundation. The Apache ANT project.
http://ant.apache.org, January 2007.

[Tic92] W. F. Tichy. Programming-in-the-large: past, present, and future. In
ICSE ’92: Proceedings of the 14th international conference on Software
engineering, pages 362–367, New York, NY, USA, 1992. ACM Press.

[TL05] L. A. Tedd, A. Large. Digital Libraries: Principles and Practice in a
Global Environment. K.G. Saur, München, 2005.

[TMC99] S. A. Thibault, R. Marlet, C. Consel. Domain-specific languages: from
design to implementation application to video device drivers genera-
tion. IEEE Transactions on Software Engineering, 25(3):363–377, 1999.

[TR03] A. Trifonova, M. Ronchetti. A general architecture for m-learning.
In Proceedings of the II International Conference on Multimedia
and Information & Communication Technologies in Education (m-
ICTE2003), Badajoz, Spain, December 3-6 2003.

[TR05] L. Thomas, E. Ras. Courseware development using a single source
approach. In P. Kommers, G. Richards, editors, World Conference on
Educational Multimedia, Hypermedia and Telecommunications 2005,
pages 4502–4509, Montreal, Canada, 2005. AACE.

[TS04] S.-O. Tergan, P. Schenkel. Was macht E-Learning erfolgreich? Springer
Verlag, 2004.

[TTC95] R. N. Taylor, W. Tracz, L. Coglianese. Software development using
domain-specific software architectures: Cdrl a011 – a curriculum mod-
ule in the sei style. SIGSOFT Software Engineering Notes, 20(5):27–38,
1995.

[TTK04] A. Tevanlinna, J. Taina, R. Kauppinen. Product family testing: a
survey. SIGSOFT Software Engineering Notes, 29(2):12–12, 2004.

[Tur00] L. Turner. Automating Microsoft Office 97 and Microsoft Office 2000.
Microsoft Office 2000 Technical Articles, March 2000.

[UK 07] UK LOM Core. UK Learning Object Metadata Core (UK LOM Core).
http://www.cetis.ac.uk/profiles/uklomcore, January 2007.

216 References

[Uni07] University of Notre Dame. Latin dictionary and grammar aid. http://
archives.nd.edu/latgramm.htm, January 2007.

[Var97] H. R. Varian. Versioning information goods. Technical report, Univer-
sity of California, Berkeley, March 13 1997.

[Var00] H. R. Varian. Markets for information goods. In Monetary Policy in
a World of Knowlege-Based Growth, Quality Change, and Uncertain
Measurement, 2000.

[Var05] H. R. Varian. Universal access to information. Commun. ACM,
48(10):65–66, 2005.

[VBDT04] P. Vidal, J. Broisin, E. Duval, S. Ternier. Learning objects interoper-
ability: the ARIADNE experience. In IFIP Congress Topical Sessions,
pages 551–556. Kluwer, 2004.

[VD04] K. Verbert, E. Duval. Towards a global component architecture for
learning objects: A comparative analysis of learning object content
models. In ED-MEDIA 2004 World Conference on Educational Mul-
timedia, Hypermedia and Telecommunications, Lugano, Switzerland,
2004.

[vDdJK02] A. van Deursen, M. de Jonge, T. Kuipers. Feature-based product line
instantiation using source-level packages. In Software Product Lines:
Second International Conference (SPLC 2), volume 2379 of Lecture
Notes in Computer Science, pages 217–234. Springer Verlag, January
2002.

[vDKV00] A. van Deursen, P. Klint, J. Visser. Domain-specific languages: an
annotated bibliography. ACM SIGPLAN Notices, 35(6):26–36, 2000.

[vdL02] F. van der Linden. Software product families in Europe: the Esaps &
Café projects. IEEE Software, 19(4):41–49, 2002.

[vdML04] T. von der Maßen, H. Lichter. Deficiencies in feature models. In
Workshop on Software Variability Management for Product Deriva-
tion, Boston, MA, August 2004. Helsinki University of Technology.

[Ver40] W. Vershofen. Handbuch der Verbrauchsforschung (erster Band). Carl
Heymanns Verlag, Berlin, 1940.

[vGBS01] J. van Gurp, J. Bosch, M. Svahnberg. On the notion of variability in
software product lines. In Proceedings IEEE/IFIP Working Conference
on Software Architecture, pages 45–54, 2001.

[VK00] T. Vehkomaki, K. Kansala. A comparison of software product family
process frameworks. In International Workshop on Software Architec-
tures for Product Families (IW-SAPF-3), volume 1951 of Lecture Notes
in Computer Science, pages 135–145. Springer Verlag, 2000.

[VW99] G. Vossen, M. Weske. The WASA2 object-oriented workflow manage-
ment system. In Proceedings of the 1999 ACM SIGMOD international
conference on management of data, pages 587–589, New York, NY,
USA, 1999. ACM Press.

[W3C07a] W3C. HyperText Markup Language (HTML) Home Page. http://
www.w3.org/MarkUp, January 2007.

