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Abstract

The transport models in multi-component tokamak plasma with various impurity ions are
discussed here for implementation in the tokamak integrated code TOKES. Impurity transport in the
core and boundary plasma of a tokamak is a crucial issue for a fusion reactor device like ITER and
DEMO. In steady state reactor operation the tokamak bulk plasma can be contaminated by intrinsic
impurities, which can considerably affect the confinement time and bring about the burning plasma
dilution. The impurities are originated due to erosion of plasma-facing components and,
particularly, during the transient processes like repetitive ELMs, small disruptions etc. Mitigation of
ELMs can relax the power loading on PSCs and the problem of core plasma contamination.
However, it is still remains unclear to which extend these ELMs must be reduced in order to have a
moderate erosion of divertor plates due to physical sputtering during the long-pulse reactor
operation to avoid intolerable accumulation of impurities in the core. Impurities, originated at the
plate can migrate through the SOL and penetrate through pedestal region into balk plasma. Effect of
impurity screening due to ELMs repulsive force (entraining effect) can protect balk plasma from

impurities.

The transport features in tokamak plasma in the presence of arbitrary concentration of various
impurity species in different charge state are investigated. Impurity behaviour in the balk and
boundary plasma can be simulated in the frame of the integrated code TOKEs. Recently the code
was considerably updated [1]. The neoclassical and anomalous transport coefficients where
implemented in balk plasma and the pedestal region together with ELM model. The SOL and
divertor region were elaborated. These improvements and the impurity transport models, described
here will enable a self-consistent simulation of impurity dynamic in muli-component complex

plasma, where impurity ions dominate and determine the transport properties.

The various transport models for multi-component plasma have been reviewed and proper
equations, describing a multi-component plasma transport have been suggested for implementation

in the integrated code TOKES.
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In the frame of the Contract the following tasks have been completed:

Analytical models of the multi-fluid 1D impurity equations (in the frame of Grad and the
Chapmen-Enscog methods) are derived and analysed. The models describe the dynamic of
impurity ions of arbitrary charge state in the SOL and divertor region.

The Reduce Charge State procedure was elaborate to decrease the number of fluid equations
in the SOL for impurity ions of each charge state to the equations of only nucleus. Source of
impurity ions due to the plasma flux impinging the tungsten divertor plates can be self-
consistently calculated.

Boundary conditions for impurity ions flows at the separatrix and at the chamber wall are
formulated and can easily be implemented into the code.

Simulation of drifts in transport equations is introduced. Drifts can affect the spatial
distribution of extrinsic impurities, lunched into plasma for disruption mitigation.

The modelling of neutral atoms in tokamak boundary plasma is suggested in the frame of fluid
approximation.

Sputtering of the first wall and divertor plates in multi-component plasma in the presence of

impurity ions and the secondary electron emission is self-consistently described.
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Zusamenfassung

Thema dieser Arbeit ist die Betrachtung von Transportmodellen fiir Multi-Komponenten-
Plasmen mit verschiedenen Verunreinigungen zur Implementierung im  Tokamak-
Simulationsprogramm TOKES. The Verunreinigungstransport im zentralen Plasma und im Plasma-
Randbereich ist von entscheidender Bedeutung fiir Fusionsreaktoren wie ITER und DEMO.
Intrinsische Verunreinigungen im zentralen Plasma eines Tokamaks kdnnen bei stationdrem Betrieb
signifikant die Einschlusszeit beeinflussen und fithren zur Verdiinnung des Fusionsbrennstoffes.
Diese Verunreinigungen werden durch Erosion an den dem Plasma zugewandten
Materialoberfldchen gebildet. Dabei konnen transiente Prozesse wie die sich wiederholenden ELMs
und kleine Disruptionen eine bedeutende Rolle spielen. Eine Abschwichung der ELMs kann den
Leistungseintrag auf die Erste Wand und das Problem der Plasmaverunreinigung verringern. Es ist
aber noch nicht klar, wie stark diese Abschwéchung und Reduzierung der ELMs erfolgen miissen,
damit die physikalische Zerstdubung auf den Divertorplatten unter Langpuls-Bedingungen
akzeptabel bleibt und nichttolerierbare Verunreinigungskonzentrationen im zentralen Plasma
vermieden werden konnen. Verunreinigungen, die von den Divertorplatten erodiert werden, konnen
durch die SOL und die Piedestal-Region in das zentrale Plasma gelangen. Der Abschirmungseffekt
durch die abstolenden Krifte der sich regelméBig wiederholenden ELMs (Mitnahme-Effekt) kann

das zentrale Plasma vor den Verunreinigungen bewahren.

Die besonderen Transportprozesse in einem Tokamak-Plasma bei Vorhandensein beliebiger
Konzentrationen verschiedener Verunreinigungs-Spezies in unterschiedlichen Ladungszustdnden
wurden untersucht. Das Verhalten der Verunreinigungen im zentralen Plasma und im Plasma-
Randbereich kann mit Hilfe des Programms TOKES simuliert werden. Dieses Programm wurde
kiirzlich bedeutend erweitert [1]. Neoklassische und anomale Transportkoeffizienten wurden fiir das
zentrale Plasma und das Randschichtplasma implementiert und ein ELM Model integriert.
Insbesondere wurden die SOL und der Divertor-Bereich untersucht. Diese hier beschriebenen
Verbesserungen erlauben eine selbstkonsistente Simulation der Verunreinigungs-Dynamik in einem

Multi-Komponenten-Plasma, in dem die Verunreinigungsionen die Transportprozesse dominieren.

Die verschiedenen Transportmodelle fiir ein Multi-Komponenten-Plasma wurden analysiert

und geeignete Gleichungen zur Implementierung in das Programm TOKES entwickelt.
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Im Rahmen des Vertrags wurden die folgenden Aufgaben abgeschlossen.

Analytische Modelle der 1D Mehrfliissigkeitsgleichungen der Verunreinigungen wurden
abgeleitet und analysiert (mit Hilfe der Grad- und Chapmen-Enscog Methoden). Die Modelle
beschreiben die Dynamik der Verunreinigungen beliebigen Ladungszustandes in der SOL und
im Divertor-Bereich.

Die Prozedur der Ladungszustands-Reduktion wurde angewandt, um die Anzahl der
Gleichungen im Mehrfliissigkeitsbild der Verunreinigungen mit vielen Ladungszustdnden auf
die Gleichungen fiir nur jeweils unterschiedliche Verunreinigungselemente zu reduzieren. Die
Verunreinigungsquelle aufgrund der Zerstdubung der Divertorplatten aus Wolfram kann
selbstkonsistent berechnet werden.

Die Randbedingungen fiir die Verunreinigungsionen an der Separatrix und an den
Materialoberflachen der ersten Wand wurden formuliert und sind einfach im Programm zu
implementieren.

Simulationen von Driften in den Transportgleichungen sind eingefiihrt worden. Diese Driften
konnen die rdumliche Verteilung von Verunreinigungen beeinflussen, die z.B. fiir die
Abschwichung und Verhinderung von Disruptionen von au3en eingebracht werden.

Die Modellierung von neutralen Atomen im Randschichtplasma eines Tokamaks wird im
Rahmen der Fliissigkeits-Betrachtung vorgeschlagen.

Die Zerstdaubung an den Materialoberflichen der ersten Wand und der Divertorplatten in
einem  Multi-Komponenten-Plasma und  bei  Beriicksichtigung von  Sekundér-

Elektronenemission ist selbstkonsistent beschrieben.



Introduction

In the field of plasma-edge modeling, there has been much resent interest in obtaining various
transport models which adequately account for the effects of impurities in contamination of fusion
plasma and mitigation of disruption events in reactor plasma. During the transient processes like
ELM and pre-emptive disruption mitigation by intensive gas puffing the boundary plasma becomes
strongly mixed with neutral atoms and impurity ions of different species in various charge states.
This multi-component mixture reviles its own specific properties, which require a special
description. Below two approaches for multi-component plasma are suggested for the SOL and bulk
plasma region as a possible approach for numerical implementation in integrated code TOKES [2-
5]. There are two types of equations: for each charge state of species and the equations, describing
plasma as a whole. For partial quantities, it is convenient to work in the coordinate system of
reference where the whole plasma does not move.

The two-dimensional transport equations are presented to simulate multi-species plasma in
curvilinear configuration. The equations are a direct extension of Braginskii equations for electrons
and single ionic species to a multiple case. The equations are of Navier-Stokes form as regards the
parallel flow along B and of a diffusive form in the radial direction.

The transport equations and corresponding kinetic coefficients for multi-component plasma in
1-D can be written in the moment approximation directly related to the 21-moment Grad method,
which can be naturally generalized to the plasma with many impurity species in different charge
states. Here we will derive the 21-moment equations, which being equivalent to Braginskii ones,
but having an advantage to be the first order differential equations. Moreover, this system is
inherently can be generalized to account for the kinetic effects in the SOL region.

The Braginskii equations are based on Chapman-Enscogo approximation. In this
approximation the equations for coefficients are truncated by some iteration procedure, where all

coefficients (or moments) the higher order are expressed through the low momentsn,,u, 7, and its

partial derivatives.

In the Grad method the equations for coefficients are truncated based on assumption that for
each system of equation of the order k the distribution function can be approximated in series,
where the coefficients of higher order than k assumed to be zero. This allows one to close the

system of equations. The difference in results obtained by these two methods for multi-component
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plasma becomes negligible in the case when the 21-moments approach is used. The difference
between the Chapman-Enscogo and the Grad methods is also in the choice of reference coordinate
system. The moment equations in Grad method are derived in a centre of mass frame of reference,
which has an advantage of having a simplified evolution of the collision integral. Braginskii uses a
multiple set of velocity reference frames, one for each species, corresponding to the mean mass
velocity of each species. This has an advantage of reducing the number of terms in the fluid
equations, but complicates a rigorous calculation of the collisional terms, along with relationships
of energy conservation due to collisions.

Both sets of equations are presented here for implementation in TOKEs.

The presence of several different multiply charged ions in the divertor plasma increases
immensely the number of equation to be solved. The fluid equations for separate charge states of a
given isotope can be replaced by a set of averaged equations representing an effective single
reduced charge state. These equations are fewer in number than the original equations for the

individual ions by a factor of Z_, for each speciesa. This Reduce Charge State approach,

suggested here for implementation in TOKES, was incorporated into B2 Code allowing one to
simulate divertor and the SOL plasmas with multiple ion species plasma without excessive time
consumption.

Classical particle drifts across the magnetic field can play an important role in tokamak edge-
plasma transport. The relative influence of these terms is important for self-consistent simulations
by including them, together with anomalous diffusion transport, in a 2-D fluid model of edge-
plasma transport for the tokamak geometry. The drifts cause asymmetries in the plasma equilibrium
which depend on the direction of the magnetic field, B. Here transport equations are complemented
by drifts and some results are presented, showing how drifts modifying plasma density and
temperature distribution near the divertor plates.

In this report the sheath potential formation at the divertor plates in the presence of impurity
ions and of secondary electron emission is self-consistently considered. This is important for
simulation of boundary plasma in the case of multi-component species at the vicinity to the divertor
plate. It is shown that the sputtering at the plate or limiter can increase the potential drop, when
impurities cause strong increases of electron upstream density. Impurity flux to the target as far as
the secondary electron emission (SEE) from the target can only reduce the potential drop. The SEE
yield saturates due to space charge limitations and cannot be used to reduce completely the
unfavourable effect on sputtering yield of the acceleration by the potential drop even when a
dilution effect of positive impurity ions is taken into account.

It is now recognized that the lifetime of a tokamak reactor is determined by damage of structural

elements facing the plasma (e.g. the first wall and divertor plates). For this reason, it is important to
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obtain the most accurate estimates of erosion rates for these elements. Available experimental data
applied to steady state or long pulse operation indicate that the first wall erosion rate is due mainly
to charge exchange neutral sputtering, and that fuel and impurity ion physical sputtering
(particularly self-sputtering) determines the erosion rate of divertor plates. The sputtering yields
averaged over the distribution function and over the projectile incident angle have been obtained for
some candidate target materials (C, Al, Ti, Fe, MO, W) and incident deuterium and tritium ions. It
is shown here that the sputtering yield increases if the sheath potential is taken into account and that

the usual estimation of the sputtering yield at energy E =3.5Z T, is underestimates the yield value.

The effect of neutral atoms is not included in standard tokamak transport treatments. However,
it is clear that neutral atoms in the tokamak edge can influence global confinement by affecting the
transition from low to high confinement. The physical mechanism by which this occurs is not yet
clearly identified, but it is well known that neutrals influence ion dynamics through charge-
exchange interactions. Furthermore, the radial neutral flux of toroidal angular momentum can
modify or even determine the edge radial electric field and plasma rotation. The radial localization
of the neutrals also introduces a shear in the flow that may affect edge turbulence. Neutral atoms
play an essential role in momentum transfer from the plasma to the wall, thereby facilitating the
transition from attached to detach operation regime with increasing input power. They can also play
an important role in mitigation of ELMs and runaway electrons. In this report several models of
neutral atoms transport in boundary plasma and in the SOL is considered.

Some additional issues were also considered in this report and are presented in attachments.
These concerns the derivation of frictional and thermal forces in complex plasma, expressions for
Coulomb collision frequencies in multi-species plasma, the origin of plasma rotation in poloidal
direction, the quasi-dynamic transport across B, the explanation of the origin of 5/2 term in the
energy balance equation in the case of current-less plasma, compendium of atomic data for Ar and
Ne, needed for our tacks and, finally, the numerical program written in FORTRAN for neutral

atoms.



I. Transport in complex plasma-main definitions and transport equations

We start first with the basic definitions and conservation equations. The main assumption
hereafter is that the fluid approach is justified in the relative cold and dense plasma of interest. We

will consider a reactor plasma of electrons and arbitrary number of ion speciesa, £ of different

massm,, mgand in different charge states, Zand¢, correspondingly. These ion species include

o

atoms (Z,£ =0) and deuterium and tritium hydrogen isotopes. The former can be taken in equal

proportion (deuterons). The kinetic equation for ¢ species in Z charge stage reads:

Ve V.S + FVole) D Sty e s (L.1)
at ma B.E ’
where

V, is the gradient in velocity space, St, 4 is the collisional term and £, is the force

F, =eZ(E +[VB]) (1.2)
We introduce the current velocity, c, and diffusive velocities:

w, =u, —u, and W,=U,—U (1.3)

We will distinguish the macroscopic parameters of each particular component in its charge state, the

species and the plasma as a whole.

Densities.
n, = jfwdv, n, = an and »n= Zna , (1.4)
P =M, Py =m,n, and  p=3p, (L5)
Velocities:
u —LJ.Vde u —LZ,O u__ and u—lz,ou (1.6)
oz nm oz > 24 pa - oz oz p - a~ad ¢
Temperatures:
3 m )
T = T“I(V—u) fodV, n,T,=>n,T, and nT=Yn,T, (L.7)
The mass flow:
m, U, =p,w, = maJ‘cfde, m,U,=p,w, (1.8)

From definition of mass average velocity, u it follows that

D PV =Pt —11,) =0, D PuWo =D Pyt —u)=0 (L9)



Partial and total pressure tensor(r,s components):

Pl =m,[cc fpdV , PP=3P: and P"=3P (L10)
Pl=p, 6. +7" P =p S +7° and P =pd +n" (L11)
Pressure:
p,=n,T, = % [¢feav, p,=ng, —and p=>n[T,=nT (L12)
Viscosity:
s =m,|(cc, —%é‘mcz )V, dV,  xi=>7xr and 7%= 7" (1.13)

Partial and total heat flues:

q. :%JccszdV, 4,=>.4q, ad g=>gq, (1.14)

o

I.1 The partial equations for arbitrary species and charge states

There are two types of equations: the partial equations for each charge state of species and the
equations, describing plasma as a whole. For partial quantities, it is convenient to work in the
coordinate system of reference where the whole plasma does not move. For this purpose it is

convenient to present the current velocity of specie,c, as ¢=V-u, so that an average of

<c> equals zero (<u> = V). In this variable kinetic equation reads:

du]
F, -
%+(cwv)fm+(—ﬁ Vfoz Zf af zSt (115)

a

The fluid equations for macroscopic plasma parameters can be derived from the kinetic equation by

multiplying it on some dynamic variable (V, I, t))and integrating over the velocity space. For «

type specie in Z charge state the fluid transport equation reads [6]:

(% + uanm@/m) +n, (W, )Vu+Vn, (W,c)—n,E, =Y. j W, St,, gedc (1.16)
BE

where

T, = {<aa%> +(cVy, )+ <(FOZ /m,, — (% + uVjujV Ve = <cs E)a%> g—bclj>} (1.17)

Here <l//a_,> indicates the averaging procedure

R (W) = [V f e (L18)



and f,, is the distribution function of & species in Z charge state, chosen as a Maxwellian one.

m,c and (m,c’/2) correspondingly, we

o’ (24

Choosing in conservation equation above ¥, =m

coming to the partial equations for arbitrary specie ¢ in arbitrary charge state Z.

e particle continuity:

dp,. Ouy 0P W, dp, . .
& +0, ox, + ox, =S, or 7+pazdlv(ua)+d1v(pazwa§):5m (I.19)

® momentum

dop, w! u’ . ou’ ou" OP} )

oV @ 4 ! + s +—% —n_eZ(E"+[u_B])=R] 1.20
i TP TPeNe g T Pate g S T Ge (E" +[u,Bl) =R, (1.20)

or

Wy Doy p i divia)+ p, (w, VW + e eZ(E" +[u,B]) =R, (L13)
dt dt ox,

o cnergy

3(dp ou., s ou  dq. .

I e g a |y prs o g e cF* ) = I.14

2[ a1 ax,j “ ox, ox, nm< O‘Z> O @14

or

3(dp , ou, , du

| X 4y d + P} —%+d - cF - <) = I.15

2( 5 P W(ua)j “ ox. v(q,.) naz< @~ P > O, (1.15)

d 0 .. . L :
Here % = > + (uV) and the repetitive Latin indexes indicate summation.
t t

R = [m,e,St, yde Q. = [ myc,St, gede (1.16)
B B
noe(Fo ) =n,e(F, )= 0, %ua (F,,) = eZ(E+[uB])) (1.17)

Equations for pure “nucleus” e.g. for quantitiesn, = Zn

z

T,and u,can be obtained after

oz 2

summation over charge states Z the equations for partial quantities presented above

e particle continuity:

dgt « 1 p divu)+div(o,w,)=mn, (L18)
or

dn ) :

_rdivln (utw, )=, (1.19)



® momentum

r d r rs
Wae o Ny wrdivlu)+ p, (w VW + 25— e (E, +Tu,B],) = R, (1.20)
dt dt ox,
or
ou., ou’ | JP’ 0
“Ctu —% |+ —4— ww |-ne (E +[u,B])=R] [.21
pa( at o axrj a‘xA a.xA (pa o 0{) o 0{( r [ oz ]r) o ( )
® energy
3(‘% + pdiv( )j+P” Mt div(g)-n,(F, - p, TN 0 1.22)
=== v(u —+div -n,(cF,—p,— )= :
2 dt pO{ o axé qa’ a o pa dt a
or
%na ddT;‘ + podiv(u) + 7, gz +div(q) - % D div(n,,) = J(E+[uB) =0, (1.23)
d 0 .. . L :
Here —= > + (uV) and the repetitive Latin indexes indicate summation.
R,=DR,  0,=2 0. (1.24)
. d
F,)=n,(F,)—p,—u F,)=eZ(E +[uB 1.25
n(Fo) = n(Fa) = Pa (F,) = ez(E +[uB))) (1.25)

One can note, that S, term in the continuity equation turns to zero after summation over  and f

particles in the case of pure elastic collisions. But in the case of ionization or

recombination S, = m,_n,,,

where 7, is rate of « particles production.

If further sum up over « the equations for “nucleus “, then the right hand side terms in the rest

equations will also tern to zero, since

>R,=0 >Q,=0 (1.26)

1.2 The conservation equations for entire mixture
Finally, summing up the last equations over Z and & one gets finally the equations for entire
mixture:

e continuity equation

a;l—'f + 0 -div(u) = Zmaﬁa or % + div(nu) + Zdiv(nwa) = Zmai’la (1.27)
a.B o a



® momentum

du, OP, A\ du , N
pr+ e ;na@} =R o8 p grad(p) + divr —[jB]=R__,, (1.28)
® cnergy
3(dp . du .
—|—+pd +P —+d - cF, )= 1.29
2((,27 p lV(u )j rs axs lV(q) ;na< a> de ( )

Here R._, is the momentum source due to charge exchange collisions with neutral atoms and Q,,

are the radiation energy losses.

Using the definition for the current density

i=>len,w, (1.30)

and quasi-neutrality, Zeana =0, it is easy to see that

> .n,(F,)=[jB] (1.31)
and
> n,{cF,)=j(E +[uB]) (1.32)

Now, the equation of motion of entire plasma (momentum equation) can be written as:
du . .
,07 + grad(p) +divr —[jB]=R,__,, (I1.33)
t

As far as the energy equation concerns, it can be presented in variety forms:

e femperature equation for o species

3 dT Ju
—n,—+ pdiv(u)+ 7.
Sl TP iv(u) + 7, .

