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Abstract

Next generation advanced driver assistance systems (ADASs)
have to perform in more and more complex traffic situations
including varying scenario conditions and multiple traffic par-
ticipants. While current systems react mainly on single object
information, future system should also be able to take differ-
ent traffic participants and their relations into account. For
an accurate execution of these systems a robust and accurate
understanding and consideration of the entire situation is re-
quired. Thus, adequate modeling concepts have to be applied
to take all spatio-temporal dependencies into account including
multiple, interacting traffic participants. In this thesis an ap-
proach is presented to model and recognize traffic maneuvers
in terms of interactions between different traffic participants
on extra urban roads. Results of the recognition concept are
presented and evaluated using different sensor setups and its
benefit is outlined by an integration into a software framework
in the field of Car-to-Car (C2C) communications. Furthermore,
recognition results are used in this work to robustly predict ve-
hicle’s trajectories while driving dynamic traffic maneuvers.

To recognize traffic maneuvers, a probabilistic approach is
proposed in this work based on Hidden Markov Models. As
recognition capabilities are highly depending on the used ob-
servation data, different scenario characteristics are considered.
Besides the relative kinematic information between the inter-
acting traffic participant pair, static scenario information is
added, such as about the road geometry or the type of road.
Furthermore, a concept is introduced to efficiently model the
influence of other static and dynamic objects by considering the

i



required free space for the maneuver execution. The recogni-
tion framework is tested with different sequences of simulated
and real world data to show the capability of the proposed
method to model the traffic scene as accurate as possible.
For evaluation purposes, which is one of the most challeng-

ing tasks for situation assessment approaches, the recognition
results are used to predict single traffic maneuvers like lane
changes and abrupt braking maneuvers, as they are safety crit-
ical for most ADAS features. Prediction is performed by a
comparison of appropriate maneuver probabilities applied to
databases of more than 100 sequences for each use case. Af-
terwards, the points in time of the maneuver prediction are
analyzed as well as their robustness in terms of true- and false-
positives. Furthermore, the proposed approach is integrated
into one exemplary vehicle application. Therefore, an already
existing framework for verifying the trustworthiness of incom-
ing C2C communication messages is adapted by the maneuver
prediction of this thesis. Evaluations show the advantage of
this approach by an increased overall security level.
Additionally, the maneuver recognition results are used to ro-

bustly predict trajectories of single traffic participants. Thus,
the probabilistic information on the execution of different ma-
neuvers is used to predict their future courses on a largest possi-
ble time horizon. The proposed concept is mainly motivated by
the principles of Case-based reasoning applying a database to
find similar trajectories. Results are gathered with real world
data and their quality is tested by a comparison to ground truth
data as well as to a state of the art predictor. Advantages of
the presented method are pointed out as in predicting trajec-
tories of single vehicles while performing dynamic, interacting
maneuvers.
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Kurzfassung

Zukünftige Fahrerassistenzsysteme werden in immer komplexe-
ren Verkehrssituationen ausgeführt, wodurch unterschiedliche
Anforderungen an die Systeme gestellt werden müssen. Neben
einer ausreichenden sensoriellen Erfassung der Verkehrsumge-
bung ist besonders dessen Verstehen bzw. Interpretation von
Bedeutung. Eine möglichst genaue Modellierung des komplet-
ten Verkehrsszenarios, inklusive aller darin vorkommender, re-
levanter Objekte, ermöglicht es dem Anwender unterschiedliche
Assistenzsysteme hierbei besonders präzise und robust ausfüh-
ren zu können. Während herkömmliche Systeme mehrheitlich
Informationen von einzelnen Objekten berücksichtigen, werden
zukünftige Verfahren auch deren gegenseitige Einflüsse und Ab-
hängigkeiten verstehen müssen. Die vorliegende Arbeit beschäf-
tigt sich mit einem Teilaspekt dieses aktiven Forschungsgebie-
tes, indem in außerstädtischen Verkehrssituationen Fahrmanö-
vern zwischen unterschiedlichen Verkehrsteilnehmern model-
liert und erkannt werden sollen.

In einem ersten Schritt wird hierfür eine geeignete Model-
lierungsart gewählt, welche auf einem probabilistischen Ansatz
beruht. Durch die Verwendung von Hidden Markov Modellen
lassen sich sowohl örtliche als auch zeitliche Abhängigkeiten
zwischen einzelnen Objekten berücksichtigen, und es stehen effi-
ziente Algorithmen für das Parametertraining und der Inferenz
zur Verfügung. Um eine möglichst umfassende Modellierung
des Szenarios zu ermöglichen, wird ein Verfahren vorgestellt,
welches neben relevantem A-priori Wissen auch Informationen
über mehrere sowohl statische als auch dynamische Objekte in
das Modell integrieren kann. Das Verfahren wird mit unter-
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schiedlichen Sequenzen bestehend sowohl aus simulierten als
auch aus realen Daten getestet.
In einem nächsten Schritt wird das Verfahren evaluiert und

in ein reales System integriert. Ersteres wird durch die Verwen-
dung der Ergebnisse der Fahrmanövererkennung zur Prädiktion
von sicherheitskritischen Situationen erreicht. Anhand der Prä-
diktion von Fahrspurwechseln und Notbremsungen für Daten-
sätze von jeweils mehr als 100 unterschiedlicher, realer Sequen-
zen werden die Ergebnisse analysiert. Hierfür werden sowohl die
reinen Prädiktionszeitpunkte als auch die Robustheit in Form
von Falsch-Positiv-Raten erörtert. Eine Gesamtintegration er-
folgt in ein bestehendes System der Sicherheit von Daten der
Fahrzeug-zu-Fahrzeug Kommunikation, welches einkommende
Nachrichten auf Plausibilität prüft. Die dadurch erreichte Ver-
besserung der Robustheit des Systems zeigt, dass das vorgestell-
te Verfahren für reale Fahrzeugfunktionen von großem Nutzen
sein kann.
Abschließend werden die Ergebnisse benutzt, um Fahrtrajek-

torien von einzelnen Verkehrsteilnehmern zu prädizieren. Durch
das vorhandene Wissen über die Ausführung einzelner Fahrma-
növer, wird ein robustes Prädiktionsverfahren vorgestellt, wel-
ches akkurate Ergebnisse über große Zeithorizonte liefert. Ba-
sierend auf dem Prinzip des Fallbasierten Schließens wird eine
Datenbasis verwendet, um aus ähnlichen Trajektorien Rück-
schlüsse über wahrscheinliche, zukünftige Verläufe der zu prä-
dizierenden Trajektorie zu ziehen. Das vorgestellte Verfahren
wird sowohl mit simulierten als auch mit realen Daten getes-
tet, sowie die Ergebnisse mit Ground Truth Daten und mit
den Ergebnissen eines Kalman- Prädiktors verglichen, wodurch
seine Vorteile anschaulich dargestellt werden.
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1. Introduction

In the development of intelligent driver assistance systems in
the last decades, the functionality of single features increased
significantly. This may be referenced to different aspects of any
ADAS (advanced driver assistance system). On a very general
level, single features should provide a rapidly increased driv-
ing safety, comfort or efficiency. On the one hand, this usually
requires an increased quality of the used sensor system, either
by increasing the number of used sensors, by increasing the
capability of single sensors or by using intelligent fusion con-
cepts. As an example, the difference of the required sensor
data for an Anti-lock braking system (ABS), one of the earliest
assistance systems, and a modern active pedestrian protection
system, usually requires one or multiple cameras and an exten-
sive computational effort, is enormous. On the other hand, the
situations in which the system should assist the driver become
more and more complex. This requires a more accurate per-
ception, understanding and consideration of multiple aspects of
complex traffic situations. This thesis contributes to increase
the information about the current traffic scene for any ADAS
which is extracted from sensor data. In this introducing chap-
ter, a motivation for this work is given in the following section
as well as an overview about its contributions and outline.

1.1. Motivation

To motivate and define the scope of this thesis, a deeper look
at the general information flow for driver assistance systems
has to be done. In Figure 1.1 its different stages are outlined

1



1. Introduction

Figure 1.1.: Information flow of ADAS

simplified. From the lower levels including the sensor system
and its perception of all relevant information of the traffic sce-
nario (either information on the ego vehicle, like wheel speed
or steering angle, or kinematic information about other ob-
jects) information is passed through different process units. At
the highest level the behavior generation is done, which may
include different interventions (automated braking, steering),
driver warning strategies or only the visual or acoustic display
of relevant information. Obviously, not all stages are executed
similarly for all ADAS features, or are certainly not required
with the same significance. Considering a Lane Departure
Warning (LDW) feature, which warns the driver when leav-
ing the own traffic lane unintentionally, a simplified abstrac-
tion and representation stage is required comparing to other
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1.1. Motivation

features. On the other hand, most radar based features does
not require significant feature extraction steps, as all relevant
information are measured directly by the sensor.

As ADAS features were increased considerably in their func-
tionality in the recent past, the situations where the feature
is executed were increased in their complexity likewise. The
more complex the situation is the system has to act in, the
higher the requirements on the situation interpretation level
are. These requisites have to be passed through all lower levels
of the information flow. One example is the sensor level where
an increased functionality on the levels above may demand new
sensor types to be included or to apply more complex fusion
concepts (see (Winner et al., 2009) for more detailed informa-
tion about all stages of the information flow).

ADAS - State of the Art: Most of common driver assistance
features are nowadays carried out as follows: A sensor sys-
tem perceives the environment of the vehicle, using for exam-
ple cameras or radar sensors. Performing feature extraction
and classification tasks results in two different kind of infor-
mation: a list of dynamic objects (other traffic participants)
including their properties (e.g., position, speed, classification
results) and static information about the traffic scenario (e.g.,
lane information, traffic signs). On the next levels this data is
usually processed to obtain an adequate interpretation of the
traffic scenario depending on the accessed feature. As an ex-
ample consider a Forward Collision Warning (FCW) system,
which warns the driver of an immediate front collision. There-
fore, the received information about other vehicles including
their positions is combined with information about the kine-
matics of the ego vehicle (mainly its predicted further trajec-
tory). Therewith a level of risk is calculated for every single
detected object, which may require an intervention of the FCW
system. The most common measure therefore is a calculation

3



1. Introduction

of the TCC (Time To Collision). With this interpretation of
the traffic scene, i.e., relevant traffic participants including their
possible TTCs, an execution of the assistance system is possi-
ble accurately. Other functionalities require adapted processes
certainly. However, one of the major similarities of them is the
consideration of single traffic participants only. This restricts
the overall system performance in situations where multiple
objects do occur, which cannot be handled independently.

Traffic Maneuvers: This usually happens when traffic partic-
ipants are performing particular maneuvers. Different interpre-
tations or definitions are conventional therefore:

• Single objects perform traffic maneuvers like lane changes,
U-turns or parking maneuvers. Thus, only a single object
is involved there.

• Multiple traffic participants perform traffic maneuvers by
interacting with each other. Examples therefore are over-
taking or following maneuvers. In literature, this can be
found exemplarily in (Gindele et al., 2010) or (Meyer-
Delius et al., 2009).

The information of both of them is crucial for some assistance
systems, especially as they may enable a better prediction of
the further process of the traffic scene. The task of recogniz-
ing such maneuvers is highly different for both cases. Single
object maneuvers are usually easier to detect, as information
about only one relevant vehicle combined with static scenario
properties (road geometry, lane markings) are sufficient there-
fore in most situations. The recognition of maneuvers in terms
of interactions between different traffic participants is quite
more complicated. A lot of different challenges are responsible
therefore, e.g.: interactions between traffic participants include
spatio-temporal dependencies which have to be considered; a

4



1.2. Contribution

lot of uncertainties and ambiguities have to be taken into ac-
count, on the input side (sensor date) and also on the output
side (maneuver recognition results). In Chapter 2 a deeper look
is done on this. Ambiguities about possible recognition results
have to be considered, as also human experts are not always be
able to classify a traffic scene to the occurrence of one single
maneuver (always means here: at all point in time of the traffic
maneuver).

The scope of this work is indicated in Figure 1.1: by recogniz-
ing traffic maneuvers in terms of interactions between multiple
traffic participants a more accurate representation of the traffic
scene should be accomplished. Thus a better interpretation of
the scenario should be achieved. This is independent of the
lower levels of the information flow, i.e., of the used sensor
setup and the first processing steps of this data. Moreover, this
work should be generally independent of the behavior gener-
ation level, where different ADAS features may be accessed.
Furthermore, this task is highly depending on the traffic sce-
nario, which has to be observed. As a very important criterion,
inner city and outer city traffic have to be distinguished. In
this work, only extra urban roads are considered.1

1.2. Contribution

The contributions of this thesis are manifold:

As a first step, an appropriate modeling approach has to be
chosen to robustly recognize traffic maneuvers on extra urban

1Most works on situation recognition at inner city scenarios focus on
specific road geometry, mostly one specific intersection. In general, the
complexity in these situations is significant higher than on extra urban
roads, as difficult traffic rules, multiple lanes and a variety of different
object classes has to be considered.
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1. Introduction

roads. Therefore a definition of the problem has to be done,
including the requirements on the model. Thus different mod-
eling concepts have to be compared and evaluated with respect
to these requirements. The selected model should consider the
entire traffic environment in a best possible and realistic way.
Challenges are the consideration of multiple or even arbitrary
many traffic participants and multiple object classes (dynamic
and static ones). Furthermore, the complexity of the complete
recognition framework has to be kept feasible to be used with
state of the art hardware architectures for ADAS.

As shown in Figure 1.1, the scope of this work does not depend
on a specific sensor architecture. Thus, a variety of differ-
ent sensor systems are possible to be used. As the acquired
sensor data are used as input data for the modeling approach
of this work, a specific quality has to be guaranteed certainly.
However, the proposed concepts should be kept adaptable to
different sensor platforms. To show this flexibility different kind
of input sources for the proposed modeling approach should be
used in this thesis. Furthermore, the focus is on state of the art
hardware setups, as already been available in current vehicles,
in contrast to most situation assessment approaches presented
in recent years.

As one of the main challenges for all situation assessment ap-
proaches, evaluation cannot be done in a straight forward way.
Depending on the highest level of the information flow (behav-
ior execution), no general evaluation approach is applicable as
it depends on the further processing steps and the kind of ac-
cessed ADAS feature. However, the task of evaluating the pro-
posed approach of this work has to be treated in a way most
applications may use the gained information. Usually, any kind
of prediction capabilities of the overall systems are analyzed
therefore.

6



1.3. Outline

Even if this work should be adaptable to different input sources
and outputs (see Figure 1.1), its overall performance has to be
presented in the context of a real vehicle application. As
different combinations of sensors and applications are possi-
ble therefore, an appropriate overall system has to be selected.
Evaluation has to be done in this context to show the benefit of
the gained information about the recognized traffic maneuvers.
Therefore, an integration into a complete software framework
has to be done, to furthermore show the real time capabilities
of the overall system.

Finally, the gained information should be used to increase the
knowledge of the complete traffic scene by predicting driving
trajectories of single traffic participants. As most driver assis-
tance systems require robust predictions about the behavior of
different traffic participants, their trajectories, especially when
performing dynamic maneuvers, are of high interest. Thus, the
proposed prediction approach should be able to increase ro-
bustness and prediction horizon compared to state of the art
concepts. For an evaluation, the framework has to be tested
with simulated date as well as with real world data.

