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CHAPTER 1

Introduction

Bioluminescence tomography (BLT) is a novel biomedical imaging
technique to study molecular and cellular activities in a living organism
noninvasively. The method is based on bioluminescence imaging (BLI),
whose potential is described by Dr. David Piwnica-Worms in [Ban05]: “It
can be applied to all disease processes in all areas of small-animal models.”

As the name suggests, the underlying phenomenon is bioluminescence,
which is the capability of an organism to emit light. Well-known examples
of animals with these genetic endowments are fireflies or jellyfishes. The
light emission is due to an oxidation of a substrate, the so-called luciferin,
under the presence of an enzyme, the luciferase, which is encoded by the
DNA of the organism.

The idea of bioluminescence imaging is the tagging of target cells, e.g.
tumor cells, by the luciferase gene. When the luciferin is then injected
prior to imaging, the tagged cells emit light and the photons exiting the
organism are recorded by a sensitive camera. In Figure 1.1 typical bio-
luminescence imaging data are shown. Since the tag is encoded in the
genes, the intensity of the signal of a cell is not reduced after cell divi-
sion. Thus, bioluminescence imaging is suitable for in vivo studies over a
long period of time. In addition, it is a very sensitive method with a high
signal-to-noise ratio, as no external light source is required. Besides the
capability of bioluminescence imaging to track the tagged cells, it also al-
lows to image biological events using engineered luciferase. Thus, it serves

1



2 1. Introduction

Figure 1.1. Bioluminescence imaging data by courtesy of Dr. Mustafa Diken,
In Vivo Imaging Core Facility, TRON – Translational Oncology at the University
Medical Center Mainz.

“as an eyepiece into biology” [CR02]. However, due to absorption of light
in animal tissue, bioluminescence imaging is limited to depths of a few
centimeters. In view of this fact together with the inherent infiltration of
genes into the target cells, it becomes clear that the main application of
bioluminescence imaging is in preclinical studies using small animal mod-
els. For a more detailed discussion of bioluminescence imaging we refer to
[Ban05, CR02, TC05, WN03]; see also [Kre08].

As a planar imaging technique, bioluminescence imaging suffers from
the structural drawback that it gives only two-dimensional information
on the bioluminescent source. To overcome this limitation, mathematics
comes into play. Given the exiting photons over the whole surface of the
organism and a model describing the propagation of light in tissue, the
problem of bioluminescence tomography is to find the three-dimensional
location and intensity of the bioluminescent source.

This problem belongs to the class of inverse problems, cf. [Isa06,
Kir11, Rie03], since the effect, the exiting photons over the organism’s
surface, is known and the cause, the light source, is sought. More precisely,
the bioluminescence tomography problem is an interior source problem. As
many inverse problems in science, it is ill-posed: small perturbations of the
measurements can lead to large errors in the reconstruction.
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For the description of light propagation in tissue, needed in the re-
construction process of bioluminescence tomography, two models are es-
sentially used in practice. “The most comprehensive model” [NW01] is
the transport model where the photon flux is described by the radiative
transfer equation, an integro-differential equation depending on a spatial
and an angular variable. In scattering media, like animal tissue, the diffu-
sion model is a good approximation to the transport model. It is based on
the diffusion equation, also called diffusion approximation, a second-order
elliptic partial differential equation over the spatial domain. The former
model is rather complex, whereas the latter is simpler. Both models re-
quire knowledge of the optical properties of the object to be imaged. This
information is usually obtained by a prior X-ray computed tomography
(CT) or magnetic resonance imaging (MRI) scan.

In the early years after the patent application in 2003 [WHM] the
diffusion approximation and the classical Tikhonov regularization scheme
were mostly used as the mathematical model and the reconstruction meth-
od, respectively, cf. [HCW06a, WCD+06, WCL+06]. We point out
that the latter two articles particularly give a description of the BLT sys-
tem design. However, other reconstruction methods were also applied,
e.g. a (unregularized) Newton method in [CWK+05] and a Levenberg–
Marquardt method in [GZLJ04]. Questions on uniqueness of the BLT
problem are addressed in [WLJ04]. In the following years extensions of
the BLT problem based on Tikhonov regularization and the diffusion model
were developed: multispectral bioluminescence tomography [HCW06b,
HW07, JW08], bioluminescence tomography with a simultaneous
adjustment of the optical parameters [HKCW07] and with a simulta-
neous reconstruction of the optical parameters [HCKW09, HGC13],
temperature-modulated bioluminescence tomography [HSK+09] and bio-
luminescence tomography for media with spatially varying refractive index
[GCH10]. A summary of the early extensions can be found in the review
article [HW08]. For a further analysis of the finite element method applied
to the BLT problem, besides the one presented in [HCW06a], we refer
to [GLYZ08, GC13]. In the last few years two new trends appeared in
the area of bioluminescence tomography, namely using the transport model
and sparse reconstruction methods. Schemes involving an l1 regularization
term of the discretized source based on the diffusion model and the trans-
port model are proposed in [LZD+09] and [GZ10a], respectively. Latter
approach is extended in [GZ10b] to an l1 plus total variation (TV) reg-
ularization method incorporating either an l1 or an l2 residual. The BLT
problem based on the transport model and using the classical Tikhonov
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regularization is analyzed in [HEHL11]. In [Ben11, ZLC12] a Poisson
noise model for the BLT problem based on the diffusion approximation is
considered and appropriate reconstruction schemes are developed, where
the data misfit is measured with the Kullback–Leibler divergence and an
l1 or l0 regularization term is used.1

Although many different approaches for bioluminescence tomography
have been proposed in the last ten years, none of them has prevailed in
practice. Consequently, further research is needed in order to find a reliable
reconstruction method that will become widely accepted.

In this work we investigate a novel approach for bioluminescence to-
mography. The basis for this approach is the a priori knowledge that
the source is a piecewise constant function, which is due to the nature
of the bioluminescent source given by tagged cells. Rather than search-
ing for an arbitrary source function, we aim to reconstruct the support of
the source and the corresponding intensity. To face the ill-posedness of
the BLT problem, we stabilize the reconstruction process by a Tikhonov
like functional with a perimeter penalty term. This choice is inspired by
[RR07], where this stability term is used in the CT framework, and by
[GZ10b], where TV regularization for the BLT problem is incorporated.
This leads to our geometric regularization approach for bioluminescence
tomography based on both models, the radiative transfer equation and the
diffusion approximation.

For the regularized problem, a minimization problem over the non-
linear and non-convex set of shapes, we develop positive answers to fun-
damental questions: existence of a solution, stability and regularization
property. An approximate variational principle is shown, which ensures the
existence of smooth almost stationary shapes near the minimizer. These
findings build the first key contribution of this thesis. These results in the
diffusion based framework were published in [KR12].

To solve the minimization problem, shape optimization methods in-
volving the domain derivative of the Tikhonov like functional are applied.
In contrast to the diffusion model, where the domain derivative of the for-
ward operator is known from the derivation in [Het99], the rigorous cal-
culation of the domain derivative of the forward operator in the transport
model is a challenging task. To our knowledge, it has not been performed
before. We rigorously derive the domain derivative about ball-shaped

1For the sake of completeness, we note that in nearly all of the mentioned papers
a priori knowledge on the source, like non-negativity or a permissible region for the
support, is implemented by constraining the respective optimization problem.
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sources in the transport model. This forms the second key contribution of
this thesis.

As always in mathematics, the results of this work are not restricted to
the specific application of bioluminescence tomography, but also hold for
application with a similar mathematical structure. For instance, the in-
verse gravimetry problem [Isa06] is similar to the BLT problem based
on the diffusion model; single photon emission computed tomography
(SPECT) [NW01] is a special case of bioluminescence tomography based
on the transport model, namely the special case without scattering. Fur-
thermore, the BLT problem is closely related to the inverse source problem
occurring in fluorescence tomography [EFS10, KNH05].

This thesis is structured into four parts. In Part I the general frame-
work covering both models is treated. In Chapter 2 the transport model is
motivated and the diffusion model is derived from it. Then, the Tikhonov
like functional is introduced and the regularized problem under investi-
gation is formulated. Chapter 3 contains an analytical discussion of the
regularized problem: existence, stability and regularization property as
well as an approximate variational principle are developed. This discus-
sion is followed by a self-contained theory for star-shaped domains giving
analogous results.

In Part II the BLT problem based on the diffusion approximation is
further investigated. The domain derivative of the corresponding forward
operator is derived in Chapter 4 and consequences for the regularized prob-
lem are deduced. In Chapter 5 numerical schemes based on the theoretical
findings are proposed and tested for star-shaped sources in two dimensions.

The BLT problem based on the radiative transfer equation is addressed
in Part III. In Chapter 6 the domain differentiability of the forward oper-
ator in the transport framework is discussed and rigorously derived about
ball-shaped sources. Consequences for the regularized problem follow. The
theoretical results and heuristic generalizations are numerically verified in
Chapter 7, wherein all experiments are performed on star-shaped sources
in three dimensions.

Chapter 8 gives a short summary and an outlook on future research.
In the Appendices, which build the fourth part, supplementary results

are presented in order to complete this thesis. Particularly, we point out
Appendix D and Appendix E, where the singular value decomposition of
the BLT forward operator based on the diffusion model and the domain
derivative of the SPECT forward operator are derived.

Before we get started on the detailed discussion, I want to thank sev-
eral people for their support while writing this thesis. First and foremost,
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I am deeply grateful to my advisor Prof. Dr. Andreas Rieder. He has
provided constant encouragement and friendly guidance through all stages
of my thesis. I thank my co-advisor PD Dr. Frank Hettlich for fruitful
discussions and his inputs, particularly on the domain derivative. I thank
Prof. Dr. Weimin Han (The University of Iowa) for the opportunity to
research in his working group for six months. This exchange has had
many positive effects on my work. The visit was partly funded by the
Karlsruhe House of Young Scientists (KHYS), whose support is greatly
acknowledged. I give special thanks to Dr. Joseph Eichholz (Rose-Hulman
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extensions used in this work. I am grateful to my former student assistants
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cal coding. Many thanks go to my colleagues at Karlsruhe and Iowa for
the stimulating conversations and the very nice atmosphere. Among my
colleagues, I am particularly grateful to Prof. Dr. Andreas Kirsch, who in-
troduced me to the field of inverse problems back in my student years, and
to Fábio Margotti, Dr. Daniel Maurer, Dr. Vikram Sunkara and Robert
Winkler for their inputs improving this thesis. Finally, I cannot thank my
entire family enough for their endless support.
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General Framework





CHAPTER 2

Problem Statement

In this chapter we introduce the problem under investigation in this
thesis. We start by presenting two models of light propagation in tissue,
the transport model based on the radiative transfer equation (RTE) and
the diffusion model based on the diffusion approximation (DA). Former is
the “most comprehensive model” [NW01], but in scattering media latter
is a good approximation reducing the computational costs. Given the de-
scription of light transport in tissue, we can formulate the inverse source
problem of bioluminescence tomography. As this problem is ill-posed, a
priori knowledge on the source term and a penalty term is used to sta-
bilize the reconstruction process. This results in a minimization problem
of a Tikhonov like functional, sometimes also called Mumford–Shah like
functional.

2.1. Mathematical Models of Light Propagation in Tissue

The presentation in this section is based on Chapter 2 of [Kre08] and
the literature mentioned there, namely [Arr02, BGCC99, NW01], as
well as [CZ67]. For the sake of completeness, the derivation of the two
models is recalled here.

2.1.1. The Transport Model. Let d ∈ {2, 3} and X ⊂ Rd be the
spatial domain, i.e., the object of interest. The propagation of light in this
object consisting of animal tissue follows the laws of particle transport
[Arr02]. To be more precise, we consider the photon flux u = u(x, ω, t),

9
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which is the energy density or equivalently the density of photons in the
point x ∈ X traveling into direction ω ∈ Ω at time t. Herein, Ω is the
(d− 1)-dimensional unit sphere Sd−1, the angular domain. The change of
the photon flux in time is the sum of the physical phenomena emission,
absorption, scattering and propagation. In other words, the time derivative
∂
∂tu satisfies the balance relation, cf. [BGCC99, CZ67]:

∂u

∂t
=
[
∂u

∂t

]
em

+
[
∂u

∂t

]
abs

+
[
∂u

∂t

]
scat

+
[
∂u

∂t

]
prop

. (2.1)

The first summand in (2.1), evaluated at (x, ω, t), describes photons
that are emitted in the spatial point x in the direction ω at time t. It can
be written as [

∂u

∂t

]
em

(x, ω, t) = cq(x, ω, t) ,

where q is the source term and c the constant photon speed.
The second term in (2.1) models the absorption of photons, which is

proportional to the photon flux. Introducing the space dependent1 absorp-
tion coefficient σa, we have[

∂u

∂t

]
abs

(x, ω, t) = −cσa(x)u(x, ω, t) .

The scattering term consists of two parts,[
∂u

∂t

]
scat

=
[
∂u

∂t

]
out

+
[
∂u

∂t

]
in
.

First, photons coming from the direction ω are scattered into a different di-
rection ω′. This phenomenon is like absorption proportional to the photon
flux u and thus [

∂u

∂t

]
out

(x, ω, t) = −cσs(x)u(x, ω, t)

holds with the scattering coefficient σs. Second, photons coming from
a different direction ω′ are scattered into the direction ω. To describe
this phenomenon, we introduce the scattering kernel η, depending on the
spatial variable x and the angle ω · ω′, that represents the probability of

1We point out explicitly that in the general theory the absorption coefficient as well
as the scattering coefficient and kernel might depend on the angular variable ω. But
in optical tomography, it is a standard assumption that these quantities are angularly
independent, see e.g. [Arr02, NW01].
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a photon coming from direction ω′ being scattered into direction ω under
the condition that this photon is scattered. It is normalized such that∫

Ω
η(x, ω · ω′) dω′ = 1 . (2.2)

In view of the first part modeling the condition that a photon is scattered,
we obtain [

∂u

∂t

]
in

(x, ω, t) = cσs(x)
∫

Ω
η(x, ω · ω′)u(x, ω′, t) dω′ .

The last summand in (2.1) characterizes photons traveling without
changes in direction and corresponds to the directional derivative, that is,[

∂u

∂t

]
prop

(x, ω, t) = −cω · ∇xu(x, ω, t) .

Using the characterizations of the summands of (2.1), we obtain that
the photon flux u satisfies the time-dependent radiative transfer equation

1
c

∂u

∂t
(x, ω, t) + ω · ∇xu(x, ω, t) + σt(x)u(x, ω, t)

= σs(x)
∫

Ω
η(x, ω · ω′)u(x, ω′, t) dω′ + q(x, ω, t)

(2.3)

with the total attenuation coefficient σt = σa + σs.
In addition to the behavior inside the object, we have to model the

boundary conditions, i.e., photons entering and leaving the domain X.
The sets

∂∓(X × Ω) = {(x, ω) ∈ ∂X × Ω: ω · ν(x) ≶ 0}
are called inflow and outflow part of the boundary ∂X × Ω, respectively.
Herein, ν is the outer unit normal to X. Depending on the environment
the experiments are performed in, a function g− defined on the inflow
boundary describes the incoming photons, that is,

u(x, ω, t) = g−(x, ω, t) for (x, ω) ∈ ∂−(X × Ω) .
In an ideal setting the measurements are taken on the whole outflow bound-
ary and are angularly resolved, that is, we measure the function

g(x, ω, t) = u(x, ω, t) for (x, ω) ∈ ∂+(X × Ω) .
Despite the fact that in practice it is often only possible to measure

angularly averaged [Bal09], i.e.,∫
Ωx,+

u(x, ω, t)ν(x) · ω dω for x ∈ ∂X
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with
Ωx,± = {ω ∈ Ω: ω · ν(x) ≷ 0} ,

we will assume angularly resolved data in this thesis. This choice is dis-
cussed below.

In the above derivation of the radiative transfer equation and the
boundary conditions we considered the time-dependent case for the sake of
presentation. However, in bioluminescence tomography the photon source
q induced by reporter genes is relatively stable over time [NRWW05,
WLJ04] and thus we change over to the stationary case. Moreover, we
assume that the source is isotropic, i.e., independent of ω. This is rea-
sonable knowing that the source is built up of marked cells; it is also a
standard assumption in RTE-based BLT, cf. [GZ10a, HEHL11]. Since
the measurements are usually taken in a dark environment, we restrict
ourselves to homogeneous inflow boundary conditions.

With the definition of the scattering operator

(Su)(x, ω) = σs(x)
∫

Ω
η(x, ω · ω′)u(x, ω′) dω′ (2.4)

we finally obtain the stationary radiative transfer equation in the form

ω · ∇xu(x, ω) + σt(x)u(x, ω)−Su(x, ω) = q(x) for (x, ω) ∈ X ×Ω (2.5)

and the homogeneous inflow boundary conditions

u(x, ω) = 0 for (x, ω) ∈ ∂−(X × Ω) . (2.6)

In view of the time-independence of the photon flux u, the measurements
are independent as well and given by

g(x, ω) = u(x, ω) for (x, ω) ∈ ∂+(X × Ω) . (2.7)

The last three equations build our model of RTE-based BLT in this
work. To be more precise, when we speak of the RTE-based BLT prob-
lem, we refer to the problem of finding the source function q such that the
solution u of the boundary value problem (2.5)–(2.6) meets the measure-
ments (2.7).

With the final form of the RTE model complete, we return to the
discussion of the choice of measurements. Though in practice angularly
resolved measurements are hard to obtain, these are the measurements
to aim for. In case of angular averaging we have to reconstruct the
source function q over a d-dimensional domain given data over a (d − 1)-
dimensional manifold. This lack of information in one dimension leads to
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non-uniqueness of the BLT problem and worsens the ill-posedness.2 For
the applications this means that we only get unreliable reconstructions.
Therefore, we restrict ourselves to the angularly resolved framework and
expect that future technology makes these kind of measurements possible
in practice.

We point out that we have not treated the case of photons leaving and
re-entering the domain X explicitly yet. Implicitly we assumed that this
effect does not occur, as the chosen boundary conditions do not allow this
event. Therefore, we assume either that X is convex or that the measure
geometry prevents re-entrance of photons, e.g. in the idealistic setup where
the measurements are taken directly on the boundary.

One drawback of the transport model is that the solution of the ra-
diative transfer equation depends on 2d − 1 variables, thus solving this
is computational costly. Therefore, we derive in the next section a sim-
pler model that is a good description of light propagation in tissue if the
predominant phenomenon is scattering rather than transport [AS09].

2.1.2. The Diffusion Model. In bioluminescence tomography the
scattering length σ−1

s and thus also the free mean path between inter-
actions σ−1

t are typically small compared to the object size. In [Arr02]
it is mentioned that typical values for the coefficients in tissue are σa =
0.01 − 0.1 mm−1 and σs = 10 − 20 mm−1. By contrast, [NW01] refer
to σs = 100 − 200 mm−1 as typical values for the scattering coefficient.
The object under observation is usually a mouse and thus the diameter
and length are of a larger order of magnitude than the scattering length.
Therefore, the predominant phenomenon is scattering and the photon flux
is essentially isotropic a small distance away from the source. Hence, we
assume that the photon flux u depends only linearly on ω.

To specify this assumption, we introduce the first moments of u:

u0(x) = 1
Vol(Ω)

∫
Ω
u(x, ω) dω ∈ R ,

u1(x) = 1
Vol(Ω)

∫
Ω
ωu(x, ω) dω ∈ Rd ,

u2(x) = 1
Vol(Ω)

∫
Ω
ωωTu(x, ω) dω ∈ Rd×d .

2In Section 2.2.2 and Part II of this thesis, where the DA-based BLT problem is
discussed, the effect of the lack of information becomes apparent. Though the model
is different there, the dimension of the data is also one less than the dimension of the
source to be reconstructed.
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The quantity Vol(Ω)u0(x) describes the density of photons in the point x
and is therefore known as photon density.

We remark that we still consider the stationary case and assume that
q is isotropic. The derivation of the diffusion approximation in the time-
dependent case and with an anisotropic source can be found in [Arr02]
or [Kre08]. Moreover, we restrict ourselves in this subsection to the case
d = 3. The derivation of the diffusion model for d = 2 is postponed to
the Appendix B.2, as the derivation is identical in principle, only a few
constants differ.

Let us now make the crucial assumption that u only depends linearly
on ω, i.e.,

u(x, ω) = a(x) + b(x) · ω (2.8)
with a real-valued function a and a function b with values in R3. We obtain
these two functions by inserting the ansatz (2.8) in the definition of the
moments u0 and u1:

a(x) = u0(x) and b(x) = 3u1(x) .
Herein, we used the identities (B.1) and (B.2) of the appendix∫

Ω
ω dω = 0 and

∫
Ω
ωωT dω = 4π

3 I .

Consequently, u obeys the form
u(x, ω) = u0(x) + 3u1(x) · ω . (2.9)

Furthermore, we can apply the Funk–Hecke formula (A.4) to the scat-
tering kernel and observe∫

Ω
ω′η(x, ω · ω′) dω′ = η1(x)ω (2.10)

with
η1(x) = 4π

∫ 1

−1
η(x, t)tdt .

Now we have all quantities needed at hand and can derive the diffusion
approximation from the radiative transfer equation. Integration of latter,
i.e., equation (2.5), over Ω leads to

∇ · u1(x) + σa(x)u0(x) = q(x) , (2.11)
where we used the normalization (2.2) of η. Multiplying the radiative
transfer equation (2.5) by ω and then integrating over Ω, we obtain

(∇ · u2(x))T + σt(x)u1(x)− η1(x)σs(x)u1(x) = 0 . (2.12)
To clarify the last step, we recall (2.10) as well as (B.1), i.e.,

∫
Ω ω dω = 0.
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The next step is to eliminate the term u2 from (2.12). Inserting the
form of u (2.9) in the definition of u2, we observe the relation

(∇ · u2)T = 1
3∇u0 ,

since ∫
Ω
ωωT dω = 4π

3 I and
∫

Ω
(ω · a)ωωT dω = 0 .

Both integrals are calculated in Appendix B.1, compare equations (B.2)
and (B.3). Thus, we are able to eliminate u2 and the equations (2.11) and
(2.12) become the following system of differential equations:

∇ · u1 + σau0 = q ,

1
3∇u0 + (σa + σ′s)u1 = 0

(2.13)

with the reduced scattering coefficient σ′s = (1 − η1)σs. From the second
equation in (2.13) follows immediately that

u1 = −D∇u0 with D = 1
3(σa + σ′s)

. (2.14)

The factor D is called diffusion coefficient. The use of the last relation in
the first equation of (2.13) finally yields the diffusion approximation

−∇ ·
(
D∇u0

)
+ σau0 = q in X . (2.15)

Sometimes we will also refer to this differential equation as diffusion equa-
tion.

In order to complete the diffusion model, we transfer the boundary
conditions. Integrating the homogeneous inflow boundary conditions (2.6)
weighted by ν · ω over the inward pointing directions, we obtain∫

ν(x)·ω<0
ν(x) · ωu(x, ω) dω = 0 for x ∈ ∂X .

For the simplification of the left-hand side we observe that∫
ν·ω<0

ν · ω dω = −π and
∫
ν·ω<0

(ν · ω)ω dω = 2π
3 ν

for ν ∈ Ω. These integrals are derived in the appendix, cf. (B.4). Now we
write u in the form (2.9) and use the identity (2.14) to deduce the Robin
boundary condition

u0 + 2D∂u0

∂ν
= 0 on ∂X . (2.16)
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The measurement in the diffusion model is the angularly averaged outflow,
i.e., the weighted integral of (2.7) over the outward pointing directions,

g0(x) =
∫
ν(x)·ω>0

ν(x) · ωu(x, ω) dω for x ∈ ∂X .

In view of the homogeneous inflow boundary condition (2.6), the definition
of u1 as well as the formula (2.14), the measurements can be rewritten as

g0(x) = ν(x) · u1(x) = −D(x)ν(x) · ∇u0(x) for x ∈ ∂X ,

which is nothing other than the Neumann boundary condition

D
∂u0

∂ν
= −g0 on ∂X . (2.17)

The equations (2.15)–(2.17) form the diffusion model of biolumines-
cence tomography. The DA-based BLT problem is to find the source func-
tion q such that the solution u0 of the boundary value problem (2.15)–
(2.16) satisfies the measurements (2.17).

Let us shortly and for the last time in this thesis come back to the
two-dimensional diffusion approximation. As we derive in Appendix B.2,
the photon density with no incoming photons is described by the boundary
value problem

−∇ ·
(
D∇u0

)
+ σau0 = q in X ,

u0 + π

2D
∂u0

∂ν
= 0 on ∂X

with the adapted diffusion coefficient

D = 1
2(σa + σ′s)

.

This adaption is also the only change in the measurements, which are

D
∂u0

∂ν
= −g0 on ∂X .

We observe, this is also mentioned before, that the only difference are
the coefficients in the differential equation and in the boundary condition.
However, the type of the differential equation and boundary condition
remains the same and thus the properties of the direct and also inverse
problem are conserved. For the ease of presentation, we will only consider
the three-dimensional diffusion model, i.e., equations (2.15), (2.16) and
(2.17), independent of the value of d, though we are aware that for d = 2
the transferred model has different coefficients. In fact, the case d = 3 is
the case occurring in practice.
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x

x− τ−ω

x+ τ+ω

ω

X

Figure 2.1. Sketch of the geometry and time of travel.

2.2. Bioluminescence Tomography Problem

Based on the developed models of photon propagation in tissue, we
now want to analyze the problem of bioluminescence tomography in more
detail. We recall the problem statement: Given the measurements g in the
transport model or g0 in the diffusion model, find the source function q such
that the equations (2.5)–(2.7) or (2.15)–(2.17) are satisfied, respectively.

In the following we formalize this problem for each model separately
and sketch the ill-posedness. These insights build the foundation and
motivation to the regularization scheme introduced in the next section.

2.2.1. RTE-based BLT Problem. Let us begin by stating the as-
sumptions on the domain and the coefficients in order to obtain a well-
posed direct problem. When working in the transport setting and not
mentioned otherwise, we assume that X is a bounded domain with suf-
ficiently smooth boundary (at least Lipschitz continuous) and that the
coefficients σt, σs are non-negative and in L∞(X) as well as that the ker-
nel η is also non-negative and satisfies the normalization condition (2.2),
i.e., ∫

Ω
η(x, ω · ω′) dω′ = 1 for a.e. (x, ω) ∈ X × Ω .

Additionally, we assume the subcritical situation: There exists a positive
constant σ0 such that

σa = σt − σs ≥ σ0 > 0 a.e. on X . (2.18)

Next we introduce the function spaces we work in and present im-
portant properties of them. For p ∈ [1,∞] let Lp(X × Ω) be the usual



18 2. Problem Statement

Lebesgue spaces on the manifold X × Ω and
W p = W p(X × Ω) = {v ∈ Lp(X × Ω): ω · ∇v ∈ Lp(X × Ω)} ,
W p
− = W p

−(X × Ω) = {v ∈W p(X × Ω): v|∂−(X×Ω) = 0} .
We point out soon how to understand the trace condition v|∂−(X×Ω) = 0
in the latter definition. Both spaces,W p andW p

−, equipped with the norm
‖v‖Wp = ‖v‖Lp + ‖ω · ∇v‖Lp

are Banach spaces. For p ∈ [1,∞[ the space C∞(X × Ω) is dense in
W p(X × Ω) [DL00b]. Moreover, we know from [DL00b, Chapter XXI,
§2.1] that for v ∈W p(X × Ω), p ∈ [1,∞], the identity

∂

∂t
v(x+ tω, ω)

∣∣∣
t=0

= ω · ∇v(x, ω) (2.19)

holds for almost all (x, ω) ∈ X × Ω, where all derivatives are understood
in the weak sense.

For functions in L1(X × Ω) there is a standard change of variables
result. To formulate it, the time of travel is needed, which is defined by

τ±(x, ω) = sup{t : x± sω ∈ X for 0 ≤ s < t} for (x, ω) ∈ X × Ω .

For an illustration of the time of travel we refer to Figure 2.1. The change
of variables result, which is adopted from [CS99, Lemma 2.1], is now the
following lemma:

Lemma 2.1. For u ∈ L1(X × Ω) holds∫
Ω

∫
X

u(x, ω) dxdω =
∫

Ω

∫
∂Xω,∓

∫ τ±(y,ω)

0
u(y± tω, ω)|ω · ν(y)|dtdµ(y) dω

with ∂Xω,∓ = {x ∈ ∂X : ν(x) ·ω ≶ 0} and dµ the surface measure on ∂X.

This Lemma is used to prove the following trace theorems. The idea
to show these is to apply the mean value theorem on each line

{
y− tω : t ∈

[0, t ]
}
for t ≤ τ−(y, ω) and (y, ω) ∈ ∂+(X ×Ω) and to use this to estimate

|v(y, ω)|. If p =∞, the statement is an easy observation. In case p ∈ [1,∞[,
integration of this estimate together with Lemma 2.1 yields the next two
statements. The detailed proofs can be found in [Ces84, Ces85].

Lemma 2.2. Let c > 0 be an arbitrary constant and the measure dξ± on
∂±(X ×Ω) be defined by dξ±(y, ω) = |ω · ν(y)|max

{
τ∓(y, ω), c

}
dω dµ(y).

Then the trace operator
γ± : W p(X × Ω)→ Lp

(
∂±(X × Ω), dξ±

)
, v 7→ v|∂±(X×Ω)

is continuous and surjective for p ∈ [1,∞].
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By this Lemma we see how to interpret the trace condition in the
definition of the space W p

−(X × Ω). For functions in this space the trace
is even in a smaller space, namely:

Lemma 2.3. For p ∈ [1,∞] the trace operator

γ+ : W p
−(X × Ω)→ Lp

(
∂+(X × Ω), |ω · ν|dω dµ

)
, v 7→ v|∂+(X×Ω)

is continuous.

The space W p
−(X×Ω) is the actual space we look for a solution of the

boundary value problem (2.5)–(2.6), which we recall for convenience

ω · ∇u+ σtu− Su = q in X × Ω ,

u = 0 on ∂−(X × Ω) . (2.20)

For the differential operator on the left-hand side we introduce the notation
L, that is,

L : D(L) ⊂ Lp(X × Ω)→ Lp(X × Ω) ,
u 7→ Lu = (ω · ∇+ σtI − S)u

(2.21)

with D(L) = W p
−(X × Ω). Using this, the boundary value problem (2.20)

can be written as
Lu = q with u ∈ D(L) .

We point out that the operator ω · ∇ is unbounded from Lp(X × Ω) into
itself. In contrast, the operator σtI and the scattering operator S defined
in (2.4) are bounded between this space. Former statement as well as the
latter for p = ∞ is an easy consequence of the boundedness of σt and σs
and the normalization of η in (2.2). To observe the continuity of S for
p ∈ [1,∞[, we set p̃ such that 1/p+ 1/p̃ = 1 and apply Hölder’s inequality
as well as the normalization of η:

‖Su‖pLp =
∫
X

∫
Ω

∣∣∣∣σs(x)
∫

Ω
η(x, ω · ω′)u(x, ω′) dω′

∣∣∣∣p dω dx

≤ ‖σs‖p∞
∫
X

∫
Ω

(∫
Ω
η(x, ω · ω′) dω′

)p/p̃∫
Ω
η(x, ω · ω′)

∣∣u(x, ω′)
∣∣p dω′ dω dx

= ‖σs‖p∞‖u‖
p
Lp .

In the forthcoming analysis and especially in Section 6 we make use
of an equivalent formulation of the boundary value problem (2.20) as an
integral equation. Let us define the integral operators K,P : Lp(X×Ω)→
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Lp(X × Ω) by

Kv(x, ω) =
∫ τ−(x,ω)

0
exp

(
−
∫ t

0
σt(x− sω) ds

)
Sv(x− tω, ω) dt , (2.22)

Pv(x, ω) =
∫ τ−(x,ω)

0
exp

(
−
∫ t

0
σt(x− sω) ds

)
v(x− tω, ω) dt (2.23)

for (x, ω) ∈ X × Ω. Both operators are bounded. This is obvious in case
p =∞. If p ∈ [1,∞[, by rewriting P in the form

Pv(y + rω, ω) =
∫ r

0
exp

(
−
∫ r

t

σt(y + sω) ds
)
v(y + tω, ω) dt

with (y, ω) ∈ ∂−(X×Ω) and r ∈
[
0, τ+(y, ω)

]
, using

∫ r
t
σt(y+sω) ds ≥ σ0r

and applying Lemma 2.1, we observe that

‖Pv‖pLp =
∫

Ω

∫
∂Xω,−

∫ τ+(y,ω)

0

∣∣(Pv(y + rω, ω))
∣∣p dr|ω · ν(y)|dµ(y) dω

≤ diam(X)p−1

pσ0

(
1− e−pσ0diam(X)

)
‖v‖pLp ,

since for almost every (y, ω) ∈ ∂−(X × Ω) holds∫ τ+(y,ω)

0

∣∣(Pv(y + rω, ω))
∣∣p dr

≤
∫ τ+(y,ω)

0
rp/p̃

∫ r

0
exp

(
−p
∫ r

t

σt(y + sω) ds
) ∣∣v(y + tω, ω)

∣∣p dtdr

≤ diam(X)p/p̃

pσ0

(
1− e−pσ0diam(X)

)∫ τ+(y,ω)

0

∣∣v(y + tω, ω)
∣∣p dt .

Herein, p̃ is again such that 1/p + 1/p̃ = 1 and diam(X) denotes the
diameter of the domain X. In view of K = PS, the operator K is also
continuous.

Multiplying the radiative transfer equation at a point (x−tω, ω) by the
integrating factor exp

(
−
∫ t

0 σt(x− sω) ds
)

and integrating with respect
to t over the interval

[
0, τ−(x, ω)

]
leads now to the equivalent integral

equation
(I −K)u = Pq , (2.24)

cf. e.g. [CS99]. Herein, we interpret P : Lp(X) → Lp(X × Ω) in the
canonical way via embedding of Lp(X) into Lp(X × Ω).

There is a variety of approaches to show existence and uniqueness of
the solution u ∈ Lp(X×Ω) of the boundary value problem (2.20) under the
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subcritical condition (2.18). In [CZ67] and [ES13] the integral equation
(2.24) is transferred into a fixed-point problem and unique solvability is
shown for this. In the former reference the cases p = 1 and p = ∞ are
treated, whereas in the latter the case of general p ∈ [1,∞] is handled
with less restrictive conditions on the coefficients than condition (2.18).
Another way to show existence and uniqueness of the solution is via a
reformulation of the boundary value problem as a variational problem.
This approach is presented in [Ago98] for p ∈ [1,∞[. A third possibility
is to use the framework of semigroup theory as presented in [DL00a,
DL00b], for instance. This seems to be the standard approach in RTE-
based inverse problems, see [Bal09, CS96], and to be the most complete
theory in Lp spaces.

The following existence and uniqueness results is recalled from §2 of
Chapter XXI in [DL00b]:

Lemma 2.4. For p ∈ [1,∞] and q ∈ Lp(X ×Ω) the boundary value prob-
lem (2.20) has a unique solution u ∈ W p

−(X × Ω) depending continuously
on q.

Corollary 2.5. The operator L−1 from Lp(X × Ω) into itself is bounded
for p ∈ [1,∞]. It is even bounded between Lp(X × Ω) and W p

−(X × Ω).

Finally we have all definitions and properties at hand to define the
(linear and bounded) forward operator of RTE-based BLT by

A : Lp(X)→ Lp
(
∂+(X × Ω), |ω · ν|dω dµ

)
= Yp ,

q 7→ γ+L
−1q .

(2.25)

By means of this operator, the radiative transfer equation based bio-
luminescence tomography problem can be written as:

Problem 2.6 (RTE-based BLT Problem). Given the measurements
g ∈ R(A), find a source function q ∈ Lp(X) such that

Aq = g .

Herein, R(A) denotes the range of the operator A.
We finish this subsection giving two examples in which the ill-posed

character of the Problem 2.6 becomes apparent. Moreover, they help to
understand the RTE-based BLT better and build bridges to another well-
known inverse problem, namely the single photon emission computed to-
mography (SPECT). These examples are standard special cases in trans-
port theory, see for instance [CZ67, Bal09].
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Example 2.7 (Purely absorbing media). Let X be convex with 0 ∈ X
and σs = 0. Latter implies that K = 0 and in this setting the RTE-based
BLT problem consists of finding q ∈ Lp(X) given

g(x, ω) = γ+Pq(x, ω) =
∫ τ−(x,ω)

0
exp

(
−
∫ t

0
σt(x− sω) ds

)
q(x− tω) dt

for (x, ω) ∈ ∂+(X × Ω). Up to renaming of the variables, this is exactly
the problem arising in SPECT, see [NW01]. Extending σt as 0 outside of
X and introducing the attenuated ray transform

Pσtq(y, ω) =
∫
R

exp
(
−
∫ ∞
t

σt(y + sω) ds
)
q(y + tω) dt

for ω ∈ Ω and y ∈ ω⊥ = {z ∈ Rd : z ·ω = 0}, the RTE-based BLT problem
can be recasted as reconstructing q given its attenuated ray transform. For
d = 2 inversion formulas for the attenuated ray transform were developed
in [Nat01a, Nov02] assuming mild regularity of the coefficient σt and
the source q.3 By considering hyperplane by hyperplane, or slice by slice,
these results can be extended to d = 3, see [Nov02]. Consequently, the
operator Pσt is injective and the problem uniquely solvable.

We note that the mentioned inversion formulas can be implemented
generalizing the filtered backprojection algorithm of X-ray computed to-
mography. For details see [Kun01, Nat01a].

Next we will observe that Pσt is a compact operator between suitable
spaces for sufficiently smooth coefficients σt. So let p = 2. We set T =
{(y, ω) ∈ Rd × Ω: y ∈ ω⊥} and the space L2(T ) to be the Hilbert space
with norm

‖v‖L2(T ) =
∫

Ω

∫
ω⊥

∣∣v(y, ω)
∣∣2 dy dω .

Moreover, we assume that σt is sufficiently smooth. In [Hei86] it is shown
that the two-dimensional attenuated Radon transform, which coincides
with the attenuated ray transform Pσt in two dimensions up to nota-
tion [NW01], smoothes of order 1

2 in Sobolev scale. The corresponding
smoothing result for a broad class of weighted ray transforms, covering Pσt

also in case d = 3, is derived in [SU12]. From these findings we conclude
that the operator Pσt : L2(X)→ L2(T ) is compact.