*tdiv(q) -2 Y div(n,w,) — {(E+[uB]) = O,,, (134)
2

o energy balance of entire plasma

%6‘, + a’iv((el +plu+rmwu + q) =jE, where £ = +=p (1.35)

In quasi-hydrodynamic approximation, when|wa| <<V, , the distribution function

for oz particles can be written as £, = fo (1+y,w_c),

3/2
where f) =nw(gi] exp(-y,.c>/2) andy, =m, /T ,c=V—u.
2

Notice, that in this case the thermal conductivity and viscosity can be ignored and



m_m
R, =- i (w, —w,), =—2 7 1.36
a na;ﬂaﬂ aﬂ(wa Wﬁ) :uaﬁ m +mﬁ ( )
0, =33 n,ltoy lmy, +my et (T, -T,) (137)
B
4'\[ n 5 Zz ﬂa ey

ZVOZﬁf ALE TN B =Y 0 8 (1.38)

Taﬂ ma ¢
4\]27[ 2 zﬁ nﬂé—’ ll’taﬁ 4’\} 41 l’lﬂ§Z 5 W’ﬂaﬂ 139
Voaﬁs‘ 732 3 T3/2 ( . )

aﬂ mg, mg,

In this approximation the closed system of equations for #n,,u, and7, of a particular

species « reads:

—d‘;’:“ +div(n,(u+w,))=1, (1.40)
P S N, =, (E [0, B = =1, 3t w, = w,) 4
B
%na P div(u,) F W R, = 3, > [y [my, +my N7 (T, = T5)+ 0, (142)
B

1.3 The equations for diffusive velocities
Equations for diffusive velocities can be obtained from the momentum equation by replacing

d u du

a~ o ==> 24

dt dt

OZWOZ

, that corresponds to the situation, when the terms are disregarded in

compare with the terms of the order z‘&éwa in the r.h.s. of the equation. Then the equation of motion

can be recast so:

e S g (W =W, )= 6, (E-+ [uB] + [w,B]) - Vp, = p, 21 (143)
B
It also can be written as
w, —w,)= —|vp, —Laypy|-LaiB
naZﬂaﬁTaﬁ Wa Wﬂ _naea(E+[uB]+[WaB]) P 0 P 0 [.] ] (144)
B

if one replaces term p% by p% =[jB]—grad(p), neglect the viscosity term. The two equations

presented above allow one to find diffusive velocities,w by keeping in mind, that j= Zeanawa

a

and z p,W, =0.The explicit solution of these equations against w ,can be written as [6]:



(P
W, =X, — ZL—VJ "X, (1.45)
y=1 IO
where
/-1 ul / /-1 ul / /-1 ul /
X, =|c Zcﬂa-gﬂ,,+a Za s EpL A Z;(yﬂ|a|ﬁa-[sﬂh] (1.46)
Lk Pk B.y#k

Here the following definitions are used. Index kis for the arbitrary chosen component of initial
equations, which is omitted and not considered. One should keep in mind, that system of equations
for w,is linear dependent; therefore the actual number of equations needed for solution must be in
one equation smaller, N -1, where Nis the total number of components in mixture;

Xy =W, —Wg, h:B/|B| and

e, =ne, (E+[uB]) - [Vpa - pavpj ;
0

N
. — -1, _ -1, /3 _ ’ ;7 - .
€y =h(he,);  Cop =NullgTips Cow == Myl To s ] =det(cl,) andc), is the c,, matrix,

r#o

where the £ line and k column are removed; the (a, yoj )cofactor (minor) of that determinant matrix

is |c'|aﬁ.
The equations obtained above allow one to calculate diffusion of arbitrary particles both along

and across the magnetic field as well as. For magnetized plasmaw,z,, >>1 equation () can be

recast as:
B 1 du
| —wy)=[whl+—=|n,e,E-Vp, - p,— 1.4
St s o ) =D e 5, 0,4 147
where E’=E+[uB], 0, =e¢,|B|/m, and 7l = 4\/32_7[ o'l ”ﬂT{iZZZ \/E
ofp o

In zero approximation over the small parameter (a) 3 )_1 the last term on the r.h. side can be

a®of
dropped and after substitution of zero order solution into the r.h. side term the first approximation

. 0 1
can be obtained. As aresultw,, =w,, +w,, , where

Wy, = L [E'h]+ [hVp]+ L [h @] (1.48)
B £, w, dt
and
1 1 3| Vipe 2, ViPs 4 du,
= _ T a _ + -—= 1.49
Woi (maa)a )2 ;/’laﬂ of {( n, Zﬂ nﬁ m, Zﬂ mﬁ dt ( )

10



Keeping in mind, that j = Z e,n,w,, easy to obtain:
[24

. 1 O du
=—[hVp]+—=[h— 1.50
L=7 [hVp] 2 [ " (1.50)
or by substituting the time derivative in the last term: hereE’, = E| +[uB], and
7 -1
<Z> => (m.p,/p2,) (py=>"(m,p,1pZ,)(m!Z) (L51)

Equations above allow one to conclude, that the relative diffusion of plasma components across the
magnetic field line in case of electrons and background ions occurs with the rate of penetration ~
D, (47zp /B’ )/ L,where D, =c’ /4o is the diffusion of the magnetic field through plasma:

2

c” op op
u, =u, =<-P-p P 152
“ " oB or " por (1.52)

where S =4mT /B*. However, in the case of multi-species the mutual diffusion of different
species occurs in (m, /m,)"* times quicker than the magnetic field penetration rate. Therefore, in
time scale much smaller then the penetration time impurity ions can come in equilibrium in radial
direction: Z n,,w,, =—Zzn 4wy .

In the case of =i, f=1

, P M T ap,— Zn, dp
ZingW, ==L nw; = ZIle (g_—z p _arl (I1.53)
i My

Diffusion time (ms) vs temperature (eV)

0.1 s

001 \ ---~~-

Ix107°

10 100 x10°
T

Fig. (I.1) Diffusion time of impurities vs. temperature for different density.

(n=10",5-10",10",5-10" cm™
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this brings to the Boltzmann type radial distribution of impurities in time scale

z,=D,(4mp/B*)/L. (1.54)
For L ~ a and typical values for ITER parameters a = 2m, B = 5T diffusion time is shown in Fig.

(I.1) for different density values~10",5-10",10", 5-10" cm ™.

12



II. Transport equations for the multi-component tokamak plasma

The two-dimensional transport equations are presented to simulate multi-species plasma in
curvilinear configuration with the x-axis in radial direction and the y-axis in poloidal direction. The
plasma inside the separatrix is assumed to be quite dense and relative cold, allowing one the fluid
description. The present equations are a direct extension of Braginskii equations for electrons and
single ionic species to a multiple case. The equations are of Nervier-Stokes form as regards the

parallel flow along B and of a diffusive form in the radial direction.
II.1 The 2D multi-species transport model based on the Chapmen-Enscog approach

Specifically, we suggest for TOKES the following system of N transport equations for each

ionic species a, (1 <a < N, and where a =1 corresponds to background ions):

Continuity of species a:

on 1 o Vg 1 0 +g
e nv TN,y N{oV II.1.1
\/_ a h a a, x \/_ a ( a a y) n <O- > ( )
D on
v o=_"a% I1.1.2
Pl o h. Ox ( )

Momentum balance of species a (1<a < N)
v
a (m n V ) a \/E anaVa //Vﬂ _£‘2g.’70 4 a,// +
\/_ ay Ty Yy

16{\@ , o, e %}: (IL1.3)

ax hj na,x ax

m
a'ba” a,ll
h,

=b_ﬁ{_aﬁ——zana ap‘f+RT +R] }+ZR ab S

ex hf Ze,x ax

§t<se>+la{f[<se+pe>v = aTe]}

(IL.1.4)

+ pe )Ve,y -

e

V.. V.,
£§Z‘, ’ aTe — e,x ape +iape +Qw + SL:
hy 7% dy h, ox h, dy ’

13



lon energy balance:

gt(ga)-’—\/lngx{f((ga +pa )Va,)c +qa,x +”a,x )}+
1 a \/E Vex ap Vey ap i
I = 14 —__ex e ey “Fe S
+ \/g ay{ hy ((ga +pa) a,y +qa,y +ﬂ-a,y )} h ax hy ay +Qae + £
Here:
na:Zn% n,=y7Zn, n, :ni+2n%z.j=ni+z-na
J a J
B 1
V..=>.ZnJV,. In, V,,=>.ZnV, In, Voy =V, =—V,
’ a ’ | a . . BH ” bH ”
1 on, 1 9T,
I/i,// = I/i,// + Vpolrot /bH Vpolrot = szTz [n_lg -2. EEJ
n, + Zn z3
z= Z.nm/na A %
; jraj e n,
g - — P} =nT’ Eaz— a+_ aVa
e 2 pe pa a’i 2 p 2 ;p Vol
n 1
Qc’ﬁ = 3n€z Veﬁs‘(Tﬁ TE) Veps =Vo 52 /33/52 T
My I, " \m,
Where the coefficients and forces are:
. Z2 T (1+0.522,,)
Ry, =an, —*——= a,=227, *
Z, "(1+2.652,, f1+0.285Z,, )
. 722 T 1.56-(14+422,)-(1+0.527,)
a‘i = aina - . ai =
’ 1422, 9y (1+2.65Z,)-(1+0.285Z,)

o (140247,)-(1+0.93Z,)
“ (1+2.652Z,) (1+0.285Z,)

Foo__ 1), ( _ )
Ry ==c¢c,p-mnyV,, -V, =V,

a a a

x a7, _ Z_;a_T I = n. ang,// T = 77; aVaz,//

1

R N I T S T o

14

(IL1.5)

(IL1.6)

(IL.1.7)

(IL.1.8)

(IL1.9)

(11.1.10)

(IL1.11)

(IL.1.12)

(IL.1.13)

(IL.1.14)

(IL1.15)



0,.=3n,Y v, (T,-T,) v,, = “/m_en Z, (IL1.16)

a a.e = 3/2 e
ma Te ma

The external momentum source due to e.g. plasma rotation in poloidal direction:

S™ =mn V' T, (IL.1.17)

aba” ay

In these equations
X - 1s the radial axis,

y - 1s the poloidal axis,

g =hnh,r, h, - metric coefficients, (the coordinate system is orthogonal curvilinear)

B,, B - poloidal and total magnetic fields,
Z,,m, - charge number and mass of an ion of speciesa,
Suns Sqm - volume sources of ions and momentum for speciesa,
AJ - volume sources of electrons and ion energy,
Nuy> Nax - Poloidal and radial viscosity coefficients for speciesa,
R s - friction force on ion species a due to speciesb,
R}, R, - thermal forces for electrons and ions,
Dy, D; - diffusion coefficients for speciesa,
Xy - heat conduction coefficients,
Vo, - velocity in poloidal direction
. B
Vsi - velocity along B, = ?Va,y’ ,

15



The other definitions are summarized here:

n; =Zna

n, =).Zn,

P. =m,n,

p. =n,T,

p. =nT,

Vasu :BA;V” =iVa’y

Z =ZZjna/ne

g, :%nT+;%,OaV2a,y,//

=3 16neTeTe za Zal’la
Ze,SH - m szjnb

Z*l
Z — 3 16 tT:Tii Z I’l
z Z, pp Moy
lLlab :mamb /(ma +mb)
0, = :—m n ZZ 1 )
ea m T

0=-0,,-InN,(oV) —(a,, +nB,In’

na,y:

(B
Hey = B Koy
_(BoY
iy = B Xis

y -l/y
Ze,// = Ze,SH ' 1+ qﬂ
qrL
a7,
Gesu = ~Xeysu Fn
v
9o, =0.12n,T,\T,/2m, yoe<l
1, o
qa,x hx a,x ax
q —LZ o,
a,y hy a,y ay
n.,=096nT 7, ——a
a,ll . atavii \/W
RE = i aTe
ae e Zeff a ay
1+0.527
a, =227, ( )
(1+2.652,, N1+0.285Z,, )
r 2V2 or
Rai = O(ina—_l
’ 14422, 9y

_156- (14422, ) (1+0.522,)
" (1+2.65Z7,)-(1+0.285Z,)
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e Correspondence to original TOKES equations and definitions is shown below.

Here x - is the radial axis, y - is the poloidal axis,

w =¥ -is the poloidal flux ¥(r)=(27)™ I (@0 : B)a’?

G=h,/B,
rhoh, =g
S=hh, =\g/r, r=h. ~ B=(0,B,,B;) B, =-¥(r)/rh,
u=V,/B,
d d o : :
g =h, 30 therefore the continuity Eq. in TOKES can be written as
dp 0 on_ B, 1 9 J‘
G+ (pu)=0 T+~ (nV, /B, nV,
a[ + ay (pu) = at hy ( ) \/_ a a a})

this coincides with the equation:

a” 13\/_“ 9 e,y - —aN(o¥), =0
Tz ata, " \/‘a h,

I1.2 Impurity simulation in the SOL plasma: the Grad 21 moment approach

The transport equations and corresponding kinetic coefficients for multi-component plasma in
1-D can be written in the moment approximation directly related to the 21-moment Grad method
which can be naturally generalized to the plasma with many impurity species in different charge
states [7-9]. Here we will derive the 21-moment equations, which being equivalent to Braginskii
ones [10], but having an advantage to be the first order differential equations. Moreover, this system
is inherently can be generalized to account for the kinetic effects in the SOL region. To derive the
system of equations for the moments of distribution function and to determine the diffusion
velocities and heat flows in multi-component plasma we use the distribution function in the form of

an expansion in irreducible Hermit polynomials [6]

o @me)man)t m,
f"“’_f”"’_n,;on!(m!)z(zmzmﬂ)! a1 (V-u) e T, 2.1

where

3/2
1y = nm(zzg J exp 2mT"‘ (V—u)’) is the local Maxwell distribution function, V is the

oz

current velocity and u is the mean-mass velocity of the mixture, m,, is the mass of the particles, and

17



n, and T, are the density and temperature of the particles of sort & and charge z. In this

expansion m represents the rank of the tensor, while 7 represents the degree of the polynomial.

In general case substitution of the expansion (II.1.1) into the kinetic equation leads, after integration
over the velocity with weight H™, to a system of non-linear differential equations for the

mn
oz

coefficients a)' [10]. The latter can be simplified by assuming that the macroscopic parameters of

the plasma vary only slightly at the distances of the order of the effective mean free pass and in the

time of the order of the time between collisions between the plasma particles. When these

conditions are satisfied one can neglect the derivatives of the coefficients a;’' and the nonlinear

terms in equations. Finally, one arrives to a linear system of algebraic equations for a' [6]. For a

fairly accurate calculation of the transfer coefficients it is necessary to use not less than three terms

"' a'? are related to the moments of

oz’ az

with m =1 in expansion (I1.2.1). These coefficients a,, a

density

P =m,n,, (I1.2.2)
relative (diffusive) velocity,

W.=u_ —-u (I1.2.3)
conductive heat flux

h,=q, —5p,W,/2 (IL.2.4)

in addition, additional moment of higher order r, and o, as given by the relations:

P = %j (¢t —14c> 1y, +35/ 2 f, de (I1.2.5)
m O, 2.2

O e =—”’f c,c——=¢C (c =TV )fwdc (11.2.6)
2 $ 3

8y = PuWe ! PurlVe » (11.2.7)

8, =2h, poyYe (11.2.8)

A, =41, Vo | Py (11.2.9)
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where u,, and q,, are the velocity and heat flux of particles of sort ¢ and

chargez,p, =n,T, ,y, =m,/T, . The distribution function in terms these moments then reds as:

1+ywwwc+y§”—h“c(c2—S/yw)+7;g—h”c(c4—14c2/7/w+35/y;)+
fo= /0 Per Per (I1.2.10)
Ve 7 Sy 2\, Va0 O, 2.
+EEE e~ |[+E " cc, - (c —7/}/05)
2 p,. 3 14p,, 3

The general number of independent moments is equal twelve; therefore, the distribution function
above corresponds to 12-moment approximation. Seven equations are required for the 21-moment
approximation. These constitute equations of change for twenty-one moments of the distribution

function f,, for particles type « of mass m, and chargeeZ , . The particle velocities ¢, have

chosen in a centre of mass frame reference

c,=V,—u,, (IL.2.11)

o

Where V, is the velocity of species &, and

z j mavozfnz
u, = “*ft5—— (I1.2.12)
Z myn,
¢, 1s the particle velocity. The rest quantities of interest are defined as (dropping particle

subscripts for ease of notation):

P, =m,n,, for mass density species o
L />

p=nTl = 3 p<w >, for thermal pressure

u= <w> , for drift velocity

Then, the equations read:

9P

o +V,00,(W0, +u): S

(11.2.13)

o

The equations forw, ,h , and r, can then be written in the form:

az 2 oz
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dr

a

pm(d“ Fj Vp.. -0, lw, b=
m

Bs

—w,[h,bl+ ép—wwm -

mg,

_Ty {“‘w/f(;(z)

- =N
m, B.E 2 m,

AR [T”]x

mg

2
35( 4, 7
B ot b

where

F, =eZ(E+[uB]/c)+X,,

= GY (W, — W)+
Z{ Waﬁf( oz ﬁf) T

(w,, - W )+ Gy

a,p

e | B o) (T T (11.2.14)
2 oz,
pﬂ§ Taﬂ paz pﬂ§
~ U pe D + @(Gt(gﬁé‘ e Gg,)ﬁé‘ rﬁgz)} (IL.2.15)
pﬁZ off poz pﬁ§

X, are forces of non-electromagnetic origin, @, = ezB/m,c,

Mo =mmg [(m, +mg), b= B/|B|

7_G(7) hﬂﬁzj_’_ G(S) my T, G(g) mﬂ%} (11216)
. oz.fg oz, pE T, p
A op Pe ap Ppe
(11.2.17)
(I1.2.18)

The coefficients Gg?ﬂf taking into account the relationship between the irreducible Hermit

polynomials H™and the Sonin polynomials S , :

i u
H* (1) = (-2)"k! S5, S

(I1.2.19)

can be expressed in terms of the integral brackets of the Sonin polynomials. In the case of

completely ionized plasma the later calculations leads to the following results:

o _
Gw,ﬁf - _Wwﬂf

@ _3
Gw,ﬂf - EWOZﬂf

(3) 3
Golpe = ‘anﬁf

(11.2.20)

(I1.2.21)

(11.2.22)
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) 2
Gy =~ B3y ) 1Oy A9 32 Mg | o e XapW e
: m, 35 m, 35 5 my mﬁ

(9) _ 75

m,mg

where ,, = ( - and Wepe =W e =NV e
m, +mg

_ W27 e Z°E My

1%
apE = 3 T3/2 m

o

(11.2.23)

(I1.2.24)

(I1.2.25)

(11.2.26)

(11.2.27)

(11.2.28)

(11.2.29)

and A is the Coulomb logarithm, which due to weak dependence on the parameters, is used to be

approximately the same for all sorts of species.

The system of linear algebraic equations (II.1.13-16) with coefficients Gw Jsz €nables one to

determine the velocity of diffusion and the heat fluxes in multi-component plasma for arbitrary

values ofwz . In the case of electron-ion plasma the solution of this system in the limit, when
m,/m; <<1 leads to the Braginskii result obtained by using the Chapmen-Enscog method [11, 12].
Now we can derive the parallel (along B) friction forces and heat fluxes. The friction forces and
heat fluxes along the B-field can be derived from equation (II.1.16) by takingw, = 0. In this case,
only the last two equations will in fact remain, while the first serves merely to determine the forces

of friction in terms of the velocity and temperature gradient of the components. This quite complex

system describes diffusion and heat transfer in plasma with species of arbitrary mass, which can
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fortunately differ sensationally. This, in particular, helps to separate particles, whose masses are
considerable less than the masses of the remaining particles. First of all, it concerns electrons. In
addition, the masses of ions of one species but in different charge states are equal. The later fact
enables one to calculate the longitudinal components in two stages: first to determine the mean
values of the quantities for the particles of one sort, and then to obtain the difference between the
partial and average values. Using this approach, the general expressions for the force of friction,

thermal force and heat flux can be written in the following way:

o . — T, VT, | 22 oV,
Ry, = —% |- (ww,// - Wﬁ,//)— @)L TPy Ta b)) e (11.2.30)
Zy B op Top Mg z mg
(2) )
Cha — 7, V,T vV, T
By, = Poufud 3| 22w, —wos )= cl) 2100 | Za o) Yite (I1.2.31)
’ P L% Top Mg | Z My,
where 7, = 7. The numerical coefficients cg’ﬁ) are found from the solution of the set of equations
I

for the mean values, while cg’) is found from the equations for the difference between the partial and

mean values. In this case the relation between them reads:

(1) 4) (21) (5)
M _ .0 Cop _ Cy Cpa’ _ Cy G1) _ ()
Cop = Cpins ;—T = ;T— = oy = (11.2.32)
of o of o

the summation here is carried out only over the different sorts of species.

Hence, the problem now is reduced to finding the coefficients cg’ﬂ) and cg) for components with
different particle masses. The general expressions for these quantities are quite cumbersome,
however for light particles (at list one sort of such particles (electrons) always present in plasma) an
explicit form of the coefficients can be obtained using an expansions with respect to small

parameter m, / m, ( the index k relates to the light particles). In the zero approximation to that

parameter the set of equations for these coefficients splits into two independent equations for the

light component and for the heavy one withm, >> m, . For the light component one has:

= (1+0.24z2; 1+0.93z]) 12.33)

A, ’

C,EZ) =0,
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Cgi) :1_56 (1+\/§kal+0‘522k)’ CIEZ[):O’ (112'34)
k
)o@ T _ 9o, w, (11.2.35)
Tkk k
e 40 P39, (1+22 1 +172) (11.2.36)

Tkk A k

where A, = (1+2.65z; J1+0.285z; ) and z; = Yn 22 /n, 22 .

The summation here is carried out over all the sorts of particles & for whichm, >>m, . Here was

also assumed that in majority of cases the light particles are those particles with only one possible

charge state, so that c,EZ) and c,E”) occur in (I1.2.30) and (I1.2.31) in only certain combinations. Note,
that if the condition 7, /m, >>T, 6 /m,is satisfied, the separation of the equation for the light

particles is also possible, if their temperature differs from the temperature of remaining
components. In this case it is necessary to use their own temperatures in the coefficients of the
expressions for the friction force and the heat flux for the light particles. Obviously, this procedure
of separation of lightest particles can be further extended, because in plasma remains again a

component for whichm, <<m,, where o #1i,k (e.g. hydrogen isotopes in a plasma with heavy

ad
impurities). The coefficients cg‘ﬂ) and c((:) for the heavy particles and masses that are not too

different, remaining in the result of the last separation all the light components. These coefficients

for two heavy impurities were calculated and the result can be presented as:

c=P+P/(Z,+P) (11.2.37)

where Z, =n ,Z_,z / n,Z_,2 The index [ corresponds to the heaviest component of the plasma. The

values of the constant P, (for any pair from the set carbon, oxygen, iron and tungsten) are given in

Table 1.