1.3. Outline

This thesis is structured as follows:

In the following Chapter 2 basic concepts for automated de-
cision making systems are presented. These may be applied
to the main recognition task of traffic maneuvers in this work.
While considering some basic requirements already mentioned
in this introducing chapter, two different groups of methods
are distinguished: logical and probabilistic approaches. After
giving a short overview of some logical agents in Section 2.1,
the focus of this chapter are the probabilistic models of Section

7



1. Introduction

2.2 and their characteristics. Therefore, Bayesian Networks
(BN), Dynamic Bayesian Networks (DBN) and Hidden Markov
Models (HMM) are discussed, including their definitions and
possible advantages or drawbacks for the topic of this thesis.
Furthermore, basic concepts of training and evaluation pur-
poses are presented. To finish this chapter, an overview and
evaluation of all concepts are outlined in Section 2.4.

The proposed probabilistic approach for recognizing traffic ma-
neuvers is presented in Chapter 3. An introduction including
a more detailed problem description and an overview of the
relevant state of research (and its discussion) is given at the
beginning in Section 3.1. The complete recognition framework
is detailed in Section 3.2 describing the used configuration for
parameter learning and used simulation software. The crucial
information considered in the observation model is focus of
the subsequent sections, as it is the indicator which maneuver
characteristics may be considered by the models. The more
accurate the information of the observation model is, the more
reasonable the recognition capabilities are. For first evaluation
purposes the recognition framework is tested and results with
simulated as well as with real world data are presented.

The evaluation of the presented maneuver recognition approach
is the topic of Chapter 4. Thus, the contribution of this
chapter is twofold: Firstly, the capabilities of the recognition
framework are evaluated and secondly, an example of the pos-
sible benefit for an ADAS application is presented. The first
task is handled by using the recognition results for predict-
ing typical safety critical situations in traffic scenarios. A large
database of real world traffic situations is used for that purpose
and different evaluation methods are conducted therewith. As
an application for a specific ADAS, in Section 4.2 the proposed
concepts are integrated into an already existing architecture for

8



1.3. Outline

the security of Car-to-Car (C2C) communication. Therefore,
the prediction approach is applied to adapt an already existing
system for verifying the trustworthiness of C2C communication
messages. Results with real world data are presented after-
wards to show the increased verification capabilities.

In Chapter 5 another possible benefit for different driver assis-
tance systems is discussed. Using the probabilistic information
of traffic maneuvers enables a more accurate and robust pre-
diction of the trajectories of single traffic participants. Thus,
an approach is presented which is motivated by the principles
of Case-based reasoning (CBR). A well suited similarity mea-
sure is introduced for combining single trajectory parts with
a predefined database. The prediction concept is tested with
simulated and real world data again. Evaluation is done by
comparing the proposed approach with ground truth data, as
well as with a commonly used predictor.

Finally in Chapter 6, a summary of the content of this thesis
is given and an outlook to ongoing work is discussed.

9





2. Concepts for automated Decision Making

In this chapter an overview of concepts for automated decision
making is given that can be used for the recognition of traffic
maneuvers. Automated decision making includes a wide field of
Artificially Intelligence (AI) that cannot be discussed entirely
in this thesis.

In general this task mainly addresses the problem of reason-
ing in a world with incomplete knowledge. In the past decades
many different approaches for reasoning of artificial agents were
developed to enable solving more and more complex tasks and
to handle and act in more complex environments. Interested
readers are referred to the works of Russell and Norvig (Rus-
sell and Norvig, 2009) and Bishop (Bishop, 2006), where an
overview of different AI topics is given, and for decision theory
in particular (Bather, 2000) and (Berger, 1985). Two different
aspects have to be considered here: What should the concept
of knowledge representation look like and how should reason-
ing be performed? To motivate these two questions, the scope
of this work may assist: To recognize traffic maneuvers, which
cannot be observed directly, the given or observable knowledge
about the environment have to be taken into account, requir-
ing an adequate knowledge representation. As a next step,
reasoning about traffic maneuvers has to be performed, where
usually inference algorithms are applied. In Figure 1.1, Situ-
ation representation and Situation interpretation are the two
crucial stages to which these two aspects are related to.
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2. Concepts for automated Decision Making

In the following two different classes of approaches are pre-
sented with respect to their capabilities of recognizing traffic
maneuvers:

• logical approaches, where different logical languages may
be used to interpret sentences building up the knowledge
base, and

• probabilistic approaches, where mainly graphical models
are used to represent the joint probability distribution
(JPD) over some random variables.

As traffic maneuver recognition can be interpreted as a task
of automated decision making or general classification, a lot
of different other approaches in the field of machine learning
(Bishop, 2006) do exist. An overview of related work about the
task of this thesis will be given in Section 3.1.2.

This chapter is structured as follows: In Section 2.1 automated
decision making with logical agents is discussed. Section 2.2
presents probabilistic approaches afterwards, where especially
Bayesian Networks (BNs), their capabilities and their exten-
sions for maneuver recognition are introduced. Examples of
another possible approach can be found in Section 2.3, where
the usage of State Machines and Artificial Neural Networks
(ANNs) for traffic maneuver recognition is discussed. Finally,
Section 2.4 discusses the presented concepts and motivates the
used approach in this thesis.

2.1. Logical Approaches

In (McCarthy, 1963a) and (McCarthy, 1963b) a first step was
done for reasoning and decision making in situations using for-
mal languages. A lot of classical logics were developed after-
wards, see, e.g., (Harmelan et al., 2008) Chapter 1. The main
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2.1. Logical Approaches

component of all logic based approaches is the knowledge base
in which the a priori knowledge about the world is stored in
terms of sentences. To build up correct sentences the syntax of
the language has to be considered. On the other hand the se-
mantic is used to interpret these sentences. Therefore different
logic languages can be used where adequate ones are presented
in the following. For a discussion and evaluation please refer to
Section 2.4 of this chapter.

The most basic concept for using logical agents is first order
logic (FOL). Although FOL enables to formalize many differ-
ent constructions from natural languages, it suffers under some
basic limitations. For instance, it is not able to express any
adjective and adverbial context (Vehicle A is driving fast, Ob-
ject A is a slow vehicle) or any prepositions referring to time
or position (Vehicle A is next to Vehicle B).

Modal Logic as invented by (Hintikka, 1962), extends the
concept of FOL with modal operators. An introduction and its
basic principles can be found in (Chellas, 1980) and (Harme-
lan et al., 2008) (Chapter 15). Basically, modalities that ex-
press possibility (�p :⇔ p is possible) and necessity (�p :⇔ p is
necessary) are involved as modal operators to overcome some
shortcomings of FOL. Nevertheless, the term modal logic is
used more broadly to express a variety of different modalities
(e.g., temporal modalities, modalities of knowledge and belief).
Modalities seem to be a very general requirement for many real
world applications since they extends classical logic to model a
priori knowledge, which includes uncertainties, ambiguities or
temporal changes over time.

In (Bennett et al., 2002) a framework for knowledge rep-
resentation and reasoning is presented using multi-dimensional
(two-dimensional) modal logic. This structure is capable to rep-
resent spatial, as well as temporal relations in complex worlds
(e.g., Vehicle A is behind Vehicle B). Nevertheless it has some
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2. Concepts for automated Decision Making

crucial difficulties in handling complex changes over time and
in keeping system complexity low, especially in worlds with in-
creased complexity (like multiple objects with an unknown or
varying number).

Temporal Logic can be considered to be a special case of
modal logic, where temporal modalities are added. Examples
therefore are: �p :⇔ p is true at all points in time in the future,
�p :⇔ p will eventually be true at some point in time in the
future. Interested readers are referred to (Øhrstrøm and Hasle,
1995) and (Manna and Pnueli, 1992) for more detailed infor-
mation on basic principles and ideas. The concept of model
temporal dependencies seems to be crucial in the context of
this work, as traffic scenarios contains important changes over
time.
An approach for applying temporal logic for situation mod-

eling was developed in (Schäfer, 1996) in terms of Fuzzy Metric
Temporal Horn Logic (FMTHL). Thereby it is possible to han-
dle both, time dependency and partial information by using
temporal modalities, uncertainty and fuzzy intervals. Man-
aging uncertain data is a very common requirement for real
world applications, since data acquisition is often defective.
Approaches are presented in (Munch et al., 2011), (Fernández
et al., 2008) and (Gerber and Nagel, 2008) where the knowledge
base, extracted from a computer vision system, is extended by
using FMTHL. However, these systems still have crucial dif-
ficulties in representing complex systems, as the underlying
knowledge base becomes unfeasible large and is hardly to be
built up using human export knowledge. This is the case, es-
pecially when considering different probabilistic types of infor-
mation.

Description Logic (DL) introduces the terminology of con-
cepts for representing the knowledge base of the application
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domain (Baader et al., 2003). Therewith, properties of objects
and individuals in the domain are described. One of the em-
phases of DL is the inference of knowledge from the explicit
information of the knowledge base. This knowledge base is un-
derstandable due to the similarity of DL axioms to the human
language, and therefore also serviceable as detailed in (Hummel
et al., 2007).

In (Hummel, 2009) an approach for scene understanding
based on DL is presented, more precise for intersection un-
derstanding in traffic scenarios. Therefore, some basic charac-
teristics of computer vision are converted to a DL framework
including object detection, object classification and data associ-
ation. Nevertheless DL still has some general problems, typical
for logic based approaches like the computational performance
and the incorporation of probabilistic information which makes
them unfeasible in many real world applications. See the fol-
lowing Section 2.4 for a discussion.

Markov Logic Networks (MLNs) as introduced in (Richard-
son and Domingos, 2006) represent an approach to overcome
the difficult handling and consideration of probabilistic infor-
mation when using logical agents. A MLN combines first-order
logic with Markov random fields.1 Therefore, weights are at-
tached to all sentences of the first order knowledge base, which
validates the assertion of the corresponding sentence. Thus,
any impossible sentence is associated with 0 and all true for-
mulas with the value 1. These values (or probabilities) have
to be learned from training data, which is a non-trivial task,
depending on the complexity of the modeled system.

MLNs can be applied to different application areas, such as
object classification tasks (see (Bachmann and Lulcheva, 2009),
(Stiller et al., 2008)) or to the recognition of objects relations

1Markov random fields, sometimes also called Markov Networks, are undi-
rected graphical models.
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(see (Hensel et al., 2010)). The evaluation of these approaches
can be performed intuitively because of their general traceabil-
ity. Although these modeling approaches seem to compensate
the main drawback of many logical agents, namely the handling
of uncertain information, it has some major problems in com-
plex real world applications: The complexity of the constructed
random field increases very fast with the number of objects and
with the number of underlying rules which makes MLNs prac-
tically unfeasible. In addition, they generally lack in modeling
temporal information and continuous random variables, as the
required discretization of the input variables always implies a
loss of information.

2.2. Probabilistic Approaches

After getting a brief overview of logical concepts, in the follow-
ing probabilistic approaches are presented. These are graphical
models, which can be roughly divided into

• Markov Networks and

• Bayesian Networks.

While a Markov Network is represented by an undirected graph,
Bayesian Networks are directed acyclic graphical models. Both
of them represent a joint probability distribution (JPD) over
some random variables χ = {X1, . . . ,Xn}. Those are repre-
sented by the nodes of the corresponding graph, and their con-
ditional dependencies by the edges (Koller et al., 2007).
One advantage of Bayesian Networks is the fact that they are

easier to interpret because of their clearer probabilistic seman-
tic. Therefore they are generally used where clear relations
in terms of cause and effect are given (modeled by directed
arcs in the corresponding graph). Markov Networks have their
strength in representing variables with a rather correlational
interaction, e.g., in tasks of image processing (Smyth, 1997).
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In the following sections a deeper look at Bayesian Networks
and some of their extensions is given. An overview of related
work about Bayesian Networks in the field of this work can be
found in Section 3.1.2.

2.2.1. Bayesian Networks

Bayesian Networks (BNs) are a useful tool to represent the
JPD over a set χ of n random variables Xi. The corresponding
acyclic directed graph G represents conditional independencies,
so that each variable Xi is independent of its nondescendents
given its parents par(Xi) (Markov property). The JPD of χ is
then given as:

P (x1, . . . ,xn) =
n∏
i=1

P (xi|par(Xi)), (2.1)

where P (xi) is used as an abbreviation for P (Xi = xi). When
defining Θi (i = 1, . . . ,n) as the set of parameters for repre-
senting the conditional probability distribution of Xi given its
parents, a BN can be defined as the tuple B := (G,Θ).

The direct representation of conditional independencies re-
duces the model complexity of the JPD in many cases signifi-
cantly. That means, the number of required model parameters
are reduced whatever the random variables are discrete or con-
tinuous valued. In the simpler, discrete case a specification
of the conditional probabilities can be done for each possible
value. However, in most real world scenarios continuous quanti-
ties were observed, which have infinite possible values. In these
cases two possible approaches may be applied: a discretiza-
tion of the continuous value range into predefined intervals,
which comes along with a loss of information and accuracy.
Another way is to handle continuous variables is the usage of
parametrized probability density functions as approximations,
e.g., the Gaussian distributions N(µ,σ2)(x) with 2 parameters

17



2. Concepts for automated Decision Making

Θ = (µ,σ). In the following the two main tasks for BNs (as well
as for all graphical models) are discussed: learning the model
and evaluating inference queries.

Learning in BNs: In most applications the setting of the BN
is unknown and has to be learned from training data D. This
may imply two different aspects: the network structure G and
the parameters Θ of the JPN (2.1). The first task, learning
the structure of the network, is a very challenging task which
is often performed by using expert knowledge, especially if the
complexity is assumed to be restricted. To solve this problem
analytically, definitions of the search space of possible network
structures, as well as a measure or score function are required.
The score function may be defined by using a posterior dis-
tribution P (G|D) of the possible network structures given the
training data set and can be approximated by sampling over the
structures using Markov chain Monte Carlo (MCMC) methods.
See (Friedman and Koller, 2003) for more detailed information.
For learning the parameters Θ of the JPD, it is often assumed
that the underlying model structure is known (Ben-Gal, 2007).
Therefore, the learning task is to find the model parameters
that match best with the training data. The basic element
therefore is the likelihood function, i.e., the probability of the
training data D = {x1, . . . ,xm}, with xi = (xi1, . . . ,xin)T , given
the model, where usually the log-likelihood function is used
instead:

logP (Θ|D) =
m∑
j=1

n∑
i=1

logPΘi(xji|par(Xi)). (2.2)

The maximization of this function over all possible model pa-
rameters Θ is the Maximum Likelihood solution for BN model
parameter estimation. Other approaches, e.g., Bayesian pa-
rameter estimation can be found in (Koller et al., 2007).
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2.2. Probabilistic Approaches

Inference in BNs: If the graphical structure as well as the
parameters of a BN are given, different inference queries may be
evaluated. In general, inference in BNs is the task to estimate
the posterior probability distribution P (X|o) of one or more
variables X for a given (i.e., observed) event o of some evidence
variables O and some non-evidence (i.e., hidden) variables Y,
such that:

χ= X∪O∪Y. (2.3)

An exact computation of P (X|o) requires in a straight forward
way the summation over all non-evidence variables, as a worst
case scenario:

P (X|o) = α
∑
y∈Y

P (X,o,y), (2.4)

where α is a normalization constant. Even for Boolean vari-
ables, the computational complexity is O(n2n), by what this
approach is intractable for large networks. For specific network
structures, there exists some algorithms for effectively compute
the probability in Eq. (2.4), like variable elimination for poly-
trees (single connected networks). However, for general net-
works, exact inference remains a NP-hard problem, see (Russell
and Norvig, 2009) for more information.