3In fact, p > 1 and σt ∈ L∞(Rd) with compact support is sufficient to apply the
Novikov inversion formula, cf. [Nov02].
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In order to transfer this result back to the operator P, we observe,
similar to the proof of Lemma 2.1 above presented in [CS99], that∫

ω⊥
v
(
y + τ+(y, ω)ω

)
dy =

∫
∂Xω,+

v(x)|ν(x) · ω|dµ(x) (2.26)

holds for v ∈ L1(∂Xω,+). Consequently,

‖γ+Pq‖Y2 = ‖Pσtq‖L2(T ) .

With the observations above follows immediately that the forward operator
A is compact and that the RTE-based BLT problem is ill-posed, at least
for the special case σs = 0 we consider in this example. However, the
ill-posedness is rather mild, recalling the injectivity and the smoothing of
order 1

2 in Sobolev scale.

Example 2.8 (Isotropic scattering). Let X be convex and scattering be
isotropic, i.e., let the scattering kernel η be independent of the angle ω ·ω′.
In view of the directional independence of

Su(x) = Su(x, ω) = σs(x) 1
Vol(Ω)

∫
Ω
u(x, ω′) dω′ ,

the radiative transfer equation becomes

ω · ∇u(x, ω) + σt(x)u(x, ω) = q(x) + Su(x) with u|∂−(X×Ω) = 0 . (2.27)

Defining the right-hand side as a function f in the spatial variable x,
we have seen in the last example that f is uniquely determined by the
boundary measurements of u on ∂+(X × Ω). Given now the function f ,
we obtain u solving the boundary value problem (2.27). The source term
q is now easily recovered by q = f − Su.

Though the RTE-based BLT problem is uniquely solvable in this spe-
cial case, the calculation of q uses the ’inversion’ of the attenuated ray
transform, a compact operator. The problem is therefore ill-posed.

The main observations of the last two examples, i.e., the unique solv-
ability and the ill-posedness of the RTE-based problem due to the relation
to the SPECT problem, can be extended to the general anisotropic case.
Under a smallness assumption on the anisotropic part of the scattering
kernel η in a suitable norm4 and a smoothness assumption on σt, it is
shown in [BT07] that

Qg = (I −K)q

4More precisely, the Fourier coefficients of η with respect to an expansion in the
angular variable have to decay sufficiently fast. See [BT07] for details.
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holds with a contractive operator K : L2(X)→ L2(X) depending linearly
on η. Herein, Q : Y2 → L2(X) denotes the formal inverse of γ+P obtained
by an inversion formula for the attenuated ray transform, i.e., Qγ+P = I.
It follows that q can be reconstructed using the Neumann series

q =
∞∑
n=0

KnQg .

Moreover, in the general case where the smallness assumption does not
hold, the operator K is compact. This is explained in [BT07] using com-
pactness results of [MK97].5 By the Fredholm alternative, cf. [Wer07], q
is uniquely determined via

q = (I −K)−1Qg

if and only if 1 is not an eigenvalue of K.

2.2.2. DA-based BLT Problem. For convenience and in order to
improve the numerical stability, we start by recasting the measurements
in the diffusion model. By subtraction of the Robin boundary condition
(2.16) from the Neumann data in (2.17), we obtain the Dirichlet boundary
values

u0 = 2g0 on ∂X . (2.28)
Moreover, we simplify the notation by omitting the subscript 0 in u0 and
redefining g = 2g0. Though the notation coincides with the one in RTE-
based BLT, it will be clear from the context which model is under consid-
eration or if we present the unified theory.

Let us now prepare the introduction of the forward operator. If not
required otherwise, we will assume in the diffusion model that X is a
bounded domain with sufficiently smooth boundary (at least Lipschitz
continuous) and that D,σa ∈ L∞(X) are bounded away from zero by
constants D0 and σ0, respectively: 0 < D0 ≤ D and 0 < σ0 ≤ σa almost
everywhere in X. When speaking of the solution u of the boundary value
problem

−div
(
D∇u

)
+ σau = q in X ,

u+ 2D∂u
∂ν

= 0 on ∂X ,
(2.29)

5In [BT07] smoothness of σt, i.e. σt ∈ C2
0 (X), is assumed to show compactness

of K. Since for the Novikov inversion formula [Nov02] and the compactness results in
[MK97] only σt ∈ L∞(X), σt > 0 is needed, we think compactness of K holds under
our general assumptions.
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we refer to the weak solution. In other words, u ∈ H1(X) is the solution
of the variational formulation∫
X

(D∇u · ∇v + σauv) dx+ 1
2

∫
∂X

uv dµ =
∫
X

qv dx for all v ∈ H1(X) .

In view of the Lax–Milgram lemma, see e.g. [AH05], the weak solution
exists and is unique for every q ∈ H̃−1(X), where H̃−1(X) is the dual
space of H1(X). From a standard trace theorem, cf. [Hac92], we know
that the trace u|∂X lies in H1/2(∂X) and

‖u|∂X‖
H

1
2 (∂X)

≤ c‖u‖H1(X)

holds with a constant c ∈ R. As we expect noisy measurements, we weaken
the regularity of the data range and define the forward operator of DA-
based BLT by

A : L2(X)→ L2(∂X) ,
q 7→ u|∂X ,

(2.30)

where u ∈ H1(X) is the solution of the boundary value problem (2.29).
By means of this operator the diffusion approximation based biolumi-

nescence tomography problem can be written as:

Problem 2.9 (DA-based BLT Problem). Given the measurements
g ∈ R(A), find a source function q ∈ L2(X) such that

Aq = g .

We point out that Problem 2.9 is ill-posed: it suffers not only from
the instability due to the compactness of A, but also from non-uniqueness.
The compactness of A is obtained by the compact embedding of H1/2(∂X)
into L2(∂X) , see [AH05]. Additionally, the singular value decomposition
for constant coefficients D,σa and a ball-shaped object X is derived in
Appendix D. In Theorem D.2 it is shown that, in this special case, the
singular values asymptotically decay like n−3/2 .6

To understand the non-uniqueness, we generalize a result on the null
space of A [WLJ04, Proposition B.1], which we denote by N (A).

Lemma 2.10. There exists an isomorphism T : H1(X) → H̃−1(X) such
that

T
(
H1

0 (X)
)
∩ L2(X) = N (A) .

6Since in this special case the coefficients D, σa as well as the boundary ∂X are
smooth, the data Aq particularly lies in the smoother space H3/2(∂X), cf. [Hac92].
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If, additionally, D ∈W 1,∞(X) holds, then

T
(
H2

0 (X)
)

= N (A) .

Proof. Let T be the bounded linear operator between H1(X) and
its dual H̃−1(X) defined by

u 7→ (Tu)(v) = a(u, v) ,

where a is the bilinear form corresponding to the boundary value problem
(2.29), that is,

a(u, v) =
∫
X

(D∇u · ∇v + σauv) dx+ 1
2

∫
∂X

uv dµ .

It follows from the Lax–Milgram lemma that T is bijective.
We start showing that the specified sets are contained in the null space

of A. Let q be in T
(
H1

0 (X)
)
∩ L2(X). Then we find a u ∈ H1

0 (X) with
Tu = q. From the definition of T follows directly that u satisfies the
boundary value problem (2.29). As u|∂X = 0, the identity Aq = 0 holds.

In the case D ∈ W 1,∞(X), we see, using integration by parts, that
T
(
H2

0 (X)
)
⊂ L2(X). The inclusion is now an immediate consequence.

We turn to the other direction of the inclusion. Let q ∈ N (A) and
u be the solution of the boundary value problem (2.29). We see directly
that q = Tu and u ∈ H1

0 (X). If D ∈ W 1,∞(X) , regularity theorems, see
e.g. [Hac92], and the integration by parts formula imply u ∈ H2

0 (X). �

So we see that the null space of A is very large. In the following
example we find that even ball-shaped sources cannot be reconstructed
uniquely. In addition, this example shall serve to get a better feeling of
the challenges in DA-based BLT.

Example 2.11. Let 0 < ρ < R and X be the ball of radius R and center
0, X = BR(0), and let the source be ball-shaped with constant intensity
λ > 0, q = λχG with G = Bρ(0). We identify q with the pair (λ, ρ) in
this example. Moreover, let the coefficients D,σa be positive constants.
From regularity theorems, cf. [Hac92], we know that the solution u of the
boundary value problem (2.29) lies in H2(X) in this case. In particular, u
is continuous in X by Sobolev embedding theorems, see e.g. [AH05].

Now we want to express u and especially its trace in terms of the
fundamental solution of the diffusion equation and then gain the crucial
insight. We describe the three-dimensional case in detail and just remark
the similar result in two dimensions.
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In dimension d = 3, it is easily verified, using the representation of the
Laplace operator in polar coordinates7, that the fundamental solution of
the diffusion equation with constant coefficients is given by

Φ(x, y) = e−σ̃|x−y|

4πD|x− y| for x 6= y with σ̃ =
√
σa

D
.

We expand the fundamental solution Φ in terms of spherical harmonics
Hl,m, spherical Bessel functions jl and spherical Hankel functions of the
first kind hl. Details on these special functions are found in the Appendices
A.2 and A.3. Analogous to Theorem 2.10 in [CK98] we obtain:

e−σ̃|x−y|

4πD|x− y| = − σ̃
D

∞∑
l=0

l∑
m=−l

h
(1)
l (σ̃i|x|)Hl,m(x̂)jl(σ̃i|y|)Hl,m(ŷ) (2.31)

for |x| > |y| and with x̂ = x/|x| as well as ŷ = y/|y|. This series converges
absolutely and uniformly on compact subsets of {(x, y) ∈ R3 × R3 : |x| >
|y|}. Additionally, the same convergence statement is true for the series of
the term by term derivatives with respect to |x| and |y|.

In view of the smoothness of Φ(x, ·) in X \ {x}, the regularity of u
and Green’s second identity, we obtain similar to [CK98, Theorem 2.1]
Green’s representation formula

u(x) =
∫
X

q(y)Φ(x, y) dy

+
∫
∂X

[
Φ(x, y)D∂u

∂ν
(y)− u(y)D ∂

∂ν(y)Φ(x, y)
]

dµ(y)
(2.32)

for x ∈ X. We analyze the domain integral in more detail by applying the
expansion of the fundamental solution (2.31) to it. Recall that q = λχG
with G = Bρ(0) and let ρ < |x| ≤ R. Then∫

X

q(y)Φ(x, y) dy = λ

∫
Bρ(0)

Φ(x, y) dy

= − σ̃
D
λ

∫
Bρ(0)

∞∑
l=0

l∑
m=−l

h
(1)
l (σ̃i|x|)Hl,m(x̂)jl(σ̃i|y|)Hl,m(ŷ) dy

= − σ̃
D
λ

∞∑
l=0

l∑
m=−l

h
(1)
l (σ̃i|x|)Hl,m(x̂)

∫ ρ

0
r2jl(σ̃ir) dr

∫
S2
Hl,m(θ) dθ .

7Alternatively, it can be deduced from the fundamental solution of the Helmholtz
equation given e.g. in [CK98].
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Due to the orthonormality of the spherical harmonics Hl,m , the series
reduces to one summand, which we can simplify using the explicit form of
the special functions of low order, cf. Appendices A.2 and A.3:∫
X

q(y)Φ(x, y) dy = − σ̃
D
λh

(1)
0 (σ̃i|x|)H0,0(x̂)

∫ ρ

0
r2j0(σ̃ir) dr

∫
S2
H0,0(θ) dθ

= − σ̃
D
λh

(1)
0 (σ̃i|x|)

∫ ρ

0
r2 sinh(σ̃r)

σ̃r
dr

= − λ
D
h

(1)
0 (σ̃i|x|)

(
ρ cosh(σ̃ρ)

σ̃
− sinh(σ̃ρ)

σ̃2

)
= λ

σa

e−σ̃|x|

σ̃|x|
(
σ̃ρ cosh(σ̃ρ)− sinh(σ̃ρ)

)
for x ∈ R3 with ρ < |x| ≤ R.

Consequently, the domain integral in (2.32) takes the same value for
all pairs (λ̃, ρ̃) with

λ̃
(
σ̃ρ̃ cosh(σ̃ρ̃)− sinh(σ̃ρ̃)

)
= λ

(
σ̃ρ cosh(σ̃ρ)− sinh(σ̃ρ)

)
(2.33)

for fixed |x|. We note that the function t 7→ t cosh(t)− sinh(t) is monotone
increasing on R. Since the boundary integrals in (2.32) are determined by
the measurement and Robin boundary condition, we observe that infinite
many ball-shaped sources solve the DA-based BLT problem 2.9. Given one
solution (λ, ρ), a second (λ̃, ρ̃) is obtained by increasing λ and decreasing
ρ, or vice versa, such that (2.33) is satisfied.

In dimension d = 2, an analogous result holds true. In this case the
fundamental solution of the diffusion equation is given by

Φ(x, y) = 1
2πK0

(
σ̃|x− y|

)
,

where σ̃ =
√
σa/D as before and K0 denotes the modified Bessel function

of second kind of order 0, see Appendix A.3. Using an addition theorem
for K0, more precisely, Formula 11.41(8) in [Wat52], and performing the
same steps as above, we obtain: The pairs (λ, ρ) and (λ̃, ρ̃) solve the DA-
based BLT problem 2.9 with identical data if

λ̃ρ̃I1(σ̃ρ̃) = λρI1(σ̃ρ) .

Herein, I1 is the modified Bessel function of first kind of order 1, cf. Ap-
pendix A.3.
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2.3. Regularized Problem under Investigation

In the last section we have seen that the RTE-based and the DA-
based BLT problem are ill-posed. Though the RTE-based BLT problem is
uniquely solvable, the DA-based BLT problem suffers from non-uniqueness.
Consequently, we have to incorporate both a priori knowledge and regu-
larization schemes in order to get reliable reconstructions [Kir11, Rie03].
The approach presented here is the same as in our previously published
work [KR12], but now covering also the RTE-based BLT problem.

We want to do this in an unified framework. The forward operator
A is introduced in (2.25) and (2.30) for the transport model and diffu-
sion model, respectively. The image space of A is denoted by Y, that is,
Y = Y1 = L1(∂+(X × Ω), |ω · ν|dµdω

)
in the RTE-based setting and

Y = L2(∂X) if the DA-model is considered. There are two main reasons
we restrict ourselves to the case p = 1 in RTE-based BLT. First, this is a
natural choice from a physical point of view, because the L1 norm of the
solution u of the transfer equation (2.20) is the total number of photons
in the object X [Dor98]. Second, this choice is crucial for the calculation
of the domain derivative in Chapter 6, as some integrals do not exist for
p ≥ 2.

Let us begin with the discussion of the a priori knowledge used in the
reconstruction process. As mentioned in the introduction, the biolumi-
nescence sources are marked cells. The light intensity of every living cell
is determined by the used marker, more precisely by the luciferase, and
constant over the cell. Surely we are not able to resolve every cell, but still
on a structure, e.g. a tumor, we may assume a constant intensity. Due to
dead cells in this structure, we do not know the exact strength over it, but
it will lie ’near’ the intensity of the used cell line. Additionally, the source
function vanishes outside of the cell structure. Consequently, we assume
that the source function can be modeled by

q =
I∑
i=1

λiχGi , (2.34)

where χGi is the characteristic function of a measurable set Gi ⊂ X and
λi ∈ [λi, λi] = Λi. The number I is fixed and has to be set in advance.8

8We note that a rough estimate of the number I of sources inside the object is
obtained from the measurements. It can be approximated by the number of local
maxima of the photon density on the boundary. Further discussion on this topic and a
numerical example where I is overestimated are found in Section 5.2.5.
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Moreover, we assume Gi ⊂ Xi for an open subset Xi ⊂ X since an a priori
knowledge about the location of the sources may be available.

We use the notations λ = (λ1, . . . , λI), G = (G1, . . . , GI) and Λ =
Λ1 × · · · × ΛI . In order to analyze the BLT problem and develop some
reconstruction algorithms in the following, we will write it as a nonlinear
operator equation F (λ,G) = g. Herein, the forward operator F is given
by

F : Λ× L → Y ,

(λ,G) 7→
I∑
i=1

λiAχGi
(2.35)

with L = LX1 × · · · × LXI and LXi denoting the set of all measurable
subsets of Xi.

So the inverse problem of the bioluminescence tomography in the uni-
fied notation and under these assumptions can be written as:

Problem 2.12 (Unregularized Problem). Given the measurements g, find
an intensity vector λ ∈ Λ and a tuple of sets G ∈ L such that

F (λ,G) = g .

As the nonlinear forward operator F is closely related to the linear
forward operator A, the ill-posedness of Problem 2.6 and 2.9 is trans-
ferred to this problem. To face the ill-posedness, Problem 2.12 has to be
regularized. For this, we combine two ideas, one from bioluminescence
tomography related research and one from the field of shape optimization
in inverse problems. In [GZ10b] a total variation (TV) regularization
scheme for general sources in bioluminescence tomography is proposed.
For X-ray computed tomography (CT) and SPECT a so-called Mumford–
Shah like approach, which essentially penalizes the perimeter, is presented
in [RR07, KRR11]. More precisely, we will consider regularization with
the total variation, also called BV semi-norm (see e.g. [ABM06] for de-
tails), of

∑
i χGi as penalty term, that is,

I∑
i=1
|D(χGi)| .

The BV semi-norm of
∑
i χGi is identical with the perimeter of the

sets Gi, see e.g. [ABM06], and will be denoted by

Per(G) =
I∑
i=1

Per(Gi) =
I∑
i=1
|D(χGi)| . (2.36)
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We point out that in case of a Lipschitz domain Gi the perimeter coincides
with the (d− 1)-dimensional Hausdorff measure of ∂Gi.

The expected effect of the perimeter penalty term is to smooth the
boundary of the reconstructed domain. In view of the identity (2.36), we
observe that the regularization term coincides exactly with the one used
in [RR07, KRR11] and that it only differs in the missing scaling with
the intensities λi from the one of [GZ10b]. In using the unscaled version
of the penalty term

∑I
i=1 |D(χGi)| rather than

∑I
i=1 |D(λiχGi)|, we incor-

porate the nature of bioluminescence tomography: The intensity variable
λ depends on the used type of marker, whereas the geometric variable G
depends on the marked cells only. Hence, we treat both variables indepen-
dently of each other. As we will see in Theorem 3.5 below, the use of the
unscaled penalty term leads to a geometric reconstruction independent of
the signal intensity, i.e., independent of the used marker, which is desired
in applications. Furthermore, the penalization of the perimeter reflects the
uniform growth of cell structures leading to sources with small perimeter
compared to their volume.

So the problem under investigation is:

Problem 2.13 (Regularized Problem). Minimize the Tikhonov like func-
tional

Jα(λ,G) = 1
p
‖F (λ,G)− g‖pY + αPer(G) (2.37)

over Λ×L. Herein, we set p = 1 in the transport and p = 2 in the diffusion
model.

As already mentioned above, a similar approach was used by Ramlau
et al. [RR07, KRR11] for CT and SPECT and they called the functional
of type Jα a Mumford–Shah like functional. The name refers to a similar
objective functional with applications in computer vision introduced by
Mumford and Shah in [MS89].

Let us note that in the stated framework the source q is essentially
the same under changes on a set of measure zero. Also the perimeter is
invariant under such alterations [Giu84]. Therefore, it is reasonable to
consider equivalence classes of the measurable domains Gi, i.e., domains
that coincide but on a set of measure zero, rather than an explicit repre-
sentative.





CHAPTER 3

Analysis of the Regularized Problem

In this chapter we analyze the problem of minimizing the functional
Jα defined in (2.37) in detail. The problem is non-standard, since we op-
timize with respect to a geometric variable, more precisely the shape, and
the set of shapes is nonlinear and non-convex in general [DZ11]. Nev-
ertheless, we give answers to the main questions of optimization theory.
We work in the unified framework covering both models of light propaga-
tion and point out model-specific results in due course. The presentation
starts with existence, stability and regularization results. Since the mini-
mization functional Jα is neither differentiable nor one-sided directionally
differentiable with respect to general measurable sets, we approximate it by
smooth domains and develop an approximate variational principle based
on Ekeland’s ε-variational principle. We finish this chapter presenting a
similar theory for star-shaped domains, where we can work on the linear
space of parameterizations rather than on a set of shapes. This linear
structure is essential for the numerical implementation in Chapter 5 and
Chapter 7.

The theory presented in this chapter was published before in [KR12]
in the DA-based BLT framework. These results are adapted and extended
in order to fit both models. Moreover, we broaden the star-shaped frame-
work and consider also the center points as unknowns.

33
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3.1. Existence, Stability and Regularization Property

Let us study the minimization problem 2.13 in this section. We recall
it for convenience:

Minimize Jα(λ,G) = 1
p
‖F (λ,G)− g‖pY + αPer(G) over Λ× L .

As mentioned in the last chapter, L = LX1 × · · ·×LXI with LXi denoting
the set of all measurable subsets of Xi and Λ = Λ1 × · · · × ΛI , where Λi
are compact intervals [λi, λi].

We proceed similar to [RR10], where existence, stability and regu-
larization results for a minimization problem akin to Problem 2.13 in the
L2 setting, i.e., Y being an L2 space, under an injectivity assumption was
proven. However, these results are not directly applicable to either of our
two models, as we consider Y being an L1 space in RTE-based BLT and
the DA-based BLT forward operator does not satisfy the injectivity prop-
erty postulated in [RR10].1 Therefore, we present a different analysis of
Problem 2.13 using the constraint on λ ∈ Λ to obtain a compactness result
and covering also the L1 case.

We point out that the following analysis is valid for every operator
F : Λ × L → Z that can be written in the form B

∑
λiχGi , where Z is

a Banach space and B a linear and bounded operator from L2(X) to Z.
In view of the boundedness of X, it is an easy consequence of Hölder’s
inequality that every linear and bounded operator from L1(X) to Z satis-
fies this continuity condition. In particular, the RTE-based BLT forward
operator is also bounded from L2(X) to Y.

3.1.1. Existence of a Solution. When considering a minimization
problem, a fundamental question is the existence of a solution. In the fol-
lowing theorem we observe that the Tikhonov like functional Jα possesses
a minimizer:

Theorem 3.1 (Existence of a Solution). For any α > 0 and any g ∈ Y
there exists a solution (λ∗, G∗) ∈ Λ× L of Problem 2.13:

Jα(λ∗, G∗) ≤ Jα(λ,G) for all (λ,G) ∈ Λ× L .

1Actually, we think that the injectivity assumption in the cited article, [RR10,
Assumption 3], can be weakened such that only injectivity needs to hold with respect
to span{χGi : i = 1, . . . , I} for fixed but arbitrary

⋃
Gi = X. In this framework the

DA-based BLT forward operator would fit if I = 1. But in the case I ≥ 2 even this
assumption is not satisfied. A counterexample can be constructed in a ball using a
ball-shaped source enclosed by a ring-shaped source.
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Proof. The functional Jα is bounded from below by 0, so that there
exists a minimizing sequence {(λn, Gn)}n∈N0 decreasing in Jα and satisfy-
ing

lim
n→∞

Jα(λn, Gn) = inf
(λ,G)

Jα(λ,G) .

W.l.o.g we assume that Jα(λ0, G0) <∞. As

αPer(Gn) ≤ Jα(λn, Gn) ≤ Jα(λ0, G0) for all n ∈ N0 ,

and Gn = (Gn1 , . . . , GnI ), we have

Per(Gni ) ≤ Per(Gn) ≤ Jα(λ0, G0)
α

for all n ∈ N0 and i = 1, . . . , I .

Then, by the compactness of sets of finite perimeter [DZ11, Theorem 6.3
in Chapter 5], there exists a set G∗1 ∈ LX1 such that for a subsequence
{Gn

1
k

1 }k holds
χ
G
n1
k

1

→ χG∗1 in L1(X) as k →∞ .

Using again the compactness of sets of finite perimeter, we find a subse-
quence {n2

k}k of {n1
k}k and a set G∗2 ∈ LX2 satisfying

χ
G
n2
k

2

→ χG∗2 in L1(X) as k →∞ .

Applying this argument inductively, we obtain a subsequence {nk}k =
{nIk}k such that for all i the above L1 convergence holds, i.e.,

χGnk
i
→ χG∗

i
in L1(X) as k →∞ .

Since

0 = lim
k→∞

‖χGnk
i
− χG∗

i
‖L1 = lim

k→∞

∫
X

|χGnk
i
− χG∗

i
|dx

= lim
k→∞

∫
X

|χGnk
i
− χG∗

i
|2 dx = lim

k→∞
‖χGnk

i
− χG∗

i
‖2L2 ,

also convergence in L2 holds.
By the compactness of Λ, the sequence {λnk}k ⊂ Λ possesses a con-

vergent subsequence, also denoted by {λnk}k, with limit λ∗ ∈ Λ.
Observing

‖λnki χGnk
i
− λ∗iχG∗i ‖L2 =‖λnki χGnk

i
− λ∗iχGnk

i
+ λ∗iχGnk

i
− λ∗iχG∗i ‖L2

≤|λnki − λ
∗
i |‖χGnk

i
‖L2 + |λ∗i |‖χGnk

i
− χG∗

i
‖L2 ,
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we get

‖
I∑
i=1

λnki χGnk
i
−

I∑
i=1

λ∗iχG∗i ‖L2 ≤
I∑
i=1
‖λnki χGnk

i
−λ∗iχG∗i ‖L2 → 0 as k →∞ .

The first term in Jα is lower semicontinuous, since A is a bounded linear
operator and the norm is lower semicontinuous. Moreover, the perimeter is
lower semicontinuous, cf. [ABM06, Proposition 10.1.1]. Combining these
results, leads to

Jα(λ∗, G∗) ≤ lim inf
k→∞

Jα(λnk , Gnk) ,

which implies
Jα(λ∗, G∗) = inf

(λ,G)
Jα(λ,G) .

Thus, (λ∗, G∗) is a solution of the minimization problem 2.13. �

3.1.2. Stability. The regularization term is introduced into the func-
tional Jα to face the ill-posedness of the BLT problem. We see in the sequel
that this indeed stabilizes the reconstruction in our geometric approach.
The argument is based on the following lemma taken from [RR10] and
naturally generalized to the space Y rather than an L2 space.

Lemma 3.2. Let gn → g in Y as n→∞ and denote by Jnα the functional
Jα with g replaced by gn. Further, let (λn, Gn) be a minimizer of Jnα over
Λ× L. Then there exists a constant C > 0 with

Per(Gn) ≤ C for all n .

Theorem 3.3 (Stability). Let gn → g in Y as n → ∞ and let (λn, Gn)
minimize

Jnα (λ,G) = 1
p
‖F (λ,G)− gn‖pY + αPer(G) over Λ× L .

Then there exists a subsequence {(λnk , Gnk)}k converging to a minimizer
(λ∗, G∗) ∈ Λ× L of Jα in the sense that

I∑
i=1
‖λnki χGnk

i
− λ∗iχG∗i ‖L2 → 0 as k →∞ . (3.1)

Furthermore, every convergent subsequence of {(λn, Gn)}n converges as
defined by (3.1) to a minimizer of Jα.

Proof. From Lemma 3.2 we derive the uniform boundedness of the
perimeter of Gn. As in the proof of Theorem 3.1 we find a subsequence
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{(λnk , Gnk)}k and a pair (λ∗, G∗) such that χGnk
i

converges to χG∗
i
in L1

as well as λnki χGnk
i

to λ∗iχG∗i in L2 for every i.
It remains to show that the limit is indeed a minimizer of Jα. Since

the operator A is bounded, we have

‖
I∑
i=1

λnki AχGnk
i
− gnk‖Y − ‖

I∑
i=1

λ∗iAχG∗i − g‖Y

≤
I∑
i=1
‖λnki AχGnk

i
− λ∗iAχG∗i ‖Y + ‖g − gnk‖Y → 0

as k →∞. Using this convergence, the lower semicontinuity of the perime-
ter and the minimal property of (λnk , Gnk), we conclude that

Jα(λ∗, G∗) ≤ lim inf
k→∞

Jnkα (λnk , Gnk) ≤ lim
k→∞

Jnkα (λ,G) = Jα(λ,G)

for any (λ,G) ∈ Λ× L. Thus, the limit (λ∗, G∗) is a minimizer of Jα. �

Remark 3.4. In the transport model we might be interested in a conver-
gence result like (3.1) in L1(X) instead of L2(X). This follows immediately
from Hölder’s inequality and the boundedness of X.

3.1.3. Regularization Property. Combining the above ideas of con-
structing a convergent subsequence with the regularization result from
[RR10] in a straightforward manner, we get that the proposed geometric
approach is indeed a regularization method.

Theorem 3.5 (Regularization Property). Let g be in the range of F and
choose the regularization parameter according to δ 7→ α(δ) with

α(δ)→ 0 and δp

α(δ) → 0 as δ → 0 ,

where p is the exponent of the residual term in Jα. In addition, let {δn}n
be a positive null sequence and {gn}n such that

‖gn − g‖Y ≤ δn .

Then, with the notation of Theorem 3.3, the sequence {(λn, Gn)} of mini-
mizers of Jnα(δn) possesses a subsequence converging to a solution (λ+, G+)
of the unregularized problem 2.12 with G+ having minimal perimeter:

G+ = arg min{Per(G) : G ∈ L s.t. ∃λ ∈ Λ with F (λ,G) = g} . (3.2)

Furthermore, every convergent subsequence of {(λn, Gn)}n converges in
terms of (3.1) to a solution (λ†, G†) of Problem 2.12 with property (3.2).
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3.2. Approximation by Smooth Domains

From the last section we know that there exists a minimizer of the
functional Jα defined in (2.37). However, we have so far no characteriza-
tion of the minimizer at hand which we can use as basis for an optimization
method. Connected to that is the question how to modify a given shape G
in order to decrease the functional value Jα(λ,G). We tackle these issues
by approximating measurable sets by sets with smooth boundary and dif-
ferentiate the forward operator with respect to smooth shapes. From lat-
ter calculations we also obtain the derivative of Jα with respect to smooth
shapes, even though it is only a one-sided directional derivative in the
transport model due to the non-differentiability of the L1 norm.

In this section we only present the general framework, covering both
models. In Chapter 4 and Chapter 6, where we handle the diffusion and
transport model exclusively, we go into more detail.

So let us assume in this section2 that

Gi ∈ Gi = {Γ ⊂ Xi : ∂Γ ∈ C2} .

We introduce the shorthand notation of the last relation

G ∈ G = G1 × · · · × GI .

In view of the following lemma, cf. [Giu84, Theorem 1.24], the smoothness
assumption on G appears not to be too restrictive.

Lemma 3.6. Let Γ be a bounded measurable set in Rd with finite perime-
ter. Then there exists a sequence {Γn}n of sets with C∞ boundaries such
that ∫

Rd
|χΓn − χΓ|dx→ 0 and Per(Γn)→ Per(Γ) as n→∞ .

3.2.1. The Domain Derivative. The derivative with respect to a
smooth shape we use in this thesis is a natural extension of the Fréchet
derivative in Banach spaces. We call it domain derivative going back to
[Kir93, HR96]. In the literature it is also known just as Fréchet derivative
[DZ11, Hyv07].

Following [Het99, Sim80], we consider variations Γh of the set Γ ∈
S = {Σ ⊂ X : ∂Σ ∈ C2} caused by a vector field h ∈ C1

0 (X,Rd):

Γh = {x+ h(x) : x ∈ Γ} .

2The assumption may be weakened, but we impose the stronger one to avoid
technical difficulties.
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If h is small enough, say if ‖h‖C1 < 1/2, then the vector field h is a
contraction and thus

ϕ = id + h

a diffeomorphism on X, where id is the identity map. In this case, Γh ⊂ X.
Moreover, Γh ∈ S if h ∈ C2

0 (X,Rd).
The domain derivative of a mapping Φ: S → Z about a point Γ, where

Z is a Banach space, is the linear operator Φ′(Γ) ∈ L(C1
0 ,Z) satisfying

‖Φ(Γh)− Φ(Γ)− Φ′(Γ)h‖Z = o(‖h‖C1) .

We point out the obvious analogy to the well known Fréchet derivative
in Banach spaces. The only difference is that the maps, Φ etc., are eval-
uated at a set, but all the variations are performed in the Banach space
C1

0 (X,Rd).
We note that there are also other ways to define a derivative with

respect to the shape. The most prominent are the shape derivative based
on the velocity method [SZ92, DZ11] and the topological derivative
[CR08, LHFS13]. The former uses transformations along velocity flows,
rather than perturbations of the identity as above. However, the first-order
domain derivative and first-order shape derivative based on the velocity
method coincide if the domain derivative exists [DZ11]. The topological
derivative quantifies the sensitivity of the objective functional to a small
change in the topology of the searched-for shape, e.g. by the creation of
a small source of predefined form. We point out that the topological
derivative is only defined for functionals, at least to our knowledge. In
contrast to the domain derivative, no a priori assumption on the topology
of the searched-for shape is needed. Though there exist iterative schemes
based entirely on the topological derivative [CR12], the topological deriv-
ative is often only used to find an initial guess for a shape optimization
method based on the domain or shape derivative mentioned above, see
[HLN12, CD12] for examples. Moreover, for certain functionals, for in-
stance for integrals of shape dependent solutions of elliptic boundary value
problems, the topological derivative can be calculated given the domain or
shape derivative [NFTP03].

The domain derivatives of the model dependent forward operators are
derived in the model-specific parts, more precisely in Chapter 4 for the DA
setting and in Chapter 6 in the RTE framework. As the penalty term is
the same in both models, we finish this subsection calculating the domain
derivative of it, i.e., of the perimeter operator Per : S → R given by

Per(Γ) = |D(χΓ)| . (3.3)
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Since the boundary of Γ is in particular Lipschitz, we obtain by Remark
10.3.3 of [ABM06]

Per(Γ) = Hd−1(∂Γ) =
∫
∂Γ

1 dµ , (3.4)

where Hd−1 denotes the (d−1)-dimensional Hausdorff measure. Using the
right identity of (3.4) and the explanations in [Sim80], we find:

Lemma 3.7 (Domain Derivative of Per). The domain derivative of the
perimeter defined in (3.3) in direction h ∈ C1

0 (X,Rd) about Γ ∈ S is given
by

∂ΓPer(Γ)h =
∫
∂Γ

H∂Γhν dµ . (3.5)

Herein, H∂Γ denotes the additive curvature of ∂Γ, which is d− 1 times the
mean curvature of ∂Γ.

Proof. See [Sim80, Theorem 5.1] for the case h ∈ C2
0 (X,Rd). This

result is extendable to h ∈ C1
0 (X,Rd) by arguments found in [DZ11,

Chapter 9]. �

3.2.2. Approximate Variational Principle. Knowing the sense of
the derivative with respect to a shape, at least on a dense subsets of shapes,
we elaborate now an approximate variational principle based on Ekeland’s
ε-variational principle. This result provides the basis for estimates on the
derivative and one-sided directional derivative of Jα at smooth shapes near
the optimal shape in the diffusion and the transport model, respectively.
These consequences are presented in the model specific parts, more pre-
cisely in Chapter 4 and Chapter 6, respectively.

Though we derive the domain derivative of the forward operators be-
low, which implies the continuity with respect to a perturbation h, we
present a direct verification at this point already. To this end, we state an
estimate on the volume of the symmetric difference of a domain and its
perturbed version. This lemma will also be useful in the further analysis
in Chapter 4 and Chapter 6.

Lemma 3.8. Let Γ ∈ S be a set with finite perimeter and h ∈ C1
0 (X,Rd)

a vector field with ‖h‖C1 sufficiently small. As usual, let Γh denote the
perturbed set. Then the following estimates hold for the volume of the
symmetric difference Γ∆Γh = (Γ\Γh) ∪ (Γh\Γ):

(a) If d = 2, then

Vol(Γ∆Γh) ≤ 2Per(Γ)‖h‖∞ .
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(b) In case d = 3 we additionally assume that Γ is the union of N
disjoint connected sets. Then

Vol(Γ∆Γh) ≤ 2Per(Γ)‖h‖∞ + 8πN
3 ‖h‖3∞ .

Proof. Let Γ be the (countable) union of the disjoint connected sets
Γn. For each n we consider the tube Tnh with radius ‖h‖∞ around the
boundary ∂Γn. Obviously, Γ∆Γh ⊂

⋃
n T

n
h and thus

Vol(Γ∆Γh) ≤
∑
n

Vol(Tnh ) .

In [Wey39] an upper bound for the volumes of tubes of type Tnh is given:

Vol(Tnh ) ≤
{

2Per(Γn)‖h‖∞ , d = 2 ,
2Per(Γn)‖h‖∞ + C̃Γn‖h‖3∞ , d = 3 .

This inequality is sharp if no cross-sections overlap. The constant C̃Γn is
an invariant of Γn and is calculated in [BG88, Corollary 7.5.5] to be

C̃Γn = 8π
3 (1− γn) ,

where γn denotes the genus of Γn. It can be bounded by

C̃Γn ≤
8π
3 =: C .

As the Γn’s are disjoint, Per(Γ) =
∑
n Per(Γn). If d = 2, we finally observe

that

Vol(Γ∆Γh) ≤
∑
n

Vol(Tnh ) ≤
∑
n

2Per(Γn)‖h‖∞ = 2Per(Γ)‖h‖∞ .

For d = 3 we end with

Vol(Γ∆Γh) ≤
N∑
n=1

Vol(Tnh )

≤
N∑
n=1

(
2Per(Γn)‖h‖∞ + C‖h‖3∞

)
≤ 2Per(Γ)‖h‖∞ + CN‖h‖3∞ .

(3.6)

�

In view of

‖χΓh − χΓ‖L1 = ‖χΓh − χΓ‖2L2 = Vol(Γ∆Γh)
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together with the previous lemma, the continuity of the forward operator as
well as the domain differentiability of the perimeter term, we observe that
the map h 7→ Jα(λ,Gh) is continuous from C1 to R under the assumptions
that G ∈ G has finite perimeter and that in case d = 3 each component of G
is the disjoint union of at most a finite number of connected domains. This
technical assumption is needed in (3.6), but quite naturally interpreted: in
each predefined Xi there are at most finitely many different sources with
connected support. Later, after the calculation of the domain derivative,
the continuity of Jα follows from the domain differentiability. In this case,
the additional assumption in three dimensions can be dropped to obtain
continuity.

Our following approximate variational principle is formulated for a
general subspace V of C2. We use the space C2, instead of C1, to ensure
that the perturbed domain has C2 boundary. In this case, the domain
derivative about the perturbed domain is well-defined. The subspace V
is introduced to obtain the statement also in a smaller Hilbert space, in
which we apply an optimization scheme later. The proof of the principle
is basically an application and modification of the findings from [Eke74,
Eke79].

Let us introduce the following notation: For h ∈ C2
0 (X,Rd)I and

G ∈ G we define

Gh := (id + h)(G) =
(
(id + h1)(G1), . . . , (id + hI)(GI)

)
.

Moreover, we use the norm

‖(k, h)‖RI×V =
√
‖k‖22 + ‖h‖2V

for elements (k, h) of RI × V.