The viscosity tensor for parallel moment transfer reads as:

R CEET LR (1.2.38)
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W V25 IV (11.2.39)

where & = e ik :
ox, ox, 3 " odx,

oS o O
oS O O

0
0 and W, =
1
The parallel viscosity coefficient can be presented as:

2
n = para[z(:aﬁrﬁr;; +ec, Z—g} (11.2.40)
B zZ

Now the calculation of parallel viscosity coefficients for each charge state of ion is reduced to

calculation of ¢,zand ¢, for different sorts of ions. For the light particles

T (1 + \/EZZ )2
N (FETE (Y=

and ¢, =0 (I1.2.41)

o

For definition of these coefficients in the case of several heavy ions with arbitrary masses the
numerical calculations are needed. However, for the heaviest component these coefficients can be

found analytically:

¢,, =0.167 ¢, =0.793 (11.2.42)

in the case of two heavy components these coefficients can be estimated numerically

(See Tab. I)

e Transport coefficients and forces for light particles (e.g. electrons and protons) in multi-
component plasma can be easily obtained from (I1.2.30-31). The light components are those
whose masses are satisfied the following chain of inequalities:

m, << m, << m, <<... and so on. Let’s define them by index k , and then the particle, heat and

viscous fluxes can be written as:

en Vv, T
R, =-—"Fu, -y, % ) (11.2.43)
)/ k
h, ==vin, =2,V T, (I1.2.44)
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5

h,, = i, — Epk,//Vk,//

2 2 2 2

en en VT [bV T J

O [buj_]_ykl — ~Via :
O O T, T,

hk,i = ViU TV [bu]— X Vil — Xa [bVTk]’

where
Oy =0y *0'51 . UM=0¢/ZZ > O-kAZO-A/(Z:)Z
’ (1+1.82 J1+0.93z )z 7% ’
_3.09z(1+0.522)) L .
Vi =7y (1 1265z )(1 N 0.28522)’ Ve =ViZk (1 +0.745z; )’ Via =VaZk
Xy =X, 1'74(1 ; 1.7Zk) Y A A1 (0-3 + 0-72:)7 Xin = Aa

" (1+2.652; f1+0.285z;)
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(I1.2.45)

(11.2.46)

(11.2.47)

(I1.2.48)

(I1.2.49)

(11.2.50)



Table 1

(1 — the light impurity ion, I — the heavy impurity ion)
C-0 Fe -W O -Fe C -Fe 0O -Ww C-W
m;/m; | 0,750 0,304 0,286 0,214 0,087 0,065
c0 (A ]0.74 0,83 0,63 0,63 0,62 0,62
i Jp ]0,09 0,11 0,11 0,10 0,09 0,09
p, | 086 0,53 0,53 0,49 0,45 0,45
c0 (B 077 0,55 0,54 0,48 0,38 0,36
i Ip 10,10 0,27 0,27 0,29 0,30 0,31
p, | 0.87 0,63 0,62 0,57 0,50 0,49
e (A ] 0,84 0,84 0,84 0,84 0,84 0,84
- Ip 10,12 0,36 0,36 0,38 0,33 0,31
p | 0.88 0,65 0,63 0,58 0,49 0,48
o [P 0,38 0,38 0,40 0,47 0,49
¢ Jp | 031 0,11 0,10 0,01 0,01 0,01
2
0,07 0,55 0,51 0,10 0,10 0,10
Py 10,92
o [P ] 037 -0,07 -0,08 0,12 0,11 -0,09
¢ lp 0,07 0,27 0,27 0,27 0,18 0,14
> 11,00 1,16 1,15 1,15 1,12 1,10
P3
o [P ] 075 1,14 1,16 1,28 1,29 1,29
Cp lp | 0,04 0,02 0,02 0,01 0,00 0,00
P2 0,80 0,10 0,10 0,08 0,00 0,00
3
o [P ] 059 0,58 0,59 0,59 0,58 0,58
cp lp | 0,04 -0,12 -0,45 -0,30 -0,32 -0,31
Pz 0,86 13,00 8,00 2,90 1,40 1,2
3
s (B[ 075 1,17 1,19 1,26 1,37 1,39
¢ lp | -0,17 -0,78 -0,78 -0,95 -1,19 -1,26
PZ 1,09 1,38 1,37 1,48 1,56 1,59
3
. [A ] 059 0,58 0,58 0,58 0,57 0,57
¢ lp |05 0,52 0,53 0,56 -0,50 -0,46
P2 1,09 1,26 1,25 1,21 0,95 0,86
3
o [B] 154 2,57 2,69 3,41 6,79 8,00
¢ lp | -031 -4,00 -4,65 -8,80 -38,00 -52,00
P2 1,28 3,10 3,29 4,10 6,30 7,64
3
o [P] 135 0,64 0,56 0,20 -0,50 -0,55
cr lp |-0,28 -0,17 -0,07 1,20 4,00 4,50
P2 1,26 1,48 1,90 6,00 6,00 6,60
3
o [P] 129 1,29 1,29 1,29 1,27 1,28
¢ lp |-030 -1,67 -1,74 2,02 2,10 -1,96
P2 1,25 2,02 2,05 2,16 2,00 1,84
3
o (B |37 5,32 5,49 6,30 8,85 9,55
¢ lp | -0,64 -5,05 -5,53 -8,11 -19,10 -23,00
PZ 1,16 1,87 1,93 2,20 3,10 3,31
3
© [P ] 261 2,81 2,61 2,61 2,80 2,80
€ lp |-053 2,13 221 2,47 2,51 2,36
p | LIS 1,83 1,65 1,70 1,53 1,41
3
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(0) (0) 186(1 + \/EZI‘{)

- , , 11.2.51
T = 182 Y1+ 0.62)) ( )
7 =003+ 0422, —0.282,2 /2, ), i) = 409 (11.2.52)
and values without indexes are the electron coefficients for pure hydrogen plasma:
e’n,t e’n,t e’n,t
0,=196—=, o =—" 2 g =059—2(97, ) (11.2.53)
me m@ m@
y, =0.75nT,, y =51 e y =—150le (I1.2.54)
a)eTep a)eTep
Tnzt Tn,t
2, =306l _gee—te 5l (11.2.55)
me me a)ez-ep mea)e
7Y =073Tnz,, nV=07Tnz, loz,f, = ’;"T e (11.2.56)
o,

e

For electron coefficients in plasma with impurities in the above given formulas z, must be replaced

by Zg s

and for light ions - z =) n,z;/nz], where the index I corresponds to ions
1
withm, >>m, . In the case of hydrogen ions all indexes ein formulas must be replicated by i (at

that @, changes the sign) and 7, must be replaced by z,, / V2.

For electron thermal and friction force along B one has:

Re,// = _Cglﬁ) n;l;,ne (Ve - V_ﬁ)_ ﬂnev//Te =en,j, /10,— IBneV//Te ) (I1.2.57)
ef
where
2
. e e Z j nﬂZ,Z VZ,
j=—en,V,-7,), V= (I1.2.58)
e“eff
o, = 196z, 051A(Z,) (I1.2.59)
! m, (1+0.24z,, )1+0.932,,)Z,,
A(Z ;) =(1+0.265Z,,)(1+0.285Z,,) (11.2.60)
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. (427 A
T, = 1/ 3 ) \/m7T3/2 neZe]j’ (11261)
3.09Z,,(1+0.527,,
and SB=0.71 o 0+ o) (IL.2.62)
A(Zeff

Therefore at high Z,, conductivity increases almost twice (1.72 times) compare with pure plasma.

The thermal force coefficient increases from 0.71 to 1.51 (~2.1 times)

II.3 The Reduce Charge State approach for impurity transport along B.

The presence of several different multiply charged ions in the divertor plasma increases
immensely the number of equation to be solved. The fluid equations for separate charge states of a
given isotope can be replaced by a set of averaged equations representing an effective single
reduced charge state [8, 9]. These equations are fewer in number than the original equations for the

individual ions by a factor of Z__  for each speciesa . This Reduce Charge State approach was

max

incorporated into B2 Code allowing one to simulate divertor and the SOL plasmas with multiple ion
species plasma without excessive time consumption. Based on the fact, that charge number enters in
collision term symmetrically for each pair of multiply ionised ions, one can find the following

property of coefficients, entering in Esq. (IL.1.14-17):

n B
G =1,1,:G%, (113.57)
n,z — e
oz n n 2 z
where 1, = P Gy = Ef Glhy ny=Y.n,., z. = (I1.3.58)

Summing up equations (II.1.14-17) in the case of @, =0 over the charge state &and using above

shown properties of the coefficients, one can come to reduced number of equation (equal to the

number of nucleus) for some average values:

5

Enmv//TOZ=
SHMyp =y —\ =mh —=h B —r,
= 1, Y25 Gl (w,, —w, )+ Gl e — GO L 4 et (G T GT) 8 (I1.3.59)
7 |2 m, P Pg Taﬁ’ . Pg
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2
35( Hop | 09 —\, THep h, hy ) —gm, 1. Mg Tp
0=1w2{(J GS/)(Wuz—Wﬁ)JFT G;j}p——Gg)p— +Gt(fﬁ)7p7_Gt(zﬁ)T > (1L.3.60)
oz B off oz

where w_a= Zlmwm , E= paZ]mhm /P s E = paZIOZrm / p, are the mean value of the

quantitiesw,, h, and r, for « species. Summing now the above equations over z, we arrive at

oz

the following set of equations:

5 5 Hop —whe —mhy My —Gre @Y
2nV,T, = GOw, —w, J+GY Gl £y Db (g Te _ G0 b
2 a’ Ita ;{2 m, 01,3( ﬂ) of P, ap P,g Taﬂ( of P, aB pﬁ) (11361)

35( Hop 5= = \. Mo [Smhe o 1_1 Ta o) Mp T
0= G 2 GO g +G8) le T _ GO L 2
Z{ ( J aﬂ( Wﬂ) m “ P 3 s @7 Dy (11.3.62)

ma o o ofp pOt

The number of obtained equations after summation over charge states is considerable reduced to the

number of nucleus, equal «and f. The formal solution of these equations enables one to express

reand h,in terms of we and V ,T,. Substituting these quantities into the right side of equation

Pe [du—F‘”] +Vp,, =00, [w,b]=
d m,
Hop h, hg ). Uy T, Tpe 11.3.63
- Gg)ﬁf(waz—wﬁé)+T GW{ T +T2 GY | = - ( )
6.2 o P Ppr B Po Py

(which must be beforehand sum up over charge states z, £ ), one can determine we values.
Apart the average mean values, the partial values for each charge state can be calculate in the next

step. In order to determine these properties we will divide Esq. (I1.3.59) into [/, and subtract from

equation (I1.3.62). As a result, we have

_2 . —_ —
éna v,T, _Z_ozlv//TaZ — (Wa —Wa)Séz) + {h_“_h_OZJSS) + (r_“_rijﬂséﬁ)
2 z Py Puo Pu P )Ty (11.3.64)
— he h r r, |m
0=|wgy— SC) 47| 2% _ T |96 4| 2 _ e | Ta g®)
SRR NN PR e

where S =§Z,uaﬂ5(azﬂ) /m,, S = 25522, s©) =?Z('aaﬂ] Ga,b’
B B B
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SO =3, Gopim,, SY=3 Gl (I1.3.66)
B B

. . h. h N
Solution of equation (I1.3.64) for he _he can be written in the form:
Po P
h h — T z.
T o 24 O, ~ W)t~ cOn, | 25V, T, -V, T, |, (I1.3.67)
De Pa Lo
where
(2) 2)g(®) _ ¢B3)¢(6)
() 552 T 0 S Sa =808 taigl) _g(s0) (113.68)
2D, t, D,
2 [(SP) s8) —25@)50)56) 1 (5O 56) /7
cg‘>=1——[(a) £ -252s0s0 + (0] s1017) (I11.3.69)
5 Daz-aa
This solution together with solution for he brings to expressions for R, andh,, ,:
2 (1) )
n_m z c, — 7, V, T . v,T,
Roz,// = _%{Z{_ﬁ (Waa,// —Wga. )— Cézﬂ) —ﬂM:| + _ZCS) L}
ZO{ B Ta’ﬂ Taﬁ mﬂ z ma,
(2) 2
Chu — 7, V,T V. T
hozz,// = P70 {Z|:i (woz,// —Wgy )_ c((jﬂ) _ﬂM:| - Z_(;CS) M}
7| Top T,y My z m,
II.4 Analysis of impurity transport parallel to the magnetic field lines
The force acting on impurity ions of charge Z parallel to the magnetic field B is
Foa =-Vp; +eZnE, + F/D + F/T 5 (11.4.70)
where the thermal and friction forces F” + F =R, , and
n.mz CS;; — @ T Vilg 2 ) VT,
R,,, =—"elaZ INED ()-8 R ) e (114.71)
’ Zi B | Top ’ Top Mg z m,
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Assuming that impurity ion & ~ j, in average charge state denote as Z , then:

2 Y _
FP == —%{Z[Lﬁ (W =W )| = mn v, V=V ) =0, 22V, (IL4.72)

\/EZ 0 Z eff

2 z, V,T 2 \Y Z? Z?
FT _ l’lm@Z {Z |:c£§8) B I ﬂ}_ Z, c((:) //ng } = nj - J V//Ti + ﬁnj —‘]V//Te
(I.4.73)

Flr Ddla’a 2 97 /’i’NTa:Taa-l_Taﬁ a+p (I1.4.74)

Three cases can be distinguished: low concentration level, intermediate and strong.

e In trace approximation, when n_ << n, = n,, in steady state: F jT =0
enk,==V,p,.— V1T, p=const, T =T, =T,
and impurity ions follow the electron temperature profile:

n, =T", where k =k(n,,Z,,,Z,)
In multi-component plasma, effect of impurities on plasma behaviour depends on impurity content

in the mixture and is determined by three parameters, electron density, Z , and Z:
ne:ni+2nw2, Z E(ni+2nm22}/ne

Z, = anZz /n,

Hasma

flowy ==

o
along B wall

Fig. II.1 Impurity distribution at strong friction (k < 0)
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e Almost "pure" plasma (trace concentration): Z,, =1

eff

Y n,Z*<<n =n, (11.4.75)

Impurities affect only the energy balance, not the main plasma.

Do, =n, = (I1.4.76)
— — Friction fi a,
7 riction force /1 (convective)
kz—1+ﬂ(——Z]+ J_ (= "= Ion thermal force - T(
Zy 1+~27, 4, (conductive)
where
:
SOL region Divertor
N_ cm-3
B Carbon Zeff~1 z
2 10°
50 \ \Y)
B X
T ) I~
_ 5
10
_ 1 3
10
"’ 10 11 12 13 14
X, m
. 7 <1
SOL region Divertor
Nz ,cm-3
200 |- Carbon Zeff~1
B T (x)
B \Y
IIII 1 1 1 1 1
10 11 12 13 14

X, m

* Special distribution of the various impurity ions is strongly dependent on their charge state.
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* High impurity concentration level:

Z’n.
Vi,Z /v, = ZO = L >>1 (I1.4.77)

i,i

nezZZjnj = n,/n,—0
In this case the electric field effect is cancelled by the electron thermal force:

= (n, +ZnZ )/ne~ZnZ /Zn =7 (11.4.78)

eff - ]

2

= —1+,6’(Zi

—Zj +C—=——q
- 1+427,

e the ion thermal force becomes:

weakly dependent on charge state Z, and becomes small compared with drag force

n,>>n,

=—< (Zn ZZ/n )~—

(11.4.79)

F? ~mnZ: V,

* The distribution of impurity ions along B becomes weakly dependent on their charge state.

* lon heat conduction in the case of high Zeff:

tnT v, _Tn, T. 1 (11.4.80)
~ _ 11 1 1 l v T = ll 1 1 V T
T R W A
vV, T, ~q;Z,

* the dependence of the ion thermal force on 22 can recover if ion heat flux remains the same at

high impurity concentration.
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» at low (or moderate) concentration of impurities the spatial impurity distribution depends on
their charge states, whereas at high Zeff the impurity distribution becomes weakly dependent on
Z

* in the extreme case of high impurity concentration, the unfavourable thermal forces become less
important, thus improving the retention. Both the impurity transport and the background plasma
parameters are strongly coupled in this case and must be considered simultaneously.

* in the 2D case impurities can re-circulate in the SOL because the temperature gradient along the
magnetic field lines in the inner part of the SOL is higher than in the outer part (cold). The
impurity ions move upstream in the inner part of the SOL (by thermal force) and diffuse across
the cold outer part where they are swept back by friction with background ions.

» the flow reversal of the background plasma can strongly deteriorate the impurity retention

(upstream of the cushion in detached regimes) and helium exhaust

IL.S Classical transport in multi-species plasma in radial direction.

The necessity to use an additional equations for higher moments 7,and o, is required due to

not sufficient accuracy in calculation of the parallel transport coefficients. In practical case of
highly magnetized plasma the necessity in taking into account the higher moments for calculation of
radial transport coefficients is unnecessary. Therefore, for estimation of radial transport coefficients
it is sufficient a 13 moment approximation. In this case we employing the low order
variables p,,u,, T, and the higher order variables 7, and q,. As long as the tensor 7, is
symmetric and its spur equals zero, it is defined by five independent components. The general
number of variables in this case is equal 13N (where N is the number of plasma components). The

corresponding system of closed equations can be presented as:

op ou, Jdp,w
o r a"a _ ) I1.5.1
o P T o (>
Ju, op Orx,
ou,  9p 9% _ F 11.5.2
P ot el ) (1>2
3Py 5, 0 %y, O, o, (FL )= RY (11.5.3)
2 0t 27%0x,  ox S ox,
00w du ou dp, Ox 10
aar 4 ‘ r 4 ' a 4 Ta 4 s _ F Y=R I1.5.4
ST P 5 P G ke (Fy ) = Ry (>4

N N r N
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or du; ou dq . e N~ 20
— 2 — e ) -2 F )—2—%7,B| =R
at + 00’9 ax[ + { axl } + { ax } + p g {naww< os >} ma {[ﬂa ]rs } ars

(IL5.5)
o
ah—”"+1hm ou, +%hm ou, +Zhm %+§pawm o 2p W, E, 4 1o P
o 5 % ox, 5 Todx, 5 “ox, 3 ox, m, ox, (I15.6)
N Tz, oT, N 5p, oT, N 5p, W, aTa T, <Fw>—e—“[haB] _R!
2m, ox, 2m, ox, 2T, o m m, '
Here we use for shortening the following notations:
1 1
{a.b,}= 3 (a,b, +b.a,)- ga,bﬁm (11.5.7)
ou
£, =1 [x,Bl, =7,€,.B,, (IL.5.8)
ox,

where ¢, 1s the permutation tensor. Note, that equations (I1.5.3) and (I1.5.4) are the conservation

equations of energy and momentum for the & component of plasma. For all that

(B = (E)-p, 2 (11.5.9)
(F,)=e,(E+[u,Bl/c)+X,, (I1.5.10)

where X, are forces of non-electromagnetic origin, e.g. gravitational forcem g,

h
RY =R, =Y G, —w,)+ D7 - IL5.11
or or ; af\" or Or Z ofp aﬁ ]/apa yﬁpﬁ ( . )
RY = _326 ( ) (I1.5.12)
“ m, +mﬂ
1 ( T, Tt s,
R = GU) Zas . W Zhe (IL5.13
;7& +}/ﬂk g pa g pﬂ } )
1 ohg 57
RI=— + L+ =22 G0(w, —w,, )+50,,GY)
“ 7/0( ; ( ) ;|: a pﬂ 2 }/a ( Wﬁ’) /BW
(I1.5.14)

For these values the following conditions are obviously satisfied:

D> R,=0 and > 0,=0 (IL5.15)
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The coefficients GL’/’B) are the linear combination of the Chapman-Cowling’s integrals generalized

for different temperatures of plasma species (see expressions above).
The equations (I1.5.1-6) can be considerably simplified in the case of small gradients and proximity

to the local equilibrium [13]. In that case all second order terms in equations can be omitted and the

coefficients in the right hand side of equations Gé’/’g) = =N T
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II1. Boundary conditions in the multi-component plasma.

II1.1 Sheath potential in the presence of impurity ions

In this paragraph, the sheath potential formation at the divertor plates in the presence
impurity ions (sputtered from the plates or injected into plasma) and of secondary electron,
emission is self-consistently considered. This is important for simulation of boundary plasma in the
case of multi-component species at the vicinity to the divertor plate. It is shown that the sputtering
at the plate or limiter (hereafter named in general as a target) can increase the potential drop, when
impurities cause strong increases of electron upstream density. Impurity flux to the target as far as
the secondary electron emission (SEE) from the target can only reduce the potential drop. The SEE
yield saturates due to space charge limitations and cannot reduce completely the unfavourable effect
on sputtering yield due to the acceleration by the potential drop even when a dilution effect of
positive impurity ions is taken into account. The comparison of two types of carbon (with different
SEE) shows considerably different values of potential drop and eventually results in different
sputtering yields. For materials such as tungsten with a high electron emissivity the effect of SEE
prevails over the effect of sputtering and leads to a substantial decrease of the potential drop. The
sputtering (and self-sputtering) of tungsten starts to be significant at some critical electron
temperature (which depends on the level of impurity recycling at the target). At a temperature
higher than this critical temperature, self-sputtering above one can occur. The exact value will
depend also on details of the impurity orbits in the sheath electric field. Further, the energy
transmission coefficients for the different species (electrons, plasma ions, impurity ions) have been

calculated.

II1.2 Model and assumptions
A schematic of the plasma flow to the target is shown in Fig. III.1. we consider a steady
state1-D model with only four species. The background electrons are assumed a truncated

Maxwellian, so for primary electron density one has:

n = B D, B )= % [erar

vTe

(1IL1)
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Fig. ITI.1: Chart of plasma flow near the target

where¢p =e@/T,. For background ions we assume a monoenergetic distribution, which

Implies:

n,(9) = j; /VTi\/EV‘g'i'(QO -—9), €Emvz 2T > 055& (IT1.2)

Ti
Here V;;, notes the ion thermal speed and £ -the kinetic energy of incident ions upstream to

the target. The secondary electrons emitted from the target are assumed with zero thermal

energy, e.g.:

Mo (D) = Ju [V1o /@ (I11.3)

while n,, — oo at the surface, this singularity is removable (see below). For impurities,

sputtered from the target (ions of the target materials) we use a statistically average ion
model [25]. This approach gives an average impurity ion density and charge number as
function of plasma temperature. Additionally, a monoenergetic distribution of impurity ions

incident to the target is assumed:

n, () =Jj, [vn \/a/:uz,i \/52 +Z2(9.-9), My, = m,m; €. =Ze (1IL.4)

We are interesting in floating potential, so the total current at the target must vanish:
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Here we take into account the plasma ion current, j,, the plasma electron current, j, the
current of SE from the target, j,, , and the current of the impurity ions of the target materials which

(according to our model) are returning from the plasma to the target in one "average" charge state.
We also postulate the quasineutrality conditions in upstream region (@ = ¢_ ) in interface between

the plasma and the charge layer at the target:
n,+n, —Zn,—n,=0 (I1L.6)

To get a monotonic transition of the potential from the presheath area to the sheath region the Bohm
condition must be fulfilled at the entrance to the sheath, which implies the existence of the positive

charged sheath layer:

0
o(0)=p(p.)+(p- (ow)g—p +..>0 and ﬁ(n +n, —Zn,—n,)>0 (I11.7)
¢ P=¢ .

Further, we consider the case when all the SE enters the plasma. This implies a monotonic

potential between plasma and target with zero value of electric field at the target. In this case, the
governing equation for potential — the Poisson equation can be easily integrated from upstream
region, where we also assume that ion saturation current is a maximum available positive current

extracted from the plasma region, and the region at the target:

s\ [ ? (
Ap=— 47ep(p), (7;”) = 472-J'p(¢)d¢;, I(nl +Zn, —n, —”em)d¢ =0 (I 8)
0 0 0

We assume below only the SEE and introducing the SEE yield, (see [26]) as

jem = j/(Te) ) je’ (HIQ)

The impurity ions flowing back to the target can cause the self-sputtering of the material

surface, S, , additional to the sputtering caused by background plasma ions, S, . The

effective sputtering yield can be introduced simply as:
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S,(T,)

i, =78, ji, = —— et
“ d 7 1-1 S, (T,)

(11 10)
where 77 is fraction of impurities returning to the surface. The potential dependence of sputtering
and self sputtering yields is taken into account. Corresponding values was used from [27].