Therefore, approximative inference algorithms are used in
most applications based on sampling techniques. The simplest
way to sample is direct sampling, where events x1, . . . ,xn are
generated by sampling each variable in a topological order. If
this procedure is performed N times and let denote the fre-
quency of a specific event (x1, . . . ,xn) with N(x1, . . . ,xn) and
the probability to sample this event with PS(x1, . . . ,xn), the
following equation holds:
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lim
N→inf

N(x1, . . . ,xn)
N

= PS(x1, . . . ,xn) =

=
n∏
i=1

P (xi|par(Xi)) = P (x1, . . . ,xn) (2.5)

Hence, inference can be performed by rejecting those samples
which do not match to the given evidence o. In real world ap-
plications this approach is often unfeasible, because the number
of rejected samples increases exponentially with the number of
evidence variables. Likelihood weighting may be applied to
compensate this drawback, but nevertheless its performance
still depends on the number of evidence variables (and further-
more on the occurrence of the ordered variables, see (Russell
and Norvig, 2009)). Besides these approaches, MCMC algo-
rithms are very useful for probabilistic sampling, see (Andrieu
et al., 2003). MCMC changes only one variable in each step
but keeping the evidence variables fixed. Transition probabili-
ties are calculated with different sampling approaches, like the
Gibbs sampler.

BNs, as well as some of their extensions like object-oriented
Bayesian Networks (OOBN, see (Kasper et al., 2012)), pro-
vide an approach for automated decision making and reason-
ing in situations with incomplete knowledge in a probabilis-
tic manner. Hence, they are capable to deal with uncertain
and incomplete knowledge, which is a prerequisite for most
real world applications. Nevertheless, they have some major
drawbacks in handling dynamic, temporal dependencies and
in efficiently solving exact inference tasks, especially in large,
multiply connected networks.
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2.2.2. Dynamic Bayesian Networks

Dynamic Bayesian Networks (DBNs), first applied in (Dean
and Kanazawa, 1989), extends the theory of Bayesian Net-
works to handle temporal probability models and sequential
data. The main difference to BNs is that not only a set of (un-
observable, hidden) state variables X and (observable) evidence
variables O are considered, but a temporal model is applied:
Xt denotes the set of state variables at time t and Ot denotes
the evidence variables at time t. In most cases it is assumed,
that the sets of state and of evidence variables do not change
over time.

For defining a DBN, three kinds of information have to
be considered: The initial distribution over the system states
P (X0), the transition model for the system states P (Xt|X0:t−1)
and the observation model (or sensor model) P (Ot|X0:t,O0:t−1),
describing how the observation is affected by previous variables.
These values have to be specified for constructing a DBN, what
is unfeasible because of the unbounded number of required pa-
rameters. Therefore two assumptions are usually made:

• Markov assumption: This assumption restricts the
number of parents for the system variables and the obser-
vation variables by making the current state only depen-
dent on a finite set of previous states. When using the
simplest case of this assumption, namely the first order
Markov assumption, the following equations hold:

P (Xt|X0:t−1) = P (Xt|Xt−1) (2.6)
P (Ot|X0:t,O0:t−1) = P (Ot|Xt) (2.7)

• Stationarity: The conditional probability for state tran-
sitions does not change over time, so Eq. (2.6) and Eq.
(2.7) hold for all t.
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Inference in DBNs: The task of evaluating inference queries
in DBNs is similar to the one in BNs, as they can be trans-
formed to normal BNs by duplicating the time slices until the
network is large enough for the current observation data. This
procedure is called unrolling and enables applying the same
exact inference algorithms as named in Section 2.2.1. Unfortu-
nately, this results in the same problematic complexity, espe-
cially for large number of variables. Also approximate inference
algorithms may be applied, which can be roughly divided into
stochastic and deterministic approaches, see (Murphy, 2002)
for a detailed analysis.

Even if DBNs are capable of handling temporal systems, some
drawbacks of BNs still exist, like the difficult learning of the
network structure, in particular for complex systems, which
require human expert knowledge in most cases. Furthermore
inference still remains a challenging task for exact queries in
complex networks.

2.2.3. Hidden Markov Models

Hidden Markov Models (HMMs) are special cases of DBNs for
probabilistic reasoning in temporal systems. As first introduced
in (Baum and Petrie, 1966), they are extensively used for ap-
plications in speech recognition (see (Rabiner, 1989)). In the
last decades their application areas were extended to different
classification and recognition tasks, some of them can be found
in (Zucchini and MacDonald, 2009).
A HMM can be introduced as a DBN with only one dis-

crete state variableXt and one observation variable Ot, forming
two stochastic processes. Assuming there are n possible states
x1, . . . ,xn for Xt and Eq. (2.6) and Eq. (2.7) hold for all t, a
HMM is defined by the following:
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• The probabilities of the transitions from state xi to state
xj defines the state transition matrix A = {ai,j} (i, j =
1, . . . ,n), with:

ai,j := P (Xt = xj |Xt−1 = xi) ∀i, j = 1, . . . ,n. (2.8)

• The observation model B = {bi} (i = 1, . . . ,n) specifies
the probability of making an observation o while being in
state xi:

bi := P (Ot = o|Xt = xi) ∀i= 1, . . . ,n. (2.9)

• The initial state distribution π= {πi} (i= 1, . . . ,n) defines
the probabilities of being in state xi at the initial point
in time t= 0:

πi := P (X0 = xi) ∀i= 1, . . . ,n. (2.10)

A HMM is thus defined by the triple λ = (A,B,π). The fi-
nite dimensions of the state transition matrix A ∈Rn×n and of
the initial state distribution π ∈ Rn are defined by the num-
ber of discrete system states n. But otherwise, the dimension
of the observation model B depends on the number of differ-
ent observations, and on whether discrete or continuous values
are observed. For the simple, discrete case with m observation
symbols v1, . . . ,vm, B can be written as an m×n matrix with

bj,i := P (Ot = vj |Xt = xi). (2.11)

For continuous observations the same approaches as noted
in Section 2.2.1 for BNs may be applied. When using an
approximation with probability density functions, the dimen-
sion of B is further increased, which implies an increased num-
ber of model parameters. The structure of one HMM with
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Figure 2.1.: Structure of a HMM with three system states and two
observation symbols.

three system states and two discrete observation symbols can
be exemplarily seen in Figure 2.1.
The assumptions from Eq. (2.6) and Eq. (2.7) can be rewrit-

ten for HMMs to:

P (Xt = xi|X0:t−1) = P (Xt = xi|Xt−1) ∀i= 1, . . . ,n
(2.12)

P (Ot = vj |X0:t,O0:t−1) = P (Ot = vj |Xt) ∀j = 1, . . . ,m
(2.13)

Similar to BNs, the training of the model structure and pa-
rameters as well as applying inference queries are the two major
tasks when working with HMMs.

Learning in HMMs: For learning the structure of HMMs dif-
ferent approaches may be applied, as possible structures of the
network are often restricted by expert knowledge. Some popu-
lar kinds of HMMs can be found in (Bengio, 1999). Focusing on
the task of learning the model parameters λ for a given training
set otrain = (o0, . . . ,oT ) usually means solving the maximization
problem:

λ̂= argmax
λ

P (otrain|λ). (2.14)

Since there does not exist an analytical solution to this prob-
lem, approximate, iterative approaches are applied yielding in
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a local optimization of P (otrain|λ). The most common one
is the Baum-Welch algorithm or the more general EM method
(expectation-maximization). It can be roughly described by
the following steps (Zucchini and MacDonald, 2009):

1. Select the initial parameters λ0 = (A0,B0,π0).

2. E-step: Compute the expectations for the model param-
eters given the observation sequence otrain and the last
estimate of λt. Thus, it is necessary to compute the fol-
lowing:
• Expected number of state transitions from state xi

given the current model parameters and given the
observation sequence:

T−1∑
t=0

N∑
j=1

P (Xt = xi,Xt+1 = xj |λ,otrain).

• Expected number of state transitions from state xi
to state xj given the current model parameters and
given the observation sequence:

T−1∑
t=0

P (Xt = xi,Xt+1 = xj |λ,otrain).

3. M-step: Maximize P (otrain|λt), the conditional proba-
bility with respect to λ, using the calculated expectations,
yielding in new model parameters λt+1 satisfying:

P (otrain|λt)≤ P (otrain|λt+1) (2.15)

4. Repeat point 2 and 3 until a predefined convergence cri-
terion has been satisfied.
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A detailed description of the Baum-Welch algorithm can be
found in (Rabiner, 1989). It converges to a local maximum
based on its initial parameters, like in other non-convex prob-
lems. Therefore, λ0 has to be chosen wisely to find robust and
stable results. Furthermore, multiple runs of the complete al-
gorithm are usually done.

Inference in HMMs: Inference tasks in HMMs may be di-
vided into two following groups:

• Evaluation: For a given HMM λ and a given observa-
tion sequence o = (o1, . . . ,oT ) the conditional probability
P (o|λ) has to be computed.

• Decoding: For a given HMM λ and a given observation
sequence o = (o1, . . . ,oT ) the corresponding (hidden) state
sequence X = (X1, . . . ,XT ) has to be chosen.

Compared to inference in general BNs/DBNs, HMMs provide
exact inference algorithms for both tasks, due to their simplified
structure.

Evaluation in a straight forward way is unfeasible, since its
complexity is O(TNT ). The so called Forward algorithm en-
ables an effective evaluation for HMMs, due to their structure.
The Forward variable αt(i) for a given point in time t and state
xi is the conditional probability of observing the subsequence
(o1, . . . ,ot) ending in state Xt = xi given the model parameters
λ:

αt(i) := P (o1, . . . ,ot,Xt = xi|λ) (2.16)

The Forward algorithm is then recursively defined, as shown
in Algorithm 1. The complexity of computing the conditional
probability P (o|λ) using this procedure isO(n2T ), which makes
it feasible, even for large observation sequences o, as it only
increases linearly with its length T .
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Algorithm 1 Forward algorithm
Require: model parameter (A,B,π)
for all i=1,. . . ,n do
α1(i) = πibi(o1)

end for
for all t=1,. . . ,T-1 do
for all j=1,. . . ,n do
αt+1(j) = (

∑n
i=1αt(i)ai,j)bj(ot+1)

end for
end for
P (o|λ) =

∑n
i=1αT (i)

Decoding of a given observation sequence o requires an ex-
act definition of an “optimal” state sequence to o. The most
common optimization criterion therefore is to find the state
sequence X̂ that maximizes P (X|o,λ), i.e., that maximizes
P (X,o|λ)2. This problem can be solved by using the Viterbi
algorithm, a dynamic programming method. There, the highest
probability δt(i) for a single state sequence X1, . . . ,Xt ending
in Xt = xi and the first t observations is defined as:

δt(i) := max
X1,...,Xt−1

P (X1, . . . ,Xt−1,Xt = xi,o1, . . . ,ot|λ) (2.17)

The Viterbi algorithm is then recursively defined, as shown in
Algorithm 2. As for the evaluation task, the Viterbi algorithm
provides an analytical decoding procedure with a complexity
of O(n2T ).

HMM based approaches highly benefit from their well-establi-
shed theory about exact inference algorithms. Some of their

2Another possible optimization criterion may be defined by choosing each
state Xt, which is individually most likely. This may result in non-valid
state sequences, see (Rabiner, 1989).
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Algorithm 2 Viterbi algorithm
Require: model parameter (A,B,π)
for all i=1,. . . ,n do
δ1(i) = πibi(o1)
Ψ1(i) = 0

end for
for all t=2,. . . ,T do
for all j=1,. . . ,n do
δt(j) = max1≤i≤n(δt−1(i)ai,j)bj(ot)
Ψt(j) = argmax1≤i≤n(δt−1(i)ai,j)

end for
end for
X̂T = argmax1≤i≤n(δT (i))
for all t=T-1,. . . ,1 do
X̂t = Ψt+1(X̂t+1

end for

advantages and disadvantages can be furthermore found in
(Bilmes, 2006) and (Bilmes, 2004), respectively. One of their
major drawbacks is the necessity of either accurate human ex-
pert knowledge or employing a large set of training data. Fur-
thermore, prediction approaches using the underlying model is
not possible in a straight forward way (discussed in Chapter 5,
see also (Omerbegovic and Firl, 2013)). However, HMMs seem
to be very well suited for automated decision making in many
areas, as they provide a completed set of efficient algorithms
and enable flexible network structures.

2.3. Other Approaches

In addition to the logical and probabilistic concepts for au-
tomated decision making described in the last sections, there
exist other approaches, which may be applied to the task of
this work. Two of them are briefly discussed in the following.
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State Machines yield a simple approach to model a system
behavior that changes from one situation to another. Mainly
used to model robotic behavior, they are capable to engage
and control specific traffic maneuvers. A finite state machine
is defined by

• a set of states (represented by the nodes of the corre-
sponding graph), where only 1 node is active at any point
in time,

• a set of inputs,

• a transition functions to a new state given the actual state
and the given input,

• an initial state,

• a set of terminal states.

In (Kammel et al., 2008), a state machine (more precise an hi-
erarchical state machine, HSM) is used to implement an intel-
ligent maneuver planer on behavior generation level to perform
autonomous driving maneuvers. The basic concept of HSMs is
to group all states such that all sub-states are specializations
of the corresponding parent state. The desired advantage is
that the number of required state transitions is reduced so it
becomes easier to capture the complex system’s behavior. All
possible behaviors of the vehicle are modeled as a single state,
which consists of several sub-states. As an example, the state
Zone consists of several sub states of performing different ma-
neuvers on parking zones.

State machines represent an easy way to invoke different traf-
fic maneuvers based on a predefined set of situational states.
However, even for situations of small overall complexity, diffi-
cult state transitions and often a large number of system states
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are required. This often results in unfeasible network struc-
tures, in which inference algorithms are only hard to be per-
formed. Also the assumptions that only one system state is
allowed to be active at any given point in time seems to be
too much restrictive, as common traffic scenarios have usually
a probabilistic nature.