[W3C07b] W3C. Resource Description Framework (RDF). http://www.w3.org/
RDF, January 2007.

[W3C07c] W3C. Web services activity statement. http://www.w3.org/2002/ws/
Activity, January 2007.

References 217

[War03] J. Ward. A quantitative analysis of unqualified Dublin Core meta-
data element set usage within data providers registered with the Open
Archive Initiative. In Proceedings of the 2003 Joint Conference on Dig-
ital Libraries, pages 315–317, Houston, May 27–31 2003. IEEE Com-
puter Society.

[WD05] G. Wöhe, U. Döring. Einführung in die allgemeine Betriebswirtschafts-
lehre. Vahlen, 2005.

[Web95] Webster’s College Dictionary. Random House, Inc., 1995.
[Wil02] D. A. Wiley, editor. The Instructional Use of Learning Objects. Online

version: http://www.reusability.org/read, February 2002.
[Wit96] J. Withey. Investment analysis of software assets for product lines.

Technical report, Software Engineering Institute (SEI), Carnegie Mel-
lon University, 1996. Technical Report CMU/SEI-96-TR-010.

[WK96] D. Weiss, H. Krcmar. Workflow-Management: Herkunft und Klassi-
fikation. Wirtschaftsinformatik, 38(5):503–513, 1996.

[WL99] D. M. Weiss, C. T. R. Lai. Software Product-Line Engineering: A
Family-Based Software Development Process. Addison-Wesley, Boston,
1999.

[WLLS98] R. Y. Wang, Y. W. Lee, L. L.Pipino, D. M. Strong. Manage your
information as a product. Sloan Management Review, 39(4):95–105,
Summer 1998.

[WV01] G. Weikum, G. Vossen. Transactional Information Systems: Theory,
Algorithms, and the Practice of Concurrency Control. Morgan Kauf-
mann, 2001.

[Yin03] R. K. Yin. Case Study Research. Design and Methods. Sage Publica-
tions, third edition, 2003.

[Zan02] C. Zanger. Leistungskern. In Handbuch Produktmanagement. Gabler,
2002.

[ZC03] D. Zubrow, G. Chastek. Measures for software product lines. Technical
Report CMU/SEI-2003-TN-031, Software Engineering Institute (SEI),
Carnegie Mellon University, 2003.

[ZMM06] C. Zannier, G. Melnik, F. Maurer. On the success of empirical studies
in the international conference on software engineering. In ICSE ’06:
Proceedings of the 28th international conference on Software engineer-
ing, pages 341–350, New York, NY, USA, 2006. ACM Press.

[Zus94] H. Zuse. Complexity metrics/analysis. In J. Marciniak, editor, En-
cyclopedia of Software Engineering, volume 1, pages 131–165. Wiley,
1994.

Index

2-3-6 concept, 23

ADL, 31
AICC, 31
application engineering

definition, 59
application-requirements matrix, 49
architectural styles, 43
ARIADNE, 31
aspects, 37, 57

binding mechanisms, 56

CISCO RLO/RIO, 31
component-based software development,

35
component model, 36
software components, 42

computer-based training (CBT), 27
content management

systems (CMS), 24
crosscutting concerns, 37

design patterns, 42
Desktop Workflow Engine, 87, 149
digital information products, 16
digital product

definition, 15
digital products, 13

characteristics, 18
classification, 20
examples, 16

document management
systems (DMS), 24

domain engineering
definition, 47

Dublin Core(DC), 31
DWE, see Desktop Workflow Engine

e-learning, 28
electronic publishing value chain, 23
experience goods, 12

FAST, 50
feature modeling, 51
FODA, 51
frameworks, 42

Goal-Question-Metric approach, 50
Google Earth, 18

IEEE
LOM, 33
LTSC, 31

IMS, 31
Content Packaging, 33

Learnativity Content Model, 30
learning management system (LMS), 28
learning objects (LOs), 29

marking graph, 132

NETg, 31

object-oriented programming, 42

Petri net, 119
PLANT, 75

atomic features, 109
conceptual product line model, 108

220 Index

content component model, 114

content requirements, 105

core asset version graph, 115, 117

core assets, 83

crosscutting feature, 109

database editor, 153

domain, 104, 108, 117

effort estimation, 96

family engineering overview docu-
ment, 94

feature, 108, 117

initiation, 86

models, 83, 87

process model, 80

product map template, 116, 117

QX net, 119, 121

patterns, 123

roles, 100, 159

scoping, 104

strategy, 79

variables, 156

variant, 79, 119, 143, 144

workflow editor, 150

workflow warehouse, 125, 153

production plan, 55
products

classification, 12
core benefit, 10
definitions, 9
intangible, 13
tangible, 13

PuLSE-Eco, 50

scoping, 49
SCORM, 34

CAM, 30
search goods, 12
Single Source Publishing, 163
software product line

cost model, 64
definition, 44
evolution, 67
formal definition, 68
forms of organization, 66
hypotheses, 45

Web-based training (WBT), 27
workflow management

systems (WFMS), 24