Theorem 3.9 (Approximate Variational Principle). Let (λ∗, G∗) be a
minimizer of Jα. Further, let ε > 0 and Gε ∈ G be such that

Jα(λ∗, Gε) ≤ Jα(λ∗, G∗) + ε . (3.7)

In case d = 3, assume that each component of Gε is a finite union of
disjoint connected domains. Additionally, let V be a Banach space with
V ⊂

∏I
i=1 C

2
0 (Xi,Rd) and ‖v‖C2 ≤ C‖v‖V for a constant C > 0.

Then for every γ ∈ ]0, 1
2C [ there exist a vector field v ∈ V and an

intensity λε ∈ Λ with

‖(λε − λ∗, v)‖RI×V ≤ γ (3.8)
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such that the perturbed domain Gεv = (id + v)(Gε) and the intensity λε
satisfy

Jα(λε, Gεv) ≤ Jα(λ∗, Gε) , (3.9)

Jα(λε, Gεv)−
ε

γ
‖(k, h)‖RI×V < Jα(λε + k,Gεv+h) (3.10)

for all λε + k ∈ Λ \ {λε} and v + h ∈ V \ {v} with ‖v + h‖V ≤ 1
2C .

Proof. Let us consider the ball B 1
2C

=
{
w ∈ V : ‖w‖V ≤ 1

2C
}
and

the functional Ψ: Λ×B 1
2C
→ R mapping (λ,w) to Jα(λ,Gεw). Then Ψ is

continuous, since
Ψ(λ+ k,w + h)−Ψ(λ,w)

= Jα(λ+ k,Gεw+h)− Jα(λ,Gεw+h) + Jα(λ,Gεw+h)− Jα(λ,Gεw)
= Jα(λ+ k,Gεw+h)− Jα(λ,Gεw+h) + Jα

(
λ, (Gεw )̃

h

)
− Jα(λ,Gεw)

for all λ, λ + k ∈ Λ and w,w + h ∈ B 1
2C

with h̃ = h ◦ (id + w)−1, and
since Jα is continuous in both variables, as shown above. The existence
of a (λε, v) ∈ Λ × V satisfying the first three estimates (3.8), (3.9) and
(3.10) is a direct consequence of Ekeland’s ε-variational principle [Eke74,
Theorem 1.1]. �

Remark 3.10. We point out that for all ε > 0 we always find a Gε ∈ G
satisfying (3.7). This follows directly from the density result in Lemma 3.6
and the continuity of the norm term in Jα. Moreover, the additional
condition on Gε for d = 3 is satisfied if each component of the minimizer
G∗ is a finite union of disjoint connected sets.

In Chapter 4 and Chapter 6 we give corollaries to Theorem 3.9 that
estimate the derivative of Jα. The estimates are approximations to well-
known necessary conditions on minimizers. For the diffusion model we see
in Chapter 4 that the domain derivative of Jα exists and its operator norm
becomes arbitrary small near the minimizer of Jα . In the RTE-based BLT
framework all one-sided directional derivatives of Jα are bounded below
by −ε for arbitrary small ε > 0. Details are stated in Chapter 6.

3.3. Theory for Star-shaped Domains

In this section we set the stage for the use of optimization methods
to solve the minimization problem 2.13. All usual optimization methods
require an underlying linear space, but the set of shapes is nonlinear. A
standard and intuitive way to overcome this issue is working with pa-
rameterizations of the boundary [CDKT13, HT11, Het99]. Here we
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choose the framework of boundary parameterizations of star-shaped do-
mains, as it is sufficiently general, analytically well-established and rather
implementation-friendly, see Chapter 5 and Chapter 7. Below we elab-
orate a self-contained theory for star-shaped domains: we show, for in-
stance, that the minimizing domain is star-shaped and that the approx-
imate variational principle yields almost critical smooth domains which
are star-shaped as well. These results do not immediately follow from our
general findings of the previous sections.

An alternative to our approach is the parameterization of the boundary
via closed curves as in [HT11], but then more effort is needed to prevent
self-intersections of the boundary. An entire different way to obtain a
linear structure on the set of shapes is to use level set techniques, see
e.g. [BO05, DCL12, Set99]. In this method, the shapes are represented
by the level set of a continuous function and the analysis and calculation
is performed on this level set function. It has the advantage over the
parameterization of the boundary that topological changes are possible
in general. However, we concentrate on the boundary parameterization
of star-shaped domains for above stated reasons. Our results might be
extended to other boundary parameterizations or to the level set approach,
but that is beyond the scope of this work.

Having mentioned the level set technique, we point out that the do-
main derivative can be used to obtain the velocity for the evolution of the
level set function [BO05] and that the domain derivative is closely related
to the level set derivative3 [LS03].

We begin introducing the assumptions and the notation in the star-
shaped framework. Let the Xi’s be closed and convex. Further, we con-
sider only domainsGi that are star-shaped with respect to a pointmi ∈ Xi.
In other words, we suppose that for every point mi ∈ Xi there exists a
function rXi,mi ∈ L∞(Sd−1) such that rXi,mi(θ)θ +mi, θ ∈ Sd−1, is a pa-
rameterization of the boundary ∂Xi. Furthermore, we restrict our search
for the support of the ith source to the set

L?i = {Γ ⊂ Xi : Γ is a star-shaped domain with respect to a point mi} ,

which can be identified with

Ri =
{

(ri,mi) ∈ L∞(Sd−1)×Xi : 0 ≤ r ≤ rXi,mi a.e.} .

3The level set derivative is the generalized derivative with respect to the level set
function, cf. [LS03].



3.3. Theory for Star-shaped Domains 45

We will use the abbreviations

L? =
I∏
i=1
L?i and R =

I∏
i=1
Ri

and additionally
(r,m) ∈ R iff (ri,mi) ∈ Ri .

For (r,m) ∈ R we understand Jα(λ, r,m) to be the value of Jα evaluated
at (λ,G(r,m)), where G(r,m) ∈ L? is the tuple of domains represented by
(r,m). In the same way we understand expressions like F (λ, r,m) and
Per(r,m) = Per(r).

With these definitions at hand, we are able to state the minimization
problem under consideration:

Minimize Jα(λ, r,m) over Λ×R . (3.11)

Now, as we have an underlying linear structure, we can address the
question of convexity of the functional Jα. Convexity of the minimization
functional is an important property, since then every stationary point is a
global minimizer. We will answer this question giving a counterexample
for DA-based BLT:

Example 3.11 (Non-convexity). Let d = 3 and D = σa = 1 be constant.
Moreover, let X be the ball centered at the origin with radius R > 0
and I = 1. We consider ball-shaped sources centered at the origin with
constant intensity λ > 0, q = λχG with G = Bρ(0) and 0 < ρ < R. So we
are in a special case of Example 2.11. To show the non-convexity of Jα,
we calculate Jα(λ, ρ, 0) = Jα

(
λ,Bρ(0)

)
explicitly and then show that the

Hessian of Jα is indefinite.
In a first step we derive an explicit representation of the solution u

of the diffusion equation (2.29) via the Green’s function. Let Φ be the
fundamental solution, which has the form

Φ(x, y) = −
∞∑
l=0

l∑
k=−l

h
(1)
l (i|x|)Hl,k(x̂)jl(i|y|)Hl,k(ŷ) (3.12)

for |y| < |x| ≤ R, where ẑ = z/|z|, compare equation (2.31). It is well
known [RR04] that the function G(x, y) = Φ(x, y)+φ(x, y) is the Green’s
function of the considered boundary value problem if for all y ∈ X

−∆φ( · , y) + φ( · , y) = 0 in X ,

φ( · , y) + 2 ∂

∂ν
φ( · , y) = −Φ( · , y)− 2 ∂

∂ν
Φ( · , y) on ∂X .

(3.13)
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Using the representation of the Laplace operator in polar coordinates4, it is
easily verified that jl(i|x|)Hl,k(x̂) is a smooth solution of the homogeneous
diffusion equation with coefficients D = σa = 1. Therefore, we make the
ansatz

φ(x, y) =
∞∑
l=0

l∑
k=−l

φl,k(y)jl(i|x|)Hl,k(x̂) . (3.14)

The coefficients φl,k have to be chosen in such a way that φ(·, y) sat-
isfies the boundary condition in (3.13). The normal derivative of the fun-
damental solution for x ∈ ∂X = ∂BR(0) is obtained by differentiating
(3.12):

∂

∂ν(x)Φ(x, y) = −i
∞∑
l=0

l∑
k=−l

h
(1)′
l (i|x|)Hl,k(x̂)jl(i|y|)Hl,k(ŷ) .

Consequently, we set

φl,k(y) =
2ih(1)′

l (iR) + h
(1)
l (iR)

2ij′l(iR) + jl(iR) jl(i|y|)Hl,k(ŷ)

for y ∈ X and observe that the boundary condition in (3.13) is fulfilled
term by term. We note that φl,k is well-defined, since all zeros of the
spherical Bessel functions are real [Leb73, Theorem 5.13.4]. Applying
similar techniques as in the proof of Theorem 2.10 in [CK98], we see that
the series in (3.14) converges absolutely and uniformly on any compact
subset of X × X. Moreover, the same convergence statement is true for
the series of the term by term derivatives with respect to |x| and |y|. It
follows that G(x, y) = Φ(x, y) + φ(x, y) is a Green’s function.

The Green’s representation formula (2.32) for the solution u of (2.29)
now becomes, by adding Green’s second identity applied to φ and u:

u(x) =
∫
X

q(y)G(x, y) dy =
∫
X

q(y)
(
Φ(x, y) + φ(x, y)

)
dy . (3.15)

Inserting the series expansions (3.12) and (3.14) for Φ and φ, respectively,
we can simplify the domain integral as in Example 2.11. We obtain

u(x) = λ(ρ cosh ρ− sinh ρ)
(
e−R + c0 sinhR

) 1
R

(3.16)

4Like in Example 2.11, it can alternatively be deduced from a similar statement
for the Helmholtz equation in [CK98].
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for x ∈ ∂X = ∂BR(0), where

c0 = 2ih(1)′
0 (iR) + h

(1)
0 (iR)

2ij′0(iR) + j0(iR) = e−R(R+ 2)
2R coshR+ (R− 2) sinhR .

In the next step we use the explicit representation (3.16) of u to show
that Jα(λ, ρ) is not convex, by observing that the Hessian of Jα is indefi-
nite. We introduce the abbreviations

cR =
(
e−R + c0 sinhR

) 1
R

and ψ(ρ) = ρ cosh ρ− sinh ρ

as well as

a = 2πR2c2R , b = −R2cR

∫
S2
g(Rθ) dθ , c = 1

2R
2
∫
S2
g(Rθ)2 dθ .

As u is positive on the boundary, also the measurement g has to be positive.
In view of cR > 0, we have b < 0. Now, the functional Jα can be expressed
as

Jα(λ, ρ) = 1
2‖cRλψ(ρ)− g‖2L2 + αPer(ρ)

= aλ2ψ(ρ)2 + bλψ(ρ) + c+ α4πρ2 .

We calculate the gradient and the Hessian of Jα:

∇Jα(λ, ρ) = 2a
(

λψ(ρ)2

λ2ψ′(ρ)ψ(ρ)

)
+ b

(
ψ(ρ)
λψ′(ρ)

)
+ α

(
0

8πρ

)
and

HJα(λ, ρ) = 2a
(

ψ(ρ)2 2λψ′(ρ)ψ(ρ)
2λψ′(ρ)ψ(ρ) λ2(ψ′(ρ)2 + ψ′′(ρ)ψ(ρ)

))
+ b

(
0 ψ′(ρ)

ψ′(ρ) λψ′′(ρ)

)
+ α

(
0 0
0 8π

)
= 2aA1 + bA2 + αA3 .

It is well-known that a real symmetric 2× 2 matrix is indefinite if and
only if its determinant is negative. After some algebraic manipulations,
the determinant of 2aA1 + bA2 reads
det(2aA1 + bA2)

= −
(
b+ 2aλψ(ρ)

)[
2aλψ(ρ)

(
2ψ′(ρ)2 − ψ′′(ρ)ψ(ρ)

)
+ ψ′(ρ)2(b+ 2aλψ(ρ)

)]
.

The occurring derivatives of ψ are

ψ′(ρ) = ρ sinh ρ and ψ′′(ρ) = ρ cosh ρ+ sinh ρ .
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Thus, ψ is strictly increasing in ρ and positive for ρ > 0. So, for ρ suffi-
ciently large5 holds

0 > b > −2aλψ(ρ) .
Moreover, we have that

2ψ′(ρ)2 − ψ′′(ρ)ψ(ρ) = ρ2 sinh2 ρ+ sinh2 ρ− ρ2 > 0
for ρ > 0 and that this expression is also monotonically increasing in ρ.
These observations imply that

det(2aA1 + bA2) < 0
for ρ sufficiently large. Therefore, 2aA1 + bA2 is indefinite.

The spectrum of the matrix αA3 is obviously given by
σ(A3) = {0, 8πα} .

Choosing α sufficiently small and ρ as above, it follows that the Hessian
HJα(λ, ρ) = 2aA1 + bA2 + αA3 remains indefinite under the small per-
turbation αA3, see [Tao12] for details on eigenvalues of sums of matrices.
We conclude that the functional Jα is non-convex in general.

3.3.1. Existence, Stability and Regularization Property. Us-
ing similar techniques as in Section 3.1, we show in the following that the
minimization problem (3.11) has a solution, which depends continuously
on the data. Moreover, we see that the regularization property also holds
for star-shaped domains.

Theorem 3.12 (Existence). For any α > 0 and any g ∈ Y there exists a
solution (λ∗, r∗,m∗) ∈ Λ×R of problem (3.11), that is,

Jα(λ∗, r∗,m∗) ≤ Jα(λ, r,m) for all (λ, r,m) ∈ Λ×R .

Proof. Let {(λn, rn,mn)}n∈N0 be a minimizing sequence that mono-
tonically decreases in Jα. The aim is to find a subsequence of this minimiz-
ing sequence that converges to a minimizer of Jα. The crucial part consists
of constructing a link between Cauchy sequences of characteristic functions
of star-shaped domains and Cauchy sequences of their parameterizations.
This builds the basis for a compactness result in the variable r.

As the domains Xi are compact, there exists a tuple of points m∗ =
(m∗1, . . . ,m∗I) ∈

∏
Xi and a subsequence {mnk}k ⊂

∏
Xi such that

mnk
i → m∗i as k →∞ , i = 1, . . . , I .

5We assume that the overall domain BR(0) is large enough, so that this choice for
ρ is possible. Though both constants a and b depend on R, choosing a larger R does
not cause any problems, since the constant a increases faster in R than −b.
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By Gnk we denote the tuple of domains parameterized by (rnk ,mnk).
As in the proof of Theorem 3.1, there exists a subsequence of {Gnk}, which
we again denote by {Gnk}, converging to a tuple of measurable sets G∗ in
the sense that

χGnk
i
→ χG∗

i
in L1 as k →∞ , i = 1, . . . , I .

Let us consider the tuple of domains G̃nk parameterized by (rnk ,m∗).
We remark that G̃nki might be no subset of Xi, since the midpoint is
changed into m∗. The following connection between Gnk and G̃nk holds:

χ
G̃
nk
i

= χGnk
i

( ·+mnk
i −m

∗
i ) , i = 1, . . . , I .

From the dominated convergence theorem, see e.g. [Lan93], follows that

χ
G̃
nk
i

→ χG∗
i

in L1 as k →∞ , i = 1, . . . , I .

For elements G̃nki and G̃nli we have the key relation∫
X

|χ
G̃
nk
i

− χ
G̃
nl
i

|dx =
∫
G̃
nk
i

∆G̃nl
i

1 dx

=
∫
Sd−1

∫ max{rnk
i
,r
nl
i
}

min{rnk
i
,r
nl
i
}
ρd−1 dρdθ

= 1
d

∫
Sd−1

|(rnki )d − (rnli )d|dθ .

(3.17)

Since the sequence {G̃nki }k is convergent, it is especially a Cauchy se-
quence. The identity (3.17) reveals that

{
(rnki )d

}
is a Cauchy sequence in

L1 as well, therefore convergent. We denote its limit by r̃i ∈ L1 and ob-
serve r̃i ≥ 0 almost everywhere, as {(rni ,mn

i )} ⊂ Ri. The L1 convergence
implies pointwise convergence almost everywhere, that is,

rnki (θ)→ r̃
1/d
i (θ) as k →∞ for almost every θ ∈ Sd−1 .

By Hölder’s inequality,∫
Sd−1

|rnki − r̃
1/d
i |dθ ≤ Vol(Sd−1)1/d′

(∫
Sd−1

|rnki − r̃
1/d
i |

d dθ
)1/d

with 1/d+ 1/d′ = 1. As

|rnki − r̃
1/d
i |

d =
{

(rnki )2 − 2r̃1/2
i rnki + r̃i , d = 2 ,∣∣(rnki )3 − 2r̃1/3
i (rnki )2 + 2r̃2/3

i rnki − r̃i
∣∣ , d = 3 ,
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and 0 ≤ rnki ≤ diam(Xi), the dominated convergence theorem yields∫
Sd−1

|rnki − r̃
1/d
i |dθ → 0 as k →∞ .

Let now Gr∗
i
be the domain parameterized by r∗i = r̃

1/d
i and m∗i . Then,

1
d

∫
Sd−1

|(rnki )d − (r∗i )d|dθ =
∫
X

|χ
G̃
nk
i

− χGr∗
i

|dx ,

which finally implies
χGr∗

i

= χG∗
i
,

since the limit is unique. Moreover, (r∗i ,m∗i ) ∈ Ri holds, as it is the limit
of {(rnki ,mnk

i )} ⊂ Ri and as the set Ri is closed in L1.
Due to the compactness of Λ, there exists a λ∗ ∈ Λ and a subsequence

of {λnk}k, again denoted by {λnk}k, converging to λ∗ as k → ∞. In the
same manner as in the proof of Theorem 3.1 follows that

Jα(λ∗, r∗,m∗) ≤ lim inf
k→∞

Jα(λnk , rnk ,mnk) = lim inf
k→∞

Jα(λnk , Gnk) .

Consequently, (λ∗, r∗,m∗) solves the minimization problem (3.11). �

Combining the techniques of the last proof with the stability and reg-
ularization results of Section 3.1, we receive analogous results for star-
shaped domains. Since the proofs are straightforward, we omit them.

Theorem 3.13 (Stability). Let gn → g in Y and denote by Jnα the func-
tional Jα with g substituted by gn. Then, the sequence of minimizers
(λn, rn,mn) of Jnα over Λ × R possesses a subsequence converging to a
minimizer of Jα over Λ×R in RI ×

(
L1(Sd−1)

)I × RI .
Furthermore, every convergent subsequence of {(λn, rn,mn)}n con-

verges in RI ×
(
L1(Sd−1)

)I × RI to a minimizer of Jα.

Theorem 3.14 (Regularization Property). Let g be given such that there
exist an intensity vector λ̂ ∈ Λ and an I-tuple of star-shaped domains Ĝ
with parameterization (r̂, m̂) ∈ R satisfying F (λ̂, Ĝ) = F (λ̂, r̂, m̂) = g.
Moreover, let {δn}n be a positive null sequence and let {gn}n be such that

‖gn − g‖Y ≤ δn.

Furthermore, let δ 7→ α(δ) be a regularization parameter choice rule satis-
fying

α(δ)→ 0 and δp

α(δ) → 0 as δ → 0 ,



3.3. Theory for Star-shaped Domains 51

where p is the exponent of the residual term in Jα. Then the sequence
{(λn, rn,mn)} of minimizers of Jnα(δn) over Λ×R possesses a subsequence
converging in RI ×

(
L1(Sd−1)

)I × RI to a solution (λ+, r+,m+) of the
unregularized problem 2.12 with

r+ ∈ arg min{Per(r) : r ∈ Rsol} . (3.18)
Herein,

Rsol = {r : ∃m ∈
∏

Xi , λ ∈ Λ s.t. (r,m) ∈ R , F (λ, r,m) = g} .

Moreover, every convergent subsequence of {(λn, rn,mn)}n converges
in RI ×

(
L1(Sd−1)

)I ×RI to a solution (λ†, r†,m†) of Problem 2.12 meet-
ing (3.18).

3.3.2. Approximation by Smooth Parameterizations. Similar
to Section 3.2 we develop an approximate variational principle for star-
shaped domains. This result will be the basis for approximations to neces-
sary conditions on minimizers of Jα and the justification to use optimiza-
tion methods that converge to a critical point later in this work.

In the next lemma we see that smooth star-shaped domains are dense
in the set of star-shaped domains with finite perimeter. This is an analo-
gous result to Lemma 3.6.
Lemma 3.15. Let p ∈ [1,∞[ and m ∈ Rd. Moreover, let ρ ∈ Lp(Sd−1)
with 0 ≤ ρ ≤ ρmax a.e. such that the star-shaped domain Γ parameter-
ized by (ρ,m) has finite perimeter. Then there exists a sequence {ρn}n ⊂
C∞(Sd−1) with

‖ρn − ρ‖Lp → 0 and Per(ρn)→ Per(ρ) as n→∞ .

Proof. We recall that the perimeter of Γ is given by, cf. [Giu84],

Per(Γ) = |DχΓ| = sup
{∫

Rd
χΓdivϕdx : ϕ ∈ C1(Rd,Rd), ‖ϕ‖∞ ≤ 1

}
.

Using polar coordinates, we observe

Per(Γ) ≥
∫
Sd−1

∫ ρ(θ)

0
divϕ(s, θ)sd−1 dsdθ

for any ϕ ∈ C1(Rd,Rd) with ‖ϕ‖∞ ≤ 1. Since C∞(Sd−1) is dense in
Lp(Sd−1), there exists a uniformly bounded sequence {ρn}n ⊂ C∞(Sd−1)
such that

‖ρn − ρ‖Lp → 0 as n→∞ .

Let Γn be the domain parameterized by (ρn,m). By νn we denote the
unit outward normal of Γn and ϕn ∈ C1(Rd,Rd) is an extension of νn
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satisfying ‖ϕn‖∞ ≤ 1. Applying first the dominated convergence theorem
and then Gauß’s theorem, we deduce that

Per(Γ) ≥ lim
n→∞

∫
Sd−1

∫ ρn(θ)

0
divϕn(s, θ)sd−1 dsdθ

= lim
n→∞

∫
Γn

divϕn(x) dx = lim
n→∞

∫
∂Γn

ϕn · νn dµ

= lim
n→∞

Hd−1(∂Γn) = lim
n→∞

Per(Γn) .

(3.19)

Please note that the last equation holds true, because Γn is a smooth
domain.

Like in the proof of Theorem 3.12, we see that

χΓn → χΓ in L1(Rd) as n→∞ .

In view of (3.19) and the lower semicontinuity of the perimeter, that is,
Per(Γ) ≤ lim infn→∞ Per(Γn), we conclude that

Per(ρn)→ Per(ρ) as n→∞ .

�

The approximate variational principle assumes the following form in
the star-shaped framework:

Theorem 3.16 (Approximate Variational Principle). Let U be a Banach
space with C∞(Sd−1)I ⊂ U ⊂ C2(Sd−1)I and let (λ∗, r∗,m∗) ∈ Λ ×R be
a minimizer of Jα. Additionally, let ε > 0 and (r̃ε,m∗) ∈ (U × RdI) ∩ R
such that

Jα(λ∗, r̃ε,m∗) < Jα(λ∗, r∗,m∗) + ε . (3.20)
Assume that for an R > 0 the inclusion

BR(r̃ε,m∗) ⊂ R

holds, where BR(r̃ε,m∗) is the closed ball in U×RdI with radius R centered
at (r̃ε,m∗).

Then for every γ ∈ ]0, R[ there exist a point (rε,mε) ∈ (U ×RdI) ∩R
and a λε ∈ Λ with

‖(λε − λ∗, rε − r̃ε,mε −m∗)‖ ≤ γ (3.21)

such that
Jα(λε, rε,mε) ≤ Jα(λ∗, r̃ε,m∗) , (3.22)

Jα(λε, rε,mε)− ε

γ
‖(hλ, hr, hm)‖ < Jα(λε + hλ, r

ε + hr,m
ε + hm) (3.23)
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for all λε+hλ ∈ Λ\{λε} and (rε+hr,m
ε+hm) ∈ BR(r̃ε,m∗)\{(rε,mε)}.

The norm ‖ · ‖, occurring in (3.21) and (3.23), is the one of the space
RI × U × RdI .

Proof. The assertion is an immediate consequence of Ekeland’s ε-
variational principle [Eke74, Theorem 1.1] applied in Λ×BR(r̃ε,m∗). �

We note, analogous to Remark 3.10, that for all ε > 0 we always find a
pair (r̃ε,m∗) ∈ (U ×RdI) ∩R satisfying the inequality (3.20). The reason
for this is again the density result in Lemma 3.15 and the continuity of the
norm term in Jα.

In the next chapter and Chapter 6 we derive the domain derivative of
the forward operator F in the diffusion and transport model, respectively.
Based on the calculated derivative and on Theorem 3.16, we elaborate
estimates on the derivative of Jα near the star-shaped minimizer in the
mentioned chapters.
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CHAPTER 4

Domain Derivative of the DA-based Forward Operator

We turn now to the model specific analysis. Since the diffusion model
is simpler and the theory is more complete in this framework, we start
with this model in this part of the thesis. A crucial gap to extend the
theory developed in the last chapter builds the domain derivative of the
forward operator. We derive it in Section 4.1 for DA-based BLT. As the
domain derivative is known for a broad class of inverse problems based on
second-order elliptic, see e.g. [Het99], we only present the derivation for
a special case in order to gain a better understanding. Our calculations
are inspired by an idea used in level set approaches for inverse problems
in [San96, Dor02]. For a detailed derivation in a broader framework we
refer to [Het99]. Given the domain derivative of F , the domain derivative
of Jα is easily obtained. Moreover, the approximate variational principles
can be specified further. These consequences are described in Section 4.2.

In this part we need to refine the assumptions made in Section 2.2.2.
We assume that the domain X has sufficiently smooth boundary and that
D,σa ∈ C1(X) are bounded away from zero by constants D0 and σ0,
respectively: 0 < D0 ≤ D and 0 < σ0 ≤ σa almost everywhere in X.

Let us recall a few definitions for the sake of convenience. The linear
forward operator of DA-based BLT is given by

A : L2(X)→ L2(∂X) = Y , q 7→ u|∂X ,
compare equation (2.30). Herein, u is the weak solution of the boundary
value problem (2.29), that is,

57
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− div
(
D∇u

)
+ σau = q in X , u+ 2D∂u

∂ν
= 0 on ∂X . (4.1)

Using the a priori knowledge of piecewise constant sources, discussed in
Section 2.3, we obtain the nonlinear forward operator

F : Λ× L → Y , (λ,G) 7→
I∑
i=1

λiAχGi , (4.2)

which is definition (2.35).

4.1. Derivation of the Domain Derivative of F

In this section we derive the domain derivative of F about a smooth
shape G ∈ G, i.e., about a shape with C2 boundary. As mentioned in
the introduction above, we present the derivation for a special case only,
namely for connected C2 domains. Motivated by this, we state the general
result afterwards.

4.1.1. The Domain Derivative of F about a Domain. Let Γ ⊂
X be a connected domain with C2 boundary and let λ ∈ Λ be fixed in this
section. As in Subsection 3.2.1, we define for h ∈ C1

0 (X,Rd) the perturbed
domain by

Γh = {x+ h(x) : x ∈ Γ} ,
which is again a connected subdomain of X for h small enough. The aim
is to find the domain derivative of F about Γ, i.e., an operator ∂ΓF (λ,Γ) ∈
L(C1

0 ,Y) such that
‖F (λ,Γh)− F (λ,Γ)− ∂ΓF (λ,Γ)h‖Y = o

(
‖h‖C1

)
.

To keep the notation precise, we set the number of sources I = 1 in this
analysis.

Inspired by [San96], where the effect of small changes in the level
set function on the corresponding characteristic function is calculated for-
mally, we derive the domain derivative of the operator

Q : L → H̃−1(X) , Q(G) = λχG , (4.3)

about Γ in a first step. Herein, H̃−1(X) denotes again the dual space of
H1(X). Since the linear forward operator A is also bounded from H̃−1(X)
to Y, the domain derivative of F is then an immediate consequence.

We set qh = λχΓh . In addition, let v ∈ H1(X) be a test function.
Then,

〈qh − q, v〉L2(X) =
∫
X

(qh − q)v dx =
∫

Γh∆Γ
∆qhv dx (4.4)
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with the symmetric difference Γh∆Γ = (Γh \ Γ) ∪ (Γ \ Γh) and with

∆qh(x) =


λ , x ∈ Γh \ Γ ,
−λ , x ∈ Γ \ Γh ,
0 , otherwise .

Recombining the findings in [BG88, Chapter 6], we have the following
change of variables result: There exist functions ψ1, ψ2 ∈ C(∂Γ) such that∫

Γh∆Γ
f(x) dx =

∫
∂Γ

∫ max{hν(y),0}

min{0,hν(y)}
f
(
y + tν(y)

)
Ψ
(
y, tν(y)

)
dtdµ(y)

for f ∈ L1(Γh∆Γ), where ν is the outer unit normal of Γ, hν = h · ν and

Ψ
(
y, tν(y)

)
= 1 + tψ1(y) + t2ψ2(y) . (4.5)

We apply this change of variables to equation (4.4) and obtain

〈qh − q, v〉L2(X) =
∫
∂Γ

(
λhν + o

(
‖h‖C1

))
v dµ

=
∫
∂Γ
λhνv dµ+ ‖v|∂Γ‖L1(∂Γ)o

(
‖h‖C1

)
= 〈λhνδ∂Γ, v〉L2(X) + ‖v|∂Γ‖L1(∂Γ)o

(
‖h‖C1

)
.

(4.6)

Herein, δ∂Γ is the trace operator mapping a function to its trace on ∂Γ,
which can also be interpreted as delta distribution on ∂Γ. In the last
identity of (4.6) we use the fact that the dual form on H1(X)×H̃−1(X) is
the continuous extension of the inner product in L2(X) to the dual pairing,
see e.g. [Wlo87]. Taking this into account again as well as the validity of
equation (4.6) for every test function v ∈ H1(X), we get the estimate

‖qh − q − λhνδ∂Γ‖H̃−1 = o
(
‖h‖C1

)
. (4.7)

Consequently, the distribution λhνδ∂Γ is the domain derivative of Q about
Γ in direction h, that is,

Q′(Γ)h = λhνδ∂Γ . (4.8)

As mentioned above, the linear forward operator A is bounded from
H̃−1(X) to Y. Applying A to the sum of distributions in (4.7) and recalling
the definition of F in (4.2), we find immediately that

‖F (λ,Γh)− F (λ,Γ)− λA(hνδ∂Γ)‖Y = o
(
‖h‖C1

)
.

Thus, λA(hνδ∂Γ) is the domain derivative of F (λ, · ) about Γ in direction
h. We specify it further. Let u′ ∈ H1(X) be the weak solution of the
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diffusion equation (4.1) with source term λhνδ∂Γ, i.e., solution of∫
X

(D∇u′ · ∇v + σau
′v) dx+ 1

2

∫
∂X

u′v dµ = λ

∫
∂Γ
hνv dµ (4.9)

for all v ∈ H1(X). This is exactly the weak formulation of the transmission
boundary value problem

−div(D∇u′) + µu′ = 0 in X \ ∂Γ ,
[u′]± = 0 on ∂Γ ,[

D
∂u′

∂ν

]
±

= −λhν on ∂Γ ,

2D∂u
′

∂ν
+ u′ = 0 on ∂X .

(4.10)

Herein, the symbol [f ]± denotes the jump of a function f at the interface
∂Γ, that is,

[f ]± = f |+ − f |− ,

where the symbols |+ and |− indicate the trace of f approaching ∂Γ from
the exterior X \ Γ and the interior Γ, respectively. By the definition of A
it is clear that u′|∂X = λA(hνδ∂Γ). We conclude that

∂ΓF (λ,Γ)h = λA(hνδ∂Γ) = u′|∂X . (4.11)

This derivation can be naturally extended to domains Γ that are a
finite union of disjoint connected domains. However, the argumentation
might fail for general C2 shapes. The problem arises when Γ is a union of
infinitely many disjoint connected domains. It is not sure if the functions
ψ1 and ψ2 of equation (4.5) are uniformly bounded on ∂Γ in this case.
Therefore, we have to consider a different approach in the next subsection
to cover the general case.

4.1.2. The Domain Derivative of F : General Case. In a differ-
ent way from our presentation in the last subsection, the domain derivative
can also be derived by applying a change of variables to the weak formu-
lation of the diffusion equation with source term qh and by estimating
the difference of the weak forms cleverly. This approach is performed in
[HR96] for an inverse source problem in potential theory and in [Het99]
for a general class of inverse problems based on second-order elliptic dif-
ferential equations.
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The derivation in these works leads to exactly the same result as ob-
tained in the previous subsection for connected domains Γ, compare equa-
tion (4.11). However, the calculations based on the change of variables
work also for infinitely many sources, i.e., extend to the general case.

Our statement on the domain derivative of F about general C2 shapes
is therefore adopted from [Het99]. We refer to this work for the proof.

Theorem 4.1. The derivative of the forward operator F defined in (4.2)
with respect to the ith shape Gi in direction h ∈ C2

0 (Xi,Rd) about (λ,G) ∈
Λ× G is given by

∂GiF (λ,G)h = u′i|∂X ,

where u′i ∈ H1(X) is the solution of the transmission boundary value prob-
lem (4.10) with Γ replaced by Gi.

Proof. See [Het99, Theorem 2.9]. �

4.2. Consequences for the Minimization Problem

Now having the domain derivative of the forward operator at hand, we
can calculate the derivative of the minimization functional Jα with respect
to both arguments. Based on this, we specify some results found in the
general analysis of Chapter 3. These findings have been published before
in [KR12].

4.2.1. The Derivative of the Minimization Functional Jα. The
forward operator F , see (4.2), does not only depend on the shape variable
G but also on the intensity variable λ. The dependency is only linear,
though. Thus, the partial Fréchet derivative with respect to the intensity
in direction k ∈ RI about (λ,G) ∈ Λ× G is given by

∂λF (λ,G)k =
I∑
i=1

kiAχGi .

Combining this with the domain derivative of F obtained above and
of the perimeter functional Per stated in Lemma 3.7, we are able to dif-
ferentiate the regularization functional Jα in the diffusive framework. For
convenience we recall the definition of Jα, compare (2.37):

Jα(λ,G) = 1
2‖F (λ,G)− g‖2Y + αPer(G) .
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Theorem 4.2 (Derivative of Jα in DA-based BLT). The derivative of the
functional Jα about (λ,G) ∈ Λ× G is given by

J ′α(λ,G)(k, h) =
I∑
i=1

[〈
u|∂X − g, kivi|∂X + u′i|∂X

〉
Y + α

∫
∂Gi

H∂Gihi,ν dµ
]

for k ∈ RI and h ∈
∏I
i=1 C

2
0 (Xi,Rd), where u|∂X = A

∑I
i=1 λiχGi and

vi|∂X = AχGi . The term u′i is the solution of the transmission bound-
ary value problem (4.10) with λ, Γ and hν replaced by λi, Gi and hi,ν ,
respectively.

Proof. Elementary derivative computations, cf. [AH05, Section 5.3],
lead to
J ′α(λ,G)(k, h) = ∂λJα(λ,G)k + ∂GJα(λ,G)h

=
〈
F (λ,G)− g, ∂λF (λ,G)k + ∂GF (λ,G)h

〉
Y + α∂GPer(G)h

=
I∑
i=1

[〈
F (λ,G)− g, ∂λiF (λ,G)ki + ∂GiF (λ,G)hi

〉
Y + α∂GiPer(G)hi

]
,

which readily yields the assertion. �

4.2.2. The Approximate Variational Principle Revisited: Gen-
eral C2 Shapes. In Subsection 3.2.2 we derived a quite general approxi-
mate variational principle. The main result is Theorem 3.9, which states
roughly speaking: If (λ∗, G∗) is a minimizer of Jα and Gε ∈ G is such that

Jα(λ∗, Gε) ≤ Jα(λ∗, G∗) + ε ,

then we find for every sufficiently small positive number γ an intensity
λε ∈ Λ and a perturbed shape Gεv that are near (λ∗, Gε) and that are
non-increasing in Jα, i.e., that satisfy

‖(λε − λ∗, v)‖RI×V ≤ γ and Jα(λε, Gεv) ≤ Jα(λ∗, Gε) .
Additionally, the estimate

Jα(λε, Gεv)−
ε

γ
‖(k, h)‖RI×V < Jα(λε + k,Gεv+h) (4.12)

holds for all h, k sufficiently small. Herein, V is a Banach space with
V ⊂

∏I
i=1 C

2
0 (Xi,Rd) and ‖v‖C2 ≤ C‖v‖V for a constant C > 0.

The estimate (4.12) together with the differentiability of Jα yields an
estimate on the norm of J ′α(λ,Gεv), which we present in the following corol-
lary to Theorem 3.9. It is an adaption of Ekeland’s ε-variational principle
for Fréchet differentiable functionals, cf. e.g. [Eke74, Theorem 2.2], to the
domain differentiable functional Jα.
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Corollary 4.3. Let the assumptions of Theorem 3.9 be satisfied and in
addition λ∗ be an inner point of Λ. Moreover, let there exist a constant
C̃ ≥ 1 such that ‖h‖V ≤ C̃‖h ◦ (I + v)−1‖V for all h ∈ V. Then,

‖J ′α(λε, Gεv)‖RI×V→R ≤ C̃
ε

γ
. (4.13)

Proof. From Theorem 3.9 we know that estimate (4.12) holds for
all λε + k ∈ Λ \ {λε} and v + h ∈ V \ {v} with ‖v + h‖V ≤ 1

2C . From
this estimate we derive (4.13). We set h̃ = h ◦ (id + v)−1 and observe the
identity Gv+h = (Gv )̃h. The differentiability of Jα about (λε, Gεv) yields
that

Jα
(
λε + tk,Gεv+th

)
− Jα(λε, Gεv) = J ′α(λε, Gεv)t(k, h̃) + o

(
‖t(k, h̃)‖RI×C2

)
.

Letting t→ 0 and taking (4.12) into account, we obtain

− ε
γ
‖(k, h)‖RI×V ≤ J ′α(λε, Gεv)(k, h̃)

for all (k, h) ∈ RI × V and with h̃ = h ◦ (id + v)−1. Hence,

|J ′α(λε, Gεv)(k, h̃)| ≤ ε

γ
‖(k, h)‖RI×V .