Artificial Neural Networks (ANNs), motivated by neural net-
works as used for modeling networks of biological neurons, are
another possible approach for building up models for automated
decision making. A possible introduction to basic concepts may
be found in (Russell and Norvig, 2009). Its smallest unit is a
neuron, which consists of multiple inputs including correspond-
ing weights. Each neuron emits an output signal, depending on
the sum of its weighted inputs and on the underlying emission
function. The structure of an ANN is defined by the number of
neurons, their spatial alignment and all required connections.
Basic network structures are feed-forward- and feed-backward-
networks. Training of ANNs may be performed either by super-
vised learning algorithms (e.g., Delta rule or backpropagation)
as mainly used for recognition and classification tasks, or by
unsupervised learning algorithms (e.g., Hebbian learning) as
used for prediction issues.
Automotive applications of ANNs, especially in the field of

traffic situations and their assessment, are presented exemplary
in (Selinger, 2009) and (Keßler, 2011). In the latter, a master
thesis supervised by the author of this work, a special case of
feed-forward neural network is used, named Cascade-forward
network, where every layer of neurons is connected to the in-
put layer as well. Therewith, a recognition framework is built
up for traffic maneuvers in terms of interactions between sin-
gle vehicles. While learning is done with simulated data only,
evaluation of the trained networks is done with simulated data
as well as with real world data.
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2.4. Discussion

Although ANNs becomes more and more popular in the last
decades for a wide variety of application areas, they still suffer
from some major drawbacks. The first one is the challenging
training stage of the network. Therefore a specific structure has
to be determined, which is usually done empirically. There ex-
ist some well-established rules for selecting network layouts for
a given problem. However, different network types have to be
implemented and evaluated with respect to the given problem
in most cases. Another problem is the very restricted readabil-
ity of ANNs, as they are characterized as black box devices.
Thus, the optimization or adaption of any given network be-
comes nearly impossible, since single model parameters cannot
be interpreted directly. So, any well suited characteristic is not
reproducible or guaranteed when building up new networks.

2.4. Discussion

In this section a discussion of the approaches presented in Sec-
tion 2.1 and Section 2.2 is done and their usefulness for recog-
nizing traffic maneuvers in this work is evaluated. Therefore
the requirements on this concepts have to be considered, as
already briefly noticed in Chapter 1:

• Traffic situations usually involve multiple objects, or
rather objects with an unknown or varying number. For
most approaches this results in complex models making
inference algorithms quite difficult and resource-consuming.
Thus, the proposed approach has to consider multiple
objects while keeping generally applicable concerning its
computational costs.

• Objects in traffic situations have spatial-temporal de-
pendencies. Especially the consideration of the tem-
poral component, i.e., the changes of object’s states and
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2. Concepts for automated Decision Making

their relations over time, is a prerequisite for robust mod-
eling approaches.

• The input (observation) data is usually uncertain, de-
pendent on the applied sensor architecture. These un-
certainties have to be taken into account by the selected
model.

• The results when recognizing traffic maneuvers also need
to be somehow ’probabilistic’, i.e., the identification of
different traffic maneuvers is not definite. Also human
experts cannot identify each situation exactly, so uncer-
tainties and ambiguities have to be considered.

Most logic based approaches are powerful tools for the rep-
resentation of and the reasoning in real world scenarios. With
some of their modal operators they are capable to handle sys-
tems with temporal dependencies and variables changing over
time. But nevertheless, the modeling of uncertainties and am-
biguous as well as the generation of probabilistic results are
hardly possible, what is a prerequisite in this work. Further-
more, they seem to be somehow unfeasible for complex situa-
tions due to an extended knowledge databases, e.g., in situa-
tions with multiple objects. Markov Logic Networks attempt
to extend logical concepts in a probabilistic manner to handle
uncertainties, but still have drawbacks when cooperating with
continuous or temporal data.
In this chapter probabilistic approaches were discussed in

terms of Bayesian Networks and some of their extensions. While
they are capable of probabilistic reasoning and inference, no
temporal dependencies could be taken into account. Dynamic
Bayesian Networks compensate this drawback, usually result-
ing in expanded networks, making efficient inference algorithms
hardly performable. Also parameter learning remains challeng-
ing due to their complex network structures. Hidden Markov

32



2.4. Discussion

Multiple
objects

Temporal
dependencies

Uncertainties
Ambigui-

ties

Inference
Training

Logical
Approaches - o - o

Markov Logic
Networks

- - o o

Bayesian
Networks o o + o

Dynamic Bayesian
Networks

- + + o

Hidden Markov
Models o + + +

Table 2.1.: Approaches for automated decision making and their capa-
bilities to satisfy different requirements for situation recognition in traffic
scenarios.

Models overcomes this problem by restricting the general net-
work structure resulting in efficient learning algorithms and the
possibility of performing exact inference.

In Table 2.1 a summary of the presented approaches is pre-
sented, including their major capabilities to satisfy important
requirements for the scope of this thesis.
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3. Probabilistic Model for Maneuver
Recognition

After having an overview of different concepts for automated
decision making, in this chapter the approach for probabilistic
modeling of traffic maneuvers is presented. This approach is
mainly motivated by the discussion of the previous chapter,
where assets and drawbacks of different concepts were outlined.

Before describing the maneuver recognition framework, an
introduction is given in Section 3.1, where the problem is for-
mulated in more detail and the state of research for maneuver
recognition approaches is briefly presented. After that, the pro-
posed modeling approach is introduced in Section 3.2 with all
relevant stages. Recognition results with simulated as well as
with real world data are presented afterwards in Section 3.3.
The chapter is finally summarized in Section 3.4.

3.1. Introduction

In this section the problem of modeling and recognizing traf-
fic maneuvers is described. First, a precise description of the
problem to be solved and a summary of the current state of
research are given.

3.1.1. Problem Description

The problem of recognizing traffic maneuvers in terms of inter-
actions between different traffic participants was already intro-
duced in Chapter 1 (Figure 1.1). Current ADASs operate based
on information of single objects in the vehicle’s environment.
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3. Probabilistic Model for Maneuver Recognition

(a) Intersection: Mühlburger
Tor, Karlsruhe.

(b) Autobahn A5, Karlsruhe.

Figure 3.1.: Two different traffic scenarios, with different characteristics
and challenges for maneuver recognition approaches.

This information is sufficient for many current applications. For
future systems, especially when going the next steps towards
autonomous driving, a more accurate recognition and consid-
eration of the vehicles surrounding are required. The relation-
ships and interactions between different vehicles are examples
of these challenges.
Interactions between traffic participants are highly depend-

ing on the current scenario. While driving on urban streets,
more additional constraints have to be taken into account than
on extra urban streets, like multiple traffic lights, one-way
streets, impasses and pedestrians/cyclists. This work focuses
on extra urban situations, like rural roads or highways. In
Figure 3.1 an inner city scenario and a highway situation are
depicted exemplary to show different challenges for maneuver
recognition, e.g., complex traffic rules (varying right of ways
at different types of intersections), traffic lights or multiple
classes of traffic participants (pedestrians, bikes, motorcycles,
cars, trams).
Thus, the task of maneuver recognition in the context of this

thesis can be described as follows:
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3.1. Introduction

Maneuver recognition: Traffic maneuvers in terms of interac-
tions between different traffic participants have to be recognized
in a probabilistic manner, depending on the current kinematic
information of all relevant objects in the traffic scene (e.g.,:
position information, speed, acceleration) and the traffic sce-
nario (e.g.,: lane information, road boundaries, static objects),
if available. It should not depend on the source of input data
(sensor system) and on the application (ADAS) that makes use
of this information (see Figure 1.1).

3.1.2. State of Research

Recently, many different approaches for maneuver recognition
have been developed focusing on different situations and han-
dling different driving maneuvers. In the following a summary
of different works using probabilistic models is presented in-
cluding their limitations. These approaches are applied for
maneuver recognition tasks to inner city as well as to extra
urban traffic scenarios, as similar probabilistic approaches may
be applied to both of them.

In (Schubert and Wanielik, 2011) a framework is presented to
handle the assessment of objects and situations including their
uncertainties in extra urban traffic scenarios for detecting lane
change maneuvers. Therefore, Bayesian Networks are used to
consider the uncertainties of perceived vehicles and lane mark-
ings. The corresponding network consists of different discrete
nodes which represent information about all lanes (i.e., whether
the lanes are either free, occupied or potentially dangerous)
or the feasibility of lane change maneuvers (i.e., whether the
maneuver is possible, impossible or safe). The output of the
network is the decision node containing the values Keep lane,
Lane Change Left/Right, which can be inferred exactly due to
the small number of discrete nodes.
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3. Probabilistic Model for Maneuver Recognition

However, some of the drawbacks of BNs mentioned in Section
2.2 can be noticed in this work: The estimation of the model
parameters, i.e., the definition of the conditional probability
tables, requires human expert knowledge to take all relevant
rules for lane change maneuvers into account. Furthermore, no
temporal dependencies of the objects are considered and the
interactions of traffic participants are not modeled explicitly.
Besides that, the general evaluation of this interesting approach
is not conducted, but only one sequence of simulated and one
sequence of real data is discussed, respectively. That is why no
statistical conclusion is done, like the analysis of falsely recog-
nized lane changes (false positives).

The goal of the approach presented in (Kasper et al., 2012) is
the detection of lane change maneuvers. It uses object-oriented
Bayesian Networks (OOBNs) (Koller and Pfeffer, 1997), which
extend BNs by using instance nodes to represent network seg-
ments within one single node. Results are read out from one
single decision node again, which has discrete values like Fol-
lowing Object, Following lane or Cut in/out. The overall frame-
work is easy to read and to interpret and was evaluated with a
set of real world maneuvers.
Like classical BNs, OOBNs are not capable of modeling tem-

poral dependencies in the system, so that the authors already
thought about the usage of Dynamic Bayesian Networks. In
addition no relative kinematic information between the traffic
participants, like the relative distance, speed and acceleration
is included, what is a clear potential for improvement of the
proposed approach. The consideration of information of the
surrounding of the ego vehicle is also an open issue, so that the
framework achieves only reasonable results in simplified sce-
narios, where no objects like construction sides or other static
objects appear.
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3.1. Introduction

In (Liebner et al., 2012) and (Liebner et al., 2013) another
probabilistic framework for the recognition of traffic maneu-
vers based on BNs is outlined, which is applied for a right turn
assist at inner-city intersections. The three nodes of the net-
work are the driver’s intention I (e.g., go straight, turn right but
stop), the applicable driving hypothesis H, clustered from the
parameters of the proposed Intelligent Driver Model (IDM)1

and the observation O. The calculation of the required prob-
ability P (I|O) is done by summing up over all Hi, what is
applicable due to the small number of 24 applied hypotheses.
Measurement data was acquired at one intersection using dif-
ferent drivers and different traffic conditions (with and without
a preceding vehicle).

The proposed approach shows reasonable results with real
world data and evaluations of prediction accuracy are given.
Nevertheless, this approach is restricted to the given intersec-
tion geometry and the generalization to arbitrary scenarios is
still an unsolved task (see also Section 1.1 of this thesis). In
more complex situations the precise modeling and consideration
of the interacting behavior between different traffic participants
will become more challenging, but this issue is not handled and
integrated so far by the authors.

The authors of (Gindele et al., 2010) use Dynamic Bayesian
Networks to estimate the behavior of traffic participants as well
as their future trajectories. The variables of the network rep-
resent the vehicle states (e.g., position and speed), situational
features (e.g., dlong,f longitudinal distance to vehicle ahead,
dlong,b), recognized situation classes (e.g., vehicle is close and
vehicle is far away), behaviors (e.g., free ride and sheer in),
trajectories (interpreted as the realizations of the correspond-

1In general, the IDM is an approach for continuous modeling driving
following maneuvers. In the above mentioned approach the model is
extended to account for decelerations occurring on right turn situations.
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3. Probabilistic Model for Maneuver Recognition

ing behaviors) and a measurement vector, which is assumed to
be a subset of the vehicle states. All variables are interpreted
as vectors of the size of the number of traffic participants in the
scene. The dynamics of the system are modeled as a first order
Markov process to keep model complexity low. The approach
is tested with simulated data with two cars on a two-lane road
performing an overtaking maneuver with one lane change.
The proposed framework is able to handle temporal depen-

dencies between traffic participants in a simplified scenario at
a relatively low model complexity. More complex situations
(e.g., more objects or urban environments) would result in
more complex model structures and a highly increased compu-
tational effort for performing inference algorithms. The used
joint probability function including the conditional independen-
cies of the variables is set by human expert knowledge as well
as the conditional probability functions, which is a quite error-
prone procedure only working in straightforward scenarios.

In (Meyer-Delius et al., 2009) Hidden Markov Models are used
for recognizing different maneuvers in terms of interactions be-
tween two traffic participants on extra urban roads. Thus, the
temporal dependencies of the traffic scene are considered, and
furthermore the simplified model structure is exploited. While
in the previous version (Meyer-Delius et al., 2007) a discretiza-
tion of the selected observations is done to handle the contin-
uous input data (relative speed, velocity, acceleration between
two traffic participants), in the newest version an approxima-
tion with different parametric probability distributions is ap-
plied. The estimation of the model parameters is done by us-
ing training data, while exact inference algorithms are used to
execute the maneuver recognition. Testing is only performed
with simulated data and with very few real world sequences
consisting of two vehicles, what makes a statistical evaluation
impossible.
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3.2. HMM-based Maneuver Recognition

Using HMMs may be a promising approach for recognizing traf-
fic maneuvers, as been discussed in Chapter 2. Nevertheless,
their usage in complex situations is still an open issue, as well
as the evaluation of their performance. In real world situa-
tions with multiple objects (dynamic and static) the modeling
of the traffic scene has to be adapted to keep the overall model
complexity feasible.

Discussion: Different probabilistic approaches for the recog-
nition of traffic maneuvers were developed in recent years,
mainly using Bayesian Networks or their extensions to han-
dle the spatio-temporal dependencies. These works are mostly
focusing on basic urban scenarios (e.g., one specific intersection
with given road geometry) or on simplified extra urban traffic
situations (e.g. highways with only two traffic participants).
In addition they have crucial difficulties to be evaluated with
a significant large dataset of real world situations. Neverthe-
less, DBNs and especially HMMs have shown their potential
to model difficult spatio-temporal dependencies and to be able
to perform training and inference algorithms with reasonable
computational cost. In the following, an approach for recogniz-
ing traffic maneuvers in extra urban scenarios using HMMs is
presented in detail.

3.2. HMM-based Maneuver Recognition

In this section the basic idea of how to use HMMs for maneu-
ver recognition is characterized and the different aspects of the
modeling concept are depicted. Some exemplary results are
outlined in Section 3.3.
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3. Probabilistic Model for Maneuver Recognition

(a) Following maneuver (b) Flanking maneuver

(c) Overtaking maneuver
with 1 lane change

(d) Overtaking maneuver
with 2 lane changes

Figure 3.2.: Paths of traffic maneuvers on extra urban roads.

3.2.1. Approach

The basic idea of this work is employing HMMs for model-
ing and recognizing traffic maneuvers as motivated by (Meyer-
Delius et al., 2009) and published in (Firl and Tran, 2011) and
(Firl et al., 2012). Typical extra urban maneuvers are over-
taking, following and flanking maneuvers, which can be inter-
preted as interactions between different traffic participants. A
schematic view is shown in Figure 3.2.