These nine equations contain nine unknown variables, @, ¥ ax» Es Ji» Jor J72 10 20, 51,

They solved as function of electron temperature Te at given input parameters or functions

J/(YL),é‘Si,SSelf,a =1

II1.3 The generalised transmission coefficient and sheath potential drop.
The previous equations can be reduced to three main equations, which can be simply

analysed. The relationship between currents and potential drop (current-voltage characteristic)

ic {\/Ee‘/jErf(—\/E) —Jz-2(1- y)\/E} =j, {2 e, ( H - 1}} +

+27%,Jeu . (,/1 L2 —1}
13

shows how impurities and secondary electrons chang the current balance within the sheath and

(IIL. 11)

impact the sheath floating potential. Thus, the electron current to the target can increase both due to

SEE and impurity ions:
1+7S
Je. = —ﬁl “Ji (111.12)
-V

The second term in numerator corresponds to contribution of impurities and zero total current
requirements at the target. On the other side, there is an increase of electron density upstream to the
target due to the existence of impurities and quasi neutrality requirements. As it follows from the

second equation that governs the sheath potential drop in the presence of SEE and impurities:

[ | -

1+222| 1+22%

|
_ Hi (1_7/) LT N
¢= ln%ﬂ/ﬂ_g {H e-‘f’]FH' 1|} In (1 y)1+zs (I11. 13)

eff
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the excess of electrons, coming to the surface (see the second term in numerator (II1.11))
increases the floating potential. The competition between two these processes defines the
real changes of the potential drop. Cold electron emission has been found to affect the

potential drop in many previous papers [28]. Here we examine this effect in the presence

of impurities, sputtered from the target.

I11.4 Bohm stability condition at the sheath entrance

The third equation here describes the stability condition at the sheath entrance:

—; + Zzseﬁ--‘[ €Ny )ﬁ'd'uie¢/ €
JP =
S TRES P 1= 7120

(I1.14)

Y |H.E
+—— == (P +1/2 ...
7\ o )

N | —

This condition is generalization of the Bohm criteria for multi-component plasma. It is clear, that
the kinetic energy at the entrance to the sheath is also affected by impurities and SEE. The

generalised transmission coefficient 6, = Q/T.j; (for energy Q carried by all particles to the target)

can be written as 0, = J, + 0, + 0, where

5, =2 (1+25,) (IL.15a)
8,=c+o(T,.7), (IIL.15b)
8. =78, (e+9) (IIL.15¢)

Calculations are performed for typical tokamak ranges of plasma parameters [27].
Two types of graphite with different SEE and tungsten with a high electron emissivity have chosen

as a surface material. Fig. II.2 shows the potential drop and the SEE yield with and without
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Fig. I11.2: Potential drop and secondary

electron emission vs. T, for POCO graphite impurities for POCO graphite (with low SEE) as a
function of electron temperature. The case &€ =1,7 =0.51s chosen. Saturation limit of SEE and the

upper limit for the potential drop caused by Bohm limit (8 = O.S)are also shown in the plot. The

same plot for carbon is shown in Fig II1L.3.
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Fig. I11.3: Potential drop and secondary electron emission vs. T, for carbon

The difference in SEE yields causes a strong change in variation of the potential drop and other
parameters. The same parameters for tungsten case are shown in Fig II1.4. The temperature
transmission coefficients as a function of electron temperature are plotted in Figs IIL.5 and II1.6. It's
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clear that the most of energy coming from plasma to the target carried by electrons because of both

decrease of potential drop caused by SEE and enhancement of electron current to plate by

sputtering.
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Fig. I11.4: Potential drop and secondary electron emission vs. 7, for tungsten.

30 — : - ;
> mwithout H uttering ]
25 _ - -~ with ﬂpatfaring Carbon /;a— -
‘T 3
o !
© 20t
g
215t
o ]
t X
= 10¢
>\ L
Wt
)
o b

O 1 & N "

0 20 - 40 60 80

Electron Temperature {(eV)

Fig. III. 5: Energy transmission coefficient. vs. 7, for carbon (sputtering is included).
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Fig. I11.6: Energy transmission coefficient vs. 7, for POCO graphite.

In the case of tungsten the enhancement of the energy, exhaust due to the strong surface erosion,

(see Fig. I11.7) starts to be significant at some critical electron temperature (which depends on the

level of impurity recycling at

10—

Q/JT,

Tungsten T v

| i
50 100

Fig. II1.7 Energy transmission coefficient vs. 7, for tungsten; 7 is equal to the function of

impurities returning to the surface the target). At a temperature higher than this critical
temperature, self-sputtering yield above unity can occur.
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Variation of potential drop by the secondary electron emission decreases potential drop,
whereas the impurity sputtering of the target can increases or decrease drop, depending on variation
of upstream electron density and impurity ion current at the target. The SEE yield saturates (space
charge limitations) and does not offset acceleration due to the potential drop, and at the same time
the dilution of negative charged layer by positive charged impurities seems to be not effective [29].

Two types of graphite (with different SEE) have different potential drop and therefore
sputtering yields. For high electron emissivity (e.g. tungsten) impurity effect not pronounced since
there is strong reduction of potential drop due to SEE. Most of energy coming from plasma to target
carried by electrons because of both decrease of potential drop caused by SEE and enhancement of
electron current to plate by sputtering. For conditions considered (perpendicular incidence, high
impurity recycling) the total sheath transmission coefficient rises with Te and can reach 25

(without sputtering) or 28 (with sputtering) for graphite at7, > 50e}”, which means a little effect at
divertor typical temperatures (7, <10el’ ). These effects must be accounted for divertor plate

erosion due to sputtering and the arcs formation.
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IV. Simulation of drifts in transport equations

Classical particle drifts across the magnetic field can play an important role in tokamak edge-
plasma transport. The relative influence of these terms is important for self-consistent simulations
by including them, together with anomalous diffusion transport, in a 2-D fluid model of edge-
plasma transport for the tokamak geometry. The drifts cause asymmetries in the plasma
equilibrium, which depend on the direction of the magnetic field, B. The basic results can be
understood by dividing the drifts into three categories: diamagnetic, E x B, and VB . The dominant
effect near the divertor plates is from the E x B drifts, while the weaker VB drifts cause an increase
in the magnitude of the radial electric field inside the magnetic separatrix. The diamagnetic terms,
defined as divergence free, do not contribute to transport.

Classical particle drifts from E x B and VB (including curvature) drifts are believed important
for understanding tokamak edge/scrape-off-layer (SOL) transport even in the presence of turbulent
transport. For example, the asymmetry of the plasma density and temperature in front of the inner

and outer divertor plates changes with the sign of the toroidal magnetic field, B,[14] and the power
threshold for the L-H confinement transition often depends on the direction of B, [15]. There have

been various analyses of the basic equations which describe these drift terms in toroidal geometry,
e.g. [16]. However, careful assessment of their effects in 2-D transport codes has been lacking.
Furthermore, it is important to have a valid model that calculates the electrostatic potential (and thus
radial electric field, £, ) that extends across the magnetic separatrix into the core region. In this
vicinity, shear in magnetic field is believed to play an important role in suppressing edge
turbulence.

In this chapter, we focus on assessments of the different classical drifts, which can be
implemented into TOKES code, including the calculation of radial electric field, on both sides of
the separatrix [17-19]. The relative importance of the different drift terms, although not the details,
can be predicted by simple arguments:

e First, the diamagnetic terms, defined here as being the divergence-free portion of the
pressure-driven drift, give no transport as they cancel exactly in the transport equations; this
i1s well-known result, which is sometimes overlooked.

e Second, the E x B drifts are larger than the VB drifts since the former scales as the inverse
of the edge-plasma scale length while VB scales as the inverse major radius, L/R.

e Third, since the E x B drift is the same for ions and electrons, it generates no current; only

the smaller VB drift enters the current continuity equation for the potential.
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IV.1 Transport equations with drifts

In the TOKES code, all plasma equations can be written as:

%+V-(aka—D-Vwk):Sk+Fk (V. 1)

where i, represents variables of density,n,(k=1,a =1, F, =0), parallel momentum density,
mnV,(k=2,a=1),and electron and ion temperature densities,3n,7,/2 and3n,T,/2
(k=34,a=5/3).Here V(V,,V,,,;) is the convection velocityV, from the parallel and cross-field
drifts, V,,, , D, is the diffusion tensor, F, is a force term, and S, is the source term.

Poloidal transport is a combination of the cross-field drifts described below and the geometrical
projection of the parallel transport from Braginskii [10], except that thermal flux limits are used.
Radial transport also includes the cross-field drift components together with anomalous diffusion

coefficients for density (D, ), momentum (77, ), electron energy ( %, ), ion energy ( %, ). The

electrostatic potential is obtained from the current continuity equation described in more detail

below. If cross-field drifts are neglected, the convective velocity in Eq. (IV. 1) is written as

Don

V=V b - n or

(IV. 2)

r

where b, = B,/ B, B,1is the poloidal magnetic field, and,b,, e, are the unit vectors in the poloidal
and radial directions, respectively. Note that in the continuity equation [y, = n, in

Eq. (IV. D], the diffusion term is actually represented through the diffusion term inV (IV. 2).
Inclusion of the cross-field drifts can be accomplished by adding to V a second convective velocity
such thatV — V+V,. To improve numerical accuracy, it is best to omit divergence-free
convective fluxes from the outset as they should give zero contribution to the conservation
equations [21-22]. The separation of particle fluxes into divergence-free terms and those from

guiding-centre motion can be clearly done [23], and one can use those results for modelling. The

guiding-centre convection velocity for each species is

], T rosls (T +mv})

V, =V, +V,, = = + S SR [b (bVb)], (IV. 3)

where b = B/ |B| the first term on the right-hand side represents electric drift and the remaining terms

give the VB drift velocity. Here E is the electric field, 7 is the electron or ion temperature, Zeis

the particle charge, m is the mass, and V), is the parallel drift velocity. It should be emphasized that
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including V, (IV.3) incorporates all cross-field drift terms in the conservation equations properly;

one should not include any additional diamagnetic terms, i.e., neither the gyro-viscosity term in the

momentum equation nor the energy diamagnetic terms [10].

IV.2. Electrostatic potential in presence of drifts

The potential is calculated from the current continuity equation obtained by subtracting the ion
and electron continuity equations and assuming quasi-neutrality (n, = n, = n), yielding
Vilp)=0 (IV.4)
Here we follow the description given in [17] with the generalization of including the currents from
the VBterms in Eq. (IV.3). (Note that V. yields zero current.) Thus, in addition to the classical
parallel current, j,[10], which dominates in the SOL, we have a radial current driven by anomalous

ion transport, which in the thin SOL region can be approximated as [17]:

. 1 0 0 (10P 0
=Ty S 2T %P V.5
() ZeB* or {771 ar(n or e or j} 1v-3)

where @is the potential, P, = n,T,, and 77, = m;n,D is an anomalous viscosity coefficient. In an the

1

inhomogeneous magnetic field of a tokamak, currents from V,,become

2
- @{b%} AT ;”f’"fV// )[b(be)] =P +P+nmy?i2feb,//BR  (V.7)

JVB

where we assume singly charge ions; this is easily generalized to impurities. The unit vectorse, ,b,

correspond to the direction of the major radius, R, and toroidal B -field, respectively. Equation
(IV.7) 1s typically accurate for tokamaks, yielding a vertical current. The current continuity equation

thus becomes fourth order in the radial direction (from ;. ) and second order in the poloidal
direction (from j,). The sheath boundary conditions or the poloidal direction, including the cross-

field drifts, is discussed in [23]. On the inner core boundary in the radial direction, we impose two
boundary conditions: one is that the potential is constant on a flux surface, with the constant being
supplied by requiring no radial current over the flux surface. The second condition is, that the shape
of the potential on the second set of cells determined from parallel Ohm’s law [10]. The remaining
constant can be found by setting the flux-surface averaged toroidal momentum to some input value
(zero for our cases). At the radial wall, simple boundary conditions making the first and second

numerical derivatives of ¢ zero are used.
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IV.3. Effect of E x B drift

As mentioned earlier, the magnitude of the E x B velocity is much larger than of the
VB terms owing to the shorter scale-length of the potential compared to the magnetic field. Turning
on the E x B velocity could give the dominant effect on plasma transport as shown in Fig. IV.2

from B2 calculation [16]. Here the standard direction of B, is out of the plane, giving the ion
V., velocity downward. Note from this figure that the profiles shift outward or inward in response to

the radial drift caused by the poloidal electric field (always pointing toward the divertor plates). The
most dramatic effect of E x B in the divertor region is the strong drop in the density on the inner

plate for reversed B, which results in loss of detachment on the inner divertor. The drop in ion
density n, can be understood by considering the vector plot of the ion flux shown in Fig. IV.3. Note
the strong reversal of the flow under the X-point as B, changes sign; here the flow is dominated by

the E x B drift from the large radial electric field that arises from the drop of 7, in moving across
the separatrix into the private flux region. Two diagnostics confirm that the particle flow under the
X-point is very important here. First, consider three net ion-plus-neutral currents: that passing the

X-point in the SOL toward the outer plate, /_ ., that likewise directed toward the inner plate, 7. ;

out ? inn %>

and that passing under the X-point from inner plate to outer plate, 7.

T 2 T T T T T T T
/\
\ b) Outer plate
! \ 4
— 4 n
e \ @ /\
S \ / standard By .:,E | reversed B,
z \ . © A
> no drifts -~ | O reversed By
£ 21 ® with grad-B 7
c @
s 5
ey
—
0 inner wall & -~ =t o ‘ outer wall =
5 0 5 10 15 20 2 0 2 1 6 8
Distance from separatrix (cm) Distance from separatrix (cm)

Fig IV.2 lon density at the (a), inner divertor plate and (b), outer divertor plate for four cases; no cross-field
drifts (solid line); ExB only for the standard toroidal B-field direction (long dashed line); ExB only for
reversed toroidal field (dotted line), and ExB and grad-B drifts for reversed toloidal field (dot-dashed
line)[16].

For the standard B,, we find (/,,,,/

inn>" pfo

1,.,)=1(0.13,-0.81, 1.6) kA, whereas for the reversed B, ,
(Lins L s 1,5) = (1.6, 1.1, 0.05) KA. Clearly, 7, is comparable to the particle currents in the SOL
and changes the sign of B, . Second, one can insert a baffle vertically through the private flux region

to the X-point for the reversed B, case; Note from Fig. IV.3 that the E x B induces rather complex
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flow patterns with flow reversal regions. Indeed, the self-consistent solution of the SOL plasma has
many facets. It was shown that even in a 1-D model including only poloidal drifts, but with
temperature asymmetries, that solutions arise where the density asymmetry is enhance in the

direction opposite to that found in 1-D models for uniform temperatures

IV4. Effect of VB drift

The effect of the VB velocities on plasma transport has shown in Fig.IV.2 on the density at
the plate where the dot-dashed line gives the result with the V;, velocity. The weak effect reflects
the fact, that these velocities are small. However, V, does have a significant effect on the potential
though their contributions to the net current via j,, especially in the core-edge region. Note from
Eq. (IV. 6) that j,, does not explicitly depend on¢@, so it behaves like a source term in the equation
used for the potential, Vj(go) =0 although the variables are coupled nonlinearly. The profiles of the
radial electric field, £, ,are shown in Fig. IV. 4 at the outer mid-plane without and with j,, added.
The electric field is substantial changed near the separatrix and in the core region with j,; well

outside the separatrix, the parallel currents dominate the potential equation. The large radial shear
in £ is believed important for suppressing edge turbulence, although quantitative evaluation of this
process requires coupling this model with a turbulence simulation. In addition, these simulations
assuming no toroidal rotation at the core-edge boundary and thus are representative without strong
neutral beam injection, which can cause toroidal rotation. Allowing finite toroidal velocity at the
core-edge boundary changes E, inside the separatrix.

Finally, the inclusion of j, changes the current structure on the divertor plates. The currents
at the plate in both standard and reversed B, cases are qualitatively similar to that measured on JET
by Schaffer, et al. [24], who also gave an interpretation, which includes j,, . Even though the overall
density profile on the plates are not very sensitive to VB effects (see Fig. IV. 2) very near the
separatrix, strong currents do flow, especially for the reversed VB case. These plate currents are
still dominated by the parallel current, but the self-consistent adjustment to j,, have a strong effect
onj,.

In conclusion, one can expect that the classical cross-field drifts can have a substantial effect
on plasma spatial distribution in the edge/SOL region of a tokamak. The drifts can be separated into
three categories: diamagnetic, E x B andVB . The diamagnetic drift is defined as the (large)
divergence-free portion of the pressure-driven drift and thus does not contribute in the net transport.

The E x B drift can be substantial in the edge region giving important contributions to particle

transport. A large radial electric field exists in moving into the private flux region because of the
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rapid drop in the electron temperature there. The associated poloidal drift of private-flux region
plasma is away from the outer plate and toward the inner plate for the ion gradient-B drift toward
the X-point. This particle transport further enhances the tendency from toroidal asymmetries for the
inner plate to have higher plasma density and thus detach before the outer plate. Upon reversal of

the toroidal field, B,, the drifts reverse, and the plasmas profiles at the inner and outer plates are

much more similar. This behaviour is consistent with the experimental observations reported in
[14]. Because the E x B drift is the same for ions and electrons, it generates no net current and does
not contribute directly in the electrostatic potential. The VB drift is pressure-driven, but is typically
smaller than the E x B drift by the ratio of A/ R, where A is the scrape-off layer width and R is the
major radius, but here ions and electrons drifting in opposite directions; this drift therefore first
becomes important in the current continuity equation for determining the electrostatic potential. In
the core region, the current contribution from the VB drift increases the magnitude of £, and its
shear. In the SOL, the VB drift has a small effect on £, , because there the current is dominated by
the parallel electron dynamics.

Classical particle drifts across the magnetic field can play an important role in tokamak edge-
plasma transport. The relative influence of these terms is important for self-consistent simulations
by including them, together with anomalous diffusion transport, in a 2-D fluid model of edge-
plasma transport in TOKES code. The drifts cause asymmetries in the plasma equilibrium which
depend on the direction of the magnetic field, B. The basic results can be understood by dividing
the drifts into three categories: diamagnetic, E x B, and VB. The dominant effect near the divertor
plates is from the E x B drifts, while the weaker VB drifts cause an increase in the magnitude of the
radial electric field inside the magnetic separatrix. The diamagnetic terms, defined as divergence

free, do not contribute to transport.
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Fig IV.3 Vectors of ion particle flux for (a), the Fig. I'V.4 Radial electric field at the outer
standard direction of the toroidal magnetic field midplane for (a), ExB drifts only, and (b), ExB and
corresponding to the ion grad-B drift toward the X- grad-B drifts together. The ion grad-B drifts are
point, and (b), the opposite direction for the toroidal toward the X-point for the standard B case [16].

field [16].
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V.The modelling of neutral atoms in tokamak boundary plasma

The effect of neutral atoms is not included in standard tokamak transport treatments [37].
However, recent experiments [38-45] have shown that neutral atoms in the tokamak edge can
influence global confinement by affecting the transition from low L to high H confinement. The
physical mechanism by which this occurs is not yet clearly identified, but it is well known that
neutrals influence ion dynamics through charge-exchange interactions. Furthermore, the radial
neutral flux of toroidal angular momentum can modify or even determine the edge radial electric
field and plasma rotation. The radial localization of the neutrals also introduces a shear in the flow
that may affect edge turbulence [46]. Neutral atoms play an essential role in momentum transfer
from the plasma to the wall, thereby facilitating the transition from attached to detach operation
regime with increasing input power [47]. They could also play an important role in mitigation of
ELMs and runaway electrons [48].

In this chapter, we consider first simple models of neutral atoms behaviour in the tokamak

boundary plasmas and then will describe the neutral transport in the SOL and divertor plasma.

V.1 Kinetic description of neutral atoms near the first wall

The neutral atoms (e.g. of hydrogen isotopes) realised from the first wall of tokamak and
penetrating in the boundary plasma undergo charge-exchange collisions and ionization. The neutral
atoms before being ionised undergo many charge exchange collisions and experiencing a random

motion. Therefore, the penetration length into plasma can be assessed as a diffusive length.