The proof is completed dividing by ‖(k, h̃)‖RI×V and recalling the defini-
tion of the constant C̃. �

Remark 4.4. For the space
∏
C2(Xi,R3) we have

‖h‖C2 ≤ 2(1 + γ)2‖h ◦ (id + v)−1‖C2 ,

where γ is the upper bound of the norm of v as defined in Theorem 3.9.
Thus, the hypothesis of the previous corollary is satisfied with C̃ =
2(1 + γ)2. That can be seen from applying the chain rule to h = h̃◦(id+v).

Remark 4.5. In contrast to the general result in Theorem 3.9, the addi-
tional assumption that each component of Gε is a finite union of disjoint
connected sets if d = 3 has not to be imposed to obtain the approximate
variational principle in the diffusion model. In the DA-based framework
the continuity of Jα in the geometric variable follows directly from the
domain differentiability. Lemma 3.8 is not needed for this purpose, as
opposed to Theorem 3.9.

Relying on the approximation result in Lemma 3.6, the estimate on the
volume of the symmetric difference in Lemma 3.8 and the last corollary,
we verify the existence of almost stationary C2 shapes near the minimizer.
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This can be interpreted as an approximation to the well-known necessary
condition on a minimizer of Jα.

Theorem 4.6. Let (λ∗, G∗) be a minimizer of Jα and λ∗ an inner point
of Λ. In case d = 3, assume that each component of G∗ is a finite union of
disjoint connected domains. Then for any ε > 0 sufficiently small we can
find an intensity vector λε ∈ Λ and an I-tuple of C2 sets Gε ∈ G satisfying

Jα(λε, Gε)− Jα(λ∗, G∗) ≤ ε ,
I∑
i=1
‖λεiχGεi − λ

∗
iχG∗i ‖L1 ≤ ε ,

‖J ′α(λε, Gε)‖RI×C2→R ≤ ε .

Proof. Let ε1 > 0. By Lemma 3.6 there exists G̃ε ∈ G with
I∑
i=1
‖χ

G̃ε
i

− χG∗
i
‖L1 ≤ ε1 and |Per(G̃ε)− Per(G∗)| ≤ ε1 .

In case d = 3, each component G̃εi is a finite union of disjoint connected
domains for ε1 sufficiently small. Let N be the maximal number of disjoint
connected domains. Due to the continuity of the norm term in Jα and due
to the above inequalities we get

Jα(λ∗, G̃ε)− Jα(λ∗, G∗) ≤ ε2

for an ε2 > 0 getting smaller with ε1. Applying Theorem 3.9 and Corol-
lary 4.3 with γ = √ε2 =: ε3, we obtain a λε ∈ Λ, a C2 function h and the
C2 shape Gε = G̃εh fulfilling

Jα(λε, Gε)− Jα(λ∗, G∗) ≤ ε2 ,

‖(λε − λ∗, h)‖RI×C2 ≤ ε3 ,

‖J ′α(λε, Gε)‖RI×C2→R ≤ C̃ε3 .

Using Lemma 3.8 and setting C2 = 0 and C3 = 8πIN/3, we observe
I∑
i=1
‖χ

G̃ε
i

− χGε
i
‖L1 =

I∑
i=1
‖χ

G̃ε
i
∆Gε

i

‖L1 ≤
(
Per(G̃ε) + Cd‖h‖2∞

)
‖h‖∞

≤
(
Per(G∗) + ε1 + Cdε

2
3
)
ε3 .

By the triangle inequality,
I∑
i=1
‖χGε

i
− χG∗

i
‖L1 ≤

(
Per(G∗) + ε1 + Cdε

2
3
)
ε3 + ε1 =: ε4 .
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Thus,
I∑
i=1
‖λεiχGεi − λ

∗
iχG∗i ‖L1 ≤

I∑
i=1

(
|λεi |‖χGεi − χG∗i ‖L1 + |λεi − λ∗i |‖χG∗i ‖L1

)
≤max

i∈I
|λεi |ε4 + Vol(X)ε3 ≤ Lε4 + Vol(X)ε3

with L = max{|l| | l ∈
⋃I
i=1 Λi}. The right-hand side of the last estimate

converges to 0 for ε1 → 0. Choosing now ε1 sufficiently small shows the
assertion. �

Remark 4.7. The results of the previous theorem are not limited to C2

shapes. For shapes with higher regularity a similar statement under the
assumptions of Corollary 4.3 can be proven.

4.2.3. The Approximate Variational Principle Revisited: Star-
shaped Domains. Analogous consequences of the approximate varia-
tional principle for star-shaped domains can be derived from the findings
in Section 3.3.2. To do so, we proceed in a similar manner as in the last
paragraph for general C2 shapes.

Since with the parameterization of the boundary we have a linear
structure at hand, the derivative with respect to the geometric variable,
i.e., the parameterization, is just the usual Fréchet derivative. So, the
analog to Corollary 4.3 in the star-shaped setting is a simple application
of Ekeland’s ε-variational principle for differentiable functionals [Eke74,
Theorem 2.2].

Corollary 4.8. Let the assumptions of Theorem 3.16 be satisfied. More-
over, let λ∗ be an inner point of Λ. Then,

‖J ′α(λε, rε,mε)‖RI×U×RdI→R ≤
ε

γ

holds, using the notation of Theorem 3.16.

The approximation to the necessary condition of a minimizer is derived
as above but using the corresponding results for star-shaped domains. We
obtain the following existence result of almost stationary smooth parame-
terization near the optimal one.

Theorem 4.9. Let U be a Banach space with C∞(Sd−1)I ⊂ U ⊂ C2(Sd−1)I
and C ≥ 1 a constant satisfying ‖ · ‖(L1)I ≤ C‖ · ‖U .

If the minimizer (λ∗, r∗,m∗) of Jα is an interior point of Λ×R with
respect to the RI×(L1)I×RdI metric, then for any ε > 0 sufficiently small
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there exists a point (λε, rε,mε) ∈ Λ×
(
(U × RdI) ∩R

)
with

Jα(λε, rε,mε)− Jα(λ∗, r∗,m∗) ≤ ε ,
‖(λε, rε,mε)− (λ∗, r∗,m∗)‖RI×(L1)I×RdI ≤ ε ,

‖J ′α(λε, rε,mε)‖RI×U×RdI→R ≤ ε .

Proof. We proceed similar to the proof of Theorem 4.6: By Lem-
ma 3.15, we find for any ε1 > 0 a tuple of functions r̃ε ∈ U such that

‖r̃ε − r∗‖(L1)I ≤ ε1 and |Per(r̃ε)− Per(r∗)| ≤ ε1 .

Since the minimizer is an interior point, we have (r̃ε,m∗) ∈ R for suffi-
ciently small ε1 > 0. Recalling (3.17), the boundedness of r̃ε and r∗ as
well as the continuity of the residual term in Jα, there exists an ε2, which
goes to zero when ε1 does, with

Jα(λ∗, r̃ε,m∗)− Jα(λ∗, r∗,m∗) ≤ ε2 .

Applying now Theorem 3.16 and Corollary 4.8 with γ = √ε2, we get a
point (λε, rε,mε) ∈ Λ×

(
(U × RdI) ∩R

)
satisfying

Jα(λε, rε,mε)− Jα(λ∗, r∗,m∗) ≤ ε2 ,

‖(λε, rε,mε)− (λ∗, r̃ε,m∗)‖RI×U×RdI ≤
√
ε2 ,

‖J ′α(λε, rε,mε)‖RI×U×RdI→R ≤
√
ε2 .

Obviously, it follows that
‖(λε, rε,mε)− (λ∗, r∗,m∗)‖RI×(L1)I×RdI ≤ C

√
ε2 + ε1 .

Choosing ε1 sufficiently small shows the assertion. �

We point out that the observation of the previous theorem is the jus-
tification to use optimization methods that converge to a critical point in
the upcoming chapter.



CHAPTER 5

Numerical Experiments for DA-based Bioluminescence
Tomography

After the analytical study of the DA-based BLT problem in the last
chapters, we now consider the problem from a numerical point of view. In
Section 5.1 we introduce the optimization methods that are used for solving
the Problem 2.13. Several numerical experiments, all in two dimensions,
are discussed in Section 5.2. We point out that the presented numerical
schemes and implementation serve as proof of concept and to illustrate
our theoretical findings. Improvements of both are certainly possible, but
beyond the scope of this work. This chapter is a revision and an extension
of the numerical part of [KR12].

5.1. Numerical Schemes

In this section we develop descent methods to minimize Jα for star-
shaped domains. Since this functional is not differentiable with respect to
general domains, we restrict ourselves to a dense subspace U ⊂ C2(Sd−1)I ,
where U is assumed to be a Hilbert space. In view of Theorem 4.9, there
exist smooth almost stationary points in any neighborhood of a minimizer.
Therefore, we expect that a descent method converging to a stationary
point in Λ× U also converges to a minimizer of Jα.

Further, we have to implement the constraints λ ∈ Λ and (ri,mi) ∈
Ri in the optimization process. We recall that the later relation means
0 ≤ ri ≤ rXi,mi . In addition, it may be necessary to bound ri away from

67
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zero, in order to show convergence of the scheme. Therefore, we define the
closed and convex subset C := Λ×Rad ⊂ Λ×

(
(U ×RdI)∩R)

)
and denote

the convex projection onto C by ΠC . Since all optimization schemes under
consideration to solve

min
(λ,r,m)∈C

Jα(λ, r,m)

need the gradient of Jα as well as the projection operator ΠC , we provide
these quantities in a first step.

5.1.1. Gradient and Projection. The gradient of Jα has to satisfy

〈grad Jα(λ, r,m), (hλ, hr, hm)〉RI×U×RdI = J ′α(λ, r,m)(hλ, hr, hm) ,

where the derivative J ′α is known from Theorem 4.2:

〈grad Jα(λ, r,m), (hλ, hr, hm)〉RI×U×RdI
= 〈F (λ, r,m)− g, ∂λF (λ, r,m)hλ + ∂rF (λ, r,m)hr + ∂mF (λ, r,m)hm〉Y

+ α∂rPer(r)hr

=
I∑
i=1

( 〈
u|∂X − g, hλ,ivi|∂X + u′r,i|∂X + u′m,i|∂X

〉
Y

+ α

∫
∂Gi

H∂Gihr,i · ν dµ
)
.

Herein, u|∂X = A
∑I
i=1 λiχGi and vi|∂X = AχGi . Moreover, the terms

u′r,i and um,i are the solutions of the transmission boundary value problem
(4.10) with h replaced by hr,i and hm,i, respectively, as well as Γ replaced
by Gi and λ by λi.

Obviously, the gradient depends on the choice of the Hilbert space U .
We start with the calculation of the L2 gradient. Later U will be chosen
to be a Sobolev space Hs on the unit sphere, where we can work with an
expansion of the parameterization with respect to spherical harmonics. In
this context, the Hs gradient is obtained by multiplying the Fourier coef-
ficients associated with spherical harmonics of degree j of the L2 gradient
by (1 + j2)−s in case d = 2 and by (j + 1/2)−2s in case d = 3. For more
details on Sobolev spaces on the sphere in two and three dimensions see
[Kre89] and [FGS98], respectively.
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The components of the L2 gradient1 have to satisfy(
grad Jα(λ, r,m)

)
λi

= 〈F (λ, r,m)− g,AχGi〉Y ,(
grad Jα(λ, r,m)

)
ri

= ∂riF (λ, r,m)∗
(
F (λ, r,m)− g

)
+ αH∂Gi(Φ1 · ν)

√
gr Φ′ri ,(

grad Jα(λ, r,m)
)
mi

= ∂miF (λ, r,m)∗
(
F (λ, r,m)− g

)
,

(5.1)

where Φ1 is the parameterization of the unit sphere and gr Φ′ρ is the
Gramian determinant of the derivative of the parameterization Φρ of ∂Γ.
Since all our numerical experiments in the next section are performed in
two dimensions, we specify the components of the gradient in this spe-
cial case further. We refer to Section 7.1 for a similar treatment in three
dimensions.

In case d = 2, the second equality of (5.1) reduces to(
grad Jα(λ, r,m)

)
ri

= ∂riF (λ, r,m)∗
(
F (λ, r,m)− g

)
+ αH∂Giri . (5.2)

Herein, the L2 adjoint operator of ∂riF (λ, r,m) is given by

∂riF (λ, r,m)∗ψ = 2λiriw|∂Gi ◦ Φri (5.3)

with w denoting the solution of the adjoint boundary value problem

−div(D∇w) + σaw = 0 in X ,

2D∂w
∂ν

+ w = ψ on ∂X ,
(5.4)

which has the weak formulation∫
X

(D∇w ·∇v+σawv) dx+ 1
2

∫
∂X

wv dµ = 1
2

∫
∂X

ψv dµ for all v ∈ H1(X) .

1We note that we use the subscript λi to indicate the ith component in the variable
λ of the gradient, that is,

〈
(grad Jα(λ, r,m))λi , hλ,i

〉
Y

= ∂λiJα(λ, r,m)hλ,i. This
notation is transferred to the variables r and m.
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The representation (5.3) of ∂riF (λ, r,m)∗ can be seen from

〈∂riF (λ, r,m)hr,i, ψ〉Y =
∫
∂X

u′r,iψ dµ

= 2
∫
X

(D∇w · ∇u′r,i + σawu
′
r,i) dx+

∫
∂X

wu′r,i dµ

= 2λi
∫
∂Gi

w (hr,i · ν) ◦ Φ−1
ri dµ

=
∫
S1

2λihr,iriw ◦ Φri dµ

= 〈hr,i, ∂riF (λ, r,m)∗ψ〉L2 ,

according to the weak formulation of the transmission boundary value
problem (4.9). Similarly, we observe that the adjoint of ∂miF (λ, r,m),
which occurs in the last equation of (5.1), has the form

∂miF (λ, r,m)∗ψ = 2λi
∫
∂Gi

wν dµ . (5.5)

Let us now turn to the derivation of the projection operator onto
the set C. It is well-known that the projection in λ onto the interval
Λ =

∏
[λi, λi] is

(Πλ
Cλ)i =


λi , λi < λi ,

λi , λi > λi ,

λi , otherwise .

The projection in (r,m) onto Rad,

Π(r,m)
C (r,m) = arg min

(ρ,ξ)∈Rad

‖(ρ, ξ)− (r,m)‖U×RdI ,

depends again on the choice of U and cannot be expressed explicitly in
general. Since in the numerical experiments the iterates stay in Rad in
case of suitable initial values, the projection onto Rad is only of interest
from a theoretical point of view.

5.1.2. Projected Gradient Method. In [HPUU09] the projected
gradient method specified in Algorithm 5.1 is presented for constrained
optimization in Hilbert spaces.
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Algorithm 5.1 Projected Gradient Method
(S0) Choose (λ0, r0,m0) ∈ C.

For k = 0, 1, 2, . . .
(S1) Test for termination.
(S2) Set (hkλ, hkr , hkm) = −grad Jα(λk, rk,mk) .
(S3) Choose sk by a projected step size rule such that

Jα

(
ΠC
(
(λk, rk,mk) + sk(hkλ, hkr , hkm)

))
< Jα(λk, rk,mk) .

(S4) Set (λk+1, rk+1,mk+1) = ΠC
(
(λk, rk,mk) + sk(hkλ, hkr , hkm)

)
.

The step size sk, occurring in the algorithm, is chosen by the projected
Armijo rule: The largest sk ∈ { 1

2n : n ∈ N0} is chosen such that

Jα

(
ΠC
(
(λk, rk,mk) + sk(hkλ, hkr , hkm)

))
− Jα(λk, rk,mk)

≤ − γ

sk

∥∥ΠC
(
(λk, rk,mk) + sk(hkλ, hkr , hkm)

)
− (λk, rk,mk)

∥∥2
RI×U×RdI

with some constant γ ∈ ]0, 1[.
In [HPUU09] a convergence result for the projected gradient method

using the projected Armijo rule is established under a Hölder continuity
assumption on the gradient of the minimization functional. Though we
could only achieve a local Lipschitz continuity of the gradient on Λ×Rad
with

Rad = {(r,m) ∈ (U × RdI) ∩R : ri,mi ≥ ε}
for one ε > 0, we expect Algorithm 5.1 to converge to a critical point also
in our setting.

5.1.3. Split Approach. In [RR07] Ramlau and Ring propose a split
approach, where first the intensity is minimized while freezing the domain
and then the domain is updated using the new intensity. Inspired by them,
we split the kth iteration into the following two steps:

λk+1 = arg min
λ∈Λ

Jα(λ, rk,mk) ,

(rk+1,mk+1) = ΠRad

(
(rk,mk)− sk(hkr , hkm)

)
with
hkr =

(
grad Jα(λk+1, rk,mk)

)
r

and hkm =
(
grad Jα(λk+1, rk,mk)

)
m
.

The step size sk is chosen by the projected Armijo rule as above. This
leads to Algorithm 5.2.
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Algorithm 5.2 Split Approach
(S0) Choose (λ0, r0,m0) ∈ C.

For k = 0, 1, 2, . . .
(S1) Test for termination.
(S2) Calculate λk+1 = arg minλ∈Λ Jα(λ, rk,mk) .
(S3) Set (hkr , hkm) = −

(
grad Jα(λk+1, rk,mk)

)
(r,m) .

(S4) Choose sk by a projected step size rule such that

Jα

(
λk+1,ΠRad

(
(rk,mk) + sk(hkr , hkm)

))
< Jα(λk+1, rk,mk) .

(S5) Set (rk+1,mk+1) = ΠRad

(
(rk,mk) + sk(hkr , hkm)

)
.

Let us point out that the optimization problem in step (S2) possesses
a solution, since Jα is a quadratic function in λ and the set Λ is com-
pact. Standard quadratic programming can be used to solve this problem
[NW06]. However, the solution may not be unique unless the matrix
K =

(
〈AχGi , AχGj 〉L2

)
i,j

is positive definite.
In the case I = 1, the optimization problem in (S2) is obviously

uniquely solvable. In this situation, similar to the unconstrained case
in [RR07], the split approach can be viewed as a descent method for the
reduced functional

J̃α(r,m) = Jα
(
λ(r,m), r,m

)
with λ(r,m) = arg min

λ∈Λ
Jα(λ, r,m) ,

as −
(
grad Jα(λ(r,m), r,m)

)
(r,m) is a descent direction for J̃α(r,m) for ev-

ery (r,m) in the interior of Rad such that λ(r,m) is in the interior of Λ.
This observation is based on the identity

J̃ ′α(r,m) = ∂λJα
(
λ(r,m), r,m

)
λ′(r,m) +

(
∂(r,m)Jα

)(
λ(r,m), r,m

)
and the first-order optimality condition

∂λJα
(
λ(r,m), r,m

)
= 0 .

5.2. Numerical Experiments

To complete the discussion of the DA-based BLT problem, we present
numerical examples of the developed geometric regularization approach.
The goals of this section are to see if this technique is feasible to reconstruct
photon sources and to understand the still open challenges better. Though
all experiments are performed in two dimensions, three-dimensional exam-
ples should give similar observations.
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5.2.1. Implementation. As mentioned above, we only consider the
case d = 2 for our experiments. The PDE Toolbox of MATLAB is used
to compute the solution of the occurring boundary value problems via the
Finite Element Method (FEM). More precisely, we use linear elements and
the maximal edge size h to be specified later.

For the sake of presentation, we restrict ourselves in this description
to the situation where the source term q consists of only one characteristic
function: q = λχG. Let (r,m) be a parameterization of the searched-for
star-shaped domain G. Identifying the unit sphere S1 with the interval
[0, 2π], we approximate the function r by a trigonometric polynomial2 rM
of degree less than M :

r(ϑ) ≈ rM (ϑ) = γ0 +
M∑
n=1

(
γcn cos(nϑ) + γsn sin(nϑ)

)
(5.6)

for ϑ ∈ [0, 2π], where

γ0 = 1
2π

∫ 2π

0
r(ϑ) dϑ ,

γcn = 1
π

∫ 2π

0
r(ϑ) cos(nϑ) dϑ ,

γsn = 1
π

∫ 2π

0
r(ϑ) sin(nϑ) dϑ .

(5.7)

Then, all numerical operations are performed on the vector
(γ0, γ

c
1, . . . , γ

c
M , γ

s
1 , . . . , γ

s
M )>

of coordinates rather than on the function rM itself.
Our discretization of r requires a matched discretization of the follow-

ing quantities:
1. the source term q, i.e., the scaled characteristic function λχG,
2. the L2 adjoint of ∂rF (λ, r,m), see (5.3), and
3. the gradient of the perimeter, see (3.5).
Recall that both latter objects appear in the second component of the L2

gradient (grad Jα(λ, r,m))r derived in (5.2).
In the following we describe in detail how we handle above quantities:

1. Let GM be the star-shaped domain parameterized by (rM ,m). Then,
we interpolate the scaled characteristic function of GM in the finite
element space to obtain the source function qh. Now, the FEM solver

2In three dimensions one can use the expansion into spherical harmonics, see Chap-
ter 7 or [FGS98], for instance.
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of MATLAB can be straightforwardly applied to evaluate the forward
operator A.

2. The L2 adjoint of ∂rF (λ, rM ,m) is calculated by evaluating the FE
solution of the adjoint problem (5.4) at the intersection points of the FE
mesh and the boundary of GM . The resulting piecewise linear function
over the boundary of GM is multiplied by 2λrM and its first 2M + 1
Fourier coefficients (5.7) are approximated using the trapezoidal rule,
where the nodes agree with the intersection points. We emphasize that
the quadrature error is of order h, cf. [HB09], since the FE solution
is in H1(∂GM ). Thus, it is of the same order as the error of the FEM,
see for instance [AH05, Theorem 10.4.1].

3. We calculate the Fourier coefficients (5.7) of the gradient H∂GM rM
of the perimeter, i.e., the product of the additive curvature and the
parameterization, by the trapezoidal rule, but this time with equidis-
tant nodes. This is possible as H∂GM rM is explicitly known over the
interval [0, 2π]. We choose the number of nodes to be greater than
max{2M + 1, 1/h}. Thus, the error is at least of order h.

The calculation of the discretized version of the adjoint of ∂mF (λ, r,m),
see (5.5), is performed similar to No. 2 above: The FE solution of the ad-
joint boundary value problem (5.4) is evaluated at the intersection points
of the FE mesh and the boundary of GM . This yields a piecewise linear
function, which is multiplied with 2λ times the unit normal ν. The integral
of this product over ∂GM is again approximated by the trapezoidal rule,
where the intersection points serve as nodes.

As mentioned in the previous section, we do not implement the pro-
jection onto Rad, since for suitable initial values the iterates stay in this
set. Only the projection of λ onto Λ is used.

The Hilbert space U is chosen to be H3
p
(
[0, 2π]

)
⊂ C2

p
(
[0, 2π]

)
, where

the subscript p indicates periodic boundary conditions. So the developed
theory is applicable. Hettlich [Het99] reports only a little difference be-
tween numerical simulations in the Hs and in the L2 setting. Therefore,
we also perform some experiments using the L2 gradient directly.

Three components of the reconstruction process contribute dominantly
to the numerical costs: the solutions of the direct and the adjoint bound-
ary value problems (2.29) and (5.4) as well as the determination of the
intersection points of the FE mesh and the boundary of GM , cf. No. 2
above. The direct problem has to be solved repeatedly to determine the
step size sk in both Algorithms 5.1 and 5.2 by the Armijo rule. The other
two costly operations are performed only once per iteration step.
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muscle

lung lung

bone

heart

Figure 5.1. Sketch of the phantom.

Before we present the used phantom and discuss the numerical ex-
periments, let us explain the termination criterion, which is used in all
examples below. Following [Kel99, Chapter 5.4.1], the gradient iteration
is stopped if∥∥(hkλ, hkr , hkm)

∥∥
R×U×Rd ≤ τa + τr

∥∥(h0
λ, h

0
r, h

0
m)
∥∥
R×U×Rd

and the split approach if∥∥(hkr , hkm
)
‖R×U ≤ τa + τr

∥∥(h0
r, h

0
m)‖U×Rd ,

where the notation of Algorithm 5.1 and 5.2 is used. The relative and
absolute tolerances are chosen as τr = τa = 0.005 for both numerical
schemes. Further, the parameter γ in the projected Armijo rule is set to
5 · 10−5 and the step size s is bounded from below by 2−8.

5.2.2. Phantom. For all our computations in the DA-framework, we
use the phantom shown in Figure 5.1, which is also considered in [Kre08,
KR12] and is approximately the two-dimensional analog of the three-di-
mensional one presented in [CWK+05]. The phantom has the shape of
a circular disk with radius 10 and the origin as midpoint. It consists of
four different types of tissue, namely bone (B), heart (H), lung (L) and
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Figure 5.2. Sketch of the considered models: Model 1 (left), Model 2 (center),
Model 3 (right). The coloring of the phantom is as in Figure 5.1. The yellow
region illustrates the bioluminescent source.

muscle (M). They are located in X as follows:

B =
{
x ∈ X :

√
x2

1 + (x2 + 7)2 ≤ 1.5
}
,

H =
{
x ∈ X :

(x1

3

)2
+
(x2

5

)2
≤ 1
}
,

L =
{
x ∈ X : |x| < 9,

(
x1 ± 6.5

2.5

)2
+
(x2

7

)2
< 1
}
,

M = X \ (B ∪H ∪ L) .

According to [CWK+05], realistic optical parameters for these tissues are

σa =


0.16 in B ,
0.21 in H ,

0.22 in L ,
0.1 in M

and σ′s =


1.28 in B ,
2.0 in H,
2.3 in L ,
1.2 in M .

We recall that σ′s is the reduced scattering coefficient and that the diffusion
coefficient D is given via

D = 1
3(σa + σ′s)

,

cf. (2.14).

5.2.3. Model 1. In the first model, the source is placed around the
midpoint (6,−3) and its boundary is parameterized by

r(ϑ) = 2− 0.5 cosϑ+ 0.25 sinϑ− 0.1 sin(3ϑ) ,



5.2. Numerical Experiments 77

2 4 6 8

−5

−4

−3

−2

−1

0

λ = 1.3 for α = 0.00518

2 4 6 8

−5

−4

−3

−2

−1

0

λ = 1.3 for α = 0.00519

Figure 5.3. H3 setting: Reconstruction (blue solid, midpoint ‘+’) and original
source (red dashed, midpoint ‘×’) with α = 0.00518 after 201 gradient iterations
(left) and with α = 0.00519 after 315 gradient iterations (right).

see Figure 5.2 (left) for a sketch of the location in the phantom. The
intensity is set to λ = 1. On a mesh with mesh size 0.2 we produce the
synthetic data, whereas the inverse problem is solved on a coarser mesh
with h = 0.5 in order to avoid the most obvious inverse crime.3 By linear
interpolation we transform the data from the finer grid to the coarser.
The relative interpolation error of about 2.7% may be seen as a ‘modeling’
error.

The maximal degree M of the trigonometric polynomial is set to 8,
hence the searched-for parameterization lies in the ansatz space, that is,
r = rM in (5.6). A further discussion on the choice of the maximal degree
M is presented in the next paragraph. We choose the regularization pa-
rameter α manually by visually inspecting the results. For the intensity
λ we allow a variation of 30% of the exact one, i.e., we set Λ = [0.7, 1.3].
In all experiments based on Model 1 we start with initial values λ0 = 1.1,
r0 ≡ 2.5 and m0 = (5,−2).4

3We are aware that we still commit a kind of inverse crime, since we use the
diffusion model for generating the data and for solving the inverse problem. In view
of the ‘modeling’ error and the purpose of the numerical experiments, we accept this,
though.

4In contrast to the numerical experiments in the transport framework in Chapter 7,
we do not give the relative discrete L2 errors of the reconstructions in this chapter. Since
all numerical experiments presented in the diffusion framework are performed in two
dimensions, the quality of the reconstructions is well assessed by direct inspection.
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Figure 5.4. H3 vs. L2 setting: Reconstruction (blue solid, midpoint ‘+’) and
original source (red dashed, midpoint ‘×’) in the H3 setting with α = 0.0048
after 265 split approach iterations (left) and in the L2 setting with α = 0.0049
after 148 split approach iterations (right).

5.2.3.1. Influence of the regularization parameter. In Figure 5.3 two
reconstructions by the gradient method are shown for slightly different
regularization parameters. In all our experiments we observe a plateau be-
havior in the regularization parameter: the reconstruction of (λ, rM ,m) is
pretty much stable over a whole range of α-values. However, at certain tip-
ping points the character of the reconstruction changes dramatically. Such
a tipping point behavior is demonstrated in Figure 5.3. It originates from
the non-uniqueness of the DA-based BLT problem, stated in Lemma 2.10.
From the photon density over the boundary we cannot distinguish between
a source of small support with high intensity and a low intensity source
having large support. It is exactly this kind of non-uniqueness which can
be observed in Figure 5.3.

5.2.3.2. H3 vs. L2 setting. Reconstructions using the split approach
in the H3 and L2 framework are compared in Figure 5.4. We observe that
the L2 setting leads to a better reconstruction of the shape of the source in
the lower right part, which is the side of the domain facing the boundary
of X, than in the H3 regime. In contrast, the shape in the upper left
part is not well reconstructed in the L2 setting, since it is further away
from the boundary of X and, consequently, less information arrives in the
measurements. In the H3 setting the reconstructed domain resembles a
circular disk due to the intrinsic smoothing property of the H3 gradient.
This characteristic is also observed in the examples given in Figure 5.3.
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Figure 5.5. L2 setting: Reconstruction (blue solid, midpoint ‘+’) and original
source (red dashed, midpoint ‘×’) with α = 0.0049 after 163 gradient iterations
(left) and with 30% noise level and α = 0.0049 after 241 gradient iterations
(right).

5.2.3.3. Noisy data. In Figure 5.5 (right) we present a numerical ex-
periment where we corrupt the artificial data by 30% relative Gaußian
noise with respect to a discrete L2(∂X) norm. The difference to the noise-
free reconstruction, illustrated in Figure 5.5 (left), is gradual, since the
perimeter penalty term as well as the low degree of rM have a regularizing
effect.

So far, we have only discussed the reconstruction of the domain. In all
the experiments based on Model 1 we observe that the intensity λ is over-
estimated. The reason for this is that either the size of the reconstructed
source is smaller than the size of the original source or the reconstructed
domain is located further away from the boundary. In order to fit the pho-
ton density over the surface, this leads in both cases to an overestimation
of the intensity.

5.2.4. Model 2. In contrast to the preceding model, the parameter-
ization of the searched-for domain is not explicitly given as an element of
the ansatz space in the second model. Inspired from [Het99], we consider
the kite-shaped source whose boundary is parameterized by

x(ϑ) =
(

cosϑ+ 0.65
(
cos(2ϑ)− 1

)
1.5 sinϑ

)
−
(

2
7

)
for ϑ ∈ [0, 2π] .

An illustration of the location of the source in the phantom is illustrated
in Figure 5.2 (center). Though the source is star-shaped with respect to
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Figure 5.6. H3 vs. L2 setting: Reconstruction (blue solid, midpoint ‘+’) and
original source (red dashed) in the H3 setting with α = 0.0046 after 276 gra-
dient iterations (left) and in the L2 setting with α = 0.0046 after 294 gradient
iterations (right).

several points, it is not clear whether there exists a parameterization of the
boundary that is a trigonometric polynomial. The intensity of the source
is set to λ = 1. As in Model 1, we generate the synthetic data on a mesh
with mesh size 0.2 and solve the inverse problem on a coarser mesh with
mesh size h = 0.5. This yields a ‘modeling’ error of 3.6%. To incorporate
the a priori knowledge on the intensity, we again set Λ = [0.7, 1.3]. In
all experiments of this paragraph the projected gradient method is started
with λ0 = 1.1.

5.2.4.1. H3 vs. L2 setting. Reconstructions of the kite-shaped source
in the H3 and the L2 setting are shown in Figure 5.6 (left) and (right),
respectively. In both experiments the initial values for the star-shaped
domain m0 = (−1,−6) and r0 ≡ 2 are used. We observe that the H3

reconstruction is approximately a circular disk centered in the upper half
of the kite. In comparison, the L2 reconstruction is also centered in the
upper half but stretches in the direction of the lower tip. The reasons
for such a behavior are known from Model 1: The H3 gradient penalizes
higher Fourier coefficients substantially. Due to the non-uniqueness, there
exist solutions besides the searched-for domain.

5.2.4.2. Regularizing effects of α and M . In the four experiments of
Figure 5.7 and Figure 5.8 we focus on the parameterization r of the bound-
ary ∂G and its dependence on the regularization parameter α and the
maximal degree M . So, the projected gradient method is initialized with
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Figure 5.7. L2 setting, M = 8: Reconstruction (blue solid, midpoint ‘+’) and
original source (red dashed) with α = 0 after 24 gradient iterations (left) and
with α = 0.0045 after 29 gradient iterations (right).
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Figure 5.8. L2 setting, M = 20: Reconstruction (blue solid, midpoint ‘+’) and
original source (red dashed) with α = 0 after 54 gradient iterations (left) and
with α = 0.0045 after 41 gradient iterations (right).

m0 = (−2,−7) and r0 ≡ 1.5 in all four examples. Only the L2 setting is
used, since we already know the smoothing property of the H3 gradient.

In Figure 5.7 the unregularized reconstruction (left) is compared with
the regularized one (right), where the maximal degree M is set to 8.
Though the difference is only slight, we recognize that the size of the
regularized source is smaller, since the perimeter is penalized. In both
experiments the shape of the kite is not recovered.
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For an increased maximal degree, i.e., M = 20, the reconstructions
are shown in Figure 5.8. Using no regularization by the perimeter term,
leads to an oscillating boundary of the reconstruction. These oscillations
are effectively damped by the perimeter regularization term.

From the last four experiments we see that not only α but also M
serves as regularization parameter in the discretized BLT problem. There
are two effects one should keep in mind while choosing M . On the one
hand, underestimating M can cause loss of details, since the ansatz space
becomes smaller. On the other hand, choosing M too large can pro-
duce instability, as seen in Figure 5.8. The numerical costs are, however,
marginally influenced by the choice of M .

To finish the discussion of the second model, we note that the kite-
shaped source shows us the limitations of the proposed geometric regular-
ization approach. By incorporating the perimeter regularization term, we
implicitly assume that the support of the source is rather a circular disk
than another more complex geometry, which is reasonable on account of
an uniform growth of cell structures. The kite-shaped domain does not re-
ally match this assumption and leads to poor reconstructions of the shape.
However, even the unregularized reconstruction, see Figure 5.7 (left), re-
sembles more or less a circular disc. This fact shows that the limitation is
also a structural one, originating from the non-uniqueness of the DA-based
BLT problem.

5.2.5. Model 3. In the third model we consider the situation that
two sources are present. The first source is the one known from Model 1,
i.e., parameterized by

r1(ϑ) = 2− 0.5 cosϑ+ 0.25 sinϑ− 0.1 sin(3ϑ)
with midpoint m1 = (6,−3) and intensity λ1 = 1. A second source with
parameterization

r2(ϑ) = 1.5− 0.3 sin(2ϑ)
is centered in the point m2 = (−1, 7) and its intensity set to λ2 = 0.8.
In Figure 5.2 (right) the location of the two sources in the phantom is
illustrated. Once again, artificial data are produced on a finer mesh with
mesh size 0.2, whereas a mesh with mesh size h = 0.5 is used to solve
the inverse problem. This results in a ‘modeling’ error of 4.6%. In both
experiments we set the maximal degree of the trigonometric polynomial
to M = 8 and the regularization parameter to α = 0.0032. Former choice
ensures that the searched-for sources are in the ansatz space, i.e., r = rM in
(5.6), without causing instabilities. The latter selection is made by visual
inspection of the reconstructions. In addition, the L2 setting is used.
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Figure 5.9. L2 setting: Reconstruction (blue solid, midpoint ‘+’) and original
source (red dashed, midpoint ‘×’) with α = 0.0032 after 343 gradient iterations.
The reconstructed intensities are λ1 = 1.2504 and λ2 = 1.
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Figure 5.10. L2 setting: Reconstruction (blue solid, midpoint ‘+’) and original
source (red dashed, midpoint ‘×’) with α = 0.0032 after 345 gradient iterations.
The reconstructed intensities are λ1 = 1.2268, λ2 = 0.9997 and λ3 = 0.6.

Figure 5.9 displays a reconstruction given the right number of sources.
The projected gradient methods is started with λ0

1 = 1.1, m0
1 = (5,−2),

r0
1 ≡ 2.5 and λ0

2 = 0.9,m0
2 = (0, 6), r0

2 ≡ 2. Moreover, we set Λ1 = [0.7, 1.3]
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and Λ2 = [0.6, 1]. Keeping the observations obtained from Model 1 in
mind, the support of both sources are rather well reconstructed.

In the experiment whose reconstruction is illustrated in Figure 5.10
the number of sources is overestimated. Three sources are assumed in the
solution process of the inverse problems. Besides the two sources known
from the previous example, the gradient method is initialized with a third
source given by λ0

3 = 1, m0
3 = (5, 5), r0

3 ≡ 1.5. The interval of admissible
λ3-values is set to Λ3 = [0.6, 1.3]. We observe that the first two sources
are approximately reconstructed as in the previous experiment. The third
source moves a little to the inside, its size becomes small and its inten-
sity coincides with the lower bound of the interval Λ3. We note that the
intensity vanishes if 0 is the lower bound of the interval Λ3.

At this point, let us also remark that the number of sources in the
object can roughly be estimated from the measurements. If the sources
are not too close to each other and no source is hidden behind another
one, the number of local maxima of the photon density on the boundary
is a good approximation on the number of sources.
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CHAPTER 6

Domain Derivative of the RTE-based Forward Operator

Let us now turn to the model-specific analysis of the BLT problem
in the transport framework. As in Chapter 4 concerning the diffusion
model, the key ingredient is the domain derivative of the forward operator.
However, the derivation is much more involved. To our knowledge there is
no rigorous calculation for a general class of domains. Though we formally
calculate the domain derivative about connected domains in Section 6.1,
we only can derive it about ball-shaped domains rigorously. Latter is
presented in Section 6.2. The reasons why the formal calculation cannot
be performed rigorously and why a few other basic approaches cannot be
applied is discussed in Section 6.1. We finish this chapter with Section 6.3.
There we explain consequences for the minimization problem 2.13, like the
one-sided directional derivative of Jα and a further specification of the
approximate variational principle, at least for points where the forward
operator is domain differentiable.