To recognize such maneuvers the following procedure is ap-
plied: Each maneuver is modeled by one HMM λi. For each
point in time an observation ot is extracted from the traf-
fic scene (see Section 3.2.3) and for each model it is checked
whether it is consistent with the current observation ot (or with
a sequence of observations o) or not. Therefore the probabil-
ity for each model given the respective observation sequence is
calculated using the Forward algorithm2. The results are the
probabilities P (o|λi) for each maneuver, whether it matches

2The Forward algorithm is used, because the concrete sequence of (hid-
den) system states is not of interest, but the probability of the entire
model to be consistent with the observation. Otherwise Viterbi algo-
rithm have to be used instead.
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3.2. HMM-based Maneuver Recognition

Figure 3.3.: Maneuver recognition approach including a (offline) train-
ing stage of m HMMs λ1, . . . ,λm, and an (online) recognition stage.

the given observation or not. The decision which maneuver is
currently been occurring is done by a comparison of all model
probabilities. Hence, two different steps have to be done:

1. Training (Learning) of the model parameters

2. Recognition of traffic maneuvers

The training stage can be executed offline, since the model
parameters are assumed to be constant over time and are thus
only learned once. The recognition of traffic maneuvers must
be performed online, since its results for an observation ot is
of interest at this particular point in time t. The approach
is illustrated in Figure 3.3, where Driver, Road, Vehicle and
Traffic are interpreted as input values for the traffic situation,
which have to be considered by the observation o. The training
and recognition stage are both detailed in the following sections.

3.2.2. Training

Training in HMMs consists of two different tasks (see also Sec-
tion 2.2.3): Determining the model structure and learning the
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3. Probabilistic Model for Maneuver Recognition

model parameters λ= (A,B,π). The first task is mainly related
to defining the number of system states n for each model, re-
strictions to state transitions and the used observation model.
After the structure has been determined, model parameters are
estimated using the Baum-Welch algorithm.

Learning the model structure is done experimentally by us-
ing expert knowledge (see Section 2.2) and by keeping in mind
the challenge of combining modeling capability and computa-
tional feasibility. Especially the number of system states n has
to be chosen wisely, as the computational costs of performing
one step of the Forward algorithm increases quadratically with
the number of model parameters (O(n2T ), see Section 2.2.3).
However, increasing n always increases the modeling capabili-
ties. Some criteria for model selection may be applied, as the
Akaike information criterion (AIC) or the Bayesian informa-
tion criterion (BIC), see (Zucchini and MacDonald, 2009) for
more information. For real world applications model selection
remains challenging as computational requirements and desired
model capabilities are hard to determine. Different restrictions
to state transitions ai,j defines different model structures, as
left-right models, input-output models or factorial HMMs. In
this work HMMs with 5 system states and no restrictions to the
state transitions are used (fully connected HMM). This tourned
out to be the most adequate tradeoff between computational
effort and model capabilities. More system states would also
require a larger training database to avoide the model only
memorizing training data.
Besides the structure of the system states, the applied ob-

servation model plays a distinctive role for the complexity of
the overall system. Since continuous observation values are
usually acquired from the traffic scenario (see Section 3.2.3), a
discretization or parametrized probability functions have to be
used for approximation (see Section 2.2). To avoid the short-
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3.2. HMM-based Maneuver Recognition

comings of a discretization of the range of the observation val-
ues, a Mixture of Gaussians model (MoG) is applied to approx-
imate the exact observation distribution P (Ot|Xt):

bi(o) = P (Ot = o|Xt = xi)≈
nmix∑
j=1

ci,jN(o,µi,j ,σ2
i,j), (3.1)

where nmix is the number of used mixtures and ci,j are the
weighting coefficients. For applications, with more than one
observation available, i.e., where o consists of multiple observa-
tion values, Eq. (3.1) has to be considered for all observations
o. In the following, o and ot denotes the complete vector of
nobs observations rather than single values.

For learning all model parameters the Baum-Welch algorithm
is applied for every maneuver to estimate the state transition
matrix A ∈ R5×5, the initial state distribution π ∈ R5 and the
observation model B. The parameters of the observation model
are c, µ and σ for every combination of possible system state
and observation and for every Gaussian mixture. The number
nmix is chosen according to the number of system states and
the available hardware performance (in this work nmix = 3).
The precise definition of the observation vector is presented in
the following Section 3.2.3.

The training database is generated using the simulation tool
CarMaker R© (IPG Automotive GmbH, 2011). Real world data
was not used for training purposes, because of the great number
of required training sequences due to the large number of model
parameters and due to the variety of how maneuvers can be
performed3. In this work the number of parameters for each
model is

3A crucial difficulty when using real world data for training purposes is
that for an entire setup of the database, safety critical maneuvers have
to be considered, especially for dynamic overtaking maneuvers.
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3. Probabilistic Model for Maneuver Recognition

(a) CarMaker main frame. (b) IPG Movie frame for
visualization.

(c) IPG Control for simulation analysis.

Figure 3.4.: IPG CarMaker R©simulation environment

5∗5︸︷︷︸
A

+ 5︸︷︷︸
π

+5∗3︸︷︷︸
c

+4∗5∗3︸ ︷︷ ︸
µ

+4∗4∗5∗3︸ ︷︷ ︸
σ

= 345, (3.2)

where c, µ and σ are the MoG parameters of the observation
model B. CarMaker R© is able to simulate different driver, road
and vehicle characteristics as well as multiple traffic partici-
pants. An analysis tool provides a fast evaluation of the gener-
ated simulation sequences, depicted in Figure 3.4. For training
the used models about 900 sequences of overtaking maneuvers,
100 sequences of following maneuvers and 50 sequences of flank-
ing maneuvers are acquired. Their relative paths can be seen
in Figure 3.5. The definition of the coordinate system and the
complete observation vector is given in the following Section
3.2.3. When creating the databases, different parameters are
identified to be crucial for the execution of the maneuver and
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3.2. HMM-based Maneuver Recognition

have to be varied throughout the generation process, e.g.:

• different driver characteristics, i.e., aggressive ↔ defen-
sive drivers, including different acceleration values,

• different absolute velocities of the vehicles,

• different lane positioning of the vehicles (relative to center
line),

• different distances between the vehicles (longitudinal and
lateral) when performing the maneuver,

• different relations of distances and relative and absolute
velocities of the vehicles.

Without loss of generality all sequences are simulated on straight
roads, see Section 3.2.3, and with two vehicles performing the
maneuver, see Section 3.2.4. After an initialization Baum-
Welch algorithm estimates the model parameters with this data
resulting in (locally) optimal model parameters. As no global
optimality is guaranteed, initial parameters have to be chosen
wisely and with respect to the used training data. Further-
more, the training procedure has to be applied multiple times
and with different initializations to minimize the risk of select-
ing non-optimal model parameters.

3.2.3. Observation Model

For the complete maneuver recognition approach the definition
of the observation vector is a key aspect, as it defines the sce-
nario information of the traffic scene which is considered. The
more accurate the observation vector is defined, the more ro-
bust the recognition framework will work. Keeping in mind
that the approach presented in this work should be handle dif-
ferent sensor setups working as input data source, no special in-
formation about the traffic scene, which can be observed hardly
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(a) Database for overtaking
maneuver.
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(b) Database for following
maneuver.
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(c) Database for flanking
maneuver.

Figure 3.5.: Relative paths of sequences of simulated database for over-
taking, following and flanking maneuvers.

with common sensor setups, have to be used. Examples for this
are:

• blinker (direction indicator),

• information on the driver (viewing direction, driver’s
mood),

• information of infotainment system (navigation).

Thus, the observation vector mainly consists of the kinematic
relation of the two vehicles performing the maneuver, i.e.:

ot := (dx,dy,vrel,arel), (3.3)

where dx and dy are the relative distances in two dimensions
and vrel and arel are the relative velocity and acceleration,
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(a) Vehicle fixed Cartesian
coordinate system.

 

(b) Lane fixed coordinate
system.

Figure 3.6.: Motivation for the use of a lane fixed coordinate system on
a right-hand bend with the observation dx and dy.

respectively4. For application purposes the underlying coordi-
nate system has to be defined, since different types are possible
and feasible.

In most cases observations are received by a vehicle’s on-board
sensor system, like radar or camera systems. The choice of
using a sensor-fixed coordinate system is therefore often a
straightforward approach (a vehicle-fixed coordinate system
can be used equivalently in many cases). While on straight
roads this usually results in reasonable observations, the road’s
geometry has to be taken into account on winding streets. In
Figure 3.6 the undesired effect for the observations dx and dy

is depicted, when using a vehicle fixed coordinate system at a
right turn. Especially the value of dy in Figure 3.6(a) is not
characteristic for the present scene when not taking the road
geometry into account. The resulting paths for both systems,
when two vehicles perform an overtaking maneuver at a left
curve can be seen in Figure 3.7. While the paths in the lane
fixed coordinate system can be clearly interpreted, the vehicle

4vrel and arel are only used as 1-dimensional values, because most com-
mon automotive sensors have major difficulties in providing accurate
resolutions of the velocity and acceleration of observed objects in longi-
tudinal and lateral direction.
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Figure 3.7.: Paths of an overtaking maneuver with two different
coordinate systems at a left curve. Lane adapted coordinate system and
fixed coordinate system of the overtaken vehicle (coordinates of maneu-
ver start: (−20|0)).

fixed coordinate system results in less obvious paths. The con-
sequences of that on the maneuver recognition results will be
discussed in Section 3.3.
To transform the observation data of the sensor fixed coordi-

nate system into the lane oriented one, a geometrical model of
the lane has to be acquired. This depends mainly on the used
sensor setup, and thus cannot be assumed to be given in all
situations5. Two commonly used models for representing the
geometry of the lane are splines (e.g., presented in (Hasberg
and Hensel, 2008) and (Hasberg et al., 2012)) and clothoids
(introduced in (Archibald, 1918)), which are depicted in Fig-
ure 3.8. These are used in the experiments presented in Section
3.3. Clothoids are planar curves with a curvature changing lin-
early with the curve length L. Their parameters are the lateral
offset YE , the offset angle Φ and the curvature parameters c0
and c1.

5If no information of the geometry of the lane can be extracted out of
the sensor data, the sensor or vehicle coordinate system has to be used
instead.
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Figure 3.8.: Clothoid model with length L, parametrized by
(YE ,Φ, c0, c1); see (Darms et al., 2010)

Since all entries of the observation vector in Eq. (3.3) are
usually continuous valued, an approximation using Mixture of
Gaussians have to be applied for all of them. Their entire pa-
rameter set (c, μ, σ) are trained using Baum-Welch algorithm
with nmix = 3. In Figure 3.9 the resulting probability distribu-
tion for the observations dx and dy are plotted for all 5 system
states of the following model. For the recognition of traffic ma-
neuvers, the distributions of single system states xi does not
play a significant role, but the complete distributions over all
states does, as depicted in Figure 3.9(f) (see Algorithm 1, sum-
mation in the last line).

3.2.4. Free Space Consideration

The observation vector from Eq. (3.3) considers the relational
kinematics between two traffic participants. However, this re-
stricts the modeling capability in many real world situations,
where more than two vehicles have to be taken into account, or
other static objects influence the execution of traffic maneuvers.
To compensate this drawback one possible solution is to extend
the observation vector with the relative kinematic information
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3. Probabilistic Model for Maneuver Recognition

(a) State Xt = x1 (b) State Xt = x2

(c) State Xt = x3 (d) State Xt = x4

(e) State Xt = x5 (f) State Xt ∈ {x1, . . . ,x5}

Figure 3.9.: Observation distributions for the 2 observations dx and
dy of the following model for different given system states Xt and their
weighted sum (nmix = 3). The different system states can be interpreted
as different characteristics of following maneuvers, i.e., mostly different
longitudinal distances.

to all others vehicles, e.g., distance, velocity and acceleration
data to the next vehicle ahead (and/or behind) in the same
lane, or in all adjacent lanes. This approach increases the di-
mensionality of the observation vector significantly and makes
it unfeasible for most applications. In this work a method
based on occupancy states is presented that only increases the
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(a) Motivation for
free space considera-
tion (example: over-
taking recognition).

(b) Required free
space for overtaking
and following maneu-
vers.

(c) Definition of the
occupancy grid for
overtaking and follow-
ing maneuvers.

Figure 3.10.: Usage of occupancy grids for free space consideration, see
(Firl et al., 2012).

dimensionality of the observation vector by 1 (see also (Firl
et al., 2012) and (Firl and Tran, 2011)). Nevertheless, it is
possible to consider a wide range of influences on the traffic
scene:

• other traffic participants and their future driving trajec-
tories,

• static objects, like construction sites or road boundaries,

• road characteristics, like different number of lanes.

An illustrative example is shown in Figure 3.10: In both sit-
uations of Figure 3.10(a) the same observation vector o of Eq.
(3.3) is extracted. This implies the same maneuver probabili-
ties P (o|λi) for all maneuvers λi (see Figure 3.3). Obviously the
probability that the two vehicles performs, let’s say, an over-
taking maneuver is definitively different. In the situation of the
lower image of Figure 3.10(a), an overtaking maneuver is even
impossible due to the construction site on the left lane. So,
the obtained observation model does not reflect the situation
appropriately.
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3. Probabilistic Model for Maneuver Recognition

The main idea of considering such influences is to model the
required free space for the execution of the maneuver and to
add this information to the observation vector. This is done by
the following steps (published in (Firl et al., 2013)):
First, the required free space for a maneuver has to be defined

using human expert knowledge, see Figure 3.10(b) for examples
of overtaking and following maneuvers. As the interacting traf-
fic participants changes their positions relative to each other,
the dimensions of the available free space may vary over time.
The next step is to consider the information of this required

free space in a mathematical way, which can be either free,
occupied or neither complete free nor complete occupied, which
is detailed later. For this purpose occupancy grids are used in
this work as depicted in Figure 3.10(c). The number of cells
varies for different maneuvers, but they are fixed for one given
maneuver. Furthermore, the number of cells is independent of
the relative distances of the interacting vehicles and thus, the
size of each cell is variable. The dimensions of the grid depends
on the accuracy of the given sensor information.
To combine this information of the occupancy grid with the

given observation model, each cell of the grid has to be adapted
with a value representing either the cell is free for the execution
of the maneuver, or it is blocked (or neither). Therefore the
variables fi,j ∈ [0,1] are defined for every maneuver λ as follows:

• fi,j = 0 : the cell (i, j) is occupied and restricts an execu-
tion of the maneuver λ.

• fi,j = 1 : the cell (i, j) is free and no restrictions to the
execution of the maneuver λ are given.

• fi,j ∈ (0,1) : the cell (i, j) is neither completely free nor
completely occupied, and thus the execution of the ma-
neuver is neither definitively possible nor impossible (re-
garding this cell).
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3.2. HMM-based Maneuver Recognition

While the first two cases (fi,j ∈ {0,1}) mainly represent the
consideration of static objects (like construction sides or road
boundaries), other values correspond to the consideration of
other dynamic traffic participants. Because their relative dis-
tances change over time, not only the current position has to
be taken into account, but also their future driving trajectory.
Because there exist a lot of different prediction approaches,
and the prediction accuracy is highly depending on the used
sensor data, a general reasonable formula for the values fi,j is
hardly possible. Nevertheless, the interpretation is: The more
accurate the prediction regarding the occupancy of a cell (i, j)
is, the closer the value (fi,j) is to 0.
As a last step, the observation vector ot has to be adapted by
adding a new, continuous observation value f ∈ [0,1] resulting in

ot := (dx,dy,vrel,arel,f). (3.4)

This adapted observation model has to be considered in the
training data for each model. f is calculated for the maneuver
recognition stage (and also for the training data) by summing
up over all cells:6

f = 1
#cells

∑
all cells (i,j)

fi,j . (3.5)

The proposed approach of using adaptive occupancy grids for
modeling different characteristics of traffic scenarios combines
different advantages. It allows to consider all possible objects
having any influence of the execution of the traffic maneuver.
This also implies multiple, dynamic traffic participants of a
varying number. At the same time, the dimension of the obser-

6A weighted sum over all cells is also possible, but then the single weights
for each cell have to be trained manually by using human expert knowl-
edge.
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3. Probabilistic Model for Maneuver Recognition

vation model is only increased by 1 keeping the computational
complexity at a low level.