(V.1)

2
1 ~ID 7 =\/ Vio 1 _ Vro 1
D cx Yion
n<ov>, m<ov>, n \<ov> <ov>,

where the diffusion occurs due to multiple resonance charge exchange collusions. Here
T., =1/n, <ov> is the ionization time and the mean free pass for atoms against

ion ion

ionisation and charge exchange, respectably:

e (V.2)
v
Aion = ﬁ (V.3)

Under reactor tokamak conditions at the edge neural atoms will normally penetrate rather shallow
and neutral distribution can be considered in the slab geometry (see Fig. V.1)

It is useful to introduce the following definitions:
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Bx)=<ov >, /(< ov>_ +<ov> ,-on)

(V.4)
() = (<ov>,, + <mndv > ; (V.5)
and the reflective property of plasma, so called Albedo:
A@‘)ﬂ_ﬂ}iz:;i (V-6)
plasma gas 7 wall
T, ; %
N
z i o
< > % .
Fig. V.1

Here f™ and j, are the distribution function and flux of atoms coming from the wall, f* and j; are
the corresponding quantities for reflected back atoms. Assuming the complete absorption of atoms
at the wall, the distribution functions for incident and reflected atoms can be taken as a one directed

Maxwellian with the wall 7 and plasma 7, temperatures, respectably:

fo = Z#exp—%v? for v_<0
o 0 V.7)
2y m=V)
= -— or v_<0
f;) ; 2 T f X

Here velocity V' describes the plasma flow in vertical direction V(V_,0,0). Using the definition

given above and integrating over velocity space one can easily find the following moments for
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* Particle flux of atoms:

.+~1_k.—. J=.—_.+_ 2k .-,
Jo l_l_k]o’ =l Jo_1+kJ0’

* Atoms density:

nzng+na :2\/;(]_0+]_OJ:Mi(1+ 1-k %)’
1

Vo Kk 1+k

VTO le

o) = o 2‘/7[<1+ﬂ‘/5>;
V7o 1+k T,

* Velocity of atoms:

VY S
" \/;(l+k)(1+,6’\/§)

* Pressure of atoms:

V=

p=n,T,+nT, =~27mm 2‘]—k(1+k)(\/70+\/71)

» and the friction force (or viscosity):

3

v -k 1 |8T.
F,=-F=rm, =mJ.vayf1 dv ——mVTJ—mVZn g
where T.:
21T,

T.

etk
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V.2 Fluid description of neutral atoms in the SOL

In this chapter the fluid equation are derived for simulation of neutral atoms in the SOL and
divertor region of tokamak. We will assume that in the toroidal direction the distribution of neutrals
is homogeneous in that boundary region, therefore considering only the radial and poloidal

directions. As far as radial direction concerns, we will integrate across the relatively thin layer in the

SOL region.

e Geometry chart & coordinate system

] gm0

diveror

plate

Private region
neutral gas

Wall

el nvertor
plate

A
where ¢ is the thickness of the plasma column in the SOL and the divertor area, 6 =—

and Od=d—-Ais the thickness of the private zone. We will choose the curvilinear orthogonal
coordinate system (), 8,9 and will use hereafter the following definitions:

vuy,,U,,U,) the fluid velocity of neutral atoms,

N is the neutral density,

m, 1is the mass of atom,
© 1s neutrals mass density, Nm, = p

Metric coefficients (with co- and contra-variant components)

1
g =——=47'R’B, = const, g =—=4r’B, = \/g = const

gu/z// gﬁﬁ

UU, qugWUU' :Up
U, = \/gaaUg =U,
Uq, = gWU(” =U

4
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e 2-D Fluid equations for neutral atoms

e (Continuity equation:

N N0+ 2 (NU, )= -GN )k ()6 —" = Ny =5 =0, 5=A/d
a6 dy 7,.(nT,) 2% (V.15)
®  Momentum equations along toroidal direction:
pU, 9 oU
—| pU,U, -1y —=
P +ae[p Yo =M ae}
dU V.16
— %[_ Mo &1; J —opnU ,k,, (T,n)+ opnk . (T)V,h,-U,)+omnU k. (n,T); ( :

e FEnergy equation:

ou ou ou
@+%[(50+NT0)U9—%%—;7{£U Wo 2y vy Yoy U ‘/’D

0 - 0 + =~ +
& d 6 3 a8 3 7 dy Y oy Y00 7 00
aU, aU, U
+ 2 (e, + NT,)U, —;goﬁ—no iUW v —%UW W, +U,—L+U, W, +U,—~
y A 3 dy 3 a0 a0 A 7%
=—8e,Nnk,,(T)+ N (g, — €, )k (T) + mNek,, (T)+ 30, (V.17)
2 2 2
m.nV 3 m, NV 3 m.V 3
_ 1 2 . __ N 0 2 . _ i/l 2
£ = 5 +2nT ; gN_—z +2NTO, Qrec,i n 5 +2Ti (V.18)
New variables and ordering:
U,=Uh,+U.h,; U, =Uh,~Uhy h,=B,/B
. p— . — 2
U,=U,h, +Ushy; U, =Ugh,~=U,h,; h,=1-h, (V.19)
Uyec & Uy 1; U, o &%
Agoec 1; /1¢,c>c oo; ﬂwoc 1/ ¢&;
(V.20)
Then, the equation can be written as:
JN  JdNU N
—+ ¢ =—-0Nnk,, (n,T,)+ ok, (n,T)+—;
a9 B
(V.19)
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doU 0 al,
& 6+(pU32 770 j

&  J0 J0
J au,
=\ =y S | = 9onU k(T m) + dpmk (T)(h, ¥, =U,) + SmgnU ok, (n,T; (V.20)
y dy
9PV, f?[ )
ot +39 UU«J 7 079)_
au,
= ;{/[ o . j - é‘anq,kml(T n)+ §pnk (T)(V,,hw—U¢)+§m0nU¢km n,T); (V_21)

e Since the SOL region is relative thin, A << 2nqR we averaged over the radial direction and
simulate the radial distribution via a source of neural atoms coming through wall or separatrix

Therefore, the radial term in continuity equation can be replaced as

dNU, N
Ay NTL

.
>
w

For the parallel momentum IT, we will take into account that due to the charge —exchange

collisions with the plasma ions, neutrals surrounding the plasma flow will hamper the flow and

therefore acquire the parallel momentum.

J a, 3
11 I Kn): Kin) =1 — g L/ Kn)
// 0')1//( 770 0') ] (&1)2 er( l’l), fm( I’l) € s

I, ~0 (V.22)

where Knis the Knudsen number of neutrals, 6 and A are shown on the sketch (see Fig.1), o,_, is

the neutral-neutral elastic collision cross-section.

A(Kn) =2.4(8d)m(11.5(6d)mNo, , +1); d-A=d; S=A/d;
o, =210"m™>

(V.23)
Instead of U,,U,, we will introduce the velocity projections along and across B: U, U,
d 7 N
—N+—INWU,h,+U h —ONnk, (n,T.)+onk  (n,T,)+—;
at 0’)6 ( ( V) 17 )) 1on( ) rec( ) ’Z'J_W
(V.24)
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dpU d hy) 2, hohe U
i %[(pU,Hpo)hﬁUuUlhvf)"70((“?3) B 3 &5D i

=-I1, - dpnU,k,, (T,n)+ opnk (TXV, -U,)+ dmnU, k,.(0,T) (V.25)
dpU J ) h2) gu 1 AU
T +%(h¢(pUL+p0)+h€U//Ui_ 770[[“'_3ﬂ 0—)_;+§h¢h90—,_é/ =
=-II, — J6pnU k,, (T,n)— dpnk, (T)U, + dn,nU k,  (n,T); (V.26)

de,  d I 0, % %
o+0[(50+NT0)U,9_/1'08;_770(3U‘986;9+U¢ aew]jz

=—0¢,Nnk,,(T)+mN(e, — €, ) k. (T) + Nek,, (T) + 80,

ion

mn 3 mNNV02 3 m,V//2 3 (V.27)
e =—1 +—nT ; &, =——+—-NT; QO .=n-LtL+=T v
i 2 2 N 2 270 rec,i rec

U, =U,h,+U h,; U,=U,h,—Uhy; hy=B,/B; h,=y1-h

(V.28)
Projection of poloidal velocities along B % i = i
J ’ &80 00 = &
ON J N
=+ (N, + U, /b, )= -ONak,, (1.T) + ik, (0T =
(V.29)
W, 2 h2\ou, 1, )l
a | PV TR ULULR, Tho) = [ 55 o 3
= —H// - 5an//kian(Tsn) + 5pnkcx(T)( V// - U//) + &’nonU//kmc(n,T); (V30)
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=-I1, - §pnU k,, (T,n)— Spnk, (T)U, + dm,nU k, (n,T); (V.31)
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ok h, h:ox RB\3 %k 7 ox)
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minV2 3 mNNV0 3 (m V,,2 3 )
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(V.32)
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U,=U,h,+U h,;  U,=U,h,~Uh,; h=B,I/B
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e Dimensionless form of equations:

We will introduce the following dimensional units

N, T, L. t,=L/v, v,=\T, /m,
and dimensionless variables
t=t/1,, U=Ulv,, T,=x/L, N=NN,  T=T/T,
then the equations read:
ON h N n n N
—+—|N|U,+U, 2 ||=-0—+0| = |—+—;
&t &5 h9 Tion N g Trec TJ_W
NU, o [( hzj 1 dU, h, U j
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where:
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e Numerical procedure (discretesation of equations):

ﬁ[N(U//+UJ_h¢/h9J]| ) [N(U//JfULhw/hejL‘[N(U//J“ULh(p/hajl_ ) V.33)
&

|

i

g1 SCTRUNTY) (53 KRR

i+—[N(U//+UJ_h¢/h9)]

Nnew(i) B Nold(i) + lN(U// + UL hr/)/hH)Ji

= Nnew (l’)Vw - &vnew (i)Vion + &newvrec;
T h
4
— Ts . — 7
Vrec = > Vw = .
Trec Tiv

Nold(i) + {;g &new _%[N(U// +UL hq)/hﬁ]i}

N o () =
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ll — T T, 0T, /T, 14 (0.7, (i))J

won

j(+) = n(i)max(V(i),0)-n(i+1)max(-V(i),0)

j@(-) = n(i-1)max(V(i-1),0)-n(i)max(-V(i-1),0)
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O first volume :
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V.3

Boundary conditions for neutrals

The distribution function of the incident atoms at the Plate

. N .., N e_ 20
F() (NaTO):ﬂ_fM (”,‘aTi)zﬂ_—3 FM :
n; n; (\/;VTI.) (V.34) l(nl’Tl) R
reflected particles:
<
_ - N . -
Fy(N.T) = £, (N T) ++ R B " (n,.T) fo No> )
ni
+ M
FN, T BT
— 2F _m,fl
fiNp,T) =R—-e o
Ty (V.35)
s 4, =q,tep;  ep=3T, fFNLT)
B =0vex/ (0, + OVy)
Here
N=N,+N,+N_;
27m, T
NOi:FRN S N+:ﬁni; N _& i
T R, \T.
where
T =T
2T, L,
T = ST, RE(f,-Ti ); where

2

f=le s M) s MNT @54 MDY (M) G,

(see for details concerning function last function in [21])
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e Heat and viscose fluxes

q; q, N, |8
gy =3T,RyUR;(3T,) + [F)(l —RyR, (F)j : T E

1

#,=N,T, +N, ([ +mV?)+N T,
# =N,T_+N,T+N.T,

e Boundary conditions for neutrals in dimensionless form
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N T 2\ my? T
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7T, =N,T._ (%)+N+T{ng+N_T_

A,=N(U,*+T,+U,U h,/h,)- ng{(1 +

h 2
2, =(UI+T)N-"+NU, U, _ng{(H_ij% +Ln &}
[
The numerical program, solving these equations is presented in Appendix VIII

VI. Sputtering of the first wall and divertor plates.

It is now recognized that the lifetime of a tokamak reactor is determined by damage of
structural elements facing the plasma (e.g. the first wall and divertor plates). For this reason, it is
important to obtain the most accurate estimates of erosion rates for these elements. Available
experimental data applied to steady state or long pulse operation indicate that the first wall erosion
rate is due mainly to charge exchange neutral sputtering, and that the erosion rate of divertor plates

is determined by fuel and impurity ion sputtering (particularly self-sputtering).

VI.1 Objectives
Here the calculations are presented for the sputtering yields averaged over energy and angular
distributions of incident deuterium and tritium ions on various materials proposed for the divertor
plates and first wall of a tokamak reactor (C, Al, Ti, Fe, MO, W). Modifications to the particle
distribution function due to acceleration in the sheath electric field are included and the calculations
are performed over the energy range characteristic of the particles in the plasma boundary. The
results are restricted to the case of magnetic field lines normal to the divertor plate surface.
Calculations of the sputtering yield for first wall materials have been performed in several
papers (see, e.g. ref. [30]), Assuming normal incidence, the different expressions are extrapolated to
the low energy range characteristic of the plasma edge and used to calculate the divertor plate
erosion rate. In general, the sputtering yields so obtained correspond to those which would be
produced by particles whose are consistent with acceleration through the Debye sheath. It is easy to
show that the thickness, A of structural elements sputtered during one year of continuous operation,

by particle fluxes of different species j, can be expressed as
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A= TAZ<qu_/> (VL 1)
J

Here A is in mm/year, A is the target atom mass (in amu), o is the target material density

(g/cm3),S,(E,0) is the sputtering yield of particle j with energy E and angle of incidence fandg;,,
is the flux of particles j (particles cm™ s ). The brackets < > represent an average over the angular

and energy distribution of incident particles. Thus, the precise determination of the erosion rate
needs the correct form of the energy distribution function of the incident particles and the sputtering

yield s ,(£,0). Although a Maxwellian distribution is commonly chosen, the distribution function of

charged particles near the divertor plates may be strongly distorted. This paper presents the results
of erosion rate calculations taking into account modifications of the distribution function and the

angular dependence of the sputtering yield.

VI. 2 Distribution functions

Let us consider the distribution function for particles arriving at a material surface. It is clear
that many effects can influence the energy distribution function near the divertor plates. In practise,
it is impossible to take into account all of these effects by an exact method. For this reason we
consider only the main effects which determine the difference between the near and far distribution
functions in the edge plasma flow.

Far from the divertor plates, the ion distribution function can be considered a Maxwellian

shifted by some velocity V. The longitudinal gradients in the boundary plasma, particle sources and
acceleration in the presheath field determine the value of V, [31]. For typical boundary plasma
parameters the inequality o, <A, <p, <A, is satisfied (p,,is the electron (ion) Larmor radius,
Apis the Debye length andA, - the mean free path of a charged particle). If4,, exceeds the

characteristic length of the neutral atom distribution near the plate, then this neutral gas will not
influence the charged particle distribution function. This condition is satisfied if the plasma density,
which determines the width of the neutral atom spatial distribution exceeds or is comparable with
the atom density. The effect on the distribution function of a magnetic field and of ionization of
atoms may be neglected for the conditions considered here.

The ion velocity distribution at the plasma sheath interface (i.e. at a distance A, , from the

plate) can be expressed as
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2j, 1
So(My) =22 ——expl-uly = (w0 - M,)'] (VL.2)

Ve av;
where j, =n/T/27m, is the ion flux to the plate, u,, =V, /V,,u,, =V, /V, are the transverse and
longitudinal components of the velocity along the magnetic field normalized to the thermal velocity
V,=4y2T,/m, andM,=V,/V,,. Expression (VI.2) represents the distribution function for

collisionless ions accelerated by the presheath field so that at the entrance to the sheath their mean

velocity satisfies the Bohm sheath criterion. According to this condition, the value of M at the

plasma-sheath interface is given by M = \/Z €9,/ T, = \/Z ;/2where Z; is the charge of an ion

accelerated in the presheath field, ep, ~ 7, /2.

In so far as that in this regime the distribution function is determined only by the constants of

motion, near the plate the distribution function is

Z elo - p,)
S = _” Jo (”//oa Uy )5(“i - “io b(”/z/ + % - U/2/0 du/z/oduio (VL. 3)

i

Here @is the plasma potential far from the plate, and 9 is the Dirac delta function. Taking the

plate potential to be zero, the distribution function for the ions at the plate may be written as:

27 Z e ? Z.e@
— Jo exp| —ul —| Jul ——L2— M, u, > |2
ViF(M,) T, T,
fd = a(VI 4)
Z e
fi=0 u, < JTI. -
and F(M,)=2z[ f(V)dV [V,dV, =™ +aMErf (-M,) (VL 5)
0 0

It should be noted that in obtaining eq. (VI. 4) the ions are assumed to completely recombine on the
plate and the lines of force are assumed to be oriented normally to the divertor plates. Clearly, if the
angle, @, between the normal to the plate and the line of force increases, then the value of M,
which is proportional to cos# tends to zero. In the limiting case of grazing incidence (68 — 7z /2)
the distribution function (4) transforms into an unshifted Maxwellian. The effect of the magnetic

field can be neglected in this case since p, > A,. The dependence of the shift in the distribution

function on the inclination angle of the line of force is connected with the fact the sheath electric
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field is oriented normal to the surface. The value of the component of this field along the direction
of the lines of force decreases when the inclination angle increases. In reality, they are normal and
tangential intersections of the lines of force with the surface because of surface roughness. The most
unfavourable case, corresponding to normal incidence (€ = 0), has been taken into account in the

calculations of sputtering yields which follow. The usual expression for the potential drop in the

sheath is used: e, = T, In\/m, / 27zm, .This expression is valid in the absence of secondary electron
emission and if the inequality Zk n, Z, <<n,is satisfied, (», is the plasma ion density andn_, is the

density of impurity ions in ionization state Z, ,). From eq. (VI. 4) we note that in general there is a

large difference between the distribution of ions arriving at the plate and a simple Maxwellian. For
the distribution function of neutrals near the plate, we assume the ion distribution function of eq.
(VL. 2). This assumption is based on the fast relaxation (over a time of order the collision time) of
the distribution function of cold atoms leaving the plate surface to the ion distribution function near
the plate. We assume further that the distribution function of the atoms arriving at the first wall is

also Maxwellian.

VI.3 Energy dependence of the sputtering yield

We now turn to the energy dependence of the sputtering yield for the case of normal
incidence. The exact solution of the sputtering yield problem for the low energy range E < lkel has
not obtained yet. For this reason, we must use empirical relations that agree well with the available

(scarce) experimental data. The following expression for the sputtering yield is proposed in [32-34]:

S, (E,0) = Uizf“‘(z2 —~ 1.8)2( (VL 6)

0

M, —o.gjm' (E-E,,)
M, (E-E,, +502}4 22+

where C =2 -10’ for hydrogen atoms (ions) and C = 400 for other projectiles. U , is the binding
energy of the surface atoms (sublimation energy) ineV', Z,,Z,,M , M ,are the atomic numbers and
masses (in amu) of the target and projectile respectively, E is the projectile energy (el ) and £, , 1s

the threshold energy given by the expression (VI. 7):

2
E,, = (M, + M, ) (VL7)
4M M,

From equation (VI. 6) we see that S, ~ 1/ E, for large E but the experimental data agree fairly well

with the law S ~ In £/ E [33]. The expression proposed in [34], based on the results of both

theoretical and experimental investigations, and predicts just such energy dependence.
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According to [34] the sputtering yield is

E (E EN” E, Y
Sz(E,O) _Q{3441 ETF IH(ETF +2718]l:1—(ETFJ :I(I—Tj }F(E,ETH) (VI 8)

where

-1
FGB.E.)= 1146355 /Li[é.ggz /i_lm] (VL 9)
ETF ETF ETF

Here, E ., is the energy in the centre-of-mass system for a head-on collision with the screening

radius for a Thomas-Fermi potential as the closest approach and £, , is the threshold energy. The
parameters O, E ., E,, are given in [34] for some representative cases. Calculations show that the

predictions of equation (VI. 8) are somewhat closer to the experimental data than those from
equation (VI. 6). We therefore choose the former for use in our estimation of the sputtering yields at

low energy.

VI.4 Angular dependence of the sputtering yield
Several authors (see, e.g. [32]) have considered the sputtering yield dependence on the

projectile angle of incidence.

S(0)/S(0)

1000eV

[ N T Y
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Fig. VI.1. The angular dependence of the sputtering yield S(&) for varying projectile energy.

The most complete treatment is given in [34], according to which the following approximation may

be used:

S(6)= coslf gexp{— fcosb,, ( 1 —1)} (VL 9)

cosd
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The parameters f and & ., have been determined both from available experimental data and

opt 2
numerical calculations. fis independent of projectile energy for the case of sputtering by light ions,

and 6, (in degrees) is given by the expression

— 00" n
O, =90 =573 (VL. 10)

1/4

fand n (for E= 1 keV) are given in ref. [35] for H, D, T, He and various target materials. Fig. 1
shows the function S (19) for the combination (D +Fe). It should be noted that equation (VI. 9) and
(VL. 10) predict the angular dependence of the sputtering yield well only for light ion sputtering.
Their validity to the case of heavy ion sputtering is doubtful, especially if calculations of the
sputtering yield averaged over an energy spectrum are required. In addition, it can be shown that the
sputtering yield averaged over the energy and angular distributions of the incident particles is very
sensitive to the behaviour of its components in the near threshold energy range and nearé = 90°.

There is evidence that equations (VI. 9) and (V1. 10) are not valid in this case.

VI. 5. The average sputtering yield
The twice-averaged sputtering yield, which we define as the yield averaged over the

distributions of energy and angle of incidence of the projectiles, is given by

- j JiS(E,0W,dV
L [ryar

[ £1(E,6))S(E,0WEdE cos - d(cos )

VI. 11
[ £,(E.0)NEAE cos 6 d(cos 0) (VL 11)

This expression may be transformed to the following

S_j[ “f"’"j =S, j tS(t)Texp(—%(l —f )js(g)exp[—E /%zz —5- MOJ ]gdg (VL 12)
won 0 e

where
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2E;

=—) t=cosd
" TPF(M,)
& =max(l,0); e=E/E,
B=T/1Ep 6="Z,ep,/T,

In equation (VI. 12) S(¢)represents, the angular dependence of the sputtering yield [see eq. (VI. 9)]
and S(¢€) the energy dependence [see eq. (V1. 9)]. We note that the dependence of Son & (i.e. on

Z ;and ¢, ) is rather complex. On the one hand S evidently increases when o increases due to an

increase in the population of fast particles, but on the other hand, S must decrease if the minimum
energy gained in the sheath exceeds the threshold energy so long as the integration region over

£ decreases when O increases.

VI. 6 Results and conclusions

In accordance with the above, we have calculated the twice-averaged sputtering yields for a
number of target/projectile combinations. Table 1 shows the results for deuterium ion sputtering.
Table 2 shows the results for the same target materials but for the case of incident tritium ions. It is
interesting to note that in both cases the sputtering yield decreases as the target mass increases in
this low energy range; this is valid even for mono-energetic ions.

Table VI. 1

Variation of the twice averaged sputtering yield, S for various target materials as a function of the

temperature of incident deuterium ions

T (eV) Target
C Al Ti Fe Mo w
5 323(-3*" 22(—-4) 1.75(~5) 6.8(—35) 28(-12) 2.63(—14)

10 1.97(-2) 5.8(—3) 1.0B(—3) 2.94(—-3) 39-7) 3.62(—8)
50 5.85(—2) 51(-2) 1.8(-2) 3.95(-2) 2.6(—-3) 1.53(-3)
100 5.63(—2) 6.06( —2) 2.44(-2) 5.36(—2) 6.3(—3) 4.57(-3)
500 29(-2) 4.45(-2) 23%-2) 5.4(-2) 1.1(=-2) 1.07(-2)
1000 1.9(-2) 3.18(-2) 1.8(-2) 4.29(-2) 1.01(-2) 1.11(—2)

? Note: 3.23(—3) means 3.23x 1073,

Table VI. 2
Variation of the twice averaged sputtering yield, 9, for various target materials as a function of the

temperature of incident tritium ions T (ev)
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T (eV) Target

C Al Ti Fe Mo w
5 1.82(—3)* 7.99(—4) 1.6(—4) 312(—4) 4.15(~7) 1.62(—12)
10 2.94(-2) 1.24(-2) 3.97(-3) 7.81(~3) 1.6(—4) 3.59(=7)
50 1.94(-1) 7.72(-2) 3.63(—2) 7.3 ~2) 1.08( - 2) 3.57(—3)
100 212(-2) 8.99(—2) 4.68(—2) 9.7(-2) 1.75(—2) 9.29(— 3)
500 1.3(-1) 6.52(—2) 431(—2) 9.57( - 2) 2.36(—2) 2.00(—2)
1000 8.9(-2) 4.66(—2) 3.32(-2) 7.60( — 2 2.08(—2) 2.05(—2)

3 Note: 1.82(—3) means 1.82x 1073,

These calculations enable us to estimate the relative importance of the effects of acceleration in the
sheath potential, modifications of the distribution function and the angular dependence of the
sputtering yield. Analysis of the results shows that variations in the sputtering yield are mainly due
to the accelerating potential. So, if for example, we take into account only the angular dependence
for deuterium atoms at 7 =100e) incident on tungsten, then the sputtering yield is increased by
about a factor 3 over that for the case of normal incidence. Taking into account the sheath
acceleration the yield is enhanced by a factor 35. Fig. VI. 2 show the effect of the angular
dependence on the sputtering yield. One can see that the ratio of the twice averaged yield to the

energy averaged yield (for the case = 0, M = 0) increases as the temperature increases. This

result is expected so long as the fast particle population increases as the temperature increases since,
from equation (VI. 9) the yield is enhanced as grazing incidence is approached. The above leads us
to the following conclusion: despite the weak dependence of the sputtering yield on the angle of
incidence in the energy range below 200 eV, it is essential to account for the angular dependence in
this range if the energy averaged sputtering yield is to be accurately predicted. For example, even at
T =10eV , the enhancement factor is 2.5 for D-W sputtering. The calculated data also show that the
distribution function distortion introduced by the sheath acceleration effect leads to sputtering yield
increases of 1.5-2. This enhancement is comparable with that due to the angular effect. As an
illustration, it is interesting to compare the calculated values of the yield with those obtained from

equation (VL. 8) for E'=5.5Z T, the energy gain because of acceleration in the sheath and pre-

sheath electric fields. It is easy to show that for all projectile/target combinations the values of s

given in tables 1 and 2 exceed those of S,(3.5Z7)the actual enhancement factor depends on the

type of projectiles’ result also valid if we use expression (VI. 8) to estimate the sputtering yield for

E=55Z]T,.
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Fig. VI. 2. Ratio of the sputtering yield averaged over energy and angle of incidence to the yield

averaged over energy only (i.e. for 8 =0).