Before we start with the detailed analysis, we recall the framework
of RTE-based BLT set up in Chapter 2. The linear forward operator is
defined in (2.25) by

A : L1(X)→ L1(∂+(X × Ω), |ω · ν|dω dµ
)

= Y , q 7→ u|∂+(X×Ω) , (6.1)

where u ∈W 1
−(X×Ω) is the solution of the boundary value problem (2.20),

87
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that is,
ω · ∇u(x, ω) + σt(x)u(x, ω)− Su(x, ω) = q(x) , (x, ω) ∈ X × Ω ,

u(x, ω) = 0 , (x, ω) ∈ ∂−(X × Ω) ,
(6.2)

with the scattering operator

(Su)(x, ω) = σs(x)
∫

Ω
η(x, ω · ω′)u(x, ω′) dω′ .

Taking account of the a priori knowledge of piecewise constant sources as
in Section 2.3, we obtain the nonlinear forward operator

F : Λ× L → Y , (λ,G) 7→
I∑
i=1

λiAχGi , (6.3)

compare (2.35).

6.1. Formal Calculation and Discussion

As mentioned above, we formally derive the domain derivative of F in
this section. This derivation is followed by an argument why this cannot be
performed rigorously and why also other rigorous approaches fail. These
observations lead then to the technical but rigorous calculation of the
domain derivative about a ball in the upcoming section 6.2.

For the sake of simplicity, we assume in the subsequent presentation
that there is only one source, i.e., I = 1.

6.1.1. Formal Calculation of the Domain Derivative of F . For
the formal derivative of F with respect to the geometric variable, we de-
compose the operator F (λ, · ) as in Section 4.1.1:

F (λ,G) = A ◦Q(G)
with the map

Q : G 7→ λχG .

We ignore the domains and the image spaces of these functions as well
as smoothness assumptions due to the formal nature of the calculation.
Following the calculations in Section 4.1.1, the domain derivative of Q
about Γ in direction h is given by

Q′(Γ)h = λhνδ∂Γ ,

cf. (4.8). We apply the linear forward operator A, defined in (6.1), to this
equation and obtain the formal domain derivative of the nonlinear forward
operator F (λ, · ), specified in (6.3), about Γ in direction h

∂ΓF (λ,Γ)h = λA(hνδ∂Γ) . (6.4)
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6.1.2. Discussion of the Formal and Other Approaches. 1
Though we found in the last paragraph a formal way to calculate the
domain derivative of the forward operator, we doubt that this derivation
can be performed rigorously. To differentiate Q rigorously, we need a
continuous trace operator on the space of test functions, compare the cal-
culations in Section 4.1.1. Since functions in W 1,1(X) have a trace in
L1(∂Γ) [AF03], the operator Q is differentiable as a mapping from the
set of smooth domains S to the dual space W−1,∞(X) of W 1,1(X). Thus,
the forward operator F would be domain differentiable if the operator A
defined in (6.1) was bounded from W−1,∞(X) to Y.2 We are not aware
of any statement proving or disproving this continuity. However, we think
that it does not hold in general. The reason lies in the fact that the solu-
tion of the transport equation (6.2) is marginally smoother in the spatial
variable than the source term: Only the directional derivatives of the so-
lution are bounded in the same norm as the source function, but not the
derivative itself.

Nevertheless, the calculation of the previous subsection can be rigor-
ously performed in the following setting: in two dimensions, no scattering
happens, and the mapping properties of A are relaxed. This is the frame-
work of SPECT. To our knowledge, the domain derivative of the SPECT
forward operator has not been derived before. As it is an interesting result
on its own, we present it in an excursus in Appendix E.

In Section 4.1.2 we mentioned and referred to another technique for
the derivation of the domain derivative of the DA-based BLT forward
operator about general C2 shapes. In this approach one applies a change
of variables to the weak formulation of the boundary value problem with
perturbed quantities and then estimates the difference between the weak
formulations cleverly. In [Het99] this method is used for the calculation
of the domain derivative for a broad class of inverse problems involving
second-order elliptic differential equations. By contrast, this approach
seems not to work for the BLT forward operator based on the radiative
transfer equation.

1In this subsection we discuss why the technique above and other standard ap-
proaches are not applicable to derive the domain derivative in RTE-based BLT rigor-
ously. This serves to motivate the rather ugly calculations in the next section, but is
not essential to understand the following presentation. So, it might be skipped by the
reader.

2If the searched-for domain Γ is contained in X0 ⊂ X0 ⊂ X, it is sufficient to have
continuity for sources supported in X0 only.
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In order to describe the occurring difficulties, we recall and introduce
some notations: Let Γ ∈ S be a smooth domain and Γh = ϕ(Γ) its per-
turbed version, where ϕ = id + h and h ∈ C1

0 (X,Rd). The Jacobian
matrix of the function ϕ is denoted by Jϕ. Furthermore, let u and uh
be the solutions of the boundary value problem (6.2) with source term
λχΓ and λχΓh , respectively. The crucial point in this approach is to es-
timate the difference of the original and perturbed solution in a weak
formulation of the radiative transfer equation. Weak formulations can be
found in [Ago98, ES12], which are only stated in a Hilbert space setting
though. The weak characterizations involve the derivative of the solution
or of the test function in direction ω. However, instead of comparing u
and uh directly, the difference of u and ũh = uh ◦ ϕ is considered in order
to have matching jump interfaces. This leads to the problem that, after a
change of variables, terms like (J−1

ϕ (x)ω)T∇ũh(x, ω) arise. It is open if the
derivatives in these directions exist, since only existence of the directional
derivatives ωT∇ũh(x, ω) is ensured for solutions of the transport equation.
Consequently, this approach can be a applied for a formal derivation. Due
to the open smoothness question, it is not clear if it is suited for a rigorous
calculation.

In the literature, standard results on boundary and domain integrals,
given e.g. in [DZ11], are often used to differentiate a shape dependent
functional with respect to the shape. To apply the basic formulas, the
domain of integration has to be the shape or the boundary of the shape
with respect to which one differentiates. This technique is employed in
[KRR11], for instance, to differentiate an L2 residual functional for the
two-dimensional attenuated Radon transform. For the sake of complete-
ness, we note that the norm term in the functional Jα does not obey the
required form for this approach when scattering is present.

To complete this discussion, we point out the following result, which
we will obtain in the next section: Let us consider the Hilbert space frame-
work, i.e., the L2 setting. Then, we see in Remark 6.7 that the solution
u′ of the boundary value problem (6.2) with source term λhνδ∂G is not an
element in L2(X ×Ω) when G is a ball and no scattering occurs. Even for
every neighborhood U of ∂X the L2 norm of u′χU is unbounded. Thus,
a rigorous derivation of the domain derivative of F in the Lp setting with
p ≥ 2 is not possible.
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6.2. Rigorous Derivation of the Domain Derivative of F about
a Ball

Since we observed in the discussion above that the standard (and el-
egant) approaches do not work out, we rigorously calculate the domain
derivative in this section in a brute force manner. This derivation holds
only for ball-shaped sources so far. However, it might be extended to more
general shapes, like convex domains diffeomorphic to the ball, tracing this
case back to the ball-shaped one.

So, let us assume in this section that Γ ⊂ X is a ball of radius R
centered w.l.o.g. in the origin, i.e., Γ = BR(0). Additionally, let ∂Γ∩∂X =
∅, which means that Γ is bounded away from the boundary of X. As we
consider only one source, we set I = 1 in the subsequent analysis.

Before we start to calculate the domain derivative of F about Γ, we
recall a few notations and results from Section 2.2.1 and Section 3.2.1:
For the differential operator on the left-hand side of the radiative transfer
equation (6.2) we introduce the mapping

L : D(L) ⊂ L1(X × Ω)→ L1(X × Ω) , u 7→ Lu = (ω · ∇+ σtI − S)u

with D(L) = W 1
−(X × Ω). From Corollary 2.5 we know that the operator

L−1 is bounded from L1(X × Ω) into itself. In equation (2.24) we recast
the radiative transfer equation (6.2) as integral equation

(I −K)u = Pq ,

where the integral operators K and P are defined by

Kv(x, ω) =
∫ τ−(x,ω)

0
exp

(
−
∫ t

0
σt(x− sω) ds

)
Sv(x− tω, ω) dt ,

Pv(x, ω) =
∫ τ−(x,ω)

0
exp

(
−
∫ t

0
σt(x− sω) ds

)
v(x− tω, ω) dt

for (x, ω) ∈ X × Ω. Herein, τ−(x, ω) is the time of travel given by

τ−(x, ω) = sup{t : x− sω ∈ X for 0 ≤ s < t} .

Furthermore, for a vector field h ∈ C1
0 (X,Rd) we denote by Γh the per-

turbed domain
Γh = {x+ h(x) : x ∈ Γ} .

The subscript h is also used for other quantities to indicate that Γ is
substituted by Γh.
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Our aim is to differentiate F (λ, · ) about Γ, that is, we want to find
an operator ∂ΓF (λ,Γ) ∈ L(C1

0 ,Y) such that
‖F (λ,Γh)− F (λ,Γ)− ∂ΓF (λ,Γ)h‖Y = o

(
‖h‖C1

)
.

Since in [Hyv07, Lemma 3.4] it is shown that for smooth domains G it
is sufficient to consider perturbations in normal direction to derive the
domain derivative, we will only take perturbations of the form h = hνν
with hν = h·ν into account in the following analysis. Then, the asymptotic
behavior in the characterization of the domain derivative reads

‖F (λ,Γh)− F (λ,Γ)− ∂ΓF (λ,Γ)h‖Y = o
(
‖hν‖C1

)
.

In our derivation we proceed as follows: At first, we decompose F as
F (λ,G) = λγ+(I −K)−1F̃ (G) with F̃ (G) = PχG (6.5)

and then calculate the pointwise domain derivative of F̃ about Γ, i.e., the
operator F̃ ′(Γ) such that

|F̃ (Γh)(x, ω)− F̃ (Γ)(x, ω)−
(
F̃ ′(Γ)h

)
(x, ω)| = o

(
‖hν‖C1

)
for almost all (x, ω) ∈ X × Ω. In the next step we show that this esti-
mate not only holds pointwise, but in L1(X × Ω). So F̃ ′(Γ) is also the
regular domain derivative. In the last step we verify that the trace of
(I − K)−1F̃ ′(Γ)h exists in Y and thus λγ+(I − K)−1F̃ ′(Γ) is the domain
derivative of F (λ, · ) about Γ.

6.2.1. Preliminaries. In the decomposition (6.5) the inverse of I −K
appears, whose existence we have not discussed yet. This question is ad-
dressed in different spaces in the literature [Bal09, CS99, SU08]. We
only restate the results from [CS99, Proposition 2.4], as it is the setting
we work in here.

Lemma 6.1. Let the subcritical condition (2.18) hold. Then, the operators
K and P are bounded from L1(X × Ω) into itself and K = PS holds.
Moreover, I −K is invertible in L1(X × Ω) with

(I −K)−1 = I + L−1S . (6.6)

The identity (6.6) plays an important role in the last step of the cal-
culation of the domain derivative of F , where we carry over the differen-
tiability from F̃ to F (λ, · ).

In order to simplify the notation, we introduce the abbreviation Eσt

for the attenuation term in the integral operators P and K, that is,

Eσt(x, ω, t) = exp
(
−
∫ t

0
σt(x− sω) ds

)
(6.7)
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for (x, ω, t) ∈ X × Ω× R. The operators K and P now read

Kv(x, ω) =
∫ τ−(x,ω)

0
Eσt(x, ω, t)Sv(x− tω, ω) dt ,

Pv(x, ω) =
∫ τ−(x,ω)

0
Eσt(x, ω, t)v(x− tω, ω) dt .

Moreover, we often have to consider the intersection of the line segment

lx,ω = {x− tω : t ∈ [0, τ−(x, ω)]}

with the ball Γ = BR(0) and the intersection of lx,ω with the perturbed
domain Γh in the subsequent analysis of the operators F̃ and F . To sim-
plify the presentation later, we introduce the notation and some important
geometric properties in this paragraph.

6.2.1.1. Intersection points. Let (x, ω) ∈ X × Ω. We can write

x = xTωω + xTω⊥ω⊥ ,

where we choose ω⊥ ∈ Ω such that ω·ω⊥ = 0 and, in addition, x·(ω×ω⊥) =
0 if d = 3. To distinguish whether lx,ω intersects Γ or not, we define the
visibility function

ψ(x, ω) =
{

1 , lx,ω ∩ Γ 6= ∅ ,
0 , otherwise .

(6.8)

With the vector ω⊥ defined as above we obtain for x 6∈ Γ the equivalence

ψ(x, ω) = 1 ⇐⇒ xTω > 0 and xTω⊥ ∈ ]−R,R[ . (6.9)

For (x, ω) ∈ X ×Ω with ψ(x, ω) = 1 the intersection points of the line
{x− tω : t ∈ R} and ∂Γ are given by

pi = pi(x, ω) = xTω⊥ω⊥ + (−1)i
√
R2 − (xTω⊥)2ω = x− τiω (6.10)

with

τi = τi(x, ω) = xTω − (−1)i
√
R2 − (xTω⊥)2 and i = 1, 2 , (6.11)

see also Figure 6.1. Notice that we consider here the whole line to handle
the case x ∈ Γ and x ∈ X \ Γ combined.

For a perturbation h = hνν of Γ we introduce the corresponding quan-
tities. Let

ψh(x, ω) =
{

1 , lx,ω ∩ Γh 6= ∅ ,
0 , otherwise ,

(6.12)



94 6. Domain Derivative of the RTE-based Forward Operator
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Γ
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ω p1(x, ω)
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{x− tω : t ∈ R}

Figure 6.1. Sketch of the intersection points of the line {x− tω : t ∈ R} with Γ.

be the visibility function. Given that ψh(x, ω) = 1, the line {x−tω : t ∈ R}
intersects ∂Γh in the points

phi = phi (x, ω) = x− τhi ω

with

τhi = τhi (x, ω) = τi −∆τi = τi(x, ω)−∆τi(x, ω) and i = 1, 2 .

The difference ∆τi between τhi and τi depends on h. The term is investi-
gated in the following paragraph.

Later we also use the notations τi(x, ω) and τhi (x, ω) for points (x, ω) ∈
X × Ω that do not satisfy ψ(x, ω) = 1 and ψh(x, ω) = 1, respectively. In
such situations we set τi(x, ω) =∞ and τhi (x, ω) =∞, respectively.

6.2.1.2. Asymptotics of |∆τi|. An important role in the subsequent
calculations plays the asymptotic behavior of ∆τi for h→ 0 as well as an
upper bound. We will derive both here.

As the results are local at the intersection point pi on the boundary
∂Γ, it is sufficient to consider the planar case in the proofs. The three-
dimensional result follows by examination of the planes spanned by the
vectors ν(pi) and ω.

Lemma 6.2 (Estimate of ∆τi). For (x, ω) ∈ X × Ω with ψ(x, ω) =
ψh(x, ω) = 1 holds

|∆τi(x, ω)| ≤ 3 ‖hν‖∞
|ω · ν

(
pi(x, ω)

)
|
.
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Figure 6.2. Sketch of the geometry in the proof of Lemma 6.2.

Proof. For the sake of presentation, we omit the dependence of pi
and ∆τi on (x, ω) in this proof. Moreover, we show the statement only for
i = 1. The bounds for i = 2 can be derived in a similar way. To prove
the assertion for i = 1, we distinguish between the cases hν(p1) ≥ 0 and
hν(p1) < 0. W.l.o.g. we consider the case d = 2.

Let us start with the first case, i.e., hν(p1) ≥ 0. As p1 is on the incom-
ing boundary of Γ = BR(0), the inequality ω · ν(p1) < 0 and the identity
|p1| = R hold. We set Ph as intersection point of lp1,ω and ∂BR+‖hν‖∞(0),
that is,

Ph = p1 − γω with γ ≥ 0 .
In Figure 6.2 the geometry is sketched. Obviously, γ ≥ ∆τ1 ≥ 0. Multi-
plying Ph by ν(p1), we obtain

R+ γ|ω · ν(p1)| = (p1 − γω) · ν(p1) = Ph · ν(p1)

= (R+ ‖hν‖∞) Ph
|Ph|

· ν(p1) ≤ R+ ‖hν‖∞ .

Therefore,

|∆τ1| ≤ γ ≤
‖hν‖∞
|ω · ν(p1)| .

The case hν(p1) < 0 is a little more involved. Again we have ω ·ν(p1) <
0 and |p1| = R. Let Ph be the intersection point of {x − tω : t ∈ R} and
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∂BR−‖hν‖∞(0) such that

Ph = p1 − γω and Ph
|Ph|

· ω ≤ 0 .

It is easy to see that γ ≤ ∆τ1 ≤ 0. Furthermore, we observe that

R− ‖hν‖∞ = Ph ·
Ph
|Ph|

= (p1 − γω) · Ph
|Ph|

= Rν(p1) · Ph
|Ph|

− |γ|
∣∣∣∣ω · Ph|Ph|

∣∣∣∣ ≤ R− |γ| ∣∣∣∣ω · Ph|Ph|
∣∣∣∣ ,

which is equivalent to

‖hν‖∞ ≥ |γ|
∣∣∣∣ω · Ph|Ph|

∣∣∣∣ .
The last term on the right-hand side can be rewritten as∣∣∣∣ω · Ph|Ph|

∣∣∣∣ = −ω · Ph
|Ph|

= − 1
R− ‖hν‖∞

(p1 − γω) · ω

= 1
R− ‖hν‖∞

(
R|ω · ν(p1)| − |γ|

)
.

Consequently,

‖hν‖∞ ≥
|γ|

R− ‖hν‖∞
(
R|ω · ν(p1)| − |γ|

)
. (6.13)

By the nature of γ it is clear that |γ| is bounded from above by half the
length of the chord of ∂BR(0) that is tangential to ∂BR−‖hν‖∞(0). Thus,

|γ| ≤
√

2‖hν‖∞R− ‖hν‖2∞ .

Using this in (6.13) implies

|γ||ω · ν(p1)| ≤ R− ‖hν‖∞
R

‖hν‖∞ + |γ|
2

R

≤ ‖hν‖∞ + 2‖hν‖∞R− ‖hν‖2∞
R

≤ 3‖hν‖∞ .

We finally obtain

|∆τ1| ≤ |γ| ≤ 3 ‖hν‖∞
|ω · ν(p1)| .

�
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∂Γ ∂Γh

p1

q1
ph1

hνν(p1)

hνν(q1)

∆τ1ω

ω

Figure 6.3. Sketch of the geometry in the proof of Lemma 6.3 for i = 1.

Lemma 6.3 (Asymptotic behavior of ∆τi). Let (x, ω) ∈ X × Ω with
ψ(x, ω) = ψh(x, ω) = 1. Then, we have

∆τi(x, ω) =
hν
(
pi(x, ω)

)
ω · ν

(
pi(x, ω)

) + o
(
‖hν‖C1

)
as h→ 0 .

Proof. For the sake of presentation, we omit the dependence of pi
and ∆τi on (x, ω) in this proof. W.l.o.g. we consider the case d = 2.

The point phi can be written as pi + ∆τiω and in the form qi +hνν(qi)
for a suitable qi ∈ ∂Γ, see Figure 6.3 for a sketch. As pi, qi ∈ ∂Γ = ∂BR(0),
there exist φ ∈ [0, 2π[ and s ∈ ]−π, π] with

pi = R

(
cosφ
sinφ

)
and qi = R

(
cos(φ+ s)
sin(φ+ s)

)
.

Multiplying the identity pi + ∆τiω = qi + hνν(qi) by the normal vector
ν(pi) = (cosφ, sinφ)T , we obtain

R+ ∆τiν(pi)Tω =
(
R+ hν(qi)

)
cos s .

A Taylor expansion of the cosine yields

∆τi = hν(qi)
ω · ν(pi)

+O(|s|2) . (6.14)

Furthermore, the multiplication of the identity pi+∆τiω = qi+hνν(qi)
with the tangential vector ν⊥(pi) = ν(pi)⊥ = (− sinφ, cosφ)T leads to

∆τiν⊥(pi)Tω =
(
R+ hν(qi)

)
sin s ,
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which can be reformulated as

s = arcsin
(

∆τiν⊥(pi)Tω
R+ hν(qi)

)
= ν⊥(pi) · ω
R+ hν(qi)

∆τi +O(|∆τi|2) .

Since the estimate
|∆τi| ≤

3‖hν‖∞
|ω · ν(pi)|

holds according to Lemma 6.2, it follows that s is proportional to ‖hν‖∞
up to higher order terms.

Applying the mean value theorem to the function s 7→ hν(qi(s)), we
observe

hν(qi) = hν(pi) + h′ν(q̃i)q̃′is+O(|s|2) ,
where

q̃i = R

(
cos(φ+ s̃)
sin(φ+ s̃)

)
, q̃′i = R

(
− sin(φ+ s̃)
cos(φ+ s̃)

)
and s̃ ∈ ]0, s[ .

Combining this with (6.14) and the proportionality of s and ‖hν‖∞, we
conclude that

∆τi = hν(pi)
ω · ν(pi)

+ o
(
‖hν‖C1

)
.

�

6.2.2. Pointwise Domain Derivative of F̃ . After the preparations
in the previous section, we begin with the differentiation of F by calculat-
ing the pointwise domain derivative of F̃ . In other words, we want to find
a function H(x, ω) depending linearly on h = hνν such that

|fh(x, ω)− f(x, ω)−H(x, ω)| = o
(
‖hν‖C1

)
for almost all (x, ω) ∈ X × Ω, where f = PχΓ and fh = PχΓh .

Let us specify the latter two functions. For (x, ω) ∈ X ×Ω we observe

f(x, ω) = F̃ (Γ)(x, ω) = (PχΓ)(x, ω)

= ψ(x, ω)
∫ τ−(x,ω)

0
Eσt(x, ω, t)χΓ(x− tω) dt

= ψ(x, ω)
∫ τ−(x,ω)

0
Eσt(x, ω, t)χBR(0)

(
xTω⊥ω⊥ + (xTω − t)ω

)
dt

= ψ(x, ω)
∫ τ−(x,ω)

0
Eσt(x, ω, t)χ[τ2(x,ω),τ1(x,ω)](t) dt

= ψ(x, ω)
∫ τ1(x,ω)

max{0,τ2(x,ω)}
Eσt(x, ω, t) dt (6.15)
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and, analogously, for the perturbed version

fh(x, ω) = F̃ (Γh)(x, ω) = (PχΓh)(x, ω)

= ψh(x, ω)
∫ τ1(x,ω)−∆τ1(x,ω)

max{0,τ2(x,ω)−∆τ2(x,ω)}
Eσt(x, ω, t) dt .

(6.16)

We recall that the attenuation function Eσt , the visibility function ψ and
its perturbed variant ψh are defined in (6.7), (6.8) and (6.12), respectively.

The form of fh and f together with Lemma 6.3 motivates the guess3

H(x, ω) (6.17)

=
∫ τ−(x,ω)

0
Eσt(x, ω, t)

hν(x− tω)
ω · ν(x− tω)

(
δ
(
t− τ2(x, ω)

)
− δ
(
t− τ1(x, ω)

))
dt .

Herein, δ denotes the one-dimensional delta distribution. This is indeed
the pointwise domain derivative, as we see in the next theorem.

Theorem 6.4. For almost all (x, ω) ∈ X × Ω holds
1

‖hν‖C1

∣∣fh(x, ω)− f(x, ω)−H(x, ω)
∣∣→ 0 as h→ 0 .

Proof. To show the statement, we consider all possible combinations
of values of ψ(x, ω) and χΓ(x) separately. For the sake of presentation, we
omit the dependency of pi, τi and ∆τi on (x, ω).

Case ψ(x, ω) = 1 and x 6∈ Γ:
Then, ψh(x, ω) = 1 and x 6∈ Γh for sufficiently small h. Under these
conditions we have

fh(x, ω)− f(x, ω) =
∫ τ2

τ2−∆τ2

Eσt(x, ω, t) dt+
∫ τ1−∆τ1

τ1

Eσt(x, ω, t) dt .

Using a change of variables, Lemma 6.3 and the mean value theorem for
integration, we observe for both integrals∫ τi

τi−∆τi
Eσt(x, ω, t) dt =

∫ 0

−∆τi
Eσt(x, ω, τi + t) dt

=
∫ 0

− hν (pi)
ω·ν(pi)

Eσt(x, ω, τi + t) dt+ o
(
‖hν‖C1

)
= Eσt(x, ω, τi + t̃i)

hν(pi)
ω · ν(pi)

+ o
(
‖hν‖C1

)
3Recall d

dx

∫ a(x)
0 f(t) dt

∣∣
x=x0

= f(a(x0))a′(x0).
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for a t̃i ∈ ]− hν(pi)
ω·ν(pi) , 0[. Since ψ(x, ω) = 1 and x 6∈ Γ, the term H(x, ω) has

the form

H(x, ω) = −Eσt(x, ω, τ1) hν(p1)
ω · ν(p1) + Eσt(x, ω, τ2) hν(p2)

ω · ν(p2) .

It follows that
1

‖hν‖C1

∣∣fh(x, ω)− f(x, ω)−H(x, ω)
∣∣

= 1
‖hν‖C1

∣∣∣∣(Eσt(x, ω, τ1)− Eσt(x, ω, τ1 + t̃1)
) hν(p1)
ω · ν(p1)

+
(
Eσt(x, ω, τ2 + t̃2)− Eσt(x, ω, τ2)

) hν(p2)
ω · ν(p2)

∣∣∣∣+ o(1)

as h→ 0. In view of t̃i ∈ ]− hν(pi)
ω·ν(pi) , 0[ and of the continuity of Eσt(x, ω, · ),

we obtain
1

‖hν‖C1

∣∣fh(x, ω)− f(x, ω)−H(x, ω)
∣∣→ 0 as h→ 0 .

Case x ∈ Γ:
We have for h sufficiently small that τ2 −∆τ2 < 0, i.e., x ∈ Γh. Thus, for
h sufficiently small holds

fh(x, ω)− f(x, ω) =
∫ τ1−∆τ1

τ1

Eσt(x, ω, t) dt

=−
∫ 0

− hν (p1)
ω·ν(p1)

Eσt(x, ω, τ1 + t) dt+ o
(
‖hν‖C1

)
=− Eσt(x, ω, τ1 + t̃) hν(p1)

ω · ν(p1) + o
(
‖hν‖C1

)
for a t̃ ∈ ]− hν(p1)

ω·ν(p1) , 0[. Since

H(x, ω) = −Eσt(x, ω, τ1) hν(p1)
ω · ν(p1)

for x ∈ Γ, we observe similar to the first case
1

‖hν‖C1

∣∣fh(x, ω)− f(x, ω)−H(x, ω)
∣∣→ 0 as h→ 0 .

Case ψ(x, ω) = 0 and x 6∈ Γ:
Then for h sufficiently small, x 6∈ Γh and ψh(x, ω) = 0. Hence, f(x, ω) =
fh(x, ω) = 0 = H(x, ω) when h is small.



6.2. Rigorous Derivation of the Domain Derivative of F 101

Otherwise:
The other case, i.e., x ∈ ∂Γ, is irrelevant, as it only occurs for a subset of
X × Ω of measure zero.

We summarize that function H, defined in (6.17), is the pointwise
domain derivative of the function f , that is, the asymptotic behavior

1
‖hν‖C1

∣∣fh(x, ω)− f(x, ω)−H(x, ω)
∣∣→ 0 as h→ 0

holds for almost all (x, ω) ∈ X × Ω. �

Remark 6.5. The function H can formally be seen as the ‘solution’ of
the transmission boundary value problem

ω · ∇H + σtH = hνδ|∂Γ in X × Ω ,

H = 0 on ∂−(X × Ω) ,

where δ|∂Γ is the delta distribution on ∂Γ. Actually, we have expected
such an interpretation given the formal domain derivative in (6.4).

Let us verify this assertion: First, we observe that hνδ|∂Γ coincides
with

(y − tω, ω) 7→ hν(y − tω)
ω · ν(y − tω)

(
δ
(
t− τ2(y, ω)

)
− δ
(
t− τ1(y, ω)

))
as distribution on X×Ω, where for ω ∈ Ω the elements of X are described
by y− tω with y ∈ ∂Xω,+ and t ∈ ]0, τ−(y, ω)[. This observation is due to
a change of variable result akin to Lemma 2.1. From (2.24) we recall that
P is the solution operator of the transport equation without scattering.
Applying formally P to above distribution yields the statement.

6.2.3. Properties of the Function H. In this section we analyze
the pointwise domain derivative H. We show that H lies in L1(X × Ω)
and that its directional derivative ω · ∇H exists almost everywhere in
(X \ Γ) × Ω and is even an element of L1((X \ Γ) × Ω

)
. Moreover, we

specify Remark 6.5 and see that ω · ∇H = −σtH in (X \ Γ) × Ω. This
subsection will be completed by a trace theorem for a class of functions
containing H. These results are used in the upcoming section to show that
H is not only the pointwise but also the usual domain derivative of F̃ .

Theorem 6.6. The function H defined in (6.17) is an element of
L1(X × Ω). Moreover, there exists a constant C > 0 independent of h
such that

‖H‖L1 ≤ C‖hν‖∞ .
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Proof. We only prove the theorem for d = 3 at this point, since it is
the more relevant case in practice. The adaptions of the proof to the case
d = 2 are presented in the Appendix C.0.1.

For x ∈ X \ ∂Γ we define the absolute moment

H(x) =
∫

Ω
|H(x, ω)|dω .

In the first step, we show that H ∈ L1(Γ) and, in the second, that H ∈
L1(X \ Γ). Then, the statement follows immediately.

Let x ∈ Γ = BR(0). In this case

H(x, ω) = −Eσt

(
x, ω, τ1(x, ω)

) hν(p1(x, ω))
ω · ν(p1(x, ω)) .

Consequently,

H(x) =
∫

Ω
Eσt

(
x, ω, τ1(x, ω)

) ∣∣hν(p1(x, ω)
)∣∣∣∣ω · ν(p1(x, ω)
)∣∣ dω

≤ ‖hν‖∞
∫

Ω

1∣∣ω · ν(p1(x, ω)
)∣∣ dω .

Before we calculate the latter integral, we simplify the expression in the
denominator. As Γ = BR(0), the outer unit normal to Γ reads

ν
(
p1(x, ω)

)
= 1
R
p1(x, ω) = 1

R

(
x− τ1(x, ω)ω

)
.

Let ω⊥ ∈ Ω be perpendicular to ω such that x · (ω×ω⊥) = 0. Multiplying
the normal by ω and inserting the representation (6.11) of τ1, we get

ω · ν
(
p1(x, ω)

)
= 1
R

(
x− τ1(x, ω)ω

)
· ω

= 1
R

(
−
√
R2 − (xTω⊥)2 ω + xTω⊥ ω⊥

)
· ω

= − 1
R

√
R2 − (xTω⊥)2 .
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For x 6= 0 the integral can be calculated as follows∫
Ω

1∣∣ω · ν(p1(x, ω)
)∣∣ dω = R

∫
Ω

1√
R2 − (xTω⊥)2

dω

= R

|x|

∫
Ω

(
R2

|x|2
−
(( x
|x|

)T
ω⊥

)2
)− 1

2

dω⊥

= 2π R
|x|

∫ 1

−1

( R2

|x|2
− s2

)− 1
2 ds

= 2π R
|x|

arcsin
(s|x|
R

)∣∣∣∣∣
1

−1

= 4π R
|x|

arcsin
( |x|
R

)
,

(6.18)

where we use in the third equation the change of variable s = xTω⊥/|x|,
see Section VII.2 in [Nat01b] for more details. For x = 0 holds∫

Ω

1∣∣ω · ν(p1(0, ω)
)∣∣ dω =

∫
Ω

1 dω = 4π .

The right-hand side of the last equation coincides with the limit of
4π arcsin(s)/s as s → 0+. This function is monotone increasing on [0, 1]
and the upper bound is 4π arcsin 1 = 2π2. Thus,

H|Γ ∈ L∞(Γ) ⊂ L1(Γ) with ‖H|Γ‖∞ ≤ 2π2‖hν‖∞
and

H|Γ×Ω ∈ L1(Γ× Ω) .
Let now x ∈ X \ Γ. Then, x ∈ X with |x| > R. We consider again

H and observe that directions with ψ(x, ω) = 0 have no influence on the
value of H(x), where ψ is the visibility function defined in (6.8). We recall
the equivalence (6.9) for x 6∈ Γ:

ψ(x, ω) = 1 ⇐⇒ xTω > 0 and xTω⊥ ∈ ]−R,R[ .

Using the visibility function, we rewrite

H(x) =
∫

Ω
ψ(x, ω)

∣∣∣∣∣Eσt

(
x, ω, τ2(x, ω)

) hν(p2(x, ω))
ω · ν(p2(x, ω))

− Eσt

(
x, ω, τ1(x, ω)

) hν(p1(x, ω))
ω · ν(p1(x, ω))

∣∣∣∣∣dω
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and immediately obtain the estimate

H(x) ≤ ‖hν‖∞
∫

Ω
ψ(x, ω)

(
1∣∣ω · ν(p2(x, ω))

∣∣ + 1∣∣ω · ν(p1(x, ω))
∣∣
)

dω .

Only the ω with ψ(x, ω) = 1 have an impact on the integral on the right-
hand side. Given such an ω, we have the representation

pi(x, ω) = xTω⊥ ω⊥ + (−1)i
√
R2 − (xTω⊥)2 ω

for i = 1, 2, recalling (6.10). Multiplying this identity with ω and using
the form of the normal vector, yields

ω · ν(pi(x, ω)) = 1
R
pi(x, ω) · ω = (−1)i 1

R

√
R2 − (xTω⊥)2 .

Thus, the two integrals in the estimate of H can be rewritten as∫
Ω

ψ(x, ω)∣∣ω · ν(pi(x, ω))
∣∣ dω = R

∫
xTω⊥∈]−R,R[

1√
R2 − (xTω⊥)2

dω⊥ .

Using a parameterization ω⊥(φ, ϑ) of the sphere Ω such that xTω⊥ =
|x| cosϑ, i.e., the ‘usual’ parameterization with x/|x| as north pole, we
obtain by two changes of variables

R

∫
xTω⊥∈]−R,R[

1√
R2 − (xTω⊥)2

dω⊥

= R

∫ arccos(− R
|x| )

arccos( R|x| )

∫ 2π

0

1√
R2 − (|x| cosϑ)2

sinϑ dφdϑ

= 2πR
∫ R
|x|

− R
|x|

1√
R2 − |x|2s2

ds (6.19)

= 2π R
|x|

arcsin
(s|x|
R

)∣∣∣∣∣
R
|x|

− R
|x|

= 2π2 R

|x|
.

This term is obviously bounded by 2π2 on X \ Γ = X \BR(0). Thus,

H ∈ L∞(X \ Γ) ⊂ L1(X \ Γ) .

This implies
H|(X\Γ)×Ω ∈ L

1((X \ Γ)× Ω
)
.
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Combining the two developed estimates

‖H|Γ‖∞ ≤ 2π2‖hν‖∞ and ‖H|X\Γ‖∞ ≤ 4π2‖hν‖∞ ,

we finally observe

H ∈ L1(X × Ω) with ‖H‖L1 ≤ 4π2Vol(X)‖hν‖∞ .

�

Remark 6.7. The result of Theorem 6.6 cannot be generalized to Lp

spaces with p ≥ 2. Proceeding as in the previous proof, we would have to
integrate 1−s2 instead of

√
1− s2. But the former function, its primitive is

Artanh, is not integrable over the interval [−1, 1]. We obtain for constant
hν a lower bound of H(x) that is unbounded for all x ∈ X \ Γ.

The function H is not only in L1(X × Ω), but also its directional
derivative ω · ∇H exists in L1((X \ Γ)× Ω

)
.

Lemma 6.8. The directional derivative ω ·∇H of the function H, defined
in (6.17), exists almost everywhere in (X\Γ)×Ω and lies in L1((X\Γ)×Ω

)
.

Moreover, the identity

ω · ∇H(x, ω) = −σt(x)H(x, ω)

holds for almost all (x, ω) ∈ (X \ Γ)× Ω.

Proof. For x ∈ X \ Γ and ω ∈ Ω the function H admits the form

H(x, ω) = ψ(x, ω)
2∑
i=1

(−1)iEσt

(
x, ω, τi(x, ω)

) hν(pi(x, ω))
ω · ν(pi(x, ω)) .

Moreover, we have for (x, ω) ∈ (X \ Γ)× Ω and t sufficiently small:

ψ(x+ tω, ω) = ψ(x, ω) ,

τi(x+ tω, ω) = (x+ tω)Tω − (−1)i
√
R2 −

(
(x+ tω)Tω⊥

)2 = t+ τi(x, ω) ,
pi(x+ tω, ω) = x+ tω − τi(x+ tω, ω)ω = x− τi(x, ω)ω = pi(x, ω) .

In other words, the intersection points of lx,ω and Γ do not change under
variations in direction ω (unless x + tω ∈ Γ); only the travel time to the
intersection point changes in an identical way.

Thus, the function Eσt is the sole term in H effected by a variation of
x in direction ω. It suffices to calculate the directional derivative of Eσt .
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By the chain rule we obtain

∂

∂t
Eσt

(
x+ tω, ω, τi(x+ tω, ω)

)∣∣∣
t=0

= ∂

∂t
exp

(
−
∫ τi(x,ω)

−t
σt(x− sω) ds

)∣∣∣
t=0

= −σt(x)Eσt

(
x, ω, τi(x, ω)

)
for almost all (x, ω) ∈ (X \ Γ)× Ω.

Using the relation (2.19) for the directional derivative and combining
the identities developed above, we conclude

ω · ∇H(x, ω) = ∂

∂t
H(x+ tω, ω)

∣∣∣
t=0

= ψ(x, ω)
2∑
i=1

(−1)i+1σt(x)Eσt

(
x, ω, τi(x, ω)

) hν(pi(x, ω))
ω · ν(pi(x, ω))

= −σt(x)H(x, ω)

for almost all (x, ω) ∈ (X \Γ)×Ω. Since H ∈ L1(X×Ω) and σt ∈ L∞(X),
the directional derivative ω · ∇H particularly lies in L1((X \ Γ)×Ω

)
. �

Later we also need a result on the trace of H. Since the trace theorems
stated in Section 2.2.1 and other trace theorems from the literature4 are not
directly applicable, we develop the following result for a class of functions
containing H. The argument is similar to the proof of the trace theorem
stated in [CS99, Theorem 2.1], which coincides with Lemma 2.3 above.
For the sake of convenience, we recall the definition of the space Y, which
contains the trace of H:

Y = L1(∂+(X × Ω), |ω · ν|dµdω
)
,

compare (6.1).

Lemma 6.9. LetM > 0 such that BM (0) ⊂ X. Set aX = dist(BM (0), ∂X).
Moreover, let v ∈ L1(X × Ω) with ω · ∇v ∈ L1((X \ BM (0)) × Ω

)
and

v(x, ω) = 0 if lx,ω ∩BM (0) = ∅. Then,

‖γ+v‖Y ≤ ‖ω · ∇v‖
L1
(

(X\BM (0))×Ω
) + 1

aX
‖v‖

L1
(

(X\BM (0))×Ω
) ,

where γ+v = v|∂+(X×Ω).