3.2.5. A Priori Knowledge

The described observation model (Section 3.2.3 and Section
3.2.4) is able to capture most relevant information for recogniz-
ing traffic maneuvers. However, it still lacks in taking different
road types and different driver characteristics (aggressive vs.
defensive) into account. Before presenting a possibility to add
this information to the overall recognition approach, the follow-
ing characteristic of the recognition results have to be noticed:
The calculated probability P (o|λi) of an observation sequence
o given the model λi is not the crucial quantity for decision
making, but the a posteriori probability P (λi|o) is (’given’ is
not the model, but the observation sequence). The probability
of an observation sequence o is not of interest, but the proba-
bility of the model λi.
Therefore, the Bayes’ theorem is applied as follows, assuming

that the observation o is independent of the model λi and is
thus assumed to be constant over all models, and P (o) 6= 0
holds:

P (λi|o) = P (o|λi) ·P (λi)
P (o) ∝ P (o|λi) ·P (λi). (3.6)

Since the probability of the observation sequence o is constant
for all models λi, P (o|λi)) may also be used for recognizing
traffic maneuvers. The a priori probability P (λi) may now be
used to model different characteristics of the traffic scenario
(see also (Firl and Tran, 2011)):

• Different types of road: An example is, that following ma-
neuvers are generally more likely to occur on single-lane
roads than on multi-lane roads and thus, the correspond-
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3.3. Maneuver Recognition Results

ing probability P (λfoll) has to be larger when driving on
single-lane roads.

• Different driver characteristics: An example is, that ag-
gressive, fast driving people are generally more likely to
execute overtaking maneuvers than defensive ones and
thus P (λover) has to be larger when identifying aggres-
sive drivers.

Both types of information are not available in every situation
and with every sensor setup. Therefore, in these cases the prob-
abilities P (λi) are assumed to be uniformly distributed over all
models λi. Information on driver characteristics may be gath-
ered either from recognized driving maneuvers of the past, or
from the current driving mode (e.g., sportive, touring) of the
ego vehicle. The probabilities of different type of roads have to
be calculated by simple counting different maneuver types over
a large set of sequence on the specific road type. Furthermore
the current type of road have to be known using digital maps.

3.3. Maneuver Recognition Results

After describing all relevant input for the maneuver recognition
in the last section, in the following some exemplary results of
the HMM-based approach are presented. As depicted in Figure
3.3 the trained models λi are evaluated with respect to the
current observation sequence o using the forward algorithm.

Before implementing the proposed algorithmic approach, one
property of the forward variables αt(i) have to be considered:
Their computation requires a sum over many numbers, which
tend exponentially to zero each (see (Rabiner, 1989) for more
information: αt(i) consists of terms which can be written as∏t−1
s=1axsxs+1

∏t
s=1 bxs(os), where each value of a and b is signif-

icantly smaller than 1). To avoid an exceeding of the precision
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range of most hardware platforms especially for large observa-
tion sequences o, the following scaling procedure is applied in
this work, according to (Levinson et al., 1983). The scaling
factor ct is defined as

ct :=
[
N∑
i=1

αt(i)]
]−1

, (3.7)

independently of the state Xi, only dependent on the point in
time t. It is applied to αt(i) resulting in:

α̂t(i) = αt(i)
N∑
i=1

αt(i)
= ctαt(i), (3.8)

with
∑N
i=1 α̂t(i) = 1.

Simulated Data: A first verification of the reliability of the
proposed concept for recognizing traffic maneuvers is realized
with simplified sequences oi of simulated data not contained
in the training database: oi /∈ otrain. Therefore, 10 evaluation
sequences for each of 3 different types of overtaking maneuvers
are generated. The recognition results for λover and λfoll are
normalized in their length using a time warping algorithm as
can be seen in Figure 3.11. Furthermore, the a priori probabil-
ities P (λi) are assumed to be equal for all models.
The results can be correctly interpreted for all 3 different

situations. For the overtaking maneuvers with no lane change,
a distinction between the overtaking and following maneuver
may be easily performed for all points in time. For both other
situations, the two models are more difficult to distinguish as
both vehicles start the maneuver on the same lane. In these
situations a following maneuver may not be excluded at the be-
ginning of the sequence. The verification of sequences contain-
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(a) Overtaking maneuvers with no lane change.
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(b) Overtaking maneuvers with 1 lane change.
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(c) Overtaking maneuvers with 2 lane changes.

Figure 3.11.: Simulated Results of the maneuver recognition concept
for the models following and overtaking: Left: paths of the maneuvers;
Right: normalized results over 10 similar sequences each.
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Figure 3.12.: Sensor setup of the used experimental vehicle: Sensor
system consists of a mono camera and a radar sensor performing a far
and a short range scan. Left: Opel Insignia experimental vehicle. Right:
Opening angles of the used sensor setup (Firl and Tran, 2011).

ing other maneuvers, or even more complex situations implying
multiple stages of different maneuvers, shows results which are
interpretable in a similar way.

Real World Data: For testing the proposed framework in real
world scenarios, data was recorded with the sensor setup illus-
trated in Figure 3.12. It consists of a mono camera (Continental
CSF200) and a radar sensor (Continental ARS300), performing
near- and far range scans. The underlying fusion concept pro-
vides information about all surrounding objects with 25 frames
per second. The vehicle is used as an observer, to gather infor-
mation about vehicles performing different maneuvers in front
of the car. While the radar sensor is mainly used for acquiring
relative kinematic information (position, speed, acceleration),
the camera is employed for approving objects in the sensor fu-
sion component and for visual verification purposes. More in-
formation about the sensor setup is given in Appendix A.1. A
sequence of 2 vehicles performing an overtaking maneuver on a
two-lane road can be seen exemplary in Figure 3.13.

Exemplary results of the sequence containing the screen-
shots of Figure 3.13 are depicted in Figure 3.14. In this ex-
ample two vehicles are driving on a two-lane road: At the first
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3.3. Maneuver Recognition Results

Figure 3.13.: Screenshots of one testing sequence with two vehicles
performing an overtaking maneuver on an extra urban street (Firl and
Tran, 2011). Maneuver recognition results are shown in Figure 3.14.
Screenshots are captured approximately at frame 0, 270 and 560.

stage, the vehicles are following each other. After that the
rear vehicle accelerates and suddenly overtakes the other one
performing two lane changes. The first lane change is exe-
cuted approximately at frame 250, the second lane change at
frame 520. The three different stages of the sequence of Figure
3.13 can be clearly separated as the results are easy to inter-
pret. The probabilities P (λi) according to Section 3.2.5 are set
manually representing a two-lane road in extra urban scenar-
ios, i.e., P (λfollowing) = 0.9 and P (λovertaking) = P (λflanking) =
0.05. Because the used radar sensor does not provide accurate
resolution for the lateral position and velocity, the noisy ma-
neuver probability P (λflank|o) for flanking maneuvers becomes
explicable. However, the lateral relative position dy is a crucial
information for recognizing flanking maneuvers.

Similar results are achieved with similar evaluation sequences
with the same sensor setup, which provide the reliability of the
proposed approach, since recognition results matches with hu-
man expert perception of the traffic scene. Nevertheless, a
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3. Probabilistic Model for Maneuver Recognition

Figure 3.14.: Results of the maneuver recognition approach of a testing
sequence of two vehicles on a extra urban road for the overtaking, follow-
ing and flanking model. Results are plotted logarithmically due to very
small probability values of the forward algorithm. For evaluating both
following maneuvers simultaneously (vehicle 1 follows vehicle 2 and vehi-
cle 2 follows vehicle 1), the absolute longitudinal distance |dx| is used.

mathematical evaluation is not possible, due to the missing
of ground truth data, which may be interpreted differently be
human experts. Thus, the presented probability curves only
allow a visual verification of the proposed approach. Possible
evaluation methods will be presented in Chapter 4.

Coordinate Systems: To motivate the usage of a lane fixed
coordinate system as introduced in Section 3.2.3, the results
of the simulated sequence of Figure 3.7 with two different co-
ordinate systems are depicted in Figure 3.15. The maneuver
probabilities using the Cartesian coordinate of Figure 3.15(b)
are only plausible in the first few frames. After that, the results
become less comprehensible, e.g., the increasing probability of
the following model approximately at frame 100. Furthermore,
all probability values are decreasing very fast, so that they ex-
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(a) Lane oriented coordinate
system
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(b) Fixed (Cartesian) coordinate
system

Figure 3.15.: Results of Maneuver Recognition with two different
coordinate systems of a simulated overtaking maneuver with two lane
changes. While the results with the lane oriented coordinate system can
be easily verified, the results with the world fixed, Cartesian coordinate
system cannot.

3.4. Summary

In this chapter a framework for recognizing maneuvers in extra
urban traffic situations was presented. After reviewing some
state of the art recognition approaches, a probabilistic frame-
work based on Hidden Markov Models was introduced. To
consider most influences of real world scenarios, different pa-
rameters are employed in the observation model.

Primary observation input is the relative kinematic informa-
tion between two interacting traffic participants (observation
vector Eq. (3.3)): the longitudinal and lateral relative distance,
relative velocity and acceleration values.

To capture more complex situations, adaptive occupancy
grids were introduced to model the feasibility of a maneuver
execution. Their occupancy values are integrated in the ob-
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servation vector resulting in Eq. (3.4). Thus, the following
aspects of real world traffic situations are taken into account:

• dynamic traffic participants and the influence of their pre-
dicted trajectories on the traffic scene,

• road characteristics, e.g., boundaries, construction sides
or other static objects.

A priori probabilities are integrated using Bayes’ theorem to
consider the dependencies of single maneuvers on different road
types or on different driver characteristics.
Recognition was performed for the defined observation vec-

tor using the forward algorithm and the resulting probabilities
for each model are compared to each other. Recognition results
were presented for exemplary sequences of simulated as well as
for real world data. The general reliability of the proposed ap-
proach was shown as recognition results match well with human
expert perception of the corresponding traffic scene.
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4. Evaluation and Application of Maneuver
Recognition

After presenting the maneuver recognition approach in the last
chapter, the focus of the following sections is twofold:

• How may the proposed concept be evaluated?

• What is the possible benefit of the proposed concept for
a specific ADAS feature?

The first question about the evaluation of the framework of
Chapter 3 cannot be answered in a general way. Evaluation of
all works in the field of traffic situation assessment deals with
the problem that it highly depends on the triggered functions.
That means it depends on the proceeding steps of the ADAS
information flow, depicted in Figure 1.1.

In Section 4.1 a method is presented to evaluate the recogni-
tion concept in terms of the prediction of single, safety critical
traffic maneuvers. They are crucial for most state of the art
ADAS. A possible application area therefore is outlined after-
wards in Section 4.2, where the presented maneuver prediction
is applied to Car-to-X (C2X) communication and its security
issues.

4.1. Single Maneuver Prediction

The evaluation of concepts for situation recognition depends
on the ADAS function it is used for, i.e. it depends on the
behavior generation stage (Figure 1.1). This implies that it also
depends on the specific situations the ADAS feature is designed
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for. In this work an evaluation is proposed which takes traffic
situations into account that are commonly addressed by most
systems to be safety critical.
Typical critical traffic situations, where an ADAS may ex-

ecute any intervention or driver warning strategy, are usually
characterized by suddenly occurring changes of the movement
of any traffic participant. These can be grouped into

• lateral maneuvers, mainly lane changes,

• longitudinal maneuvers, mainly abrupt brakings,

where only extra urban scenarios are considered. For the best
capability of a given assistance function, it is crucial to rec-
ognize or predict these situations as early and as robustly as
possible. However, an evaluation for both aspects (prediction
time and robustness) is not available in general as their impor-
tance may differ from one feature to another. Moreover, there
are opposing requirements as an early prediction will usually
degrade robustness and vice versa.

Hidden Markov Models are able to handle the spatial depen-
dencies of the modeled situation as well as its temporal com-
ponents. Therefore, the HMM based model approach may be
evaluated due to their prediction capabilities for the situations
mentioned above.
A first approach may address the exact prediction of pos-

sible vehicle paths (or even trajectories) from the calculated
maneuver probabilities P (λi|o). Using the trained observation
models, i.e. the probability distributions P (Ot = ot|Xt = xi) of
the observation ot at time t while being in state xi, enables the
usage of sampling techniques for prediction purposes. Unfortu-
nately, the used modeling concept does not use any kinematic
motion model, so changes in system states do not correspond
to exact changes of the vehicles physical states. A direct con-
sequence is that using the observation probability distributions
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4.1. Single Maneuver Prediction

Figure 4.1.: Typical flow of a lane change maneuver on extra urban
traffic roads. The three stages are: following (optional), approaching and
lane change; see (Firl et al., 2012).

for predicting vehcile’s trajectories may result in non-plausible
vehicle states. For example, possibly predicted states of the
observation vector ot of Eq. (3.4) may include positions dx,dy,
which does not correspond to prevision positions and velocity
values vrel with respect to the applied time base. A method
for predicting future vehicle’s trajectories with respect to the
calculated maneuver probabilities is presented in Chapter 5.

In the following sections the maneuver probabilities are di-
rectly used for predicting single traffic maneuvers. The abso-
lute probability for a given maneuver at a specific point in time
does not allow any concrete interpretation, since it highly de-
pends on the used training data and the contained sensor noise.
Therefore, a comparison of different model probabilities is used
instead. Thus, the ratio of two models λ1 and λ2 and a given
observation sequence o is evaluated by

c =
P (λ1|o)
P (λ2|o)

=
P (o|λ1)P (λ1)
P (o|λ2)P (λ2)

. (4.1)

Evaluation is done afterwards with respect to different ratios of
correctly predicted and not correctly predicted situations (true
and false positives).

4.1.1. Lane Change Prediction

A typical lane change maneuver on an extra urban road is illus-
trated in Figure 4.1 as it is usually performed during overtaking
maneuvers. It can be roughly divided into the following stages:
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1. following: Both vehicles are driving in the same lane with
approximately the same speed. This stage is sometimes
omitted, but may occur at the end of speed limited zones,
as an example.

2. approaching: The rear vehicle is approaching. This stage
varies much in its length depending mostly on specific
driver characteristics.

3. lane change: The rear vehicle is performing the lane
change in order to overtake.

Prediction of the lane change is done by using the ratio of Eq.
(4.1) with the models for overtaking λover and following λfoll:

c1 = P (λover|o)
P (λfoll|o) . (4.2)

Large values of c1 thereby indicate high lane change probabil-
ities. Evaluation of this approach is done with respect to the
point in time of prediction which depends on c1. A lane change
should be usually predicted the sooner the better but at the
latest before stage 3 starts, i.e. before the real lane change
is executed. Crucial values for the evaluation purpose are the
number of situations with correctly predicted lane changes (true
positives) and the number of situations where a lane change is
incorrectly predicted (false positives).