The sputtering yields averaged over the distribution function and over the projectile incident angle
have been obtained for some candidate target materials (C, Al, Ti, Fe, MO, W) and incident
deuterium and tritium ions.

We have shown that the sputtering yield increases if the sheath potential is taken into account and

that the usual estimation of the sputtering yield at energy E =3.5Z T, is too low

It is found that it is essential to account for the angular distribution of incident light ions at low and
high temperatures in order to calculate correctly the sputtering yield averaged over the distribution

function of the incident particles [36].
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Conclusive remarks

The main objectives of the project have been fulfield. The review of transport models, suitable
for simulation of stationary and transient processes in multi-species plasma (ELMs, Massive Gas
Injection etc.) are presented and the following tasks are completed:

e An analytical model of impurity distribution in the SOL region, based on the force balance
equations along the magnetic field lines.

e The fluid transport equations for impurity ions of arbitrary concentration and in arbitrary charge
states in the SOL and divertor plasma (the 21-Gread moment equations) are derived.

e The Braginskii version of the 2-D equations for mulri-component plasma (in the frame of the

Chapmen-Enscog procedure) is prepared for implementation.

e The fluid and kinetic models of neutrals (atoms of the hydrogen isotopes and impurity atoms)
are prepared for implementation. The proper boundary conditions are derived.
These preparations are foreseen for simulation of the following main tasks:
a) to evaluate ITER core plasma pollution with tungsten impurities sputtered from the divertor
plates by small (mitigated ) ELMs during the discharge time. This gives the answer to which extent
ELMs have to be suppressed to be tolerable for ITER operation in the sense of PSC life-time and
dilution. The model will include a sputtering of divertor plates by incident ELMy hot particles as a
source of impurity ions, dynamics of impurity ions in the SOL region and “entraining” effect of
ELMs in the pedestal area.
b) to simulate the radiation energy distribution on the first wall during TQ and CQ stage in ITER
caused by Massive Gas Injection (MGI). Impurities of Ne and Ar will be introduced in H-mode
ITER discharge by MGI and their poloidal and radial distribution will be calculated by 2D TOKES
Code. To estimate the injected particles stopping radius and required amount of injected gas for
ITER by taking into account results and arguments from JET experiments. Such calculations are 2D
and address the poloidal asymmetry in the first instance.

It is worth wile to make some remarks, concerning the issues, which are not mentioned above,
however remain very important for tokamak-reactor plasmas. In this report the analytical and
numerical transport models are presented for multi-component complex plasma, when impurity ions
are in arbitrary concentration and in various charge states dominate in plasma and mainly
determined transport properties. Description of impurity transport, presented here is done in
classical terms. However, in many experimental situations, neoclassical (i.e. collisional) effects
alone cannot explain impurity transport [50] Turbulence should be taken into account to explain the
observed anomalous transport. Theoretical models predict that turbulence is highly sensitive to the

electron temperature gradient [51]. The turbulent transport theoretical predictions show that
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decreasing the temperature gradient leads to reduced transport coefficient down to neoclassical level
[52]

Also, the effect of neutral atoms is not included in standard tokamak transport treatments.
However, it is well known, that neutral atoms in the tokamak edge can influence global
confinement by affecting the transition to H-mode. The physical mechanism by which this occurs is
not yet clearly identified, but it is well known that neutrals influence ion dynamics through charge-
exchange interactions. Furthermore, the radial neutral flux of toroidal angular momentum can
modify or even determine the edge radial electric field and plasma rotation. The radial localization
of the neutrals also introduces a shear in the flow that may affect edge turbulence [53]. Earlier
theoretical work [54] explored the effect of neutrals on collisional ion flow and radial electric field
within the framework of neoclassical theory. The neutrals provide a drag on the ions that leads to an
effective no slip boundary condition for the toroidal ion rotation within an ion temperature gradient
modification. The effect of the neutrals is typically significant if the fraction of atoms in the plasma
exceeds about 10, which is usually the case in the tokamak edge region just inside the separatrix.
The effect of the poloidal variation of the neutral source is imoportent and will be reported next
time. Particularly is important to investigate the effect of a poloidally varying source of atoms on
the electric field and flow velocity of collisional edge plasma. This effect can be substatianal in the
case of massive gas injection or strong repetitive pellet injection. An asymmetry in impurity
radiation can be strongly dependent on electric field, therefore dpendent on neutral distribution in

edge plasma. All these issues will be addressed in the next contract.
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Appendix I The friction and thermal force in complex plasma

e For impurity ions. The general expression for drag (friction) force acting on the impurity ion &

in z charge state due to collisions with other impurity species fin & charge state , including the

mutual collisions with « species in different charge states, ( f = « ) reads as:

Rgz = _manazj {ﬁzf Cc(J;),ﬁg? : Voz,,b’é ) (Vaz - I7ﬁ )} (All)

n, — is partial impurity concentration in z; charge state,
V., — velocity of impurity ion in z charge state
B.E — sum over different species and charge states

(including o species and their charge states)

Zn 22V,
74 &

Vy= kz:—Zz is the average velocity of £ specie over its charge states (AL2)
nzk k

Neglecting the mutual collisions of impurities and assuming that they collide

mainly with background ions (protons), the drag force reads as:
R, = _cé;),imanozvoz,i ) (Voa - Vl) (AL3)
when m, >>m,,

0 (1+0.247,)-(1+0.937,)

T (1+2.65Z,)-(1+0.2852,)° (AL4)
2 2
/ _
where Zy= 2.1 ? - Ma 2 e 7 e ~"a .72 and (ALS)
n; n, n,
FE L (AL6)

cl) e 1n the case of arbitrary mass of species, can be evaluate numerically.
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For arbitrary heavy masses (not too different) coefficients can be found by

using the following expression:

C=P+ 5 (AL7)
F)3 + Zlh
Zn W2
where Z,, W . Index & corresponds to the heaviest impurity in
N
the charge state z and i - to the lighter species in the charge state &.
The P, values in equation (AL.6) in plasma with two different species are listed
in the Table I. for different pares from the set of impurities. Here
n; + Z ,nz_zz.
Zy=—=""" and (ALB)
n,=n,+y.n,z (AL9)
In practical units:
n [cm_3] 2m.m 12
v, [sec]=4.79-10"-c\) o—— . AZ}| ———£ — (AL10)
"’ C I [eV] (mz +mi)m

R [g/cm’®sec’] =

3 vz (AL11)
=8012.10°2 .0 el L 7o) A | S fem /sec)

C T er] (m,,+m;)m,
The drag force for light impurities (hydrogen isotopes).
R' = —mini{; TR (A @)} (AL12)
cl“/% = cggl (see (AlL4))
mg n
Vg = ﬁﬁ% Ve, (see(AL10))
D ngZV,
I —
B n.

1
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The drag force for electrons in multi-component plasma:

=-m,n {Zceﬁf Ve ( 17[3)} (AL.13)

n 1
Vepe =Vo- 52 'gf \/— ey =l (see (I1.1.33))
17,8 = Znﬂg”Zlka /n,=nV /n, + Znﬂg‘ZIka /n, (AL.14)
& &2l

The general expression for thermal force acting on specie & in z charge state consist of three

terms, associated with temperature gradients of electron, ion and impurity ions:

14 1 o7, 1 dT
T o_ (2)  oepE s (5)
R =mn, 1) | ey S, 5 “ (AL15)
pE Vg mg 0y mg oy
Vi= DV (AL16)
over all species Z
oT, 9T, z; ar,
R, =a,—*~+a,.—=+a,—n, —* (AL17)
dy dy Zy Oy
V., V..
a =n Do 2 02y B0 = =n, &022-)—% (AL18)
tmov, Sm Zvi,z, 'm M+ a,Z,
v, 1+
Vii
In equation (AI.15) , since n.my. ;=mmy,. ., and (ALL19)
1%
R R L A (AL.20)
Vll mz lLll,l mz
2
z jZnZ/
a =n, | =t—5-1 (AL21)
27
J
The last term corresponds to the mutual impurity interaction. It is clear that
zazj =0 . (AL.22)
J
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o,=227

z,0

O =

z,i

(1+0522,)
7 (1+2.65Z,, [1+0.285Z,,)

e

o _156:(1+427,)-(1+0527,)

(1+2.65Z,)-(1+0.285Z,)

3
5
Electron thermal force in multi-component plasma

R =-an VT, (for @, see (AL.23))
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(AL.26)



Appendix I1 Coulomb collision frequencies & equipartition time

Coulomb collision frequencies between two species o and 5 : (sec, eV, cm™)

Nge Al Mop A2z as( A
Vagpe = Vo Z2°&E? . v, =3kTAe4 =0.9-107"° o (AIL1)
ofp o
_ Img+Tzm, P m,m g (AIL2)
P my, tmy D gy +m,
2
_Mphp € _ zluaﬁ £ _ (ma + mﬂ)
Vzpe = =~ = Vit Vepe = Vg Tep = Tarp (AIL3)
ata o B atp
Elektrons lons Impurity ions equal nucleus
(a=

V, =Vt Vgt DV, | V=V V4 D Wi | Ve =Vere TVari # D Voo

yo= VO n, 1 yo= .
) 3/2 i 32 Ve ae = 32
ee ﬁ T, m,‘ oz,aé ﬁ Ta ma

_ ni 1 m ) N m;
V., =V 7.;3/2 ﬁ Vie=Vy" e " Vi =Vo Z Ti3/2 m—a
_ 2 nﬂf 1 _ 2 ”ﬂf n, m,
=V f 83/2 \/WTe =V SE \/7 Ve =Vo .72 T:/Z \/n;
%(manja) n z togVer e 7, =7); (AIL4)
9 o30Sy (7-T)=— Hap _3
o Ea= na;vwﬁg(n T,)= 3%;% o Ve T, =T,); &, = Snal, (AILS)
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£
The equipartition time Tz ge

30 Hop
——n, T, =..+ =3n,k) ——— T,-T AlL6
281? ata Qa Qa a Z a+mﬁ aZﬂ§( ) ( )
9 2Hep (1, -7,)=>ve (1, - T )~——(T“_Tﬁ) (AIL7)
( ) Voz pe al az.pE\" B al” e )
2o (m,, +m,)
= T8, e =— 2T (AIL8)
aZ BT (m + mg ) oz.pg Zﬂaﬁ BE
m m T3/2
Inthe case (a=e, f=i) Tt =—11, = —_. (AIL9)
T 2m, 2v,m, n
m m T3/2
Inthe case (a=i, f=2) Tl =—21, = L (AIL10)
T 2m, 2V Jm; 1,
_ t
T,-T,=(T,-T,) e “* A
o B o B0 (AIL.11)
e The equipartition between protons and impurity ions
Vi =Vo '22 3 (AIL.12)
Tl. m,
T.=T|1-exp(—— ) (AIL13)
[ 2 3/2
for (a=z,f=i) 5,="Teg =NT|M: T—z (AIL14)
T 2m, T 2vy \m, nzZ

Thermal Equilibrium time vs. Z (p/Ne ions )

T(mo,mB,1,T)

T(mot,mp,1,T)
o T(mo,mB,3,T)
T(mo., mf3,3,T) g -
,,,,, = T(mo,mB,5,T)
T(mo,mf3,5,T) - 8
0.011= e - g T(mot,mB, 10,T)
T(mo, mp,10,T) 2 Lo E -
- o S t(mo,mB,20,T) 5 b
T(mo., mB ,20,T) v 107, |
Ix10 7 . = [y
7/
! T = i
x10” 4 i /
5 1107 ! I
1x107° L ! 0 100 200 300
0 100 200 300 T

.. Ti,ineV
Ti,ineV

Thermal equilibrium time for Ar and Ne in different Z and protons.
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AT =(T, = Ty) (T, —Ty), =exp(—Vy. 4 - 1) (AIL15)

AT(t,Z,T,)=(T, - T,)/ T, = exp(~VE, . - 1) (AIL16)
T =5eV
Equipartition of temperatures p/Ar
1 T
0.1 .
AT (t,1,5 OOIF 7

—3
AT (t,2,5) 1X10
LR NN ] 4

AT (t,3,5) 1x10°

AT (1,4,5) 1x107°

110~ ©

1107

1x10” 8
0.0

time in ms
AT =(T,-Ty) (T, —Ty), = exp(—vjzﬁé -t)

Equipartition of temperatures p/Ne

1

AT (t,1,100) 0.1¢

AT (t,1,50) 0.01

AT (t,1,10)  1x107°

AT (t,2,100) 1x10” %

AT (,2,50)  1x107°

AT (1,2,10)  1qq~©

107

X107 S
0.0

time in ms

Equipartition of temperatures p/Ar

1
AT (t,1,100) 0.1
AT (1,1,50 001 ]
AT (t,1,10)  Ix107F % . -
o . .
AT (1,2,100) 1x10” 4 ' N .
— B \‘ \\
AT (62,50 1x1077 S
AT (1,2,10) 11576 \ \ -
-——-- \‘ \
Ix10™ '+ \ S
x10™° L > :
0.01 0.1 1
t
time in ms
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Equipartition of temperatures p/Ne
1 T

AT (t,1,5)

AT (t,2,5)

AT (t,3,5)
AT (t,4,5)

time in ms

T =Tl.(1—exp(—vjz’ﬂ§-t)) T,=0

V4

e Equipartition between impurity ions of neighbouring charge states

ve =Y gign e 1 v =oy z? e N
oZ 0l 2\/5 T;/z\/_a aZ ,p 0 Tp3/2 ma
Vow _ 27 (T,) 1y [mg
Viz.o 42 T, n, \m,
Z=1, Z'=7Z+1=2 n,=n, T,=T,
V€+ ++ 2 Vg-v- ++ 2
for Ar; —24 = 2 V40 =4.5 for Ne: —2-4r 2 V20 =3.16

vi. 42 Vi a2

Ar”,p

Resume:

(AIL17)

(AIL18)

(AIL16)

e The energy exchange time between protons and impurity ions in the first charge state

strongly depends on proton temperature. At high temperatures

T, 2100eV equipartition for the first state of ionization is week. However, for the

higher states of ionizations (starting from Z > 2 ) the energy exchange time is short

enough to assume that 7’ P T -
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o Atlow temperatures, 7, < 5el the assumption that 7' . =T, is correct (with the
accuracy of about 1% ) in time duration=> 0.1ms . For Ne T . =T it is correct even

for shorter times.

e The energy exchange time between protons and next charge states is short enough to
assume that their temperatures become equal in time duration < lms .

e The energy exchange time between impurity ions of neighbouring charge states

Z > 2 is short enough to assume their temperature equal to proton temperature.

The justification for a common ion temperature is that the ion-impurity energy exchange
time is assumed to significantly shorter than the ion-electron energy exchange time. The

ratio of the relaxation times for 7, — 7, and 7, — T, is:

e 3/2 3/2 3/2
TP,,BZ zmﬁ(me] 1 ne (Lj zA(mej 1

£ 2 2
T,. m\m, Z7ng\T, m VA

P

3/2
here we assume that in the plasma edge (%} < (O(1), then

e

Tppe _5.084-10" n,

£ 2
Tp,e Z nAr,z

. for a hydrogen/Ar plasma:

Tope _2.542:10" n

£ 2
Tp,e Z nAr,z

e

e for ahydrogen/Ne plasma:

Whence, even for low charge state Z of impurity ions, the proton-impurity temperature
relaxation time is shorter than the energy exchange time of protons with electrons.

Therefore, one can assume that 7, = T,
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Appendix III  The origin of 5/2 term in the energy balance equation.

We will show here that 5/2 term in the energy flux appears without taking into account the joule
dissipation term. It arise due to contribution to heat flux the work done by pressure gradient in the
convective plasma and occurs also in non-dissipative plasmas without current.

Lets start with kinetic equation without collision term, S¢=0 and the external force, F, =0, thus

excluding any dissipation

¥, ) K. (Qf}& U9y r)=0 (AIIL1)
B

ot axﬁ m ot axﬂ

Multiplying last Eq. (AIIl.1) by % and integrating over velocity v, we have:

o(¢m_,, 0 (¢m_, .
EU?V fdv)+@(jzv vﬂfdvj =0 (AIL2)

Then, one can introduce as usual the moments of distribution functions and the mean and random

velocities:

nsjfdfz, Vsjﬁfdﬁ/n, V=v-V, T:%Iv’zfdv:%<v’2>:%<(\7—17)2> (ATIL3)

The integration of the first term in (AIIL.2) gives:

j— > fdv = I—( +V)Zfdv <( + 17)2> = n(%+ mfzj (AIIL4)

because<(§’ + 17)2> =)+ 2F 7))+ = ()47, 7)) =0 (AILLS)

Therefore <(\7'+ 17)2> 3T +7? (AIIL6)
m

Integration of the second terms gives:

m v 37 mV?
J.E vﬁfdv = mn<7vﬁ> = n( 5 5 jVﬁ +qs+V, Py = (AIIL7)

because

<\722vﬂ>=<<\7'-|;7) (Vﬁ+v,ﬁ)>=<({}’2+2\72'I7+I72)(Vﬁ+v’ﬂ)>=

Vs (7)+ (7v5)

"V

V.V P, V,V?
v et =y Ay T T (AIILS)
2 2 2m mn mn 2
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Using definition of energy ¢ = 37T + and momentum tensor Paﬁ = mn<v;v'ﬁ> = p5aﬁ T

the energy equation reads can be written for non-dissipative case as usual:

g(ng)+%(ngrfﬂ tqy+V,Py)=0 (AIIL)

or, substituting P,z = mn<V;V’ﬂ> = PO+

9 (ne)+ i((ng +pWy+q,+7,V,)=0  where (AIIL10)
ot x4
(ne + )=3_p+m_172+ —5—p+m172 AlIL11
p)=- , tP=T 5 (AIIL1T)
d o ((mv* 3 d (s
Therefore 5n8+@([ . +5nT]Vﬂ+qﬂ]+@(PVa):0 (AIIL12)
or

(3 mnV? 0 mV? 3
—| =—nT + +— =0 where = +—nT+pV,+7m,V,+q,(Alll13
t(2 2 J axﬂ (Qﬂ) Qﬁ ( B 7 pJ B op” C]ﬂ( )
Therefore, the total energy flax O, consist of

1) macroscopic (kinetic+ internal) flux of energy (m y? /2)- Vg
2) the energy flux done by the total pressure forces pV, + 7,4V,
3) and the thermo-conductivity flux g,

Therefore even in the case of non-collision current-less plasma the energy flux contains the 5/2 term

mV? 5
( + EnTJVﬂ + 7V, +dy (AIIL14)

Oy

In some cases it is convenient to eliminate the kinetic energy from Eq. (AIIl.13) by means of the
equation of continuity and the equation of motion. One can then obtain an equation for the transport

of internal energy or the heat- balance equation. It is easy to show that

72 72
i inT+mnV + J mn )’ +§nT Ve+msVy+4qs |=
or\ 2 2 0x 4 2 2
d(3 d ((3 0 av
=—|—nT |+—||=nT |V, + +p—Vy+m,, ——-A
at(z” j axﬂ((zn jﬂ qﬂj Poax, 27" o,

90

(AIIL15)



) 52
where Asi(mnV J+ J (mnV ]Vﬁ+Vﬂ 9 (nT)+V ai(ﬂ'aﬁ)=0

Bxﬁ 2 axﬁ “ x5

Indeed,

9 (( mnv? zmﬁzal+ni my?>
ot 2 2 ot dJrl 2

72 2 72
imnV Vﬂsz inVﬂ+nVﬂi mV
axﬁ 2 2 axﬂ axﬁ

mVi(on 9 9 (my? 9 (my? 0 0
U LA W v, 2 (ur)+V,-2(z
> (at-'-axﬂn ﬁJ-Hlat( 5 J+n ﬁaxﬁ( 2 J"‘ f ax, (nT)+ aaxﬂ( aﬁ)

9 0 d J
Vs (mv, )+ nVﬁVO,@(mVa)+ v, %@(HTF Vaa_(ﬂaﬁ)

Therefore

0(3 0 3 0 514
—|=nT |+—|| =nT |V, + +p—V+mw,,—=
at(z” j axﬁ((zn )ﬂ "/’j Pox, 27" %x,

d(3 mnV? 0 5 mnV?
=—|—nT+ +—|| =nT + Vet+qs+mgV, |-
8t(2 2 J axﬁ((z 2 j’* Ao R ”’]

72 72 aP
Ezi(mnV )+ J (LmV ]nVﬁj+Vaa—aﬂ equals to zero, because
X

o ( mnV? 0 o ((mV? 0
— =V — V — =V — d
at( 5 ] 5 (mn a) H > jn Vﬁj v, 3 (mn VaVﬁ) an
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(ATIL.17)

(AIIL18)

(ATIL19)

(ATIL.20)

(AIIL21)

(AIIL.22)

(AIIL.23)



Coming now back to collisional plasma (St#0 and the external force, F

, =eyE ) for the electron

and one hydrogen ion n = n, = Zn, the transport equations can be writer as:

The hydrogen ion energy:

v’ mn V.’
O3, Vi |y O NP S r et b, +a,, |-
o\ 2 2 )Tl 2 2

(AIIL.24)

The electron energy:

9 inT 9 (3 nT Vg +7apV,, 44,5 |=—enEV,+ RV, +0, (AIIL25)
or\ 2 axﬁ

The total energy:

Jd(3 mnV’ d mnV>: 5 5
—| =nlT, +T J+—— |+ L +—n V—nTV V+7zaV+,+ =
I (e () PR LB AR

= eE(znV, ~n V. )+ RV, +RV.+0,+Q, = - enFii - R i (AII1.26)
One can denote the mass average velocity 7 and introduce a relative velocity :ii

:—(m nV +m nV) V (AIIL.27)
0

- (AIIL.28)

If7,=7T p=mn,+mmn,=mn, p=p,+p, j=-—enu then

— 5 72
e e

o\ 2 ox 4 2

(AIIL29)
= eE(anIZ _neV )+ RJ?; + ReVe +Q[ +Q = ]E
and since RV, + RV, +Q,+Q, =0 (AIIL.28)
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2o 3 ) 8 ([P 5 | 5 ) -
—| Y+ =p |+ —| | —+ Vig +7'pV. +q.,+q.,+—pu|=jE AIIL.30
at[ 2 2p] axﬂ(( 2 zp 7] ia qzﬂ qeﬁ 2pe J ( )

The total energy conservation including plasma and energy stored in magnetic field reads:

2
J (B J +divS = - jE where §' = f[E’E] is the Pointing vector or in another form
T

ot
%—‘:+%qﬁ = (AIIL31)
where € = p—Vlz + % p+ 5—2 and the most general expression for energy
flux is "
ov: 5 ,. 5 . 5
qﬂE(Tl Ep]Vﬂ+ﬂ'aﬁVa+qiﬂ+qeﬂ+5peuﬁ+Sﬁ (AIIL32)

Finally, we will note another form of energy equation. Since

Ei(nT)Jri(inTVj 309 9 )| 30 Ly, 0T |22, 9T (A
ot ox, \ 2 2 | dt oxy 2" o ox, ) 2 dt

then the energy equation

gi(nT )+a(3nTV j+p£ J Vg +7ap Ve +aq‘5 =0, (AIIL34)
2 ot ox, 2 ox 4 dx,  0xy,
where 0 =0, = 3m, E(T -T) Q. =-Ru-0, = f// ~0, + iR (AIIL35)
i m[ Te e i e A O'// O'J_ A en
can be presented as
30p 9 (3 0 oV, 0 ( 3 j ]// /R
S AU L RN v, ey 9 (AIIL.36)
23t+axﬁ(2p j“’eaﬂ P, Ta, 1P )T P
where p=p, + p,
It is easy to prove, that
39 9 (3 0 wv,, s Jj R
22T )+—| ZuTV A g ° e =Jr 4 (AIIL.37)
28t(n D X (2’1 ‘ eﬂj+pe ox TS 0x ’ ox; 0, O'L Ot en
39 3 (3 d W og's
T.)+—| =nTV, 7 o —2 = (AIIL.38)
o )+axﬁ( " j”” ax, 0T e e,
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Appendix IV. Plasma rotation in poloidal direction
Based on drift approximation the plasma rotation in poloidal direction can be written as

Vo =Vig +Vpo +Vep + baV// =

(AIV.1)
c[Eb]H c cT cT
= + bV +—=2|b,Vb+ (bVb)|, + —2-b,(b-rotb) + b,V
B ZaeBna[ Pl ] B[ (bvo)l, Z,eB 2 )bV
where the firs term is due to the radial electric field, b = B/|B|
1 on, 1 o7,
E = { +(1- k)——} (AIV.2)
eln or or
The second term is a diamagnetic velocity:
c ¢ onT
Vo = Vp,ly == — AIV .3
P’ ZeBn, oV, ZeBn, oOr ( )
The third one is the magnetic drift
Vep =L ([b,Vb+ (bVb)], + b, (b - rotb)) = Lo 9b (1-52) (AIV.4)
Ze Z,eB\ or
In the case of tokamak geometry
y=—t B, =—to B (AIV.5)
1+ &cosd 1+ &cosd
b,=B,/B,, ¢€=r/R, b,=B,/B,
and the poloidal velocity can be written as
¢ (onT, aT,
Vy=—+|—+%++k- AIV.6
I ( n,or or j ( )
_ G2 a2 a2
_L17-035-v," -21-v, - (AIV.7)

140.7-v)* +v.e

V.=V, -qRe™? /2T /' m, (AIV.8)
oT,
V, = p 2T Im, - ( T j (AIV.9)
n. 7"

T.ar

1
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Appendix V

e Electron Ionization cross-section of Ar and Ne: (sec, eV, cm™)

Atomic data of Ar and Ne atoms
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e Jonization cross-section due to electron collisions (D. Post,1996)

(sec, keV, cm™)

Argon
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Electron ionization time of Ar atoms, msec
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(msec, eV, cm™)
Tonization time of Ar for different ne

0.1

(3108, 1e. 1579 0.01F

' 1x10~3
(110" Te. 15.79)
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1 10 100 1x10°
Te

(msec, eV, cm™)
Tonization time of Ne for different ne
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Neon lonization Potentials

Ionization Stage Charge Isoelectronic State Ionization Potential (eV)
I 0 Ne 21.564
I 1 F 40.962
I 2 (0] 63.45
v 3 Ne 97.11
A% 4 C 126.21
VI 5 B 157.93
VII 6 Be 207.26
VIII 7 Li 239.09
IX 8 He 1195.8
X 9 H 1362.2
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Electron mean-free pass before ionization, cm

Ae(n0, Te,I) := 4.19-107-\/Te-r (n0, Te, 1)

Mip of electrons for ionization vs Ar density, cm
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Mean free pass of Ar and Ne atoms before ionization (cm, eV)

T 1
A (ne,Te,1,A) = 9.79-10° |~
A ne-S(Te,I)

(AV.3)

Mfp of Ar atom befor ionization, cm

A (510 Te.1.A)
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Te

Mfp of Ne atom befor ionization, cm
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° Recombination rates for Ar and Ne

1 -1
(5.2-10_ 14) m)? 11 m) 3 (AV.4)
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e Comparison of Ar ionization, radiation and recombination frequencies,

(1/sec,Te in KeV)
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Appendix VI  The quasi-dynamic transport across B

The drifts and magnetically induced current provide a mechanism for the pressure transfer
across the B field even in rarefied plasma. This is so called quasi-hydrodynamic description, which
is justified in drift approximation. The transport equation across the magnetic field can be written
by using the Ampere’s law where the current is substituted by all drift currents including the

magnetically induced current and the inertial drift:

. c (P P dv P
=—| —+|BVB|+—-£|RB|- p| —B | |- crot| —= B AVI.1
i = S 98l L Rol- o B |- 70 (VLY
This equation can be written as:
. c (P P dv
=—|—=+|VB-B|+—-L|RB|-p|—B |- Prot(B)-|VP, -B AVI.2

)L BZ(B[ ]Rz[ ]'O[dt} 1 ()[J_ ]] ( )
Above we used the expression:

P P 1 2P
rot(B—g Bj = B—grotB tor VP B]- B; [VB- B (AVL3)
and also that:
rot(uV) = urotV + [VuV], and (BVB) = -[VB - B| (AVL4)
Substituting current (AV1.2) in Ampere’s law, one gets

BZ
[FB|= (— + PLjrotB (AVL5)
87

where

P P A%
F="2VB+-LR-VP —p— AVL6

B R’ LY ( )
Here
V=Y p V. /D p, (AVL7)

k k

is an average velocity and summation goes over all species, R is the major radius.

From equations (AVI.4-5) it follows that,

2 2
B’F, = (Pl + f—ﬂj( Vf - (BV)BJ (AVLS)
or
2
0 a;/; - —VL[PL + g—ﬁj + 2; L VB + %R - (BVB)[I + 421} j (AVL9)
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This equation differs from the hydrodynamic equation in two last terms, describing the forces due to

the variation of magnetic field. After averaging over the Maxwellian distribution,

when (P, ) = mn<V//2> =nT,and (P) = mn<Vf> =2nT:

2
mn s = v [2ar + B2 | 4T gp . T _(gyB) 1+ 8””2Tj (AVL10)
ot Y4 B R B
If the magnetic field varies only in radial direction, then (BV)B =0
v, B*\ nT
=-V,|2nT +— |[+—R AVLI1
o0 l( 87[] R? ( )

f=————t—r——nT (AVL12)

Ny __ 595 10 r (AVL13)

These are the transport equations for the entire plasma cloud.
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Appendix VII  Discretisation of transport equations: Belocerkovsky step

. In the first discretization step we are considering the following equations:

b
O )49 }"/EnaVa ~0 (AVIL1)
0 \/g | h,
d 1 9|0, | b op
9 9 p2lo v %a ‘nE AVIIL.2
(aua \/78{ h nua} hyay+Za na /! ( )
b b
o, , Lo ldeh |1 ofeh L (AVIL3)
ot g ay hy g ay hy
b b
de, 1 9 |Je I S Jgb, PV b -nVE, (AVIL4)
ot goy| h \/E | h,
b b
dg 1 9 \/gy(geye+zgaya) __ 19 \/gy(peye+zpaya) (AVIL5)
ot \/gay h,, g dy h,,
where: /g =rhh,
g =€+ €., (AVIL6)
3
£e=nele, (AVIL7)
€ —in T, + Zala 2 (AVILS)
“ 2 '

v, and V, are the a-species and electron velocities along B, E, the electric field

alongé , and
p.=n,1,, p,=n,T, (AVILY)

To discretizais equation we have to consider the integral operators in curvilinear

coordinate system. We use the definitions:

di* =di? +di* +dI* = g dx* + g, dv* +g_dz’ (AVIL10)
dl, = .\g,dy=hdy (AVIL11)
— — — g _ cross
dv =dl dS, = \Jgdydxdz = d, |-> - dxdz = h,dydS (AVIL12)
) .
dS, =[17.|=[e.¢. Yzdx = g -V -dzdx =&, |-S-dzdx; (AVIL13)
) gyy
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e ]=Vi-\g: V=g =1/h, (AVIL14)

then dS, = |5 -dxdz = ﬁ-ozxdz (AVIL15)
gyy h)’
N, = _[ n, \/gdxdydz = Jnad V' is the total number of particles; (AVIIL.16)
ij dv = jde _j(fds + fdS. + fdS. )~—jfds _—jf - dxdz (AVIL17)
f= Ve AR :%-dxdz (AVIL18)
h y

y

[< J { Vg n, bV, )}dydxdz = a{na (b7, )\}/lgdxdz}dy -

0y 0y ,
j Loy, s,y =(s,nbv,) (AVIL19)

After interaction over a sell volume G for continuity equations:

% [n.av = [n,Jgdxdydz = N (AVII.20)
%(Na)+{S"""” bV,} =0 with S =rh, =§ . h =g,
y
N, = [ n,gdrdydz =[n,dV (AVIL21)
jii{ﬁn (bV)}dV= i{—g bV)}dxdydz—jin b7,), hy ds, =
Ve oy | , Ve
=£ 6.7, j T :§na(byVa)a [avaz=s,-n,0,7,)| (AVIL.22)
y _
For momentum equations
[} 19 ]be b dp,
< (m,nV, )+ T ay{ h mnV, } \/_h 9 +z,-n,E (AVIL.23)
.[ Lo by\/gman dv =
2 g ay hy a“a’ a
Iai{ b, h\/_ m,nV, }dxdydz = J-£munabyV2 dxdz = Symanubsz (AVIL.24)
y oY v _
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2N g+ mn Y =,

Cross Cross
ST+ 8E

> (p.) +G z,-nE

For energy equations

. x/gag" +i{\/§by £ Va}=—ai{\/§by PaVa}+x/§zanaVaE
y

a
ot dy| h, h,,
Ea = )\/gga
E
a a +{ CrossgaVa }t — _{ CrOSSpaVa }i + GzanaVaE

ot

de, 1 a{\/gby(

+ _— -
ot \/g dy \/E dy
oE,

2 fles v Sl - )

h

y Y

o Altogether:

%(Na)+ {serossn v ¥ =0
cross cross
%(maNaVa)+{ cross manaVaz}t :_by% — a

Ccross Cross
Sy + ST

: > pa)

%ZmaNaVa + {S"OSS S mgn V2 }f = b,

aa%-i—{ CVOSSEQVQ }i — _{SCVOSSpaVa }i + GzanaVaE

aﬁ +{ Cl‘Oé‘SgeVe }i— — _{ CI‘OSSpeVe }i _ GneVeE

% + {Scross (geVe + Z €V )}t = _{Scross (peVe + Z PdVa )}i

(pa)++G'Z ’

(AVIL25)

(AVIL26)

(AVIL27)

eV, + eV, )}— L 9 {“/gby (v, +> pav, )} (AVIL.28)

(AVIL.29)

(AVIL30)

(AVIL31)

(AVIL32)

(AVIL33)

(AVIL34)

(AVIL35)

These are the equations, which we solve at the first Belocerkovsky's step. In the next (Euler)

step, thermo-conductivity and diffusive terms are taken into account.
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Appendix VIII Program for neutral atoms

c version: 31.02.2010 16:56

parameter(nxi=67,nt=50)

implicit real*8(a-h),real*8(0-z)

real*8 nold(nxi),vold(0:nxi),told(nxi)

real*8 nnew(nxi),vnew(0:nxi),tnew(nxi),vtmp(nxi)
real*8 a(nxi),b(nxi),c(nxi),d(nxi),k(nxi)

real*8 xi(nxi),eta(nxi),pnl(nxi),qnl(nxi),nx

real*8 te(nt),rad(nt)

common/param/ dens,ts,denneu,aln,tau0,cz0

common/post/te,rad,hlg,tigl ifile

f52(x) = x**2*dsqrt(x)
dmf(y) = dmax1(y,0.d0)

C

c constants & parameters:
ame = 9.1d-28
amu = dsqrt(2.5d0*1836./2.)
smime = dsqrt(2.5d0*1836.)
Ami =2.5d0*1836.* AME
ge =4.8d-10
pi=3.141592653589d0
sp = dsqrt(pi)
poti=13.6d0
vold(0)=0.d0
vnew(0)=0.d0
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open(1,file="input/input.hyd")
read(1,*)tau,nend
read(1,*)nout
read(1,*)isbou
read(1,*)al
read(1,*)slal
read(1,*)trl
read(1,*)dtr
read(1,*)denneu
read(1,*)delta
read(1,*)aln
read(1,*)qq
read(1,*)flux
read(1,*)sq
read(1,*)ifile
read(1,*)cz0
read(1,*)flf
close(1)

C

c atomic data from Post(in Wm**3 E40)
if( ifile .eq. 1 ) then
open(1,file="input/l.dat")
read(1,*)
do 555 i=1,nt

read(1,*)te(i),rad(i)
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C

rad(i) = rad(i)*6.25d-16

(conversion to eV*cm**3/s)

555 continue

C

close(1)
hlg = dabs( dlog(te(1)) - dlog(te(2)) )
tlgl = dlog(te(1))

endif

¢ (source length = al*slal)

nxil=nxi-1

nxi2=nxi-2

nxi3=nxi-3

na = int(nxil *slal)
ts=6.25d24*qq/3/flux
dens=trl*flux/2./dtr/sq
poti = poti/ts

tserg = ts*1.6d-12

h = 1.d0/dfloat(nxil)

vs =1.38d6*dsqrt(2.5%ts)
tau0 = al/vs

aa = 2.d12*ts**2/dens/al
aKn=aa

taus = trl**2/2./dtr/tau0
taue=taus

taup=taue

write(*,*)'aKn=",sngl(aKn)," taus='",sngl(taus),
, " tau0='",sngl(tau0), ' ts=',sngl(ts),
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,' dens='",sngl(dens)
al =2.d0*0.96/3.*aa
a2 =al

a3 = 0.8*smime*aa

c

c first step:
open(1,file = 'input/hydra0.dat')
do 1 i=1,nxil
read(1,*)tmp,nold(i),vold(i),told(i)

¢ nnew(i)=nold(i)

¢ vnew(i)=vold(i)

1 continue

close(1)

icount =0
1000 continue

icount = icount + 1

if (isbou .ne. 1) then
dddd = nold(nxil)*dens
vvvv = vold(nxil)*vs
tttt = told(nxil)*tserg
call bound(dddd,vvvv,tttt

, L[ttt,ame,ami,pixx,qex,qix)
qeiz = (gex + qix)/2.d0/(dens*vs*tserg)
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pixx = pixx/(dens*tserg)

else
qeiz = 8.*nold(nxil)*told(nxil)

, *dsqrt(told(nxil)/2.)/2.d0
vlast = dsqrt(told(nxil)/2.d0)

endif

c density block

o

goto 115

first volume:

o

nnew(1) = (tau/taup - tau/h*
, (nold(1)*dmf(vold(1))- nold(2)*dmf(-vold(1)))
, + nold(1)+pIn(0.5*h)/tauion(nold(1),told(1))*tau)

, /(1.+tau/taus+tau/taurec(nold(1),told(1)))

¢ standard volume:
C
¢ with source
do 2 i=2,na
nnew(i) = (tau/taup - tau/h*(nold(i)*dmf(vold(i))
, - nold(i+1)*dmf(-vold(i))
, - (nold(i-1)*dmf(vold(i-1)) - nold(i)*dmf(-vold(i-1))))
, + nold(i)+pln(h*(i-0.5))/tauion(nold(i),told(1))*tau)

, /(1.+tau/taus+tau/taurec(nold(i),told(i)))
2 continue

¢ without source
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do 3 i=na+1,nxi2

nnew(i) = (- tau/h*(nold(i)*dmf(vold(i))

, - nold(i+1)*dmf(-vold(i))

, -(nold(i-1)*dmf(vold(i-1)) - nold(i)*dmf(-vold(i-1))))
, + nold(i)+pln(h*(i-0.5))/tauion(nold(i),told(1)) *tau)

, /(1.+tau/taus+tau/taurec(nold(i),told(i)))

3  continue

c last volume:
nnew(nxil) =(-tau/h*(nold(nxil)*dmf(vold(nxil))
, - nold(nxi2)*dmf(vold(nxi2))
, + nold(nxil )*dmf{(-vold(nxi2)))
, + nold(nxil)

, +pln(h*(nxi1-0.5))/tauion(nold(nxil),told(nxil))*tau)

, /(1.+tau/taus+tau/taurec(nold(nxil),told(nxil)))
c
c goto 114
c velocity block
c coefficients for v
c

¢ standard volume:
do 4 i=1,nxi2
tx = (told(i)+told(i+1))/2.

nx = (nnew(i)+nnew(i+1))/2.
coor=h*i

a(i) = - al *f52(told(i))/h*tau
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b(i) = -((nnew(i)+nnew(i+1))/2.*h +
,  al/h*tau*(f52(told(i+1)) + £52(told(i)))
,  +nx*(1./taustdelta/taucx(coor,tx)+1./taurec(nx,tx))*h*tau)

c(i) = -al*f52(told(i+1))/h*tau

vv = (vold(i)+vold(i+1))/2.
v = vold(i)

if(vv.1t.0.d0) v=vold(i+1)
vvl = (vold(i)+vold(i-1))/2.
vl =vold(i-1)

if(vv1.1t.0.d0) vi=vold(i)

d(i) = (nold(i) + nold(i+1))/2.*h*vold(i)

, -tau*(nnew(i+1)*vv*v-nnew(i)*vv1l*vl

, -nnew(i)*told(i) + nnew(i+1)*told(i+1))

,  t+(1-delta)*pln(coor)*vold(i)/tauion(nx,tx)*h*tau
4  continue

a(1)=0.0

C

¢ last volume:

if (isbou .ne. 1) then

Boundary conditions
tx = told(nxil)

nx = nnew(nxil)

coor=h*nxil
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a(nxil) = -2*al*f52(told(nxil))/h*tau

b(nxil) = -(nnew(nxil )*h +

, 2*al/h*tau*f52(told(nxil))

, + nnew(nxil)*

, (1./taus+delta/taucx(coor,tx)+1./taurec(nx,tx))*h*tau)
c(nxil) =0.

vv = vold(nxil)+vold(nxi2)
v = vold(nxi2)

if(vv.1t.0.d0) v=vold(nxil)

c
d(nxil) = nold(nxil)*vold(nxil)*h -
, tau*(pixx - nnew(nxil)*vv*v
, - 2.*nnew(nxil)*told(nxil))
, +(1-delta)*pln(coor)*vold(nxil )/tauion(nx,tx)*h*tau
c

else
¢ Braams' version of the boundary conditions:
a(nxil) =0.d0
b(nxil) =-1.d0
c(nxil) =0.d0
d(nxil) = vlast

endif

call tdmad(nxil,a,b,c,d,vtmp,xi,eta)

do 41 i=1,nxil
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41 vnew(i)=vtmp(i)

C

115  continue

c temperature block

C

¢ heat conductivities (full-explicit variant):
do 5 i=1,nxil
avt=(told(i)+told(i+1))/2.
avn=(nold(i)+nold(i+1))/2.
gradt=dabs(told(i)-told(i+1))/h
if(gradt.le.1.d-10) gradt=1.d-10
dgradt=avt/gradt

¢ flux-limit factor fIf:
if (dgradt.gt.1.d0) dgradt=1.d0

2q=1.d0/(1.d0+3.2d0*sp/8.d0/flf*aKn*avt**2/avn/dgradt)

o

gq=1.d0
k(i) = f52(avt)*gq

5 continue

c coefficients for temperature

¢ first volume:
tx = told(1)

nx = nnew(1)
coor = h/2.

a(1)=0.
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2

b

b

b(1) =-(1.5 *nnew(1)*h + tau*(2.5*nnew(1)*dmf(vnew(1))
+ a3*k(1)/h
+ nnew(1)*h*(1.5/taus+0.5/taurad(coor,nx,tx)
+1.5*delta/taucx(coor,tx)+0.5/tauexc(coor,tx)
+vnew(1)**2/8./told(1)*(1./taus + delta/taucx(coor,tx))
+0.5*pln(coor)*poti/told(1)/tauion(nx,tx))))

c(1) = -tau*(2.5*nnew(2)*dmf(-vnew(1)) + a3*k(1)/h)

d(1) = (1.5*nold(1)*told(1)-nnew(1)*vnew(1)**2/8.
+nold(1)*vold(1)**2/8.)*h
+(1.5/taue+0.5*(1.-delta)*pln(coor)*(3*told(1)
+vnew(1)**2/4.)/tauion(nx,tx))*h*tau
-tau*(nnew(1)*vnew(1)**2/8.*dmf(vnew(1))

-nnew(2)*(vnew(2)+vnew(1))**2/8.*dmf(-vnew(1))
-a2/h*(£52(told(1))*vnew(1)*dmf(vnew(1))

£52(told(2))*(vnew(2)-vnew(1))*dmf(-vnew(1))))

C

¢ standard volume:

¢ with source

M

do 6 i=2,na
tx = told(i)
nx = nnew(i)

vx = (vnew(i-1)+vnew(i))/2.
coor = h*(i-0.5)

a(i) = -tau*(2.5*nnew(i-1)*dmf(vnew(i-1)) + k(i-1)*a3/h)
b(i) = -(1.5*nnew(i)*h + tau*(2.5*nnew(i)*(dmf(vnew(i)) +

dmf(-vnew(i-1))) + a3/h*(k(i)+k(i-1))
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b

b

b

b

b

b

9

M

9

9

3

6

+ nnew(i)*h*(1.5/taus+0.5/taurad(coor,nx,tx)
+1.5*delta/taucx(coor,tx)+0.5/tauexc(coor,tx)
+vx**2/told(i)*(1./taus + delta/taucx(coor,tx))/2.