Proof. We set
ϕ(t) = v(y − tω, ω)

for (y, ω) ∈ ∂+(X × Ω) and t ∈
[
0,min{aX , τ−(y, ω)}

]
.

4At least those results we known.
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If τ−(y, ω) ≤ aX , then ϕ(t) ≡ 0 as lx,ω ∩ BM (0) = ∅. Thus, the
estimate

|v(y, ω)| ≤
∫ τ−(y,ω)

0
|ω · ∇v(y − sω, ω)|ds+ 1

aX

∫ τ−(y,ω)

0
|v(y − sω, ω)|ds

is trivial in this case.
Otherwise, we have by the mean value theorem

|ϕ(0)| ≤ |ϕ(t)|+
∫ t

0
|ϕ′(s)|ds ≤ |ϕ(t)|+ ‖ϕ′‖L1(0,ax)

for all t ∈ [0, aX ]. By Integration of this estimate over the interval [0, aX ]
it follows that

|ϕ(0)| ≤ ‖ϕ′‖L1(0,ax) + 1
aX
‖ϕ‖L1(0,ax) .

In terms of v the preceding formula becomes

|v(y, ω)| ≤
∫ aX

0
|ω · ∇v(y − sω, ω)|ds+ 1

aX

∫ aX

0
|v(y − sω, ω)|ds

≤
∫ |y|−M

0
|ω · ∇v(y − sω, ω)|ds+ 1

aX

∫ |y|−M
0

|v(y − sω, ω)|ds .

Integrating this estimate over ∂+(X × Ω) with respect to the measure
|ω ·ν|dω dµ and using the change of variable rule from Lemma 2.1 adapted
to (X \BM (0))× Ω, we finally obtain

‖γ+v‖Y =
∫

Ω

∫
∂Xω,+

|v(y, ω)||ω · ν(y)|dµ(y) dω

≤
∫

Ω

∫
∂Xω,+

∫ min{τ−(y,ω),|y|−M}

0
|ω · ∇v(y − tω, ω)||ω · ν(y)|dtdµ(y) dω

+
∫

Ω

∫
∂Xω,+

∫ min{τ−(y,ω),|y|−M}

0

1
aX
|v(y − tω, ω)||ω · ν(y)|dtdµ(y) dω

≤
∫
X\BM (0)

∫
Ω
|ω · ∇v(x, ω)|+ 1

aX
|v(x, ω)|dω dx

= ‖ω · ∇v‖
L1
(

(X\BM (0))×Ω
) + 1

aX
‖v‖

L1
(

(X\BM (0))×Ω
) .

�
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6.2.4. Domain Derivative of F̃ . Having the analysis of H finished,
we now address the question of domain differentiability of F̃ . We see in the
upcoming theorem that the function H is not only the pointwise domain
derivative, but also the usual domain derivative.

Theorem 6.10. It holds

lim
h→0

1
‖hν‖C1

‖fh − f −H‖L1 = 0 .

To prove this theorem, we use the dominated convergence theorem, see
e.g. [Lan93]. The pointwise convergence of |fh−f−H|/‖hν‖ is developed
in Theorem 6.4. The existence of an uniform, thus integrable, upper bound
is a consequence of the following lemma together with Theorem 6.6.

Lemma 6.11. The term
1

‖hν‖∞
‖fh − f‖L1

is uniformly bounded for all h with ‖hν‖∞ sufficiently small.

Proof. We only prove the lemma for d = 3 here. The necessary
adaptions to the case d = 2 are found in the Appendix C.0.2.

To show the statement, we split the L1 norm into 3 parts, namely
‖fh − f‖L1

≤ ‖(fh − f)χΓ∩Γh‖L1 + ‖(fh − f)χX\(Γ∪Γh)‖L1 + ‖(fh − f)χΓ∆Γh‖L1 .

Herein, Γ∆Γh denotes the symmetric difference of Γ and Γh, i.e., Γ∆Γh =
(Γ\Γh)∪ (Γh \Γ). The next and crucial part is to estimate each summand
of the decomposition.

Before we start, let us recall a few results from above. The functions
f and fh admit the representations

f(x, ω) = ψ(x, ω)
∫ τ1(x,ω)

max{0,τ2(x,ω)}
Eσt(x, ω, t) dt ,

fh(x, ω) = ψh(x, ω)
∫ τh1 (x,ω)

max{0,τh2 (x,ω)}
Eσt(x, ω, t) dt ,

compare (6.15) and (6.16). From Lemma 6.2 we know that

|∆τi| = |τhi (x, ω)− τi(x, ω)| ≤ 3‖hν‖∞
|ω · ν

(
pi(x, ω)

)
|

for i = 1, 2 if ψ(x, ω) = ψh(x, ω) = 1. In addition, it is shown in the proof
of Theorem 6.6 that the product of ψ(x, ω) and the right-hand side of the
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last estimate is integrable over Ω with

3‖hν‖∞
∫

Ω
ψ(x, ω) 1

|ω · ν
(
pi(x, ω)

)
|

dω ≤ 6π2‖hν‖∞ (6.20)

for x ∈ X \ ∂Γ.
Now we estimate each of the three summands:
‖(fh − f)χΓ∩Γh‖L1 :

For all x ∈ Γ ∩ Γh holds ψ(x, · ) = ψh(x, · ) = 1. Hence,

‖(fh − f)χΓ∩Γh‖L1 =
∫

Γ∩Γh

∫
Ω

∣∣∣∫ τh1 (x,ω)

τ1(x,ω)
Eσt(x, ω, t) dt

∣∣∣dω dx

≤
∫

Γ∩Γh

∫
Ω
|∆τ1(x, ω)|dω dx

≤ 3‖hν‖∞
∫

Γ

∫
Ω

1
|ω · ν

(
p1(x, ω)

)
|

dω dx

Using (6.20) and Vol(Γ) = 4πR3/3, we obtain
‖(fh − f)χΓ∩Γh‖L1 ≤ 8π3R3‖hν‖∞ = C1‖hν‖∞ . (6.21)

‖(fh − f)χΓ∆Γh‖L1 :
Obviously, Γ∆Γh ⊂ BR+‖hν‖∞(0) \BR−‖hν‖∞(0) holds. Thus,

‖χΓ∆Γh‖L1 = Vol(Γ∆Γh) ≤ 8
3π
(
3R2 + ‖hν‖2∞

)
‖hν‖∞ .

Moreover, the functions f and fh are bounded with
‖f‖∞ ≤ 2R and ‖fh‖∞ ≤ 2

(
R+ ‖hν‖∞

)
,

since the length of the intersection lx,ω ∩ Γ and lx,ω ∩ Γh is maximal the
diameter of Γ and Γh, respectively. It follows that

‖(fh − f)χΓ∆Γh‖L1 ≤ ‖fhχΓ∆Γh‖L1 + ‖fχΓ∆Γh‖L1

≤ 16
3 π
(
3R2 + ‖hν‖2∞

)(
2R+ ‖hν‖∞

)
‖hν‖∞ .

So we can find a constant C2 > 0 such that
‖(fh − f)χΓ∆Γh‖L1 ≤ C2‖hν‖∞

for all h sufficiently small.
‖(fh − f)χX\(Γ∪Γh)‖L1 :

Let x ∈ X \ (Γ ∪ Γh). We define ∆f(x) as the absolute moment of
fh(x, · )− f(x, · ), that is,

∆f(x) =
∫

Ω

∣∣fh(x, ω)− f(x, ω)
∣∣ dω .
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Since fh(x, · )−f(x, · ) = 0 if
(
1−ψh(x, · )

)(
1−ψ(x, · )

)
6= 0, the moment

∆f(x) can be written as

∆f(x) =
∫

Ω
ψ(x, ω)ψh(x, ω)

∣∣fh(x, ω)− f(x, ω)
∣∣ dω

+
∫

Ω
ψ(x, ω)

(
1− ψh(x, ω)

)∣∣fh(x, ω)− f(x, ω)
∣∣dω

+
∫

Ω

(
1− ψ(x, ω)

)
ψh(x, ω)

∣∣fh(x, ω)− f(x, ω)
∣∣dω .

(6.22)

We consider each of the integrals in (6.22) separately, in order to show the
uniform boundedness of ‖(fh − f)χX\(Γ∪Γh)‖L1 .

The first integral in (6.22) can be estimated as follows:∫
Ω
ψ(x, ω)ψh(x, ω)

∣∣fh(x, ω)− f(x, ω)
∣∣dω

=
∫

Ω
ψ(x, ω)ψh(x, ω)

∣∣∣ 2∑
i=1

(−1)i
∫ τi(x,ω)

τh
i

(x,ω)
Eσt(x, ω, t) dt

∣∣∣ dω
≤ 3‖hν‖∞

∫
Ω
ψ(x, ω)ψh(x, ω)

(
1

|ω · ν
(
p1(x, ω)

)
|

+ 1
|ω · ν

(
p2(x, ω)

)
|

)
dω

≤ 12π2‖hν‖∞ , (6.23)

where we again use (6.20) in the last step.
Before estimating the second integral in (6.22), we observe that, ac-

cording to (6.9) and its perturbed variant, ψ(x, ω) = 1 and ψh(x, ω) = 0
imply

R− ‖hν‖∞ ≤ |xTω⊥| < R .

It follows that

|τ2(x, ω)− τ1(x, ω)| = 2
√
R2 − (xTω⊥)2

≤ 2
√
R2 −

(
R− ‖hν‖∞

)2 = 2
√

2‖hν‖∞R− ‖hν‖2∞

if ψ(x, ω) = 1 and ψh(x, ω) = 0. Moreover, we know from (6.16) that
fh(x, ω) vanishes if ψh(x, ω) does. Taking these observations into account,
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we obtain

∫
Ω
ψ(x, ω)

(
1− ψh(x, ω)

)∣∣fh(x, ω)− f(x, ω)
∣∣ dω

=
∫

Ω
ψ(x, ω)

(
1− ψh(x, ω)

)∣∣f(x, ω)
∣∣dω

=
∫

Ω
ψ(x, ω)

(
1− ψh(x, ω)

)∣∣∣∫ τ1(x,ω)

τ2(x,ω)
Eσt(x, ω, t)

∣∣∣dω
≤
∫

Ω
ψ(x, ω)

(
1− ψh(x, ω)

)∣∣τ1(x, ω)− τ2(x, ω)
∣∣ dω

≤
∫
|xTω⊥|∈[R−‖hν‖∞,R[

2
√

2‖hν‖∞R− ‖hν‖2∞ dω

= 4
√

2‖hν‖∞R− ‖hν‖2∞
∫
xTω⊥∈[R−‖hν‖∞,R[

1 dω⊥

= 4
√

2‖hν‖∞R− ‖hν‖2∞
∫ 2π

0

∫ arccos(R−‖hν‖∞|x| )

arccos( R|x| )
sinϑ dϑdφ

= 8π
√

2‖hν‖∞R− ‖hν‖2∞
∫ R
|x|

R−‖hν‖∞
|x|

1 ds

≤ 8π
R
‖hν‖

3
2∞
√

2R− ‖hν‖∞ .

(6.24)

In order to estimate the third integral in (6.22), we make similar ob-
servations: If ψ(x, ω) = 0 and ψh(x, ω) = 1 holds, then

R ≤ |xTω⊥| < R+ ‖hν‖∞ .

For such ω we have, moreover, that

|τh2 (x, ω)− τh1 (x, ω)| ≤ 2
√

(R+ ‖hν‖∞)2 − (xTω⊥)2

≤ 2
√

2R‖hν‖∞ + ‖hν‖2∞

and f(x, ω) = 0. By similar arguments as above, it follows that
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Ω

(
1− ψ(x, ω)

)
ψh(x, ω)

∣∣fh(x, ω)− f(x, ω)
∣∣dω

≤
∫

Ω

(
1− ψ(x, ω)

)
ψh(x, ω)

∣∣τh1 (x, ω)− τh2 (x, ω)
∣∣dω

≤ 4
√

2R‖hν‖∞ + ‖hν‖2∞
∫
xTω⊥∈[R,R+‖hν‖∞[

1 dω⊥

= 8π
√

2R‖hν‖∞ + ‖hν‖2∞
∫ R+‖hν‖∞

|x|

R
|x|

1 ds

= 8π
R
‖hν‖

3
2∞
√

2R+ ‖hν‖∞ . (6.25)

We merge the estimates of the three summands in (6.22) and conclude
that there is a constant C3 > 0 such that

‖(fh − f)χX\(Γ∪Γh)‖L1 ≤ ‖∆f‖∞Vol(Γ) ≤ C3‖hν‖∞

for all h sufficiently small.
Finally, we add up all spatial parts of the L1 norm of fh− f to obtain

‖fh − f‖L1 ≤ (C1 + C2 + C3)‖hν‖∞

for all h sufficiently small. �

Corollary 6.12. There exists an M > 0 such that

1
‖hν‖∞

‖fh − f −H‖L1 ≤M

for all h sufficiently small.

Proof. From Theorem 6.6 we know that there is a constant C > 0
with

‖H‖L1 ≤ C‖hν‖∞ .

By the triangle equality and Lemma 6.11 the statements follows. �

Proof of Theorem 6.10. In Theorem 6.4 the pointwise conver-
gence, 1

‖hν‖C1
|fh − f −H| → 0 almost everywhere in X × Ω as h → 0, is

established. In Corollary 6.12 it is shown that the L1 norm of these func-
tions are uniformly bounded for h sufficiently small. As X×Ω is bounded,
the statement is an immediate consequence of the dominated convergence
theorem. �
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6.2.5. Domain Derivative of γ+F̃ . Although we have now all in-
gredients at hand to calculate the domain derivative of F directly, we do
an intermediate step here. We consider the special case of purely absorb-
ing media, i.e., σs = 0 and K = 0. Since it is the framework of SPECT, it
is of special interest.5

Theorem 6.13. The domain derivative of γ+F̃ (Γ) is the trace γ+H of
the function H defined in (6.17), that is,

1
‖hν‖C1

‖γ+(fh − f −H)‖Y → 0 as h→ 0 .

Proof. LetM > 0 be such that Γ ∪ Γh ⊂ BM (0) ⊂ X. We recall that
f and fh are the solutions of (ω ·∇+σtI)f = χΓ and (ω ·∇+σtI)fh = χΓh ,
respectively. From Lemma 6.8 we know that (ω · ∇+ σt)H = 0 on X \ Γ.
Consequently,

ω · ∇(fh − f −H) = σt(H + f − fh) in (X \BM (0))× Ω
and

‖ω · ∇(fh − f −H)‖
L1
(

(X\BM (0))×Ω
) ≤ ‖σt‖∞‖fh − f −H‖L1 .

So, the function fh − f − H fulfills the conditions of Lemma 6.9, which
states that trace of fh − f −H satisfies

‖γ+(fh − f −H)‖Y ≤
(
‖σt‖∞ + 1

aX

)
‖fh − f −H‖L1

with aX = dist(BM (0), X). In view of Theorem 6.10, the statement follows
immediately. �

Remark 6.14. Since the integral operator P, defined in (2.23), and the
attenuated ray transform Pσt coincide up to notation and since the norm
identity (2.26) holds, we directly obtain the domain derivative of the op-
erator

Pσt ◦Q : S → L1(T ) , Pσt ◦Q(G) = λPσtχG

about a ball Γ:(
(Pσt ◦Q)′(Γ)h

)
(y, ω) = λ

∫
R

exp
(
−
∫ ∞
t

σt(y + sω) ds
)

hν(y + tω)
ω · ν(y + tω)(

δ
(
t+ τ2(y, ω)

)
− δ
(
t+ τ1(y, ω)

))
dt

5We are not aware of a result concerning the domain derivative of the SPECT
forward operator.
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for (y, ω) ∈ T . Herein, S is the set of smooth domains and T the tangent
bundle of Ω, i.e., T = {(x, θ) ∈ Rd × Ω: x ∈ θ⊥}.

We note that a similar result is developed in Appendix E for general
convex domains, but only in case d = 2 and in a negative order Sobolev
space.

6.2.6. Domain Derivative of F . Finally, we state the main result
of this section, namely a theorem characterizing the domain derivative of
F about a ball.

Theorem 6.15. The domain derivative of F about the ball Γ = BR(0) in
direction h ∈ C1

0 (X,Rd) is given by

F ′(λ,Γ)h = λγ+(I + L−1S)H ,

where γ+ is the trace operator, L the transport operator given in (2.21),
S the scattering operator introduced in (2.4) and H the function defined
in (6.17).

Proof. The forward operator F can be decomposed as

F (λ, · ) = λγ+(I −K)−1F̃ = λγ+(I + L−1S)F̃ ,

as seen in (6.5) and Lemma 6.1. In Theorem 6.10 and 6.13 we have seen
that H and γ+H are the domain derivatives of F̃ and of γ+F̃ , respectively.
Hence,

1
‖hν‖C1

‖(fh − f −H)‖L1 → 0 and 1
‖hν‖C1

‖γ+(fh − f −H)‖Y → 0

hold as h→ 0.
Moreover, the operator γ+L

−1S is a bounded linear operator from
L1(X×Ω) to Y. This is the case, as it is the composition of the bounded lin-
ear operators S : L1(X×Ω)→ L1(X×Ω), L−1 : L1(X×Ω)→W 1

−(X × Ω)
and γ+ : W 1

−(X × Ω) → Y. The continuity of the latter two operators is
addressed in Corollary 2.5 and Lemma 2.3.

Consequently,
1

‖hν‖C1
‖γ+(uh − u− u′)‖Y

≤ λ

‖hν‖C1

(
‖γ+(fh − f −H)‖Y + ‖γ+L

−1S‖ ‖(fh − f −H)‖L1

)
→ 0 as h→ 0 ,

where uh = λ(I+L−1S)fh, u = λ(I+L−1S)f and u′ = λ(I+L−1S)H. �
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Remark 6.16. The domain derivative of F can formally be interpreted as
the trace of the ‘solution’ u′ of the transmission boundary value problem

ω · ∇u′ + σtu
′ − Su′ = λhνδ|∂Γ in X × Ω ,

u′ = 0 on ∂−(X × Ω) ,
(6.26)

as expected from the formal derivative (6.4) and from the derivative in
the DA-based framework (4.11). This representation is verified recalling
Remark 6.5, where the function H is formally seen as ‘solution’ of prob-
lem (6.26) without scattering and λ = 1; the solution of the transport
equation (6.26) with scattering is then obtained by applying λ(I−K)−1 =
λ(I + L−1S) to the function H. Though this observation is only a formal
one, we think it is a handy characterization. Therefore, we use it in the
following.

Before we finish this section, let us discuss possible generalizations of
this approach to more general domains.

Remark 6.17.
(a) The line of argument presented above might be extended to more gen-

eral domains. A natural choice are convex domains that are diffeomor-
phic to a ball. The convexity property ensures that there are at most
two intersection points of the boundary ∂Γ with the line {x−tω : t ∈ R}
as in the ball-shaped case. The diffeomorphism allows to map the con-
vex domain back to the ball, which we have considered above. Lines
are transformed into curves, whose length can be approximated by the
norm of the diffeomorphism. Thus, some of the above results can be
generalized.

However, the not yet solved main issue is to handle the integrals
of the function ψ/(ω · ν). In our proofs we have fundamentally used
the fact that Γ is a ball and that the singularity in the integral is the
angle between the intersection point pi/R = ν and the direction ω. It
is still open how to transfer these results to more general domains.6

(b) Though we have only developed the domain derivative for balls in the
L1 setting and even showed that it is not possible in L2, we will see
in the upcoming chapter that from a numerically point of view more
general domains and the L2 framework are also feasible.

6As one might think the restriction to conformal mappings is a remedy to this
challenge, we note that it is not, at least in case d = 3. In three dimensions all conformal
maps are Möbius transformations mapping generalized spheres onto generalized spheres,
cf. [Bea95, Theorem 15.2] together with [DFN84, Theorem 3.2.1].
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6.3. Consequences for the Minimization Problem

Knowing the domain derivative of the RTE-based forward operator, at
least for ball-shaped sources, we examine the implications to the minimiza-
tion problem 2.13. First, we calculate the one-sided Hadamard directional
derivative of the functional Jα with respect to the geometric variable as
well as the intensity variable. Second, we specify the approximate varia-
tional principle, Theorem 3.9, further. In comparison to the observations
on the DA-based problem in Section 4.2, the results are less significant,
since they only hold about balls, where differentiability holds, and only
directional derivatives are involved, due to the L1 norm. Nevertheless,
they are important properties and can directly be generalized to domains
where F is domain differentiable.

6.3.1. The Directional Derivative of the Minimization Func-
tional Jα. Before we start with the actual calculation, we have to intro-
duce in which sense we understand the directional derivative. Given a
Banach space X and a functional Ψ: X → R, we say that Ψ is (one-sided)
Hadamard directionally differentiable about f ∈ X if for every h ∈ X the
limit

lim
k→h
t→0+

Ψ(f + tk)−Ψ(f)
t

exists. In this case, the limit is called (one-sided) Hadamard directional
derivative and denoted by Ψ′(f ;h). We use this definition rather than
the usual (one-sided) Gâteaux directional derivative, since we apply the
chain rule later, which does not hold for (one-sided) Gâteaux directionally
differentiable functionals in general. For more details on the different no-
tions of directional derivatives we refer to [Sha90]. As we do not consider
two-sided directional derivatives in this section and as it is also standard
in the literature, see e.g. [IK08, Sha90], we omit the adjective one-sided
subsequently.

The aim of this paragraph is to derive the Hadamard directional de-
rivative of the functional Jα, given by

Jα(λ,G) = ‖F (λ,G)− g‖Y + αPer(G) ,

with respect to both the intensity and geometric variable. The operator
F , defined in (6.3), is linear in the intensity variable. Thus, we have

∂λF (λ,G)k =
I∑
i=1

kiAχGi .
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The domain derivative of F (λ, · ) about balls is known from Theorem 6.15.
Moreover, we recall from Lemma 3.7 that the domain derivative of the
penalty term about a smooth domain G is given by

∂GiPer(G)h =
∫
∂Gi

H∂Gihν dµ

with H∂Gi being the additive curvature of ∂Gi.
So let us turn to the open point, the calculation of the Hadamard direc-

tional derivative of the Y norm, i.e., the weighted L1 norm on ∂+(X × Ω).
For f ∈ Y we define

Ψ(f) = ‖f‖Y =
∫

Ω

∫
Xω,+

∣∣f(y, ω)
∣∣∣∣ω · ν(y)

∣∣dµ(y) dω .

By straightforward computations, we observe that

Ψ′(f ;h) =
∫

Ω

∫
Xω,+

sgn
(
f(y, ω)

)
h(y, ω)

∣∣ω · ν(y)
∣∣dµ(y) dω (6.27)

+
∫

Ω

∫
Xω,+

(
1− χsupp f (y, ω)

)∣∣h(y, ω)
∣∣∣∣ω · ν(y)

∣∣ dµ(y) dω

for h ∈ Y, where sgn is the sign function

sgn(t) =


1 , if t > 0 ,
0 , if t = 0 ,
−1 , if t < 0 .

Having the Hadamard directional derivative of ‖ · ‖Y as well as the
derivatives of F and Per at hand, an application of the chain rule, see
[DZ11, Theorem 2.5 in Chapter 9] for instance, yields the following result:

Theorem 6.18 (Directional Derivative of Jα in RTE-based BLT). Let
(λ,G) ∈ Λ × G be such that each component Gi is a ball. Then, the
functional Jα is Hadamard directionally differentiable and for k ∈ RI and
h ∈

∏I
i=1 C

1
0 (Xi,Rd) holds

Jα
(
(λ,G); (k, h)

)
=

I∑
i=1

[
Ψ′
(
γ+u− g; kiγ+vi

)
+ Ψ′

(
γ+u− g; γ+u

′
i

)
+ α

∫
∂Gi

H∂Gihi,ν dµ
]
.

Herein, γ+u = A
∑I
i=1 λiχGi , γ+vi = AχGi and Ψ′ is given in (6.27).

Moreover, u′i is the solution of the transmission boundary value problem
(6.26) with λ, Γ and hν replaced by λi, Gi and hi,ν , respectively.
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6.3.2. The Approximate Variational Principle Revisited. In
Section 3.2.2 we derived an approximate variational principle, which we
specify here. We show that under certain conditions on the minimizer the
first-order optimality condition for directional differentiable functionals is
approximately satisfied. Since the differentiability of the forward operator
F and, thus, of the functional Jα is verified for the small class of ball-
shaped sources only, the assumptions are quite restrictive. However, the
results can be generalized in a straightforward manner as soon as the
domain differentiability of F holds for a broader class. Additionally, we
note that, in contrast to the DA-framework in Section 4.2, we do not
treat the star-shaped domains separately, since we are only considering
ball-shaped sources.7

In the derivation of the particular approximate variational principle
we cannot directly rely on the general result, Theorem 3.9, since there
we assume to have perturbations of G in a subspace of

∏
C2

0 (Xi,Rd).
By contrast, we can only consider constant perturbation or perturbation
constant in normal direction here, in order to stay in the class of balls.
These perturbations do not have compact support.8 Thus, we have to
incorporate a different way to ensure that the perturbed domains remain in
the predefined sets Xi. This is simply done by bounding the perturbation.

Let us introduce some notations before we formulate the theorem. Let
(λ∗, G∗) be a minimizer of Jα. Further, let ε > 0 and (λε, Gε) be such that

Jα(λε, Gε) ≤ Jα(λ∗, G∗) + ε and Gεi = Bρi(xi) , i = 1, . . . , I . (6.28)

Then, we denote by Vi the space of admissible perturbations of Gεi given
by

Vi = {rφi +m : r ∈ R,m ∈ Rd} , (6.29)

where φi(x) = (x− xi)/ρi. The perturbations in Vi are just dilations and
translations of Gi, since for v = rφi +m we have (Gεi )v = (id + v)(Gεi ) =
Bρi+r(xi +m). The space Vi is endowed with the norm

‖v‖Vi = ‖v‖∞ ,

7If required, the results in the star-shaped framework are obtained combining the
findings in this paragraph with the ones in Section 4.2.3.

8By multiplying the constant perturbation with a compactly supported, smooth
function one can circumvent this. However, the C2 norm of this function differs from
the absolute value of the constant function in this case, which is not desired.
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where ‖ · ‖∞ is the supremum norm over Gεi = Bρi(xi). Furthermore, we
set

V =
I∏
i=1
Vi .

Having these definitions at hand, we can state the specific approxi-
mate variational principle: If there exists a ball-shaped source having a
Jα-value close to the minimum, then we find another ball-shaped source
such that the Jα-value is closer to the minimum and the Hadamard di-
rectional derivative about this point in any admissible direction is almost
non-negative. Latter means in other words that the first-order optimality
condition for directionally differentiable functions is approximately satis-
fied in this point. The proof is a modification of a consequence of Ekeland’s
ε-variational principle for directional differentiable functions presented in
[AE84, Theorem 7.3.6].

Theorem 6.19. Let (λ∗, G∗) be a minimizer of Jα. Further, let ε > 0
and (λε, Gε) be such that (6.28) is satisfied. Moreover, we assume that λε
is an inner point of Λ and that

C = min
i=1,...,I

dist(Gεi , ∂Xi) > 0 .

Then for every γ ∈ ]0, 1
2C [ sufficiently small there exist a vector field

v ∈ V and an intensity κε ∈ Λ with
‖(κε − λε, v)‖RI×V ≤ γ (6.30)

such that the perturbed domain Gεv = (id + v)(Gε) and the intensity κε
satisfy

Jα(κε, Gεv) ≤ Jα(λε, Gε) , (6.31)
Jα(κε, Gεv)−

ε

γ
‖(k, h)‖RI×V < Jα(κε + k,Gεv+h) (6.32)

for all κε + k ∈ Λ \ {κε} and v + h ∈ V \ {v} with ‖v + h‖V ≤ 1
2C .

In particular,

J ′α
(
(κε, Gεv); (k, h̃)

)
≥ − ε

γ
‖(k, h̃)‖RI×C1 (6.33)

holds for all (k, h̃) ∈ Λ× Ṽ. Herein, Ṽ is defined as in (6.29) but with xi
and ρi replaced by yi and Ri, respectively, where (Gεi )vi = BRi(yi).

Proof. Let B 1
2C

= {v ∈ V : ‖v‖V ≤ 1
2C }. We consider the functional

Φ: Λ×B 1
2C
→ R with Φ(λ,w) = Jα(λ,Gεw). Obviously, Φ is continuous in

the intensity variable λ. The continuity of Jα in the geometric variable is
developed in Section 3.2.2, thus Φ is also continuous in the variable w. The



120 6. Domain Derivative of the RTE-based Forward Operator

existence of a pair (κε, v) satisfying the three estimates (6.30), (6.31) and
(6.32) is an immediate consequence of Ekeland’s ε-variational principle,
see e.g. [AE84, Theorem 5.3.1].

It remains to show the inequality (6.33). We derive it from estimate
(6.32) together with the Hadamard directional differentiability of Jα. Let
(k, h) ∈ RI × V \ {(0, 0)} and t > 0. In view of (6.32), we have

− ε
γ
‖(tk, th)‖RI×V < Jα(κε + tk,Gεv+th)− Jα(κε, Gεv) .

With the definition h̃ = h◦ (id +v)−1 and the observation Gεv+th = (Gεv)t̃h
follows that

− ε
γ
‖(tk, th)‖RI×V < Jα

(
κε + tk, (Gεv)t̃h

)
− Jα(κε, Gεv) .

Letting t→ 0 and taking the Hadamard directional differentiability of Jα
into account9, cf. Theorem 6.18, we obtain

− ε
γ
‖(k, h)‖RI×V ≤ J ′α

(
(κε, Gεv); (k, h̃)

)
.

Moreover, we observe that every element w̃ ∈ Ṽ can be written in the form
w ◦ (id + v)−1 with w ∈ V and vice versa. Using this fact and the identity

‖h̃‖Ṽ = ‖h‖V ,

we finally obtain that (6.33) holds for all (k, h̃) ∈ Λ× Ṽ. �

9Herein, we also use the fact that the domain derivative only depends on the
normal component of the perturbation on the boundary of G. Therefore, it does not
matter that the elements of V do not have compact support in Xi.



CHAPTER 7

Numerical Experiments for RTE-based Bioluminescence
Tomography

In this chapter we complement the study of the RTE-based BLT prob-
lem by looking at it from a numerical point of view. Although we have
developed the domain differentiability of the forward operator only for ball-
shaped sources, we, somehow heuristically, consider general star-shaped
domains here. In addition, we work in the L2 framework despite Re-
mark 6.7, which tells us that this setting does not work theoretically.
Latter relaxation simplifies the calculation of the gradient of Jα in Sec-
tion 7.1.1. Moreover, it allows us to use the discrete-ordinate discontinu-
ous Galerkin method developed in [HHE10] to solve the radiative transfer
equation in Section 7.2. We see in the upcoming numerical experiments
that neither the lack of theory nor the mismatched space do cause any
problems in the numerics.

This chapter is organized as Chapter 5. In Section 7.1 we recall the
projected gradient method and split approach from Section 5.1 for the
sake of completeness. In addition, we calculate the ingredients for these
algorithms, namely the gradient and projection in the transport frame-
work. Several numerical experiments in three dimensions are presented
in Section 7.2. We note that the intention of this chapter is to illustrate
the applicability of the geometric regularization approach in RTE-based
BLT, rather than to give the most sophisticated implementation and most
complete discussion of the proposed scheme.
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7.1. Numerical Schemes

Before we restate the descent methods to solve the minimization prob-
lem 2.13 for star-shaped domains, we calculate the gradient of Jα and
recall the projections needed in the algorithms. In order to simplify the
implementation, we entirely work in the Hilbert space setting. The pa-
rameterizations of the star-shaped domains are assumed to lie in a Hilbert
space U that is a dense subspace of C2(Sd−1)I . The image space is set to

Y2 = L2(∂+(X × Ω), |ω · ν|dω dµ
)
. (7.1)

We point out that all following calculations have to be understood in a
formal way, so that we circumvent any issues due to the L2 framework. The
operators A and F as well as the functional Jα are adapted according to
the choice of U and Y2. As in Section 5.1, we denote byRad ⊂ (U×RdI)∩R
the set of admissible star-shaped domains, which is assumed to be closed
and convex. In addition, we define the closed and convex set C = Λ×Rad
and ΠC as the convex projection onto C.

Having introduced the framework and notation, the minimization prob-
lem under consideration in this numerical chapter is:

Minimize Jα(λ, r,m) = 1
2
∥∥F (λ, r,m)− g

∥∥2
Y2

+ αPer(r) over C .

7.1.1. Gradient and Projection. Before we start with the actual
discussion, we point out that the results in this paragraph are similar
to the ones in Section 5.1.1. Roughly speaking, the only modifications
are that we replace the diffusion approximation by the radiative transfer
equation and that we consider d = 3 instead of d = 2 in the dimension
specific calculations. However, we present the entire argument for the sake
of completeness.

We recall that the gradient of Jα has to satisfy

〈grad Jα(λ, r,m), (hλ, hr, hm)〉RI×U×RdI = J ′α(λ, r,m)(hλ, hr, hm) .

The occurring (formal) derivative J ′α is easily obtained combining the rep-
resentation (6.4) of the formal derivative of F with the derivative of Jα in
the DA-framework, compare Theorem 4.2. Consequently,
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grad Jα(λ, r,m), (hλ, hr, hm)

〉
RI×U×RdI

= 〈F (λ, r,m)− g, ∂λF (λ, r,m)hλ + ∂rF (λ, r,m)hr + ∂mF (λ, r,m)hm〉Y2

+ α∂rPer(r)hr

=
I∑
i=1

( 〈
γ+u− g, hλ,iγ+vi + γ+u

′
r,i + γ+u

′
m,i

〉
Y2

+ α

∫
∂Gi

H∂Gihr,i · ν dµ
)
.

Herein, γ+u = A
∑I
i=1 λiχGi and γ+vi = AχGi . Moreover, the terms u′r,i

and um,i are the solutions of the transmission boundary value problem
(6.26) with h replaced by hr,i and hm,i, respectively, as well as Γ replaced
by Gi and λ by λi.

Since we select U to be a Sobolev space Hs on the unit sphere Sd−1

later, we are particularly interested in the Hs gradient. As mentioned in
Section 5.1, the Hs gradient can be calculated from the L2 gradient by
multiplying the Fourier coefficients associated with spherical harmonics
of degree j by (1 + j2)−s if d = 2 and by (j + 1/2)−2s if d = 3. See
[Kre89] and [FGS98], respectively, for more details. Thus, we start with
the computation of the L2 gradient.

The components of the L2 gradient1 have to satisfy(
grad Jα(λ, r,m)

)
λi

= 〈F (λ, r,m)− g,AχGi〉Y ,(
grad Jα(λ, r,m)

)
ri

= ∂riF (λ, r,m)∗
(
F (λ, r,m)− g

)
+ αH∂Gi(Φ1 · ν)

√
gr Φ′ri ,(

grad Jα(λ, r,m)
)
mi

= ∂miF (λ, r,m)∗
(
F (λ, r,m)− g

)
,

(7.2)

where Φ1 is the parameterization of the unit sphere and gr Φ′ρ is the
Gramian determinant of the derivative of the parameterization Φρ of ∂Γ.
We specify the components of the L2 gradient in three dimension, since
this is the case we consider in all numerical experiments of the next section.
The two-dimensional case can be treated similar to Section 5.1.

In case d = 3, the second equation in (7.2) can be rewritten as(
grad Jα(λ, r,m)

)
ri

= ∂riF (λ, r,m)∗
(
F (λ, r,m)− g

)
+ αH∂Gir

2
i , (7.3)

where the L2 adjoint of ∂riF (λ, r,m) is derived as follows: For ψ ∈ Y2 let
w ∈W 2(X ×Ω) =

{
v ∈ L2(X ×Ω): ω · ∇v ∈ L2(X ×Ω)

}
be the solution

1We use the same convention for the subscripts as in Section 5.1.1.



124 7. Numerical Experiments for RTE-based BLT

of the adjoint boundary value problem
−ω · ∇w + σtw − Sw = 0 in X × Ω ,

w = ψ on ∂+(X × Ω) . (7.4)

For an existence and uniqueness result we refer to [CZ67, DL00b]. Using
the integration by parts formula∫

Ω

∫
X

(ω · ∇v)w + v(ω · ∇w) dxdω =
∫

Ω

∫
∂X

vw (ω · ν) dµdω ,

we obtain〈
∂riF (λ, r,m)hr,i, ψ

〉
Y2

=
∫

Ω

∫
∂X

u′r,iw (ω · ν) dµdω

=
∫

Ω

∫
X

(ω · ∇u′r,i)w + u′r,i(ω · ∇w) dx dω

= λi

∫
Ω

∫
∂Gi

w (hr,i · ν) ◦ Φ−1
ri dµdω

=
∫
S2
λihr,ir

2
iw ◦ Φri dµ

= 〈hr,i, ∂riF (λ, r,m)∗ψ〉L2 .

Thus, the L2 adjoint admits the representation

∂riF (λ, r,m)∗ψ = λir
2
i

∫
Ω
w|∂Gi

(
Φri( · ), ω

)
dω . (7.5)

The adjoint of ∂miF (λ,m, r), occurring in the last equation of (7.2), is
derived in a similar way. It has the form

∂miF (λ, r,m)∗ψ = λi

∫
Ω

∫
∂Gi

wν dµdω , (7.6)

where w is still the solution of the adjoint boundary value problem (7.4).
For the sake of completeness, we recall the projection operator in λ

onto the interval Λ =
∏

[λi, λi] from Section 5.1. It is given by

(Πλ
Cλ)i =


λi , λi < λi ,

λi , λi > λi ,

λi , otherwise .

As in the DA-framework, the convex projection in (r,m) onto Rad is not
implemented, since in the numerical experiments the iterates stay in Rad
for suitable initial values.
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7.1.2. Projected Gradient Method. One of the used optimization
schemes is the projected gradient method, which is taken from [HPUU09]
and described in Algorithm 7.1. The projected Armijo rule is applied to
find the step size sk: The largest sk ∈ { 1

2n : n ∈ N0} is chosen such that

Jα

(
ΠC
(
(λk, rk,mk) + sk(hkλ, hkr , hkm)

))
− Jα(λk, rk,mk)

≤ − γ

sk

∥∥ΠC
(
(λk, rk,mk) + sk(hkλ, hkr , hkm)

)
− (λk, rk,mk)

∥∥2
RI×U×RdI

with some constant γ ∈ ]0, 1[.