4.1.2. Abrupt Braking Prediction

A typical abrupt braking maneuver on an extra urban road is
illustrated in Figure 4.2. The reason for the abrupt braking
maneuver is a blocked lane on the left because of a passing
vehicle. Of course, other reasons for the blockage of the lane
are also possible, as already mentioned in Section 3.2.4. These
maneuvers can be roughly divided into the following stages:
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Figure 4.2.: Typical flow of an abrupt braking maneuver on extra ur-
ban traffic roads. The three stages are: following (optional), approaching
and braking; see (Firl et al., 2012).

1. following: Both vehicles are driving in the same lane with
approximately the same speed. This stage is sometimes
omitted.

2. approaching: The rear vehicle is approaching, motivated
by the demand on an overtaking maneuver.1 This stage
varies much in its length depending mostly on specific
driver characteristics.

3. braking: The rear vehicles have to execute a braking ma-
neuver because of the blockage of the left lane.

Predicting these situations accurately requires a slightly dif-
ferent approach than used for lane change maneuvers. The
main reason for abrupt brakings of Figure 4.2 can be interpreted
as a general divergence of the driver’s intention to overtake an-
other vehicle and the feasibility of the maneuver. Therefore,
the following two models are acquired:

• The driver’s intention to overtake another vehicle is rep-
resented by the model for overtaking maneuvers λover, but
only with the simplified observation vector of Eq. (3.3).
This does not include the free space variable f , and there-
fore does not take any information on the required free
space into account.

1Another reason for approaching may be the missed recognition of the
leading vehicle by the driver or a wrong guess of its current velocity.
These situations are predicted in the same way.
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• The feasibility of the maneuver is also represented by
a model for overtaking maneuver λover,fs, but with the
adapted observation vector of Eq. (3.4). Thus, it takes
the required free space into account.

A similar prediction as for lane changes is executed using Eq.
(4.1) with the two models λover and λover,fs:

c2 = P (λover|o)
P (λover,fs|o) (4.3)

High values of c2 also correspond to high abrupt braking prob-
abilities. It has to be mentioned, that the usage of the two
different observation vectors of Eq. (3.3) and Eq. (3.4) re-
quires the training of different models. Thus, different training
databases otrain have to be generated for both models.

4.1.3. Evaluation

Evaluation of the described prediction approach depends highly
on the specific ADAS feature it is used for. Consider the predic-
tion of lane change maneuvers as an example: For some driver
warning features, like a blind spot alert, a prediction at a very
early point in time might be appreciated. Usually, this corre-
sponds to a higher rate of incorrectly executed warnings (false
positives), where the driver is in fact not going to perform a
lane change. For such warning features, those errors may be
acceptable. On the other hand, these cases are not tolerable
at all for a collision avoidance system performing abrupt brak-
ing or steering interventions. Therefore, the general problem
is the importance weighting of the true positive rate, the false
positive rate and the point in time of the maneuver prediction.
For the evaluation of both use cases, a database with se-

quences of lane change and abrupt braking maneuvers is built.
Maneuvers as depicted in Figure 4.1 and Figure 4.2 are ac-
quired with more than 100 lane change and braking maneuvers
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Figure 4.3.: Normalized results of maneuver recognition over all lane
change sequences. Normalization is done with respect to point in time of
the lane change maneuver; see (Firl et al., 2013)

Evaluation of lane change prediction: The recorded sequences
contain different types of lane change maneuvers, thus the
stages illustrated in Figure 4.1 are mainly varied in length.
Different absolute and relative velocities are also taken into ac-
count as well as different relative, longitudinal distances of the
vehicles during the execution of the maneuver. The recognition
results of the relevant maneuvers are depicted in Figure 4.3,
where all sequences are normalized with respect to the points
in time of the execution of the lane change (which are labeled
manually). Normalization is done using linear time warping
(LTW). At the point in time of the maneuver execution a clear
divergence of the two maneuver probabilities can be noticed.
At the beginning of the sequences, P (λfoll|o) is only slightly
above P (λover|o), as the first following stage of each sequence
varies much in length, or is sometimes almost not present.

The easiest way for evaluating is to set a fixed threshold c1
and record the points in time of prediction, where values of the
ratio P (λover|o)

P (λfoll|o) ≥ c1 are associated with a maneuver prediction.
In Figure 4.4 the results for the complete set of sequences are
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Figure 4.4.: Prediction results for lane change maneuvers with respect
to the exact time of the lane change. The used threshold is c1 = 1.

illustrated, using c1 = 1 as threshold. The exact point in time
of the lane change maneuver, i.e., when the left tires of the rear
vehicle are passing the lane markings, is at t= 0. At that time,
more than 95% of the maneuvers are predicted. It has to be
recognized, that not all maneuvers can be “predicted” at the
point in time when the maneuver is already executed due to the
probabilistic nature of the prediction approach. A combination
with a simpler maneuver recognition (e.g., by observing the
lateral offset of the single vehicle in the lane) may compensate
this drawback. However, the high potential of this concept
is made clear by a prediction rate of about 75% at 2 seconds
before the lane change is executed.
As the prediction of lane changes is executed with a specific

threshold c1, the choice of this value is of significant importance.
The results with c1 = 1 of Figure 4.4 take only situations into
account, where the maneuvers are predicted correctly. That
means, that all situations are neglected, where lane changes
are wrongly predicted (thus where in fact no lane change ma-
neuver is executed at all). However, these false positives have
to be considered to provide a complete evaluation. The ratio
of false positive and true positive is shown as a ROC (Receiver
operating characteristic) curve in Figure 4.5(a). Therefore, a
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database of ndb,lc ≈ 100 sequences is used, which consists of
sequences as illustrated in Figure 4.1 but all contain the first
following stage. The following definitions for evaluating the
lane change prediction approach are applied:

• True positives TPlc: sequences in which a lane change is
correctly predicted due to the model probabilities. True
positive rate: TPlc

ndb,lc

• False positives FPlc: sequences in which a lane change
is predicted, while both vehicles are still performing a
following maneuver and no indication of a lane change is
given at all. False positive rate: FPlc

ndb,lc

The ROC curve consists of different applied prediction thresh-
olds c1, which implies both, different TPlc and FPlc. The de-
sired but usually inaccessible point is the upper left corner at
TPlc = 1 and FPlc = 0. Thus, a reasonable trade-off has to be
made, depending on the weighting of both values. The thresh-
old c1 = 1 of Figure 4.4 results in TPlc ≈ 0.85 and FPlc ≈ 0.05,
which may be applicable values for some applications. Increas-
ing c1 will lead to smaller true positive and false positive values,
whereas a decreasing of c1 will result in higher true positive and
false positive values. The influence of a higher c1 value on the
prediction time, as shown for c1 = 1 in Figure 4.4, is that the
higher the value of c1 is chosen, the later the prediction of the
maneuver is generally be performed.

Evaluation of abrupt braking prediction: For the prediction
of abrupt braking maneuvers, the recorded sequences consist of
the different stages as illustrated in Figure 4.2. They are mainly
varied with respect to the length of the stages, the point in time
of the abrupt braking and the driving behavior of the vehicle
on the left lane (representing the blockage of that lane). As
these sequences are acquired with real vehicles, not all braking
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(a) ROC curve for lane change
maneuver prediction.
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maneuver prediction.

Figure 4.5.: ROC curves for lane change and abrupt braking prediction.
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Figure 4.6.: Normalized results of maneuver recognition over all abrupt
braking sequences. Normalization is done with respect to point in time of
the abrupt braking maneuver; see (Firl et al., 2013)

maneuvers occurring on public streets could be taken into ac-
count due to safety reasons. The recognition results for the rele-
vant maneuvers are depicted in Figure 4.6, where the maneuver
probabilities are normalized with LTW again. The results for
the following maneuver are included for a better interpretation
of the graphs. At the point in time of the maneuver execution
a clear divergence of the driver’s intention (overtaking) and the
maneuver feasibility (overtaking free space) can be noticed.
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influence of the vehicle on the left lane on the observation vector
(more precise, on the free space variable f) plays a distinctive
role. As defined in Section 3.2.4 the used occupancy grid has
to be defined for the usage of model λover,fs in Eq. (4.3). To
keep the computational complexity rather low, the used grid
only consists of one row for both lanes each (compare with
Figure 3.10(c)). The length of each row is set to cover = 10.
As not only the actual position of the vehicle should be taken
into account, but also its future course, a prediction method
has to be selected. For this evaluation purpose, a constant
velocity model is therefore applied, for predicting over a given
time horizon of 3 seconds. The more reliable the prediction for
the vehicle is to occupy a single cell (i, j), the closer the value
fi,j is to zero (reliability refers to be predicted even for a small
time interval).

As for the lane change prediction, a straight forward way to
analyze the capabilities of the abrupt braking prediction is to
use a fixed threshold c2 and notice the point in time of the
maneuver prediction, i.e. where P (λover|o)

P (λover,fs|o) ≥ c2 holds. The
results when choosing c2 = 1 are illustrated in Figure 4.7. The
exact point in time of the braking maneuver is at t = 0, i.e.
when the vehicle’s absolute deceleration is exceeding a prede-
fined threshold. At this point in time almost all maneuvers
are predicted but not all of them, as already mentioned in the
last paragraph. A more significant value than the one at time
t= 0, when a “prediction” is in fact no longer of interest, is the
prediction rate at 1 second before the braking is executed of
≈ 70%.

Similar to Figure 4.5(a), in Figure 4.5(b) the ROC curve for
the braking prediction approach is depicted. The used database
consists of ndb,br ≈ 100 sequences as illustrated in Figure 4.2,
but all contain the first stage, where no vehicle blocks the left
lane.
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Figure 4.7.: Prediction results for abrupt braking maneuvers with re-
spect to the exact time of the braking. The used threshold is c2 = 1.

• True positives TPbr: sequences in which an abrupt brak-
ing is correctly predicted due to model probabilities. True
positive rate: TPbr

ndb,br

• False positives FPbr: sequences in which an abrupt brak-
ing is predicted, while both vehicles are still performing
a following maneuver and no indication of a braking is
given at all. False positive rate: FPbr

ndb,br

Thus, the ROC curve consists of different applied prediction
thresholds c2. Depending on the accessed application, different
ratios of TPbr and FPbr and therefore different values of c2
may be reasonable. When comparing the curve with the one
from the lane prediction approach, a general lower true positive
rate with respect to same false positive rates can be noticed.
The reasons therefore are manifold, however a dominant one
is the modeling of the blocked lane by another vehicle. Thus
only very safe braking maneuvers are included in the database,
which are usually harder to predict.
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4.2. Application for Car-to-X Communications

The approach for predicting lane change and abrupt braking
maneuvers has applications in the domain of vehicular safety.
There, the assessment and prediction of possible safety critical
situations represent requisite information. In the following, the
integration of the advocated maneuver recognition and predic-
tion approach into one specific application is presented. After
showing the functionality using the sensor setup presented in
Section 3.3, in this section the focus is on upcoming Intelli-
gent Transportation Systems (ITS) based on Car-to-X (C2X)
communication.

In Section 4.2.1 an introduction to C2X communication and
their security aspects is given, focusing on the actual European
market. Section 4.2.2 presents the integration of the proposed
maneuver prediction approach into the framework for verifying
the trustworthiness of mobility data contained in C2X mes-
sages.

4.2.1. Motivation: Car-to-X Security

C2X communication, mainly consisting of Car-to-Car (C2C)
and Car-to-Infrastructure (C2I) communication, exchange traf-
fic information to increase road safety and traffic efficiency.
Therefore the IEEE 802.11p standard of WLAN communica-
tion was established in 2010, earmarked by the European Com-
mission (Intelligent Transport Systems, 2010a) and operated in
the 5 GHz frequency band. For its usage a lot of standardiza-
tion work has to be done, especially regarding the used message
set and its definition. This is currently performed by the Euro-
pean Telecommunications Standards Institute (ETSI). Based
on this message set, first field test trials are conducted, like
the European DRIVEC2X (Drive C2X, 2011) and the German
simTD project (simTD, 2011). The most important message
type for this work is the so called Cooperative Awareness Mes-
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sage (CAM), which includes the vehicle’s mobility information,
mainly consisting of position, speed and heading, and a unique
ID of the vehicle2. They are sent within intervals from 1 to 100
Hz depending on the current traffic situation and its character-
istics (Intelligent Transport Systems, 2010b).
The exchange of CAMs among traffic participants enables

a variety of different new ADAS features as well as an opti-
mization of already existing ones. However, security and pri-
vacy issues have been identified as a crucial enabler for C2X
by the ETSI, as it is typical for open communication methods
(Intelligent Transport Systems, 2009). For this purpose, cryp-
tographic methods are usually applied in terms of a Public Key
Infrastructure (PKI) (Bißmeyer et al., 2011) using the standard
IEEE 1609.2 (Intelligent Transportation Systems Committee,
2006). This enables the usage of digital certificates and signa-
tures, so that the trustworthiness of every CAM message can
be authenticated.
Nevertheless, security for C2X using cryptography has been

identified to be a necessary but not sufficient instrument to
prevent the forging of messages. If an adversary has gained
access to secret material of the PKI, he will be able to send
messages, which cannot be identified by cryptographic security
mechanisms. Therefore, alternative message verification meth-
ods become requisite. The presented verification approach to
handle that issue (see Section 4.2.2) is motivated by the follow-
ing description of an attacker on C2X communication networks.

Attacker Model: In the following section an attacker is as-
sumed, who is able to send and to manipulate the information
included in the CAMs to the C2X modules. Thus, he has the
ability to provoke different safety critical situations, as depicted

2Another message type is the Decentralized Notification Message
(DENM), which is only sent when special traffic events occur (Intelli-
gent Transport Systems, 2010c).
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Figure 4.8.: Attacker on C2X communication: Faked Electronic
Emergency Brake Light (EEBL) message (Firl et al., 2013).

exemplarily in Figure 4.8. Using a common C2X module, the
attacker is able to send authenticated messages, if having access
to valid secure key material. By faking a full brake a respective
warning message is created assuming a certain risk of collision.
If the message is created with manipulated GPS information,
any reference position can be stated. Since the attacker is us-
ing valid key information, the receiver of those messages will
mark them as valid. So cryptography cannot detect such an
attacker. In the situation of Figure 4.8 upcoming vehicles will
be wrongly alerted by a collision warning, which may result in
unnecessary and often dangerous collision mitigation or avoid-
ance maneuvers.

Consequently, additional verification steps have to be per-
formed on receiver side to verify the trustworthiness of C2X
messages. In the following, a two-stage verification approach
is presented. The basic part consists of a Kalman filter (KF),
which is modified by the maneuver prediction component of
Section 4.1 of this thesis. It was originally developed during
the field trials of simTD.