+0.5*pln(coor)*poti/told(i)/tauion(nx,tx))))

c(i) = -tau*(2.5*nnew(i+1)*dmf(-vnew(i)) + k(i)*a3/h)

d(i) = 1.5*h*tau/taue - h*(nnew(i)*vx**2/2.

-nold(i)*(vold(i)+vold(i-1))**2/8.- 1.5*nold(i)*told(i))
-tau*(nnew(i)*(vnew(i)rvnew(i-1))**2/8.*dmf(vnew(i))
“nnew(i+1)*(vnew(i)+vnew(i+1))**2/8.*dmf(-vnew(i))
-nnew(i-1)*(vnew(i-2)+vnew(i-1))**2/8.*dmf(vnew(i-1))
+nnew(i)*(vnew(i)vnew(i-1))**2/8 . *dmf(-vnew(i-1))
~a2*(£52(told(i))*(vnew(i)-vnew(i-1))/h*dmf(vnew(i))
-£52(told(i+1))*(vnew(i+1)-vnew(i))/h*dmf(-vnew(i))
-£52(told(i-1))*(vnew(i-1)-vnew(i-2))/h*dmf(vnew(i-1))
+£52(told(i))*(vnew(i)-vnew(i-1))/h*dmf(-vnew(i-1))))
+(0.5%(1.-delta)*pln(coor)*(3*told(i)

+vx**2)/tauion(nx,tx))*h*tau

continue

¢ without source:

b

do 8 i=na+1,nxi2
tx = told(i)

nx = nnew(i)
vx = (vnew(i-1)+vnew(i))/2.

coor = h*(i-0.5)
a(i) = -tau*(2.5*nnew(i-1)*dmf(vnew(i-1)) + k(i-1)*a3/h)

b(i) = -(1.5*nnew(i)*h + tau*(2.5*nnew(i)* (dmf(vnew(i)) +

dmf(-vnew(i-1))) + a3/h*(k(i)+k(i-1))
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+ nnew(i)*h*(1.5/taus+0.5/taurad(coor,nx,tx)
+1.5*delta/taucx(coor,tx)+0.5/tauexc(coor,tx)
+vx**2/told(i)*(1./taus + delta/taucx(coor,tx))/2.

+0.5*pln(coor)*poti/told(i)/tauion(nx,tx))))

c(i) = -tau*(2.5*nnew(i+1)*dmf(-vnew(i)) + a3*k(i)/h)

d(i) = - h*(nnew(i)*vx**2/2.

-nold(i)*(vold(i)+vold(i-1))**2/8. - 1.5*nold(i)*told(i))
-tau*(nnew(i)*(vnew(i) tvnew(i-1))**2/8 *dmf(vnew(i))
-nnew(i+1)*(vnew(i)+vnew(i+1))**2/8 *dmf(-vnew(i))
-nnew(i-1)*(vnew(i-2)+vnew(i-1))**2/8 *dmf(vnew(i-1))
+nnew(i)*(vnew(i)+vnew(i-1))**2/8 *dmf(-vnew(i-1))
-a2*(£52(told(i))* (vnew(i)-vnew(i-1))/h*dmf(vnew(i))
-£52(told(i+1))*(vnew(i+1)-vnew(i))/h*dmf(-vnew(i))
-£52(told(i-1))*(vnew(i-1)-vnew(i-2))/h*dmf(vnew(i-1))

+£52(told(i))*(vnew(i)-vnew(i-1))/h*dmf(-vnew(i-1))))

, +(0.5*(1.-delta)*plIn(coor)*(3*told(i)
, +vx**2)/tauion(nx,tx))*h*tau

& continue

c
¢ last volume:

tx = told(nxil)
nx = nnew(nxil)

vx = (vnew(nxi2)+vnew(nxil))/2.
coor = h*(nxi1-0.5)
c(nxil) = 0.

b(nxil) = -(1.5 *nnew(nxil)*h + tau*(2.5*nnew(nxil)
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, *dmf(-vnew(nxi2))

,  ta3*k(nxi2)/h

,  +nnew(nxil)*h*(1.5/taus+0.5/taurad(coor,nx,tx)

,  *1.5*delta/taucx(coor,tx)+0.5/tauexc(coor,tx)

,  Fvx**2/2 /told(nxil)*(1./taus+delta/taucx(coor,tx))

,  10.5*pln(coor)*poti/told(nxil )/tauion(nx,tx))))
a(nxil) = -tau*(2.5*nnew(nxi2)*dmf(vnew(nxi2)) + a3*k(nxi2)/h)
d(nxil) = (1.5*nold(nxil)*told(nxil)

, -nnew(nxil)*(vnew(nxil)+vnew(nxi2))**2/8.

, tnold(nxil)*(vold(nxil)+vold(nxi2))**2/8.)*h

, -tau*(-qeiz

, tnnew(nxi2)*(vnew(nxi2)+vnew(nxi3))**2/8.*dmf(vnew(nxi2))

, -nnew(nxil)*(vnew(nxil)+vnew(nxi2))**2/8.*dmf(-vnew(nxi2)))
d(nxil)=d(nxil)+tau*(

, -a2/h*(f52(told(nxi2))*(vnew(nxi2)-vnew(nxi3))

, *dmf(vnew(nxi2))

, -152(told(nxil))*(vnew(nxil)-vnew(nxi2))*dmf(-vnew(nxi2))))

,  +H(0.5*(1.-delta)*pln(coor)*(3*told(nxil)

, tvx**2)/tauion(nx,tx))*h*tau

call tdmad(nxil,a,b,c,d,tnew,xi,eta)

c
114 continue
do 10 i=1,nxil

nold(i)=nnew(i)
vold(i)=vnew(i)
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told(i)=tnew(i)
10 continue
if( (icount/nout)*nout - icount .eq. 0 )

,  write(*,*)icount,sngl(tnew(nxil)),sngl(nnew(na))

if(icount .It. nend)go to 1000
open(2,file = 'output/result.dat’)

L '

write(2,*)  aKn= ) nnew= |, vnew = ',

. tnew ='
do 9 i=1,nxil
write(2,*)float(i-1)/float(nxi2),sngl(nnew(i))
, sngl(vnew(i)),sngl(tnew(i))
9 continue

close(2)

C

¢ integral balances:
open(3,file="output/balance.dat')

C

¢ particles flow through the separatrix
sepj = h/taup*na
¢ heat flow through the separatrix

sepq = h/taue*1.5*na

c
¢ particles flow to the wall
sumn = 0.

do 14 i=1,nxil
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14 sumn = sumn + nnew(i)
wallj = h*sumn/taus
¢ heat flow to the wall
sumq = 0.
do 15 i=1,nxil
15 sumgqg = sumq + nnew(i)*tnew(i)*1.5 + nnew(i)
J¥(vnew(i) + vnew(i-1))**2/8.
wallq = h/taus*sumq
¢ momentum flow to the wall and separatrix
sump = 0.
do 16 i=1,nxi2
16 sump = sump + vnew(i)*(nnew(i)+nnew(i+1))/2.

pws = h/taus*sump

c
¢ neutral source/sink:
¢ particles
sumn = 0.
do 12 i=1,nxil
12 sumn = sumn + pln(h*(i-0.5))/tauion(nnew(i),tnew(i))
, - nnew(i)/taurec(nnew(1),tnew(i))
sneuj = h*sumn
¢ momentum
sumnlp = 0.
do 17 i=1,nxi2
tx = (tnew(i)+tnew(i+1))/2.

nx = (nnew(i)+nnew(i+1))/2.
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coor=h*i
pnl(i)= nx*vnew(i)*
, (delta/taucx(coor,tx)+1./taurec(nx,tx))*h
, - (1-delta)*pln(coor)*vnew(i)/tauion(nx,tx)*h
sumnlp = sumnlp + pnl(i)
17 continue
if( isbou .ne. 1) then
tx = tnew(nxil)
nx = nnew(nxil)
coor=h*nxil
sumnlp=sumnlp
,  t0.5%nnew(nxil)*vnew(nxil)*
, (delta/taucx(coor,tx)+1./taurec(nx,tx))*h
, -(1-delta)*pln(coor)*vnew(nxil )/tauion(nx,tx)*h*0.5
endif
¢ heat
sumnlg=0.0
do 18 i=1,nxil
tx = told(i)
nx = nnew(i)
vx = (vnew(i-1)+vnew(i))/2.
coor = h*(1-0.5)
gnl(i)= nnew(i)*tnew(i)*h*(0.5/taurad(coor,nx,tx)
, +1.5*delta/taucx(coor,tx)+0.5/tauexc(coor,tx)
+vx**2/told(i)*delta/taucx(coor,tx)/2.

2

, +0.5*pln(coor)*poti/told(i)/tauion(nx,tx))
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, -0.5*(1.-delta)*pln(coor)*(3*told(i)
, +vx**2)/tauion(nx,tx)*h
sumnlq = sumnlq + qnl(i)

18 continue

vv = vnew(1)/2.
v =vnew(1)
if(vv .gt. 0.d0) v=0.d0
pfirst = nnew(1)*tnew(1) - al*f52(tnew(1))*vnew(1)/h
, +nnew(1)*vv*v
if( isbou .ne. 1) then
pws = pws + 0.5*h/taus*nnew(nxil)*vnew(nxil)
plast = pixx/2.
else
vv = (vnew(nxil) + vnew(nxi2))/2.
v = vnew(nxi2)
if(vv .1t. 0.d0) v = vnew(nxil)
plast = nnew(nxil)*vv*v
, + nnew(nxil)*tnew(nxil)
, - al *f52(tnew(nxil))*(vnew(nxil) - vnew(nxi2))’h
endif

C

¢ common balances:
baln = (sepj + sneuj - wallj - nnew(nxil )*dmf(vnew(nxil)))
,  /sepj*100

balp = (pfirst - pws - sumnlp - plast)

123



, /mnew(1)/tnew(1)*100
balq = (sepq - wallq - sumnlq - geiz)

,  /sepq*100

dmp = sq*trl/al/slal*dens*vs
write(3,*)'] separatrix = ',sngl(sepj*dmp)
write(3,*)'] neutrals = ',sngl(sneuj*dmp)
write(3,*)'] wall =",sngl(wallj*dmp)
write(3,*)'] plate=',sngl(nnew(nxil )*dmf(vnew(nxil))*dmp)
write(3,*)""
write(3,*)'p separatrix & wall =",sngl(pws)
write(3,*)'p neutrals =',sngl(sumnlp)
write(3,*)'p plate =",sngl(plast)
write(3,*)'p midplane =',sngl(pfirst)
write(3,*)"'
dm=2*sq*trl/al/slal*dens*ts*vs/6.25d24
write(3,*)'q separatrix = ',sngl(dm*sepq)
write(3,*)'q neutrals =',sngl(sumnlg*dm)
write(3,*)'q wall =",sngl(wallg*dm)
write(3,*)'q plate = ',sngl(geiz*dm)
write(3,*)""
write(3,*)'common disbalances, %:'
write(3,*)baln,balp,balq

¢ write(3,*)'neutral losses, p & q:'

¢ dol19i=1nxi

c write(3,%)i," ',pnl(i),’ ',qnl(i)
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c19 continue

close(3)
c
stop
end
c

real*8 function tauion(den,te)
implicit real*8(a-h),real*8(0-z)
common/param/ dens,ts,denneu,aln,tau0,cz0
t = te*ts
d = den*dens
x = dlog10(t)
if(t.1e.20.)then
svl=-3.054*x - 15.72*dexp(-x) + 1.603*dexp(-x**2)
else
svl=-5151*x -2.563/x - 5.231
endif
sv = (1.d1)**svl
tauion = 1.d0/(d*sv)/tau0
¢ tauion = 1.d40
return

end

real*8 function taucx(x,te)
implicit real*8(a-h),real*8(0-z)

common/param/ dens,ts,denneu,aln,tau0,cz0
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tt = te*ts

den0 = pln(x)*denneu*dens

if(tt.gt.0.d0 .and. den0.gt.0.d0) then
scx = 7.8d-9*dsqrt(tt)*(1.d0 - .16*dlog10(tt))**2
taucx = 1.d0/scx/den0/tau0

else
taucx = 1.d40

endif

return

end

real*8 function tauexc(x,te)
implicit real*8(a-h),real*8(0-z)
common/param/ dens,ts,denneu,aln,tau0,cz0
tt = te*ts
den0 = pln(x)*denneu*dens
if(tt.gt.0.d0 .and. den0.gt.0.d0) then
y=10.2/tt
exc =49.d-8/(.28 + y)*dexp(-y)*dsqrt(y*(1. +y))
tauexc = 1.d0/exc/den0/tau0*tt
else
tauexc = 1.d40
endif
return

end
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real*8 function taurec(d,te)

implicit real*8(a-h),real*8(o-z)
common/param/ dens,ts,denneu,aln,tau0,cz0
den = d*dens

tt = te*ts

recr = den*2.7d-13/dsqrt(tt)

rec3 = den**2*8.75d-27/tt**4/dsqrt(tt)
taurec = 1.d0/(recr + rec3)/tau0

taurec = 1.d80

return

end

real*8 function taurad(x,dd,tt)
implicit real*8(a-h),real*8(0-z)
common/param/ dens,ts,denneu,aln,tau0,cz0
if(tt .1e. 0.dO .or. cz(x). 1e.0.d0) then
taurad = 1.d40
else
t = tt*ts
taurad = 1.d0/(cz(x)*dd*flin(t)/tt*dens*taul/ts)
endif
return

end

real*8 function cz(x)

parameter(nt=501)
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implicit real*8(a-h),real*8(o-z)

real*8 te(nt),rad(nt)

common/param/ dens,ts,denneu,aln,tau0,cz0
common/post/te,rad,hlg,tlgl ifile

cz=cz0

return

end

real*8 function flin(x)

parameter(nt=501)

implicit real*8(a-h),real*8(0-z)

real*8 te(nt),rad(nt)

common/param/ dens,ts,denneu,aln,tau0,cz0
common/post/te,rad,hlg,tlgl,ifile

data af/7.54d-7/,bf/4.83d-1/,cf/5.65d-2/,et/5.48d0/

if( ifile .eq. 1) then

if( x .le. 0.d0) then
flin = 0.d0
return

endif

if( x .ge. te(nt) ) then

flin = rad(nt)
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return

endif

if( x .le. te(1) ) then
a=rad(1)/te(1)
flin = a*x
return
else
1=1int( (dlog(x) - tlgl)/hlg ) + 1
a = (rad(i+1) - rad(1))/(te(i+1) - te(1))
b =rad(i) - a*te(i)
flin=a*x+b
return

endif

else

flin = af*dsqrt(x)*dexp( -ef/x )/
, ( 1.d0 + bf*dsqrt(x) + cf*x )

return

endif

end

real*8 function pln(x)

implicit real*8(a-h),real*8(0-z)
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common/param/ dens,ts,denneu,aln,tau0,cz0
pln = dexp( (x-1.)/aln)*denneu

pln=denneu

pln=0.d0

return

end

subroutine tdmad(n,a,b,c,d,y,xi,eta)
real*8 a(n+1),b(n+1),c(n+1),d(n+1),y(n+1),xi(n+1),eta(n+1),ccc
xi(1)=10.0
eta(1)=0.0
doli=1ln

ccc = b(i) - a(i)*xi(i)

xi(i+1) = c(i)/ccc

eta(i+1) = (‘a(i)*eta(i) - d(i) )/ ccc
continue
y(n) = eta(n+1)
do 2 i=n-1,1,-1

ipl =i+1

y(1) = xi(ipl)*y(ipl) + eta(ipl)
continue
return

end

function erfd(x)

implicit real*8(a-h),real*8(0-z)
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¢ version : 18.11.88

parameter (al =0.07052 30784, a2 =0.04228 20123,
, a3 =0.00927 05272, a4 = 0.00015 10143,

, a5=10.00027 65672, a6 = 0.00004 30638 )

f(t) = 1A(1.+t*(al+t*(a2-+t*(a3+t*(ad+t*(a5+t*ac)))))**4) **4

w = 1. - f(dabs(x))
erfd = sign(w,x)

return

entry erfcd

w = 1.- f(dabs(x))

erfd = 1. - sign(w,x)

end
C VERSION : 15.10.93 15:40

C
C Version for orthogonal mesh,

C pure plasma, zero net current

C
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INPUT VALUES (all in the last mesh interval):

DEN - plasma density
VEL - plasma velocity
TE - electron temperature
TI - ion temperature
AME - electron mass
AMI - ion mass

C - all in units used in the main program

C OUTPUT VALUES (fluxes trough the last mesh bound):
C

C PIXX - momentum flux (summarized electrons & ions)
C QEX - total heat flux in the electron component

C QIX - total heat flux in the ion component

C - all in units used in the main program

SUBROUTINE BOUND(DEN,VEL,TE, T AME,AMIPIXX,QEX,QIX)
IMPLICIT REAL*8(A-H),REAL*8(0-Z)

COMMON/FPS/CPSI

COMMON/FSH/CSVTI

EXTERNAL FPSID,FSHIFT

DATA SP,GAMMA,TOL/1.7724539D0,1.6666667D0,1.D-5/

CSVTI = DSQRT((GAMMA*TI + TE)/2./TI)
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IF(VEL.LE.O.) VEL = 0.
XMACH = VEL/DSQRT(2.*TI/AMI)

C

C Potential drop
C
C Presheath:
[F(XMACH.GE.CSVTI) THEN
PSIPS = 0.
ELSE
PSIPS = -TU/TE*(XMACH**2 - CSVTI**2)
ENDIF
C Sheath:
A=0.
B=5.
CPSI = DLOG(DSQRT(TE*AMI/(TI*AME))/SP/CSVTI)
PSID = ZEROIN(A,B,FPSID,TOL)
I[F(DABS(FPSID(PSID)).GT.1.E-4)

,WRITE(*,*)'WARNING! IN PSI, PSID =',PSID

PSIT = PSID + PSIPS
C Shift velocity:
C
IF(XMACH.GE.CSVTI) THEN
VSHIFT = XMACH
ELSE

A=0.
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B=3.
VSHIFT = ZEROIN(A,B,FSHIFT,TOL)
IF(DABS(FSHIFT(VSHIFT)).GT.1.E-4)
, WRITE(*,*))WARNING! IN VSHIFT, VSHIFT =',VSHIFT
ENDIF

C

C Boundary fluxes:

C
EVSH = ERFD(VSHIFT)
ESPSI = ERFD(DSQRT(PSIT))

GVSH = G(VSHIFT)

FE =2.+ PSIT
FI=2.+ XMACH*(XMACH + 0.5/CSVTI) - TE/TT*PSIPS
FPI = 2.*SP*XMACH/GVSH*( VSHIFT/SP*DEXP(-VSHIFT**2)
,  +(VSHIFT**2 + 0.5)*(1.+ EVSH) )
FPE =2 *SP*XMACH/GVSH*(1.+ EVSH)/(1.+ ESPSI)
., *((1.+ESPSI)/2.- DSQRT(PSIT)/SP*DEXP(-PSIT) )
c write(*,*)'fpe=",fpe," fpi =",fpi
QEX = FE*DEN*VEL*TE
QIX = FI*DEN*VEL*TI

PIXX = FPI*DEN*TI + FPE*DEN*TE

RETURN

END

FUNCTION FPSID(X)
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IMPLICIT REAL*8(A-H),REAL*8(0-Z)
COMMON/FPS/CPSI

FPSID = X - CPSI - DLOG(1.+ ERFD(DSQRT(X)))
RETURN

END

FUNCTION FSHIFT(X)

IMPLICIT REAL*8(A-H),REAL*8(0-Z)
COMMON/FSH/CSVTI

DATA SP/1.7724539D0/

FSHIFT = CSVTI - G(X)/SP/(1.+ ERFD(X))
RETURN

END

FUNCTION G(X)
IMPLICIT REAL*8(A-H),REAL*8(0-Z)

DATA SP/1.7724539D0/
G = DEXP(-X**2) + X*SP*(1.+ ERFD(X))

RETURN

END

REAL*8 FUNCTION ZEROIN(AX,BX,F,TOL)
IMPLICIT REAL*8(A-H),REAL*8(0-Z)

REAL*8 AX,BX,TOL

REAL*8 A,B,C,D,E,EPS,FA,FB,FC,TOL1,XM,P,Q,R,S

EPS=1.0D0
10 EPS=EPS/2.0
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20

30

40

TOL1=1.0+EPS
IF(TOL1.GT.1.0) GO TO 10
A=AX
B=BX
FA=F(A)
FB=F(B)
C=A
FC=FA
D=B-A

E=D

IF(DABS(FC).GE.DABS(FB)) GO TO 40

A=B

B=C

C=A

FA=FB

FB=FC

FC=FA
TOL1=2.0*EPS*DABS(B)+0.5*TOL

XM=0.5*(C-B)

IF(DABS(XM).LE.TOL1) GO TO 90

IF(FB.EQ.0.0) GO TO 90

IF(DABS(E).LT.TOL1) GO TO 70

IF(DABS(FA).LE.DABS(FB)) GO TO 70

IF(A.NE.C) GO TO 50

S=FB/FA
P=2.0*XM*S



50

60

70

80

90

Q=1.0-S
GO TO 60

Q=FA/FC
R=FB/FC
S=FB/FA
P=S*(2.0*XM*Q*(Q-R)-(B-A)*(R-1.0))
Q=(Q-1.0)*(R-1.0)*(S-1.0)

IF(P.GT.0.0) Q=-Q
P=DABS(P)
IF((2.0*P).GE.(3.0*XM*Q-DABS(TOL1*Q))) GO TO 70
IF(P.GE.DABS(0.5*E*Q)) GO TO 70
E=D
D=P/Q
GO TO 80

D=XM
E=D

A=B
FA=FB
IF(DABS(D).GT.TOL1) B=B+D
IF(DABS(D).LE.TOL1) B=B+DSIGN(TOL1,XM)
FB=F(B)
IF((FB*(FC/DABS(FC))).GT.0.0) GO TO 20
GO TO 30

ZEROIN=B
RETURN

END
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