Algorithm 7.1 Projected Gradient Method
(S0) Choose (λ0, r0,m0) ∈ C.

For k = 0, 1, 2, . . .
(S1) Test for termination.
(S2) Set (hkλ, hkr , hkm) = −grad Jα(λk, rk,mk) .
(S3) Choose sk by a projected step size rule such that

Jα

(
ΠC
(
(λk, rk,mk) + sk(hkλ, hkr , hkm)

))
< Jα(λk, rk,mk) .

(S4) Set (λk+1, rk+1,mk+1) = ΠC
(
(λk, rk,mk) + sk(hkλ, hkr , hkm)

)
.

7.1.3. Split Approach. The other optimization scheme we apply
later is the so-called split approach. Inspired by [RR07], we split the kth
iteration into the following two steps:

λk+1 = arg min
λ∈Λ

Jα(λ, rk,mk) ,

(rk+1,mk+1) = ΠRad

(
(rk,mk)− sk(hkr , hkm)

)
with

hkr =
(
grad Jα(λk+1, rk,mk)

)
r

and hkm =
(
grad Jα(λk+1, rk,mk)

)
m
.

The step size sk is chosen by the projected Armijo rule as above. This
leads to Algorithm 7.2.

For a detailed discussion of the optimization problem in step (S2) we
refer to Section 5.1.3.
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Algorithm 7.2 Split Approach
(S0) Choose (λ0, r0,m0) ∈ C.

For k = 0, 1, 2, . . .
(S1) Test for termination.
(S2) Calculate λk+1 = arg minλ∈Λ Jα(λ, rk,mk) .
(S3) Set (hkr , hkm) = −

(
grad Jα(λk+1, rk,mk)

)
(r,m) .

(S4) Choose sk by a projected step size rule such that

Jα

(
λk+1,ΠRad

(
(rk,mk) + sk(hkr , hkm)

))
< Jα(λk+1, rk,mk) .

(S5) Set (rk+1,mk+1) = ΠRad

(
(rk,mk) + sk(hkr , hkm)

)
.

7.2. Numerical Examples

After the discussion of the used optimization methods and the required
quantities in these algorithms, let us turn to the numerical experiments.
We start explaining the implementation. Then, reconstructions of different
sources are presented. For the sake of simplicity, we restrict ourselves to the
situation where the source term consists of only one characteristic function:
q = λχG. The more general situation of I characteristic functions poses
no principal problems, compare Section 5.2.5 for the reconstruction of two
sources in the DA-framework.

7.2.1. Implementation. All following numerical experiments are
performed in three dimensions. To solve the occurring boundary value
problems the program RTEPACK written by Joseph Eichholz is used. It
implements the discrete-ordinate discontinuous Galerkin (DODG) method
described in [HHE10, Eic11] for solving the radiative transfer equation.
See [Eic13] for details on RTEPACK. We give more information on the
used discretization of the scattering operator S later. The spatial domain
X is triangulated into tetrahedral elements with mesh size h and the space
of local linear elements is chosen.

Let (r,m) be a parameterization of the searched-for domain G. We
approximate the function r by a spherical polynomial2 rM of degree less
than M :

r(θ) ≈ rM (θ) =
M∑
n=0

n∑
l=−n

γn,lYn,l(θ) (7.7)

2In two dimensions trigonometric polynomial can be used, see Chapter 5.



7.2. Numerical Examples 127

for θ ∈ S2. Herein, Yn,l is the spherical harmonic of degree n and order
l, see Appendix A.2 for the definition and properties, and the coefficients
γn,l are given by

γn,l = 〈r, Yn,l〉L2 =
∫
S2
r(θ)Yn,l(θ) dθ . (7.8)

Now, the numerical experiments are performed on the vector of Fourier
coefficients

(γ0,0, γ1,0, γ1,−1, γ1,1, . . . , γM,M )
rather than on the function rM itself.

In view of this discretization of r, a matched discretization of the
following terms is needed:
1. the source term q, i.e., the scaled characteristic function λχG,
2. the L2 adjoint of ∂rF (λ, r,m), see (7.5), and
3. the gradient of the perimeter, see (3.5).
As a reminder, the items No. 2 and No. 3 occur in the second component
of the L2 gradient (grad Jα(λ, r,m))r given in (7.3).

Before we describe the treatment of the above quantities, we note that
they are handled in an analogous manner as the corresponding quantities
in the DA-framework in Section 5.2. In principle, the only modifications
are the substitution of the radiative transfer equation for the diffusion
approximation and the change from trigonometric polynomials to spherical
polynomials. The detailed handling of these terms is explained in the
following:
1. Let GM be the star-shaped domain parameterized by (rM ,m). The

discretized source function qh is obtained by interpolation of the scaled
characteristic function of GM in the finite element space. Then, the
DODG method implemented in RTEPACK is applied to evaluate the
linear forward operator A.

2. To calculate the L2 adjoint of ∂rF (λ, r,m), the numerical solution of
the adjoint boundary value problem (7.4), obtained by the DODG
method, is evaluated at the intersection points of the triangulation of
X and the boundary ∂GM . At these spatial points the integral in the
angular variable over the unit sphere Ω is computed by the quadrature
rule also used in the discrete-ordinate step of the DODG method, i.e.,
the quadrature rule to approximate the scattering operator S. The
resulting local linear function in the spatial variable is multiplied by
λr2
M and its first (M + 1)2 Fourier coefficients (7.8) are approximated

by the composite method, see [AH12, Section 5.2+5.4], where the
nodes agree with the intersection points. We point out that, due to
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the discontinuity of the numerical solution, each intersection point has
to be considered several times and in dependence on the tetrahedron
it lies in.

3. For the computation of the Fourier coefficients (7.8) of the gradient of
the perimeter term, which is given by the product H∂GM r

2
M , we ap-

ply the product Gaußian quadrature formula, cf. [AH12, Section 5.1].
Since both functions H∂GM and rM are explicitly known on S2, it is
possible to use this more accurate quadrature rule.

The discretized version of the adjoint operator ∂mF (λ, r,m)∗, given
in (7.6), is calculated similarly to No. 2 above: The numerical solution of
the adjoint boundary value problem (7.4) is first evaluated at the inter-
section points of the spatial FE mesh and the boundary of GM . At these
points, the solution is integrated in the angular variable over the unit
sphere Ω, applying the quadrature rule of the discrete-ordinate method.
Then, the resulting local linear function is multiplied by λ times the unit
normal ν. In the last step, the integral of the product over ∂GM is com-
puted by the composite method, where the nodes are given by the inter-
section points.

As mentioned in the previous section, we do not implement the pro-
jection onto Rad, since for suitable initial values the iterates stay in this
set. Only the projection of λ onto Λ is used

For the Hilbert space U we choose the Sobolev space H4(S2), which is
a subspace of C2(S2), see [FGS98, Lemma 5.2.3] for instance. In this set-
ting, the theory developed in the previous chapters is applicable. However,
we also consider the L2 setting, which is not covered by the theory, since
we have observed in the DA-framework in Section 5.2 that the H3(0, 2π)
gradient has an intrinsic smoothing property leading to almost ball-shaped
sources.

The major contributors to the computational costs are the same three
components of the reconstruction procedure as in the DA-framework: the
solutions of the direct and the adjoint boundary value problems (2.20) and
(7.4) as well as the determination of the intersection points of the spatial
FE mesh and the boundary of GM , cf. No. 2 above. The direct problem has
to be solved repeatedly to determine the step size sk in both Algorithms 7.1
and 7.2 by the Armijo rule. The other two costly operations are performed
only once per iteration step. However, due to the dependence on both the
spatial and angular variable, the costs of solving the radiative transfer
equation are significantly higher than of solving the diffusion equation.

In the choice of the termination criterion we follow again [Kel99] and
use a combination of a relative and an absolute measure of the gradient.
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The gradient iteration is stopped if∥∥(hkλ, hkr , hkm)
∥∥
R×U×Rd ≤ τa + τr

∥∥(h0
λ, h

0
r, h

0
m)
∥∥
R×U×Rd

and the split approach if∥∥(hkr , hkm
)
‖R×U ≤ τa + τr

∥∥(h0
r, h

0
m)‖U×Rd ,

where the notation of Algorithm 7.1 and 7.2 is used. The relative and
absolute tolerances are chosen as τr = τa = 0.005 for both numerical
schemes. In addition, the reconstruction procedures are terminated after
maximal 50 iterations, owing to the long computing time.3 Further, the
parameter γ in the projected Armijo rule is set to 5 · 10−5 and the step
size s is bounded between 2−8 and 2−1.

In order to improve the reconstructions, the methods described in
Algorithm 7.1 and 7.2 are modified in following three ways:
1. The degreeM of the spherical polynomial rM approximating the func-

tion r is selected adaptively. At the beginning of the reconstruction
scheme M is set to zero, so that only the radius of the source is de-
termined. After every 5 iterations, M is increased by one until the
maximal desired degree Mmax is reached. This leads to a rough recon-
struction in the early stages, but more details are added during further
progress of the iterative schemes.

2. In many experiments we observe that at the beginning of the recon-
struction process the gradient of Jα is highly dominated by the compo-
nent in the intensity variable λ. In the gradient method, this prevents
changes in the geometry variables m and r. In order to counteract
against this, we normalize each of the components if they are too large.
If all components are small, the usual gradient is used. More precisely,
we use in the ‘gradient method’ the search direction(

hkλ
max{|hkλ|, 1}

,
hkr

max{‖hkr‖U , 1}
,

hkm
max{|hkm|, 1}

)
instead of the negative gradient (hkλ, hkr , hkm) as described in step (S2)
of Algorithm 7.1.4

3On the used machine 50 iterations take approximately 5 hours, though parts of
the code, like solving the transport equation, run parallel on 12 processors.

4We notice that this is actually not a gradient method any more. Nevertheless, we
still call it like this, since at least near a stationary point the method coincides with the
gradient method. Moreover, we point out that the modified search direction remains to
be a descent direction.
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3. When using the split approach, we notice in many experiments that
the gradient of Jα in the geometric variables r and m is large in the
beginning of the reconstruction process. This leads to too large steps,
which implies an elimination of the source due to negative parameter-
ization or location outside of the object. To prevent such a behavior,
the gradient of Jα in the geometric variables is normalized if its norm
is larger than 1.

7.2.2. Phantom. The phantom we use in all our computations in
the RTE-framework is a homogeneous cylinder with radius 3 and height
6. The total attenuation coefficient σt and the scattering coefficient σs
are set to 1.1 and 1, respectively. For the scattering kernel η we use the
Henyey-Greenstein phase function, cf. [HG41], which is defined by

η(t) = 1− β2

4π(1 + β2 − 2βt)3/2 for t ∈ [−1, 1] .

This function describes light scattering in tissue well [Klo09] and is, there-
fore, widely used as scattering kernel. The parameter β ∈ ]−1, 1[ is called
anisotropy factor, as it is a measure for anisotropy in the medium. We
choose β = 0.8 in our experiments.

Let us point out that we are aware that this phantom is not a model for
the typical object in bioluminescence tomography. According to [Arr02],
the absorption coefficient σa and the scattering coefficient σs typically
range from 0.01 to 1 mm−1 and from 10 to 20 mm−1, respectively, in
tissue.5 A typical value of the anisotropy factor in tissue is around β = 0.9.
Moreover, the usual object under observation is a mouse, whose diameter
and length is a few centimeters. Running numerical experiments with
such a phantom requires a fine discretization, especially in the angular
variable, in order that a discrete analog to the subcritical condition (2.18)
is satisfied, see [Eic11] for details. This goes beyond the scope of this
work. Once again, we emphasize that the numerical experiments serve as
proof of concept and as numerical validation of the theoretical findings
from the previous chapters.

7.2.3. Model 1. In the first experiment we want to verify the main
result of Section 6.2, the domain differentiability of the RTE-based forward
operator about balls, numerically. The searched-for source is ball-shaped
with radius 1 and centered at (1.5, 0.5, 0). Its intensity λ is set to 1. We
illustrate the source inside the phantom in Figure 7.1. The synthetic data
are produced on a spatial mesh with mesh size 0.7 and employing the level

5We recall the relation σt = σa + σs.
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Figure 7.1. Sketch of Model 1: searched-for source (red) inside the phan-
tom (gray).

symmetric quadrature S8, see [LM84], for the discretization in the angular
variable. Thereby, the right-hand side of the DODG system is assembled
with the standard RTEPACK quadrature rule over a tetrahedron, which is
a Gauß quadrature of degree 5, using the exact source function q. Though
we apply the same discretization of X × Ω to solve the inverse problem,
the most obvious inverse crime is avoided by a different assembly of the
right-hand side in the DODG system.6 Instead of the exact source q, its
projection qh onto the finite element space is used. The resulting relative
discretization error in the data of 7% may be interpreted as ‘modeling’
error.

Since we want to verify the theory of the previous chapter in this
experiment, we assume a ball-shaped source. Consequently, we set the
maximal degree Mmax of the spherical polynomial in (7.7) to 0. For the
intensity variable λ we allow a variation of 30%, that is, we choose Λ =
[0.7, 1.3]. The regularization parameter α = 10−9 is selected a priori for all
our experiments. The iteration is initialized with λ0 = 0.7, m0 = (0, 0, 0)
and r0 ≡ 1.5, which implies an initial relative discrete L2 error of 150%.

6We are aware that we still commit an inverse crime, as we use the same numerical
method to generate the data and to solve the inverse problem. However, we accept this,
in view of the ‘modeling’ error and the purpose of the numerical experiments.
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Figure 7.2. Reconstruction (red) and original source (gray) after 50 gradient
iterations. The relative discrete L2 error is 1%.

Herein, a discrete L2 norm of the source function q over the spatial domain
X is considered.

After 50 gradient iterations the reconstruction shown in Figure 7.2 is
obtained. We observe that the location of the source and the intensity is
well reconstructed. The relative discrete L2 error is reduced to 1%.

7.2.4. Model 2. In the second model we consider a star-shaped
source that is not ball-shaped, in order to investigate the applicability
of the proposed geometric approach in this more general setting from a
numerical point of view. The searched-for source is centered at the point
(1.5, 0.5, 0) and its boundary is parameterized by the spherical polynomial

r(θ) = 1 + 0.25
√

4π
3 Y1,0(θ)− 0.15

√
12π
5 Y2,1(θ) for θ ∈ S2 .

The intensity λ equals 1. A sketch of the source inside the phantom is
found in Figure 7.3. For the synthetic data generation as well as the
solution of the inverse problem the same discretization as in Model 1 is
used. This results in a ‘modeling’ error of 8%.

In all experiments based on Model 2 we set the maximal degree of the
spherical polynomial Mmax = 5 and the admissible interval Λ = [0.7, 1.3].
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Figure 7.3. Sketch of Model 2: searched-for source (red) inside the phan-
tom (gray).

Former selection ensures that the searched-for parameterization lies in the
ansatz space, that is, r = rM in (7.7). Moreover, we choose the initial
values λ0 = 0.7, m0 = (0, 0, 0) and r0 ≡ 1.5 in all experiments of this
paragraph, which yields an initial relative discrete L2 error of 145%.

7.2.4.1. H4 vs. L2 setting. In Figure 7.4 the reconstruction after 50
gradient iterations in the H4 setting is illustrated. As in the diffusion
model, we observe that the reconstructed domain resembles a ball because
of the inherent smoothing of the H4 gradient. By comparison, the shape
of the source is better reconstructed applying the gradient method in the
L2 setting. This reconstruction is presented in Figure 7.5. The different
quality of the reconstructions becomes also apparent in the relative discrete
L2 errors, which read 35% in the H4 setting and 16% in the L2 setting.

7.2.4.2. Noisy data. In the experiment presented in Figure 7.6 the
synthetic data are corrupted by 30% relative Gaußian noise with respect
to a discrete Y2 norm, cf. (7.1). After 50 split approach iterations the
relative discrete L2 error is reduced to 23%. For comparison, the noise-
free reconstruction shown in Figure 7.7 admits a relative discrete L2 error
of 18%. Also the visually noticeable difference in both the shape and
intensity of the source is gradual. We conclude that the reconstruction is
stable due to the regularizing effects of the perimeter penalty term, the
low degree of the spherical polynomial rM and the upper bound on the
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Figure 7.4. H4 setting: Reconstruction (red) and original source (gray) after
50 gradient iterations. The relative discrete L2 error is 35%.

Figure 7.5. L2 setting: Reconstruction (red) and original source (gray) after
50 gradient iterations. The relative discrete L2 error is 16%.
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Figure 7.6. L2 setting: Reconstruction (red) and original source (gray) with
30% noise level after 50 split approach iterations. The relative discrete L2 error
is 23%.

number of iterations. We note that in this experiment the latter two have
the highest impact on the stabilization, since the regularization parameter
α is chosen very small.

7.2.5. Model 3. In the third model the searched-for domain is star-
shaped but not explicitly given as an element of the ansatz space. Inspired
by [IK10], the source is cushion-shaped with center (1, 0.5, 0) and bound-
ary parameterization

r(θ) =
√

0.8 + 0.5
(
cos(2φ)− 1

)(
cos(4ϑ)− 1

)
for θ = (cosφ sinϑ, sinφ sinϑ, cosϑ)T ∈ S2. Its intensity is set to λ = 1.
The location of the source inside the phantom is displayed in Figure 7.8.
The synthetic data are produced using the same discretization as in
Model 1. For solving the inverse problems we also employ the discretiza-
tion described above. This results in a ‘modeling’ error of 7%.

The a priori knowledge on the intensity is again implemented by set-
ting Λ = [0.7, 1.3]. In both experiments based on Model 3 the following
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Figure 7.7. L2 setting: Reconstruction (red) and original source (gray) after
50 split approach iterations. The relative discrete L2 error is 18%.

Figure 7.8. Sketch of Model 3: searched-for source (red) inside the phan-
tom (gray).
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Figure 7.9. L2 setting, Mmax = 5: Reconstruction (red) and original source
(gray) after 50 gradient iterations. The relative discrete L2 error is 26%.

initial values are chosen: λ0 = 0.7, m0 = (0, 0, 0) and r0 ≡ 1.5. Thus, the
initial relative discrete L2 error is 115%.

For maximal degree Mmax = 5 and Mmax = 8, the reconstructions
after 50 gradient iterations are shown in Figure 7.9 and 7.10, respectively.
We observe that the cushion is quite well reconstructed in both cases.
However, the reconstruction of the intensity as well as the shape is better
for the higher degree,Mmax = 8. In this case, the relative discrete L2 error
reduces to 18%, which is about the same size as the errors in Model 2,
where the parameterization is an element of the ansatz space. In contrast,
the relative discrete L2 error is 26% for Mmax = 5.
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Figure 7.10. L2 setting, Mmax = 8: Reconstruction (red) and original source
(gray) after 50 gradient iterations. The relative discrete L2 error is 18%.



CHAPTER 8

Conclusion and Outlook

In this thesis we introduce a geometric regularization method for bi-
oluminescence tomography, which incorporates the a priori knowledge of
piecewise constant sources and a Tikhonov like functional with a perime-
ter penalty term. Fundamental questions on the proposed scheme are
answered in a general framework: existence of a solution, stability and
regularization property are shown. Moreover, an analogous, self-contained
theory for star-shaped sources is developed, as the star-shaped setting pro-
vides the necessary linear structure to apply optimization schemes.

In the second part the BLT problem based on the diffusion approxima-
tion is analyzed. Owing to the elliptic structure of the underlying partial
differential equation, the domain derivative of the forward operator is well-
known.1 Based on the domain differentiability of the forward operator and
the density of smooth shapes in the set of shapes with finite perimeter,
an approximate variational principle is shown, which ensures the existence
of smooth almost stationary shapes near the minimizing shape. This jus-
tifies the application of descent methods that converge to a stationary
point in the reconstruction procedure. The discussion of the DA-based
BLT problem is completed by testing numerically the geometric regular-
ization scheme. Although incorporating a priori knowledge on the source
via the admissible interval Λ and the regularization parameter α leads to

1Nevertheless, we present an elegant derivation of the domain derivative about a
domain in Section 4.1.1.

139
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useful reconstructions in some cases, the non-uniqueness of the DA-based
BLT problem is a big challenge in all numerical experiments. In view
of the uniqueness result for multispectral bioluminescence tomography in
[JW08],2 we think that the proposed geometric regularization method
applied to multispectral BLT can counteract the observed issues. The
theory in this work is easily transferred to the multispectral framework.
It remains to verify the feasibility numerically. The generalization of the
uniqueness result in multispectral BLT to star-shaped sources is another
interesting open question.

The BLT problem based on the radiative transfer equation is investi-
gated in the third part of this work. In contrast to the diffusion model,
standard approaches cannot be applied for a rigorous derivation of the
domain derivative of the forward operator. Nevertheless, we rigorously
calculate the domain derivative about balls in the L1 setting. The ques-
tion is still open whether this result can be generalized to a larger class
of domains rigorously. From a numerical point of view the proposed geo-
metric regularization scheme works, even though the L2 setting and the
formal domain derivative about general star-shaped domains is used.3 Due
to the uniqueness of the RTE-based BLT problem with angularly resolved
measurements, the sources are well reconstructed in all numerical exper-
iments. However, there are two problems that may occur in practice but
are not noticeable in our examples: First, when scattering is high and
the object to be imaged is large, the measurements become diffuse, i.e.,
there is rarely any directional information in the boundary measurements,
and we get in the regime of the diffusion model. Second, instead of an-
gularly resolved measurements, angularly averaged data are often only
available, which causes non-uniqueness of the BLT problem even based on
the transport model. These two issues identify the need of additional in-
dependent source-measurement pairs and/or of cameras that also capture
the directions of the photons in bioluminescence tomography. Former may
be obtain by RTE-based multispectral BLT, which implies similar open
questions as posed in the diffusion model above.

2Sources described by radial basis functions are uniquely determined by the bound-
ary measurements, provided the optical parameters satisfy some assumptions. See
[JW08] for details.

3We recall Remark 6.7 where we observe that the formal domain derivative is not
an L2 function. Consequently, the rigorous domain derivative does not exists in the
L2 setting.
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Inspired by the recent trend of hybrid imaging methods, see [AS12]
and the references therein, we suggest to couple bioluminescence tomogra-
phy with a supplemental technique, in order to gain additional independent
source-measurement pairs and to overcome the non-uniqueness problems.
In particular, we think of utilizing the acousto-optic effect, which describes
the influence of an acoustic wave on the optical properties and which is
the basis for acousto-optic imaging, also known as ultrasound modulated
optical tomography, cf. [BS10, Bal13], in bioluminescence tomography.
Further work is required to develop and analyze the mathematical model
of the ‘coupled physics’ technique and to verify its feasibility in practice.

We conclude that in special cases good reconstructions are obtained
by the geometric regularization scheme. However, more research is needed
to establish bioluminescence tomography as a reliable imaging technique
for small animal models.





Appendices





APPENDIX A

Special Functions

In this chapter we present some results on special functions needed in
this thesis. Although there exists a wide variety of literature on this topic,
a few results are not given in the framework we consider here. Thus, we
state them here explicitly and also the ideas to obtain them. Other results
are presented for the sake of completeness only.

A.1. Legendre Functions

The following results on Legendre functions can be found in Chapter 5
of [WG89].

A.1.1. Legendre Polynomials. The polynomial solutions of the
differential equation

(1− x2)y′′(x)− 2xy′(x) + l(l + 1)y(x) = 0 with l ∈ N0

are called Legendre polynomials. The Legendre polynomial of degree l ∈ N0
is given by

Pl(x) = 1
2ll!

d
dxl (x

2 − 1)l .

They satisfy the recurrence relation

(l + 1)Pl+1(x)− (2l + 1)xPl(x) + lPl−1(x) = 0 (A.1)
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for l ∈ N0 . Here and in the following we use the convention that P−1(x) =
0. The first three Legendre polynomial are

P0(x) = 0 , P1(x) = x , P2(x) = 1
2(3x2 − 1) .

A.1.2. Associated Legendre Functions. For m, l ∈ N0 the func-
tions Pml : [−1, 1]→ R with

Pml (x) = (−1)m(1− x2)m2 d
dxPl(x)

are called associated Legendre functions (of the first kind) of degree l and
order m.1 We observe that Pml vanishes if m > l and that P 0

l = Pl.
Moreover, the associated Legendre functions can be generalized to negative
order and it holds

P−ml = (−1)m (l −m)!
(l +m)!P

m
l for m ∈ N .

By differentiating the identity (A.1) the following recurrence relations are
obtained, cf. [WG89, Section 5.13]:

(2l + 1)xPml (x) = (l +m)Pml−1(x) + (l −m+ 1)Pml+1(x) ,

(2l + 1)(1− x2) 1
2Pml (x) = Pm+1

l−1 (x)− Pm+1
l+1 (x) .

(A.2)

Again, we finish this subsection by specifying the first three associated
Legendre functions of non-vanishing order:

P 1
1 (x) = −(1− x2) 1

2 , P 1
2 (x) = −3x(1− x2) 1

2 , P2(x) = 3(1− x2) .

A.2. Spherical Harmonics

The restriction of harmonic homogeneous polynomials over Rd to the
unit sphere Ω = Sd−1 are called spherical harmonics. For the real-valued
case in arbitrary space dimension d ≥ 2 an overview of these functions can
be found in [AH12]. Properties of complex-valued spherical harmonics in
dimension 3 are presented in [WG89]. As we are mainly interested in the
real-valued case in this thesis, we present some results in this setting in
the following and transfer some results needed from the complex-valued
framework to the real-valued. The books mentioned before are the main
sources of this section, additional references are [Hob55, Nat01b].

1This is the definition of Hobson [Hob55, Chapter III]. In the literature there are
sometimes different ones, e.g. with the term (−1)m missing.
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A.2.1. In two Dimensions. Let

ω =
(

cosφ
sinφ

)
∈ S1 with φ ∈ [0, 2π[ .

We will identify ω with φ and vice versa below. Then, the spherical har-
monics of degree l ∈ N are linear combinations of

yc
l (ω) = 1√

π
cos(lφ) and ys

l (ω) = 1√
π

sin(lφ)

and the spherical harmonics of degree 0 are scalar multiples of

y0 = 1√
2π

.

Moreover, the spherical harmonics are dense in L2(S1) and the set

{y0} ∪ {yc
l : l ∈ N} ∪ {ys

l : l ∈ N}

builds an orthonormal basis of L2(S1), that is, for a function f ∈ L2(S1)
we have

f = 〈f, y0〉L2 +
∞∑
l=1

(
〈f, yc

l 〉L2yc
l + 〈f, ys

l 〉L2ys
l

)
.

An useful result on spherical harmonics is the Funk–Hecke formula.
Let h ∈ C[−1, 1] and fl a spherical harmonic of degree l ∈ N0. Then, the
Funk–Hecke formula in dimension d = 2 reads∫

S1
h(ω · ω′)fl(ω′) dω′ = hlfl(ω) . (A.3)

Herein, the constant hl is given by

hl = 2
∫ 1

−1
Tl(t)h(t)(1− t2)− 1

2 dt

with Tl denoting the Chebyshev polynomial of degree l, i.e.,

Tl(t) = cos(l arccos t) .

A.2.2. In three Dimensions. For d = 3 we identify a point ω ∈
Ω = S2 with the pair of angles (ϑ, φ) ∈ [0, π]× [0, 2π[ via

ω =

cosφ sinϑ
sinφ sinϑ

cosϑ

 .
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There are 2l+1 linearly independent spherical harmonics of degree l ∈ N0.
A possible basis is build by

Yl,m(ω) = cl,mP
m
l (cosϑ) cos(mφ) for m ∈ {0, 1, . . . , l} ,

Yl,−m(ω) = cl,mP
m
l (cosϑ) sin(mφ) for m ∈ {1, 2, . . . , l}

with the choice

cl,0 =
√

2l + 1
4π and cl,m =

√
2l + 1

2π
(l −m)!
(l +m)!

in order to obtain an orthonormal basis with respect to the L2 inner prod-
uct. As in two dimensions, the spherical harmonics are dense in L2(S2)
and an orthonormal basis of L2(S2) is given by

{Yl,m : l ∈ N0,m ∈ Z, |m| ≤ l} .

Hence, for every function f ∈ L2(S2) holds

f =
∞∑
l=0

l∑
m=−l

〈
f, Yl,m

〉
L2Yl,m .

The Funk–Hecke formula also holds true for d = 3, because it is a
space independent property of spherical harmonics. Only the constant
hl depends on the dimension d. Let h ∈ C[−1, 1] and fl be a spherical
harmonic of degree l ∈ N0. Then,∫

S2
h(ω · ω′)fl(ω′) dω′ = hlfl(ω) (A.4)

with

hl = 4π
∫ 1

−1
h(t)Pl(t) dt .

In the derivation of the diffusion model from the transport model, to
be more specific in Appendix B.1, we need recurrence relations for the
real-valued spherical harmonics Yl,m. To obtain them, we make a detour
via the complex-valued spherical harmonics

Hl,m(ω) =

√
2l + 1

4π
(l −m)!
(l +m)!P

m
l (cosϑ)eimφ for l ∈ N0,m ∈ Z, |m| ≤ l .

If |m| > l or l = −1 we set Yl,m = Hl,m = 0, which is reasonable in view of
Pml = 0 for |m| > l and of the convention P−1 = 0. All results mentioned
above also hold for the complex-valued spherical harmonics if the inner
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product is adapted correspondingly. The following recurrence relations for
Hl,m can be deduced from (A.2), cf. [WG89, Section 5.15]:

cosϑHl,m = αl,mHl−1,m + αl+1,mHl+1,m ,

sinϑeiφHl,m = βl,−mHl−1,m+1 − βl+1,m+1Hl+1,m+1 ,

sinϑe−iφHl,m = −βl,mHl−1,m−1 + βl+1,−m+1Hl+1,m−1

with

αl,m =

√
(l +m)(l −m)
(2l + 1)(2l − 1) and βl,m =

√
(l +m)(l +m− 1)

(2l + 1)(2l − 1) .

Using these relations as well as the identities Yl,0 = Hl,0 for l ≥ 0 and

Yl,m = 1√
2

(
Hl,m + (−1)mHl,−m

)
, Yl,−m = 1

i
√

2

(
Hl,m − (−1)mHl,−m

)
for 1 ≤ m ≤ l, we can show by easy but technical calculations the recur-
rence formulae:

cosϑYl,0 = αl,0Yl−1,0 + αl+1,0Yl+1,0 ,

sinϑ cosφYl,0 = 1√
2

(
βl,0Yl−1,1 − βl+1,1Yl+1,1

)
,

sinϑ sinφYl,0 = 1√
2

(
βl,0Yl−1,−1 − βl+1,1Yl+1,−1

) (A.5)

for l ∈ N0, and for l,m ∈ N

cosϑYl,m = αl,mYl−1,m + αl+1,mYl+1,m ,

sinϑ cosφYl,m = 1
2

(
βl,−mYl−1,m+1 − βl+1,m+1Yl+1,m+1

− βl,mYl−1,m−1 + βl+1,m+1Yl+1,m−1

)
,

sinϑ sinφYl,m = 1
2

(
βl,−mYl−1,−m−1 − βl+1,m+1Yl+1,−m−1

− βl,mYl−1,−m+1 + βl+1,−m+1Yl+1,−m+1

)
,

(A.6)
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as well as

cosϑYl,−m = αl,mYl−1,−m + αl+1,mYl+1,−m ,

sinϑ cosφYl,−m = 1
2

(
βl,−mYl−1,−m−1 − βl+1,m+1Yl+1,−m−1

− βl,mYl−1,−m+1 + βl+1,−m+1Yl+1,−m+1

)
,

sinϑ sinφYl,−m = 1
2

(
βl,−mYl−1,m+1 − βl+1,m+1Yl+1,m+1

− βl,mYl−1,m−1 + βl+1,−m+1Yl+1,m−1

)
.

(A.7)

Furthermore, the following addition theorem holds for both the real-
valued and complex-valued spherical harmonics:

l∑
m=−l

Yl,m(ω)Yl,m(θ) = 2l + 1
4π Pl(ω · θ) ,

l∑
m=−l

Hl,m(ω)Hl,m(θ) = 2l + 1
4π Pl(ω · θ)

(A.8)

for l ∈ N0 and ω, θ ∈ S2. Herein, Pl is the Legendre polynomial of degree
l.

Let us finish this subsection by specifying the spherical harmonics of
degree less than one:

Y0,0(ω) =
√

1
4π , Y1,0(ω) =

√
3

4π cosϑ ,

Y1,1(ω) = −
√

3
4π sinϑ cosφ , Y1,−1(ω) = −

√
3

4π sinϑ sinφ .
(A.9)

A.3. Bessel Functions

In this section we define different kind of Bessel functions and recall a
few properties of them. The main reference of this presentation is [WG89],
however some results are taken from [AS72].

Bessel functions solve the Bessel equation

y′′(x) + 1
x
y′(x) +

(
1− ν2

x2

)
y(x) = 0 ,
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where ν ∈ R is called order of the equation and of the function.2 The
Bessel functions of the first kind of order ν are given by

J±ν(x) =
∞∑
k=0

(−1)k

k!
1

Γ(±ν + k + 1)

(x
2

)2k±ν
(A.10)

with the common Gamma function Γ , cf. [WG89]. We observe directly
that Jν is a smooth solution of the Bessel equation if ν ≥ 0. In contrast,
the Bessel function of the second kind of order ν

Nν(x) = cos(νπ)Jν(x)− J−ν(x)
sin(νπ)

has a singularity at x = 0. It also solve the Bessel equation of order ν and
is sometimes called Neumann function. Furthermore, the Bessel functions
of the third kind of order ν are

H(1)
ν = Jν + iNν and H(2)

ν = Jν − iNν .
They are often called Hankel functions of the first and second kind, respec-
tively, and have the same singular behavior at x = 0 as Nν .

Inserting an imaginary variable, x = it with t ∈ R, into a Bessel
function, we observe that this Bessel function then satisfies the differential
equation

y′′(t) + 1
t
y′(t)−

(
1− ν2

t2

)
y(t) = 0 .

Such a differential equation is obtained when we write the diffusion equa-
tion in polar coordinates in two dimensions. This leads to the modified
Bessel functions of the first kind and second kind defined by

Iν(x) = i−νJν(ix) and Kν(x) = π

2 i
ν+1H(1)

ν (ix)

for x ∈ R, respectively. Former is smooth just like Jν for ν ≥ 0 and latter
has a singularity at x = 0.

For n ∈ Z the spherical Bessel functions are defined via

jn(x) =
√

π

2xJn+1/2(x) and h(1)
n (x) =

√
π

2xH
(1)
n+1/2(x) . (A.11)

The second mapping is also known as spherical Hankel function of the first
kind. These functions satisfy the spherical Bessel equation

y′′(x) + 2
x
y′(x) +

(
1− n(n+ 1)

x2

)
y(x) = 0 .

2Also complex-valued orders ν can be considered, however we restrict ourselves to
real-valued ones.
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Again, we observe that for n ∈ N0 the function jn is smooth and h(1)
n has

a singularity at x = 0. The function h(1)
n admits the representation

h(1)
n (x) = eix

(ix)n+1

n∑
k=0

(n+ k)!
k!(n− k)!

1
(−2ix)k . (A.12)

The spherical Bessel functions have the following asymptotic behavior for
n→∞ :

jn(x) = xn

1 · 3 · · · (2n+ 1)

(
1 +O

( 1
n

))
(A.13)

uniformly on every compact subset of C and

h(1)
n (x) = 1 · 3 · · · (2n− 1)

ixn+1

(
1 +O

( 1
n

))
(A.14)

uniformly on every compact subset of C+ = {z ∈ C : Re z > 0, Im z > 0}.
The derivatives of jn and h(1)

n satisfy the relations

j′n(x) = jn−1(x)− n+ 1
x

jn(x) ,

h(1)′
n (x) = h

(1)
n−1(x)− n+ 1

x
h(1)
n (x) .

(A.15)

Moreover, the Wronskian of jn and h(1)
n admits the form

jn(x)h(1)′
n (x)− j′n(x)h(1)

n (x) = i

x2 . (A.16)

For n = 0 we have

j0(x) = sin x
x

, h
(1)
0 (x) = −ie

ix

x
and, if x = it, t ∈ R,

j0(it) = sinh t
t

, h
(1)
0 (it) = −e−t

t
.



APPENDIX B

Supplements to the Derivation of the Diffusion Model

B.1. Some Calculations for the Case d = 3

In this section we calculate the integrals of ω needed in Subsection 2.1.2.
From equation (A.9) we have a representation of ω ∈ Ω = S2 by means of
spherical harmonics of degree 1, namely

ω =
√

4π
3

 −Y1,1(ω)
−Y1,−1(ω)
Y1,0(ω)

 .

As the spherical harmonics {Yl,m : l ∈ N0,m ∈ Z, |m| ≤ l} build an or-
thonormal basis of L2(Ω), we see immediately that∫

Ω
ω dω = 0 . (B.1)

By the same argument we obtain the identity∫
Ω
ωωT dω = 4π

3

∫
Ω

 Y 2
1,1 Y1,1Y1,−1 −Y1,1Y1,0

Y1,−1Y1,1 Y 2
1,−1 Y1,−1Y1,0

−Y1,1Y1,0 −Y1,−1Y1,0 Y 2
1,0

 (ω) dω

= 4π
3 I .

(B.2)

Furthermore, we have, given any vector a ∈ R3, that∫
Ω

(ω · a)ωωT dω = 0 . (B.3)

153



154 B. Supplements to the Derivation of the Diffusion Model

To show this, we rewrite the integrand as

(ω · a)ωωT = (ω · a)

Y1,1 0 0
0 Y1,−1 0
0 0 Y1,0

 Y1,1 Y1,−1 −Y1,0
Y1,1 Y1,−1 Y1,0
−Y1,1 −Y1,−1 Y1,0


and the scalar factor as ω · a = (a1 cosφ sinϑ + a2 sinφ sinϑ + a3 cosϑ).
Using the recurrence formulae (A.5)-(A.7), we observe that the terms
(ω · a)Y1,m, m ∈ {−1, 0, 1}, are linear combinations of spherical harmonics
of degree 0 and of degree 2. The statement follows immediately from the
orthogonality of the spherical harmonics Yl,m.

Moreover, the identities∫
ν·ω<0

ν · ω dω = −π and
∫
ν·ω<0

(ν · ω)ω dω = 2π
3 ν (B.4)

hold for ν ∈ Ω. To verify the first equation, we consider w.l.o.g. ν = e3 =
(0, 0, 1)T and observe∫

e3·ω<0
e3 · ω dω =

∫ 2π

0

∫ π

π
2

cosϑ sinϑ dϑ dφ = −π .

The second identity follows from some easy technical calculations that we
only sketch here. If ν = e1, we see that∫

e1·ω<0
(e1 · ω)ω dω =

∫ 2π

π

∫ π
2

0

 cos2 φ sin3 ϑ
cosφ sinφ sin3 ϑ
cosφ sin2 ϑ cosϑ

 dϑ dφ

+
∫ π

0

∫ π

π
2

 cos2 φ sin3 ϑ
cosφ sinφ sin3 ϑ
cosφ sin2 ϑ cosϑ

 dϑ dφ

= 2π
3 e1 .

Similarly, we obtain the second identity of (B.4) for ν = e2 and ν = e3.
Using the decomposition ν = ν1e1 + ν2e2 + ν3e3, the second equation of
(B.4) follows for general ν ∈ Ω.

B.2. Derivation of the Diffusion Model for d = 2

The derivation of the diffusion model for d = 2 is similar to the one
for d = 3, however some constants differ. This is caused by the fact
that the first moments of ω take different values. So in this section we
mainly calculate the first moments of ω in case d = 2 and point out how
these results affect the derivation of the diffusion model, as performed in
Subsection 2.1.2 in case of d = 3.
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Let ω ∈ Ω = S1. Then we can express it in terms of spherical har-
monics, namely

ω =
(

cosφ
sinφ

)
=
√
π

(
yc

1(ω)
ys

1(ω)

)
.

By the orthogonality of the spherical harmonics we immediately observe∫
Ω
ω dω = 0 (B.5)

and ∫
Ω
ωωT dω = π

∫
Ω

(
(yc

1)2 yc
1y

s
1

yc
1y

s
1 (ys

1)2

)
(ω) dω = πI . (B.6)

Thus, the linear ansatz for u(x, ·), cf. equation (2.9), reads for d = 2:

u(x, ω) = u0(x) + 2u1(x) · ω . (B.7)

By direct calculation we obtain∫
Ω

(ω · a)ωωT dω =
∫ 2π

0

(
cos2 φ cosφ sinφ

cosφ sinφ sin2 φ

)
(a1 cosφ+ a2 sinφ) dφ

= 0 ,

which corresponds to (B.3) for d = 3. Using this and (B.6), we deduce as
in Subsection 2.1.2 but with different constants the relation

(∇ · u2)T = 1
2∇u0 .

All remaining steps in the derivation of the diffusion equation can be per-
formed similar to the case d = 3 if we redefine the diffusion coefficient

D = 1
2(σa + σ′s)

. (B.8)

This finally results in the identical looking diffusion approximation

−∇ ·
(
D∇u0

)
+ σau0 = q in X .

The next step is to adapt the boundary conditions. We will see that
the difference in dimension becomes more apparent. The crucial part is
the calculation of the integrals∫

ν·ω<0
ν · ω dω = −2 and

∫
ν·ω<0

(ν · ω)ω dω = π

2 ν
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with ν = (cosφν , sinφν)T ∈ Ω. The first equation holds since∫
ν·ω<0

ν · ω dω =
∫ 2π

0
cos θχ{cos θ<0}(θ) dθ

=
∫ 3π

2

π
2

cos θ dθ = −2

via the substitution θ = φ− φν . Applying the trigonometric identities

cos(φ− φν) cosφ = 1
2
(
cosφν + cos(2φ− φν)

)
and

sin(φ− φν) sinφ = 1
2
(
sinφν + sin(2φ− φν)

)
,

we find∫
ν·ω<0

(ν · ω)ω dω =
∫ 2π

0
cos(φ− φν)χ{cos(φ−φν)<0}(φ)

(
cosφ
sinφ

)
dφ

= 1
2

∫ 3π
2 +φν

π
2 +φν

(
cosφν + cos(2φ− φν)
sinφν + sin(2φ− φν)

)
dφ

= π

2 ν .

So the Robin boundary condition modeling the incoming flux, see (2.16)
for the case d = 3, becomes

u0 + π

2D
∂u0

∂ν
= 0 on ∂X . (B.9)

In contrast, the measurements look identical in both dimensions and cor-
respond to the Neumann boundary values

D
∂u0

∂ν
= −g0 on ∂X . (B.10)

However, we have to take note of the redefinition of the diffusion coefficient
in (B.8).



APPENDIX C

Supplement to Section 6.2: Argument in Two Dimensions

In Section 6.2 the domain derivative of the RTE-based BLT forward
operator is derived rigorously. However, the proofs of Theorem 6.6 and
Lemma 6.11 are only performed in case d = 3. In this section we point
out how to adapt these proofs in the case d = 2.

C.0.1. Adaption of the Proof of Theorem 6.6. In the proof of
Theorem 6.6 the identities (6.18) and (6.19) are essentially the dimension
depending observations. As in three dimensions, we consider the cases
x ∈ Γ and x ∈ X \ Γ separately.

Let x ∈ Γ \ {0}. In two dimensions, we have, instead of (6.18), the
following identity:∫

Ω

1∣∣ω · ν(p1(x, ω)
)∣∣ dω = R

∫
Ω

1√
R2 − (xTω⊥)2

dω

= R

|x|

∫
Ω

(
R2

|x|2
−
(( x
|x|

)T
ω⊥

)2
)− 1

2

dω⊥

= 2 R
|x|

∫ 1

−1

[( R2

|x|2
− s2

)(
1− s2

)]− 1
2

ds ,

where we use the change of variables s = xTω⊥/|x|, see again Section VII.2
in [Nat01b] for more details. We estimate the latter integral by
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2 R
|x|

∫ 1

−1

[( R2

|x|2
− s2

)
(1− s2)

]− 1
2

ds

= 4 R
|x|

∫ 1

0

[( R
|x|
− s
)( R
|x|

+ s
)(

1− s
)(

1 + s
)]− 1

2

ds

≤ 4

√
R

|x|

∫ 1

0

[
s2 −

( R
|x|

+ 1
)
s+ R

|x|

]− 1
2

ds .

The primitive of the integrand in the last line is known and it follows that

2 R
|x|

∫ 1

−1

[( R2

|x|2
− s2

)
(1− s2)

]− 1
2

ds

≤ 4

√
R

|x|
ln
(

2

√
s2 −

( R
|x|

+ 1
)
s+ R

|x|
+ 2s− R

|x|
− 1
)∣∣∣∣∣

1

0

= 4

√
R

|x|
ln
( R− |x|
R+ |x| − 2

√
R|x|

)
= 4

√
R

|x|
ln
(√R+

√
|x|√

R−
√
|x|

)
= 4

√
R

|x|
ln
(R+ |x|+ 2

√
R|x|

R− |x|

)
= 4

√
R

|x|

[
ln
(
R+ |x|+ 2

√
R|x|

)
− ln

(
R− |x|

)]
.

The expression on the right-hand side is integrable in x over Γ, since the
integrals∫ R

0
ρ−

1
2 dρ = 2

√
R and

∫ R

0
ln(R− ρ) dρ = R(lnR− 1)

exist. Thus, we have an integrable upper bound of the absolute momentum
H. We conclude that

H|Γ×Ω ∈ L1(X × Ω) with ‖H|Γ×Ω‖L1 ≤ C1‖hν‖∞ ,

where the constant C1 only depends on R.
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Now let x ∈ X \ Γ. In place of (6.19), we have in two dimensions the
identity∫

Ω

ψ(x, ω)∣∣ω · ν(pi(x, ω))
∣∣ dω = R

∫
xTω⊥∈]−R,R[

1√
R2 − (xTω⊥)2

dω⊥

= R

∫ arccos(− R
|x| )

arccos( R|x| )

1√
R2 − (|x| cosφ)2

dφ

= R

∫ R
|x|

− R
|x|

((
R2 − |x|2s2)(1− s2))− 1

2 ds ,

where we first use the parameterization ω⊥(φ) of the sphere Ω such that
xTω⊥ = |x| cosφ and second the change of variables s = cosφ. The integral
can be estimated by

R

∫ R
|x|

− R
|x|

((
R2 − |x|2s2)(1− s2))− 1

2 ds

= 2R
∫ R
|x|

0

((
R+ |x|s

)(
1 + s

)(
R− |x|s

)(
1− s

))− 1
2 ds

≤ 2
√
R

∫ R
|x|

0

(
|x|s2 −

(
R+ |x|

)
s+R

)− 1
2 ds .

Proceeding similar to the calculations above, we obtain

2
√
R

∫ R
|x|

0

(
|x|s2 −

(
R+ |x|

)
s+R

)− 1
2 ds

= 2

√
R

|x|
ln
(√
|x|2s2 −

(
R+ |x|

)
|x|s+R|x|+ 2|x|s−R− |x|

)∣∣∣∣ R|x|
0

= 2

√
R

|x|

[
ln
(
R+ |x|+ 2

√
R|x|

)
− ln

(
|x| −R

)]
,

which is integrable in x over X \Γ. In addition, the integral only depends
on R and its value is denoted by C2. It follows that

H|(X\Γ)×Ω ∈ L
1(X × Ω) with ‖H|(X\Γ)×Ω‖L1 ≤ C2‖hν‖∞ .

Combining the estimates obtained in both cases, we finally obtain that,
also in case d = 2, H ∈ L1(X × Ω) with

‖H‖L1 ≤ C‖hν‖∞ .

Herein, C = max{C1, C2}.
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Remark C.1. We note that, in contrast to the findings in three dimen-
sions, the function H is not essentially bounded in X in two dimensions.
We only have that H is integrable over X. Nevertheless, this result is
sufficient to obtain the statement of Theorem 6.6 and also of Lemma 6.11
in the upcoming paragraph.

C.0.2. Adaption of the Proof of Lemma 6.11. In order to prove
Lemma 6.11 in two dimensions, we have to reconsider the estimates (6.20)
and (6.21) as well as (6.23)-(6.25).

In Remark C.1 we noticed that, in contrast to (6.20), we have no
essential upper bound of∫

Ω
ψ(x, ω) 1∣∣ω · ν(pi(x, ω)

)∣∣ dω

in case d = 2. However, we know from the previous section that there
exists a constant C > 0 such that∫

X

∫
Ω
ψ(x, ω) 1∣∣ω · ν(pi(x, ω)

)∣∣ dω dx ≤ C .

Using this estimate, we obtain similar to (6.21) and (6.23):

‖(fh − f)χΓ∩Γh‖L1 ≤ 3C‖hν‖∞ ,∫
X

∫
Ω
ψ(x, ω)ψh(x, ω)

∣∣fh(x, ω)− f(x, ω)
∣∣dω dx ≤ 6C‖hν‖∞ .

It remains to show that the expressions on the left-hand side of (6.24)
and (6.25) are integrable over X \ (Γ ∪ Γh). Let x ∈ X \ (Γ ∪ Γh). We
begin deriving a two-dimensional analog to (6.24). From (6.24) we know
that ∫

Ω
ψ(x, ω)

(
1− ψh(x, ω)

)∣∣fh(x, ω)− f(x, ω)
∣∣dω

≤
∫

Ω
ψ(x, ω)

(
1− ψh(x, ω)

)∣∣τ1(x, ω)− τ2(x, ω)
∣∣ dω

≤ 4
√

2‖hν‖∞R− ‖hν‖2∞
∫
xTω⊥∈[R−‖hν‖∞,R[

1 dω⊥ .



C. Supplement to Section 6.2: Argument in Two Dimensions 161

Using once more the parameterization ω⊥(φ) with xTω⊥ = |x| cosφ, we
observe∫

xTω⊥∈[R−‖hν‖∞,R[
1 dω⊥ =

∫ arccos(R−‖hν‖∞|x| )

arccos( R|x| )
dφ

= arccos
(R− ‖hν‖∞

|x|

)
− arccos

( R
|x|

)
.

Application of the mean value theorem yields

arccos
(R− ‖hν‖∞

|x|

)
− arccos

( R
|x|

)
≤
(

1−
( R
|x|

)2
)− 1

2 ‖hν‖∞
|x|

= ‖hν‖∞√
|x|2 −R2

.

The term on the right-hand side is integrable in x over X \ Γ in view of∫ M

R

1√
ρ2 −R2

dρ = ln
(
M +

√
M2 −R2

)
− lnR for M > R . (C.1)

Consequently, there exists a constant C1 depending only on R such that∫
X\(Γ∪Γh)

∫
Ω
ψ(x, ω)

(
1− ψh(x, ω)

)∣∣fh(x, ω)− f(x, ω)
∣∣dω dx

≤ C1‖hν‖
3
2∞
√

2R− ‖hν‖∞ .

In exactly the same manner we also find a constant C2 > 0, but now
depending on R and ‖hν‖∞, with∫

X\(Γ∪Γh)

∫
Ω

(
1− ψ(x, ω)

)
ψh(x, ω)

∣∣fh(x, ω)− f(x, ω)
∣∣dω dx

≤ C2‖hν‖
3
2∞
√

2R+ ‖hν‖∞ ,

which is (6.25) revisited. We point out that the constant C2 converges to
C1 as h→ 0, since the integral (C.1) is continuous with respect to R.

Finally, we have all necessary adaptions to the two-dimensional sit-
uation at hand. By a combination of the adapted findings, obtained in
this appendix, with the dimension independent results in the proof of
Lemma 6.11, we verify the statement in case d = 2.





APPENDIX D

Singular Value Decomposition of the Linear DA-based BLT
Forward Operator

In this chapter we derive the singular value decomposition of the linear
DA-based BLT forward operator A, defined in (2.30), in the special case of
a ball-shaped domain X ⊂ R3 and constant coefficients D,σa. In addition,
we investigate the asymptotic behavior of the singular values. These results
allow to gain an insight into the ill-posedness of the BLT problem in the
DA-framework: Not only the decay of the singular values describe the order
of ill-posedness, but also the singular functions indicate which sources can
be reconstructed at all.

Before we state the two main results of this chapter, namely the singu-
lar value decomposition of A and the asymptotic behavior of the singular
values, we begin with a short summary of notations and results that we
need in the proof. They are either known from the previous chapters or
easy observations.

Let us recall some definitions from Section 2.2.2. The linear forward
operator of DA-based BLT is given by

A : L2(X)→ L2(∂X) , q 7→ u|∂X , (D.1)

where u ∈ H1(X) is the weak solution of the boundary value problem

−div
(
D∇u

)
+ σau = q in X ,

u+ 2D∂u
∂ν

= 0 on ∂X .
(D.2)

163



164 D. SVD of the Linear DA-based BLT Forward Operator

More precisely, u solves the variational equation∫
X

(D∇u ·∇v+σauv) dx+ 1
2

∫
∂X

uv dµ =
∫
X

qv dx ∀v ∈ H1(X) . (D.3)

The adjoint of A is the operator
A∗ : L2(∂X)→ L2(X) , ψ 7→ 2w , (D.4)

where w ∈ H1(X) is the weak solution of the adjoint boundary value
problem

−div
(
D∇w

)
+ σaw = 0 in X ,

w + 2D∂w
∂ν

= ψ on ∂X .
(D.5)

This is easily observed from

〈Aq, ψ〉L2 =
∫
∂X

uψ dµ = 2
∫
X

(D∇u · ∇w + σauw) dx+
∫
∂X

uw dµ

= 2
∫
X

qw dx = 〈q, 2w〉L2 ,

where the second identity is due to the weak formulation of the adjoint
boundary value problem (D.5):∫
X

(D∇w · ∇v + σawv) dx+ 1
2

∫
∂X

uv dµ = 1
2

∫
∂X

ψv dx ∀v ∈ H1(X) .

As from now, we assume that X ⊂ R3 is the three-dimensional ball
with radius R > 0 centered w.l.o.g. in the origin, i.e., X = BR(0). In
addition, let D and σa be positive constants. For this special case, the
fundamental solution of the diffusion equation is derived in Example 2.11.
It is given by

Φ(x, y) = e−σ̃|x−y|

4πD|x− y| for x 6= y with σ̃ =
√
σa

D

and has the representation

Φ(x, y) = − σ̃
D

∞∑
l=0

l∑
m=−l

h
(1)
l (σ̃i|x|)Hl,m(x̂)jl(σ̃i|y|)Hl,m(ŷ) (D.6)

for |x| > |y| and with x̂ = x/|x| as well as ŷ = y/|y|, see (2.31). Herein,
h

(1)
l , jl and Hl,m are the spherical Hankel function of first kind, the spher-

ical Bessel function and the complex-valued spherical harmonic, respec-
tively, see Appendix A. We recall that the series in (D.6) converges abso-
lutely and uniformly on compact subsets of {(x, y) ∈ R3 × R3 : |x| > |y|}
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and that this statement is also true for the series of the term by term
derivatives with respect to |x| and |y|.

Proceeding similar to Example 3.11, where the case D = σa = 1 is
considered, we obtain a Green’s function of the boundary value problem
(D.2) with arbitrary positive constants D and σa: Let

φ(x, y) = σ̃

D

∞∑
l=0

l∑
k=−l

φl,k(y)jl(σ̃i|x|)Hl,k(x̂) (D.7)

with

φl,k(y) =
2σ̃ih(1)′

l (σ̃iR) + h
(1)
l (σ̃iR)

2σ̃ij′l(σ̃iR) + jl(σ̃iR) jl(σ̃i|y|)Hl,k(ŷ) .

Then, the function
G(x, y) = Φ(x, y) + φ(x, y)

is a Green’s function. We note that the series in (D.7) converges absolutely
and uniformly on every compact subset of X ×X.

The Green’s function G can also be expanded in terms of real-valued
spherical harmonics Yl,m. From the addition formula (A.8) we have

l∑
k=−l

Hl,k(x̂)Hl,k(ŷ) =
l∑

k=−l
Yl,k(x̂)Yl,k(ŷ) .

Consequently, G can be rewritten for |x| > |y| as

G(x, y) =
∞∑
l=0

l∑
k=−l

gl
(
|x|, |y|

)
Yl,k(x̂)Yl,k(ŷ) , (D.8)

where
gl
(
|x|, |y|

)
= σ̃

D

(
2σ̃ih(1)′

l (σ̃iR) + h
(1)
l (σ̃iR)

2σ̃ij′l(σ̃iR) + jl(σ̃iR) jl(σ̃i|x|)− h(1)
l (σ̃i|x|)

)
jl(σ̃i|y|) .

By means of the Green’s function, the operator A and its adjoint A∗
admit the following representations:

(Aq)(y) =
∫
X

q(x)G(y, x) dx for y ∈ ∂X , (D.9)

(A∗ψ)(x) =
∫
∂X

ψ(y)G(y, x) dµ(y) for x ∈ X . (D.10)
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Former identity is a direct consequence of Green’s representation formula,
cf. (3.15). The latter relation holds, since

〈Aq, ψ〉L2 =
∫
∂X

Aq(y)ψ(y) dµ(y) =
∫
∂X

∫
X

q(x)G(y, x) dxdµ(y)

=
∫
X

q(x)
∫
∂X

G(y, x)ψ(y) dµ(y) dx = 〈q,A∗ψ〉L2 .

After these preliminaries, we are now able to state the two main results
of this chapter. The first characterizes the singular value decomposition
of the DA-based BLT forward operator A under the above mentioned as-
sumptions on D, σa and X.

Theorem D.1 (Singular Value Decomposition of A). Let X = BR(0),
R > 0, and D, σa be positive constants. Then, the operator A defined
in (D.1) admits the singular system

{
(ςl; ξl,k, ηl,k) : l ∈ N0, k = −l, . . . , l

}
given by

ςl = βlR
σ̃

D

(
2σ̃ih(1)′

l (σ̃iR) + h
(1)
l (σ̃iR)

2σ̃ij′l(σ̃iR) + jl(σ̃iR) jl(σ̃iR)− h(1)
l (σ̃iR)

)
,

ξl,k(x) = 1
βl
jl(σ̃i|x|)Yl,k(x̂) , x ∈ X ,

ηl,k(y) = 1
R
Yl,k(ŷ) , y ∈ ∂X ,

where

σ̃ =
√
σa

D
and βl =

(∫ R

0
jl(σ̃ir)2r2 dr

) 1
2

.

Proof. Before we start with the actual proof, we point out that the
singular values ςl are positive for l ∈ N0. This is observed recalling the def-
inition of the spherical Bessel functions jl, h(1)

l in (A.11) and the identities
(A.10), (A.12), (A.15).

To show the statement, we have to verify the following four points:
Aξl,k = ςlηl,k, A∗ηl,k = ςlξl,k, {ξl,k : l, k} is a complete orthonormal system
of N (A)⊥ and {ηl,k : l, k} is a complete orthonormal system of R(A).

We start showing that Aξl,k = ςlηl,k. Let l ∈ N0, k ∈ {−l, . . . , l} and
y ∈ ∂X = ∂BR(0). Using the identity (D.9) and the expansion (D.8) of
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G, we obtain

Aξl,k(y) =
∫
X

ξl,k(x)G(y, x) dx

=
∫
X

ξl,k(x)
∞∑
m=0

m∑
n=−m

gm(R, |x|)Ym,n(ŷ)Ym,n(x̂) dx .

A change of variables and the orthonormality of the spherical harmonics
yield

Aξl,k(y) =
∫ R

0

∫
S2

∞∑
m=0

m∑
n=−m

ξl,k(rθ)gm(R, r)Ym,n(ŷ)Ym,n(x̂)r2 dθ dr

= 1
βl

∫ R

0
r2jl(σ̃ir)

[ ∞∑
m=0

m∑
n=−m

gm(R, r)
∫
S2
Yl,k(θ)Ym,n(θ) dθ Ym,n(ŷ)

]
dr

= 1
βl

(∫ R

0
r2jl(σ̃ir)gl(R, r)r2 dr

)
Yl,k(ŷ)

= σ̃

D

(
2σ̃ih(1)′

l (σ̃iR) + h
(1)
l (σ̃iR)

2σ̃ij′l(σ̃iR) + jl(σ̃iR) jl(σ̃iR)− h(1)
l (σ̃iR)

)
βlYl,k(ŷ)

= ςlηl,k(y) .
Next, we verify in a similar manner that A∗ηl,k = ςlξl,k. Let l ∈ N0,

k ∈ {−l, . . . , l} and x ∈ X. In view of the equations (D.10) and (D.8), we
observe

A∗ηl,k(x) =
∫
∂X

ηl,k(y)G(y, x) dµ(y)

=
∫
∂X

ηl,k(y)
∞∑
m=0

m∑
n=−m

gm(R, |x|)Ym,n(ŷ)Ym,n(x̂) dµ(y) .

By the same arguments as above follows

A∗ηl,k(x) = 1
R

∫
∂X

∞∑
m=0

m∑
n=−m

Yl,k(ŷ)gm(R, |x|)Ym,n(ŷ)Ym,n(x̂) dµ(y)

= 1
R

∞∑
m=0

m∑
n=−m

[∫
S2
R2gm(R, |x|)Yl,k(θ)Ym,n(θ) dθ

]
Ym,n(x̂)

= R
σ̃

D

(
2σ̃ih(1)′

l (σ̃iR) + h
(1)
l (σ̃iR)

2σ̃ij′l(σ̃iR) + jl(σ̃iR) jl(σ̃iR)− h(1)
l (σ̃iR)

)
jl(σ̃i|x|)Yl,k(x̂)

= ςlξl,k(x) .
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To finish the proof, it remains to show that {ηl,k : l ∈ N0, k = −l, . . . , l}
is a complete orthonormal system of R(A) and {ξl,k : l ∈ N0, k = −l, . . . , l}
is a complete orthonormal system of N (A)⊥. It is well known, see also
Appendix A.2, that the spherical harmonics {Yl,k : l ∈ N0, k = −l, . . . , l}
build an orthonormal basis of L2(S2). With the transformation θ = y/R,
y ∈ ∂X = ∂BR(0), we obtain the completeness and orthonormality of
{ηl,k : l ∈ N0, k = −l, . . . , l} in L2(∂X). This space is exactly the closure
of the range of A, since R(A) = H3/2(∂X), in the sense of set-theory, due
to regularity theorems for elliptic boundary value problems, see [Hac92]
for instance.

The completeness of {ξl,k : l ∈ N0, k = −l, . . . , l} in N (A)⊥ follows
directly from the identity N (A)⊥ = R(A∗), see for instance [Wer07], the
relation ςlξl,k = A∗ηl,k and the completeness of {ηl,k : l, k} in L2(∂X).
Further, the set {ξl,k : l, k} builds an orthonormal system, since

〈ξl,k, ξm,n〉L2(X) = 1
ςlςm
〈A∗ηl,k, A∗ηm,n〉L2(X) = 1

ςlςm
〈AA∗ηl,k, ηm,n〉L2(∂X)

= ςl
ςm
〈ηl,k, ηm,n〉L2(∂X) = δl,mδk,n .

Herein, δl,m denotes the Kronecker delta. �

Let us point out that the non-uniqueness of the DA-based BLT prob-
lem, stated in Lemma 2.10, becomes apparent in the singular functions.
Only linear combinations of the functions jl(σ̃i|x|)Yl,k(x̂), which are fixed
couplings of the radial and angular component, lie in the orthogonal com-
plement of N (A) and can, therefore, be reconstructed. As soon as there is
a different composition of the radial and angular component in the source,
only the part having the above form can be reconstructed.

The second main result of this chapter gives an answer to the order of
ill-posedness of the DA-based BLT problem. It characterizes the asymp-
totic decay of the singular values.

Theorem D.2 (Asymptotic behavior of ςl). Let the assumptions of The-
orem D.1 hold. Then, the singular values ςl of A have the asymptotic
behavior

ςl = 2R 3
2

D(2l + 3) 1
2 (2l + 1)

[
1 +O(l−1)
1 +O(l−1)

]
as l→∞ . (D.11)

Proof. From Theorem D.1 the singular values of A are known to be

ςl = βlR
σ̃

D

(
2σ̃ih(1)′

l (σ̃iR) + h
(1)
l (σ̃iR)

2σ̃ij′l(σ̃iR) + jl(σ̃iR) jl(σ̃iR)− h(1)
l (σ̃iR)

)
(D.12)
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with

σ̃ =
√
σa

D
and βl =

(∫ R

0
jl(σ̃ir)2r2 dr

) 1
2

.

In a first step, we calculate the asymptotic behavior of the term in
parentheses in (D.12). According to (A.16), the Wronskian of jl and h(1)

l

satisfies
jl(z)h(1)′

l (z)− j′l(z)h
(1)
l (z) = i

z2 .

Hence,(
2σ̃ih(1)′

l (σ̃iR) + h
(1)
l (σ̃iR)

)
jl(σ̃iR)−

(
2σ̃ij′l(σ̃iR) + jl(σ̃iR)

)
h

(1)
l (σ̃iR)

= 2
σ̃R2 .

Dividing by 2σ̃ij′l(σ̃iR) + jl(σ̃iR) and estimating this term will yield the
asymptotic behavior of the term in parentheses. We recall from (A.15)
that

j′l(σ̃iR) = jl−1(σ̃iR)− l + 1
σ̃iR

jl(σ̃iR) .

In view of the asymptotic behavior (A.13) of the spherical Bessel functions
jl, follows

2σ̃ij′l(σ̃iR) + jl(σ̃iR) =
(

1− 2(l + 1)
R

)
jl(σ̃iR) + 2σ̃ijl−1(σ̃iR)

=
[(

1− 2(l + 1)
R

) (σ̃iR)l

1 · 3 · · · (2l + 1) + 2σ̃i (σ̃iR)l−1

1 · 3 · · · (2l − 1)

](
1 +O(l−1)

)
=
[

(σ̃iR)l

1 · 3 · · · (2l + 1) + 2σ̃i l

2l + 1
(σ̃iR)l−1

1 · 3 · · · (2l − 1)

](
1 +O(l−1)

)
= σ̃i

(σ̃iR)l−1

1 · 3 · · · (2l − 1)

(
1 +O(l−1)

)
.

Consequently, the term in parentheses in (D.12) satisfies(
2σ̃ih(1)′

l (σ̃iR) + h
(1)
l (σ̃iR)

2σ̃ij′l(σ̃iR) + jl(σ̃iR) jl(σ̃iR)− h(1)
l (σ̃iR)

)

= 2
σ̃R

(
(σ̃iR)l

1 · 3 · · · (2l − 1)

(
1 +O(l−1)

))−1

as l→∞ .

(D.13)

The next step consists of analyzing the asymptotic behavior of the
factor βl in (D.12). Using the definition of the spherical Bessel functions,



170 D. SVD of the Linear DA-based BLT Forward Operator

see (A.11), and the integral formula 11.2(4) in [Luk62], we obtain for βl
the representation

β2
l =

∫ R

0
jl(σ̃ir)2r2 dr

= π

2σ̃i

∫ R

0
Jl+ 1

2
(σ̃ir)2r dr

= π

2σ̃i
R2

2

(
Jl+ 1

2
(σ̃iR)2 − Jl+ 3

2
(σ̃iR)Jl− 1

2
(σ̃iR)

)
= R3

2

(
jl(σ̃iR)2 − jl+1(σ̃iR)jl−1(σ̃iR)

)
.

The asymptotic behavior (A.13) of the spherical Bessel function leads to

β2
l = R3

2
1

2l + 1

(
1

2l + 1 −
1

2l + 3

)(
(σ̃iR)l

1 · 3 · · · (2l − 1)

(
1 +O(l−1)

))2

= R3

2l + 3

(
(σ̃iR)l

1 · 3 · · · (2l + 1)

(
1 +O(l−1)

))2

as l→∞ . (D.14)

Combining the estimates (D.13) and (D.14), we conclude that the
singular values ςl have the asymptotic behavior (D.11). �

An immediate consequence of the previous theorem is the fact that
the DA-based BLT problem, at least in the considered special case, is
ill-posed of order 3/2. We point out that this is exactly the order the
operator A smoothes in Sobolev scale, provided the coefficients D,σa and
the boundary ∂X are smooth. More precisely, for q ∈ L2(X) we have
Aq ∈ H3/2(∂X) and A∗Aq ∈ H3(X), see [Hac92] for instance.



APPENDIX E

Excursus: Domain Derivative of the SPECT Forward Operator

In this section we present an interesting consequence of the observa-
tions made in Subsection 2.2.1 and Subsection 4.1.1. More precisely, we
derive the domain derivative of the SPECT forward operator, which co-
incides with the BLT forward operator in purely absorbing media, about
connected domains in two dimensions rigorously. To our knowledge this
has not been performed before. We are only aware of the article [KRR11],
where the shape derivative of the least square functional involving the at-
tenuated Radon transform is calculated. Moreover, our result developed
in Theorem 6.13 holds only for ball-shaped sources.

Let us assume in this excursus that X ⊂ R2 is convex with 0 ∈ X and
that X is contained in the unit ball B1(0). Latter is no restriction, since
we may scale X to fit this condition.

In Subsection 2.2.1 we introduced the attenuated ray transform

Pσtq(y, ω) =
∫
R

exp
(
−
∫ ∞
t

σt(y + sω) ds
)
q(y + tω) dt

for (y, ω) ∈ T = {(x, θ) ∈ R2 × S1 : x ∈ θ⊥}. The operator

Q : L → H̃−1(X) , Q(G) = λχG

is defined in (4.3). The aim of this excursus is to calculate the domain
derivative of the operator Pσt ◦Q.

In order to do this, we have to adapt the definition of the operator Q
to fit our needs. We recall that S is the set of subdomains of X with C2

171
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boundary. Let ε > 0 be arbitrary small. The dual space of H1/2+ε(X) is
denoted by H̃−1/2−ε(X). Now, we redefine the operator Q as

Q : S → H̃−
1
2−ε(X) , Q(G) = λχG .

In a first step, we determine the domain derivative of Q about a connected
domain Γ ∈ S. To this end, let h ∈ C1

0 (X) and Γh be the perturbation of
Γ by h. Since equation (4.6) is also true for test functions v ∈ H1/2+ε(X),
only the trace of v on ∂Γ must exists1, we have the estimate

‖Q(Γh)−Q(Γ)− λhνδ∂Γ‖H̃−1/2−ε = o
(
‖h‖C1

)
,

which is the analog to (4.7). Consequently, the domain derivative of Q
about Γ in direction h is given by

Q′(Γ)h = λhνδ∂Γ . (E.1)
In the next step, we show that the operator Pσt is a bounded operator

from H̃−1/2−ε(X) to H−ε(T ), which is specified below. This statement
directly implies the domain differentiability of the SPECT forward opera-
tor

Pσt ◦Q : S → H−ε(T ) .
To obtain the continuity, we use a link to the attenuated Radon trans-

form. As mentioned in Subsection 2.2.1, the attenuated ray transform Pσt

coincides with the attenuated Radon transform in two dimensions up to
notation, which is given by

Rσtq(s, θ) =
∫
R

exp
(
−
∫ ∞
t

σt(sθ + τθ⊥) dτ
)
q(sθ + tθ⊥) dt

for (s, θ) ∈ Z := {(t, ω) ∈ R × S1}, where θ⊥ · θ = 0 and det(θ, θ⊥) = 1.
As in [Nat01b] we define the norms

‖g‖2Hr(T ) =
∫
S1

∫
ω⊥

(
1 + |η|2

)r ∣∣ĝ(η, ω)
∣∣2 dη dω ,

‖g‖2Hr(Z) =
∫
S1

∫
R

(
1 + ξ2)r ∣∣ĝ(ξ, θ)

∣∣2 dξ dθ

for r ∈ R and for functions g on T and Z, respectively. Herein, the
Fourier transforms are understood with respect to the first variable. Easy
calculations show

‖Pσtq‖Hr(T ) = ‖Rσtq‖Hr(Z) . (E.2)

1This is the reason why we have to introduce the small number ε > 0. There
is no continuous trace operator from H1/2(X) to L2(∂Γ), since H1/2(Γ) = H

1/2
0 (Γ)

[McL00].
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We need to introduce some more Hilbert spaces: Let S ′(R2) be the
space of tempered distributions, i.e., the dual space of the Schwartz space,
and let the norm ‖ · ‖Hr(R2) be given by

‖v‖Hr(R2) =
(∫

R2

(
1 + |ξ|2)r

∣∣v̂(ξ)
∣∣2 dξ

) 1
2

for v ∈ S ′(R2) and with v̂ denoting the Fourier transform of v. We define
the Hilbert spaces

Hr(R2) =
{
v ∈ S ′(R2) : ‖v‖Hr(R2) <∞

}
and

Hr
M =

{
v ∈ Hr(R2) : supp v ⊂M

}
for a closed subset M ⊂ R2. See [McL00, Tri78] for more details on
these spaces. From [McL00, Theorem 3.29] we know that

H
− 1

2−ε
X

= H̃−
1
2−ε(X) .

This obviously implies

H̃−
1
2−ε(X) ⊂ H−

1
2−ε

B1(0)
. (E.3)

In [Hei86] the following smoothing property of the two-dimensional
Radon transform is shown:

‖Rσtq‖H−ε(Z) ≤ ‖q‖H−1/2−ε(R2) (E.4)

for all q ∈ C∞0
(
B1(0)

)
. In view of the density of C∞0

(
B1(0)

)
in H−1/2−ε

B1(0)
,

cf. [Tri78, Theorem 1 in Section 4.3.2], the smoothing property holds for
all q ∈ H−1/2−ε

B1(0)
. Recalling the equation (E.2), the inclusion (E.3) and the

estimate (E.4), we obtain the continuity of the attenuated ray transform
between H̃−1/2−ε(X) and H−ε(T ), that is,

‖Pσtq‖H−ε(T ) ≤ ‖q‖H̃−1/2−ε

for all q ∈ H̃−1/2−ε(X).
Combining the last observation with the identity (E.1), we finally find:

For d = 2 and for every ε > 0 the SPECT forward operator
Pσt ◦Q : S → H−ε(T )

is differentiable and its domain derivative about the connected domain Γ
in direction h is given by

(Pσt ◦Q)′(Γ)h = λPσt(hνδ∂Γ) .



174 E. Excursus: Domain Derivative of the SPECT Forward Operator

If, in addition, Γ is convex, then we can further specify the domain
derivative by means of Remark 6.5. For (y, ω) ∈ T , let p1(y, ω) = y +
τ1(y, ω)ω and p2(y, ω) = y + τ2(y, ω)ω be the intersection points of the
line {y + tω : t ∈ R} with the domain Γ such that ω · ν

(
p1(y, ω)

)
< 0 and

ω · ν
(
p2(y, ω)

)
> 0, respectively.2 Then, we have in view of Remark 6.5:(

(Pσt ◦Q)′(Γ)h
)
(y, ω) = λ

∫
R

exp
(
−
∫ ∞
t

σt(y + sω) ds
)

hν(y + tω)
ω · ν(y + tω)(

δ
(
t− τ2(y, ω)

)
− δ
(
t− τ1(y, ω)

))
dt ,

where δ is the one-dimensional delta distribution. Though this identity
is essentially the same as the one in Remark 6.14, it holds for arbitrary
convex domains and in a different space.

This result might be generalized to the case d = 3, but this is beyond
the scope of this excursus. The crucial point is the smoothing property in
(E.4), which has to be extended to the attenuated ray transform in higher
dimensions. Though we refer in Subsection 2.2.1 to a smoothing result
in three dimensions given in [SU12], this only holds for Sobolev spaces
of non-negative order. Alternatively, one could try to obtain the domain
derivative in case d = 3 by interpreting the three dimensional attenuated
ray transform as family of two dimensional attenuated ray transforms as
in [AK95].

2This is a similar construction as in Section 6.2.1.
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σs scattering coefficient, page 10
σ′s reduced scattering coefficient, page 15
σt total attenuation coefficient, page 11
τ± time of travel, page 18
Vol(M) volume or (surface) area of set or manifold M, page 13
W p
−(X × Ω) space of Lp functions v having a directional derivative

ω · ∇v in Lp and vanishing inflow boundary values, page 18
X ⊂ Rd spatial domain, page 9
Y image space of BLT forward operator, page 29
yc
l , y

s
l spherical harmonics of degree l for d = 2 aka trigono-

metric polynomials of degree l, page 147
Yl,m real-valued spherical harmonics of degree l (and order

m) for d = 3, page 148
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Bioluminescence tomography is a recent biomedical imaging  
technique which allows to study molecular and cellular activities  
in vivo. From a mathematical point of view, it is an ill-posed 
inverse source problem: the location and the intensity of a  
photon source inside an organism have to be determined,  
given the photon count on the organism‘s surface. To face 
the ill-posedness of the bioluminescence tomography prob-
lem, a geometric regularization approach is introduced, an-
alyzed and numerically verified in this book. In this approach 
the source is modeled as a piecewise constant function and 
the reconstruction process is stabilized by a Tikhonov like 
functional that penalizes the perimeter of the support of the 
source. Fundamental questions on the regularized problem 
are answered: existence of a solution, stability and regu-
larization property. Moreover, domain differentiability of the 
forward operator is discussed, which is the basis for recon-
struction algorithms. Numerical experiments performed on 
star-shaped domains illustrate performance and limitations 
of the geometric regularization approach.
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