4.2.2. Verification Approach for Car-to-X Mobility Data

The basic approach for the verification of incoming C2X CAMs
on receiver side (on the observer car) consists of two different
stages. The first part as presented in (Stübing et al., 2010)
mainly consists of a Kalman filter evaluating a whole sequence
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of messages instead of only single ones. It performs a single
step prediction of the vehicle’s path (of the observed car) and a
comparison between this prediction and the received mobility
data. An exact definition of the used system states and KF
assumptions is given in (Stübing et al., 2011) and is not in the
focus of this thesis (see the appendix Section A.3). Afterwards,
the second stage performs an adaption of the used filter to
increase the reliability of the overall system. Therefore, the
maneuver prediction of the last section is applied showing the
potential of the proposed modeling concept of this thesis.
Figure 4.9 illustrates the complete verification process of re-

ceived CAMs and their mobility information. Thus, incom-
ing messages are classified as Approved, Erroneous or Neutral.
First, some Basic Checks have to be passed based on physical
and regulatory boundaries including checks of maximum ve-
locity and message frequency, see (Stübing et al., 2010) for a
complete list. Only if all checks are passed (D1), the first ver-
ification stage is queried, otherwise the message is marked as
Erroneous.
For new vehicles, which do not have a known vehicle ID,

a new tracker is instantiated on the host car including a KF.
Therefore, a margin check is carried out assuming new vehicles
to appear somewhere at the outer border of the host vehicle’s
communication range. If a vehicle’s CAM is received for the
first time, no reliably prediction can be performed. Thus, in
the following it is assumed that the vehicle has a known ID, so
(D2) is passed with yes in Figure 4.9. If the vehicle ID of the re-
ceived message is already known, the Kalman prediction phase
is executed using a constant velocity motion model. The differ-
ence ∆yt between received mobility data and Kalman predicted
state at the current time t is determined using a transition ma-
trix.
This difference serves as a measure for the plausibility of the

mobility information of the received message. The smaller the
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Figure 4.9.: Verification flow for C2X mobility data using single step
path prediction and probabilistic maneuver prediction (Firl et al., 2013).

difference is, the better the received data matches the model
assumption of the KF. This is part of the steps before (D4) at
the left side of Figure 4.9. Therefore, a predefined acceptance
threshold is used based on expected GPS errors of 1−3 meters.
Thus, only the norm of the 2-D position information is used
for the evaluation of the deviation in (D4). If it is passed,
the Kalman correction phase is executed and the message is
classified as Approved. Assuming an attacker as depicted in
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Figure 4.8 who is not using a valid motion model for sending a
sequence of faked messages will result in not approved messages
when applying the verification step (D4).
For most traffic situations the used acceptance threshold re-

sults in an acceptable performance, i.e. most messages of cor-
rectly sending vehicles are marked as Approved3. However, in
situations where the motion assumption of the KF does not
match the driving behavior accurately, the deviation exceeds
the threshold more often. These situations are identified to be
characterized by suddenly occurring dynamic changes in the
motion of the vehicle. Especially the two situations named in
the last section, suddenly performed lane change maneuvers
and abrupt brakings, exceed the modeling capabilities of the
used KF. Therefore, an adaption of the KF has to be applied
in these cases as described in the following.
Assuming an exceeding of the AT , the maneuver recogni-

tion stage is triggered in (D4) of Figure 4.9. Since an adaption
of the KF should only be done in situations where the mo-
tion model does not match the current driving behavior, the
maneuver prediction approach is executed. Therefore, the rele-
vant maneuver probabilities are calculated first, i.e. P (λover|o)
and P (λfoll|o) for a lane change maneuver and P (λover,fs|o)
and P (λover|o) for an abrupt braking maneuver, respectively.
If one of these maneuvers is predicted successfully using criteria
Eq. (4.2) and Eq. (4.3), an adaption of the used Kalman Gain
is conducted. The used observation vector o from Eq. (3.4)
is acquired by calculating the relative kinematics from the re-
ceived mobility data of the CAM and the information of the
observer vehicle. The KG weights the predicted system state
with the actual measurement. As it is assumed that the motion
model fails to explain the vehicle’s driving behavior accurately,

3An evaluation of the verification approach used in common traffic sce-
narios can be found in (Firl et al., 2013), where the real driving behavior
matches quite well with the motion assumption of the KF.
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the actual system state is corrected towards the measurement,
depending on the maneuver prediction result. The more precise
the prediction of the maneuver is (i.e., the greater the ratio of
Eq. (4.2) or Eq. (4.3) is), the larger the correction towards the
measurement will be.

By predicting a dynamic maneuver and adapting the Kalman
Gain the received mobility data is not automatically marked
as Approved. However, the adapted Kalman Gain is applied
by reversing the previous prediction and correction phase and
a recalculation using the new Kalman model. The enhanced
corrected state leads to a new prediction, closer to the received
mobility data. Thus the old deviation ∆yt is decreased resulting
in ∆yt,new. The same acceptance threshold is applied in (D6) of
Figure 4.9 again and the message will be classified as Approved
if it succeeds. Otherwise it will be marked as Erroneous, finally.

The main advantage of this adapted verification approach is
that fewer messages are falsely marked as Erroneous without
increasing the acceptance threshold AT. This would have unde-
sired security consequences, since a higher acceptance threshold
simplifies the sending of verified messages from an attacker. In
the following section exemplary results are shown to demon-
strate the benefit of this new message verification approach.

4.2.3. Results of Message Verification

The mobility data verification framework is fully implemented
as a Java/-OSGI bundle into the C2X communication system
used for the simTD field trials. See also A.2 for more informa-
tion on this, including implementation details. For evaluation
purposes, three vehicles are used, which are equipped with com-
munication components of simTD. Two vehicles are used for
performing the specific traffic maneuver and the third vehicle
is used for representing the free space on the left lane as de-
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Figure 4.10.: Maneuver recognition for different message loss rates (Firl
et al., 2013).

picted in Figure 4.2. The same database as already mentioned
in Section 4.1.3 is used consisting of more than 100 sequences
of dynamic lane change and abrupt braking maneuvers each.
The first assessment is focusing on the general performance

of the proposed approach handling different message loss rates.
As C2X communication is assumed to be lossy, this sensitivity
is of particular interest. In general the average deviation ∆yk
increases with an increased message loss rate as well as the
number of peaks, i.e. the number of messages exceeding the
acceptance threshold AT . These messages result in false posi-
tives since all messages represent correct vehicle’s information.
In Figure 4.10 the proposed maneuver prediction approach is
evaluated with respect to message loss rates up to 30%. For
each sequence of the database and for each message loss rate
about 1000 variants of message losses are generated randomly.
Even for high loss rates of 30% the accuracy of the maneuver
prediction component remains above 90%. This corresponds
to a low false negative rate, i.e., only few peaks occur during
a dynamic maneuver while not correctly predicting the corre-
sponding maneuver by the probabilistic recognition component.

In the following, the benefit of the proposed two-stage verifi-
cation approach is presented exemplary for one sequence of a
dynamic lane change and an abrupt braking maneuver each.
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In Figure 4.11 the results of the proposed message verification
approach for one sequence including a dynamic lane change
maneuver are illustrated. The graph at the top shows the iso-
lated results of the KF (without the adaption of the maneuver
prediction) and the deviation ∆yt. The AT value is set to 1
meter. While the x-axis denotes the number of CAM mes-
sage received by the host vehicle, the y-axis shows the behav-
ior of ∆yt. As already assumed, the deviation becomes max-
imal during the third stage of the maneuver, where the lane
change is performed. There, peaks up the 3 meters can be ob-
served, exceeding the security threshold multiple times (mes-
sages 37− 52). These messages don’t pass the check (D4) of
Figure 4.9 and would be discarded if not using further verifica-
tion stages or increasing the acceptance threshold significantly
to approximately 3 meters.

In the middle part of the image, the results of the maneuver
recognition are depicted, which are crucial for predicting lane
changes. Both curves reflect very well the current status of the
vehicle during the complete maneuver in terms of probabili-
ties for an overtaking and a following maneuver, respectively.
The point in time when the maneuver recognition component
is triggered first is at message 37 where ∆yt >AT holds for the
first time. Since the probability P (λfoll|o) is decreased already,
a lane change maneuver can predicted correctly according to
Eq. (4.2).

At the bottom of Figure 4.11 the values of ∆yt,new are shown.
Since a lane change maneuver is correctly assumed at all points
in time when ∆yt > AT holds, the Kalman Gain is adapted
such that the first peak at message 37 is successfully decreased
below 1 meter. Thus, the message is correctly classified as Ap-
proved. The subsequent peaks are handled similarly, such that
no messages are wrongly marked as Erroneous at all. Keep-
ing in mind that this would only be possible by increasing the
security threshold AT resulting in a decreased overall security
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Figure 4.11.: Lane change maneuver - Top: Kalman deviation Δyt -
Middle: log-likelihood of maneuver recognition - Bottom: Kalman devia-
tion Δyt,new with adapted Kalman gain

Similar to the evaluation of the lane change prediction, the re-
sults of the verification approach for one sequence including
an abrupt braking are presented in Figure 4.12. The different
stages of the sequence are similar to the lane change sequence,
but this time the lane change cannot be executed due to insuf-
ficient free space on the left lane caused by the third involved
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vehicle. That is why the vehicle has to perform a hard braking
maneuver to avoid a collision. This leads to high deviations
∆yt in the last stage of the sequence. The resulting peaks can
be seen in the curve at top of the figure, appearing at message
70 for the first time.

In the middle part of Figure 4.12 the corresponding maneu-
ver recognition results are shown. They are queried when the
deviation ∆yt exceeds the AT value. At this point in time, the
driver’s intention to overtake the vehicle ahead (overtaking, no
free space consideration: λover, red curve in Figure 4.12) clearly
diverges from the real feasibility of the maneuver (overtaking,
free space consideration: λover,fs, green curve in Figure 4.12).
Thus, the abrupt braking prediction is able to be performed
successfully according to Eq. (4.3).

Therefore, the adaption of the Kalman Gain is done accu-
rately resulting in a higher weighting of the received message
with respect to the Kalman prediction. The new deviation
∆yt,new is depicted by the graph at the bottom of the figure.
Using the adapted KF results in a deviation, which does not
exceed the same acceptance threshold value anymore.

The evaluation of both sequences, for the lane change manoeu-
ver and for the abrput braking, shows an decreased number of
false positives when applying the adapted message verification
approach. However, an evaluation of true positives is still miss-
ing, i.e., situations where an attacker is sending faked messages.
On the one hand, this is not the scope of this thesis and was
evaluated in previous works of the simTD project. On the other
hand, this evaluation cannot be performed by persons, who are
aware of the message verification approach presented in this
chapter. Attackers who has access to the secret material of the
PKI and are aware of the applied message verification concept
will not be identified by this approach.
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Figure 4.12.: Braking maneuver - Top: Kalman deviation Δyk -
Middle: log-likelihood of maneuver recognition - Bottom: Kalman de-
viation Δyk,new with adapted Kalman gain

4.3. Summary

In this chapter evaluation concepts for the maneuver recogni-
tion framework of Chapter 3 were outlined. As typical for most
works focusing on situation assessment, the main difficulty is
the dependency on the accessed feature. Therefore, a general
evaluation method was presented based on the prediction of
single dynamic maneuvers. Furthermore, the proposed concept
was integrated into an existing software architecture to show
the benefit for one real application exemplary. Furthermore,
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by using C2C communication messages as observation data,
this chapter pointed out the independence of the HMM based
framework of this thesis on the used sensor setup (see also Fig-
ure 1.1).

In Section 4.1 the performance of the probabilistic frame-
work was tested by predicting dynamic maneuvers in terms of
lane changes and abrupt brakings using the maneuver proba-
bilities P (λi|o). This is done by observing the ratio between
two models for each maneuver. Two different evaluations were
done using a database of about 100 sequences for each maneu-
ver. The first one evaluates the prediction time with respect to
the point in time of the real maneuver execution. Since differ-
ent ADAS features require a great robustness concerning false
positives, these were treated by ROC curves. The results show
the high potential benefit of the proposed prediction approach
for different features.

The integration into a real vehicle application was presented
in Section 4.2 focusing on the security aspects of Car-to-X
communication networks. An already existing approach for
verifying the trustworthiness of incoming C2C communication
messages was extended by the proposed maneuver prediction
approach. Since the original framework lacks the handling of
messages sent during dynamic traffic maneuvers, the proposed
concept is able to solve these shortcomings. Therefore, the
Kalman Filter used for predicting incoming mobility data was
adapted appropriately resulting in an increased overall security
level.
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In Chapter 3 and Chapter 4 a concept for recognizing traf-
fic maneuvers in a probabilistic manner was presented. Fur-
thermore, an integration into an entire ADAS architecture was
outlined by means of C2X message verification. However, for
many ADASs the most crucial information for executing any
warning or intervention strategy are the trajectories of relevant
traffic participants in the current and future traffic scene. The
more accurate the predictions of these trajectories are, the more
robust the system may perform. The proposed maneuver pre-
diction system of Chapter 4 does not provide such information.

As mentioned in Section 4.1, the maneuver modeling us-
ing HMMs does not support plausible predictions of single
traffic participants since no kinematic motion model is inte-
grated. The predicted states received by sampling the observa-
tion model would result in non-conformable trajectories as the
different entities of the state vector (e.g., position and speed)
are not related directly to each other in the model. Therefore,
a concept for predicting vehicle trajectories is presented in this
chapter, taking the occurrence and probabilities of traffic ma-
neuvers into account. Aspects of the following are the results of
the constructive and cooperative work of (Omerbegovic, 2012)
and were published in (Omerbegovic and Firl, 2013).

In Section 5.1 a motivation of the maneuver adapted trajec-
tory prediction is given, pointing out some drawbacks of com-
monly used state of the art predictors. Afterwards, the pro-
posed approach is described in detail in Section 5.2 including
some basic information on the used theoretical concepts.
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sults with simulated as well as with real-world data are finally
presented in Section 5.3.

5.1. Motivation

Most prediction methods for the trajectories of traffic partici-
pants are usually taking into account:

• the information on the current vehicle’s state (e.g.,
position, velocity),

• information on past vehicle’s state, gathered and track-
ed over a certain period of time,

• a kinematic motion model, using some simplifying as-
sumptions on vehicle’s motion (e.g., constant accelera-
tion, constant yaw rate).

The most popular predictor therefore is the Kalman Filter (KF)
using different motion assumptions and different extensions of
the filter itself (e.g., Extended KF and Unscented KF).
Furthermore, information on the road geometry with dif-

ferent lanes is often included to adapt the predicted trajectory
on the current static traffic scenario. Adaptions on dynamic
traffic participants are usually added by assuming collision-
free trajectories. However, while achieving reliable prediction
results in many common traffic situations, the model capabili-
ties reach their limits in dynamic scenarios, involving multiple
traffic participants. Thus, accurate predictions are only possi-
ble over a short time horizon.
The contribution of this chapter is therefore to provide a

trajectory prediction approach with the following properties:

• handling traffic situations involving multiple, interacting
traffic participants on extra urban roads,
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Figure 5.1.: Example of possible results of trajectory prediction of two
vehicles on a German Autobahn considering maneuvers of multiple traffic
participants. Different line widths indicate different probabilities of the
trajectories.

• providing trajectory predictions over a large time horizon
of multiple seconds,

• providing probabilistic predictions including multiple pos-
sible trajectories with associated probabilities.

In Figure 5.1 an example of possible prediction results on an
extra urban road is illustrated.

5.2. Trajectory Prediction Approach

The basic idea of predicting trajectories in traffic situations
where traffic maneuvers of multiple vehicles are performed is
depicted in Figure 5.2. In situations, where the relevant vehicle
is driving without any interaction to other traffic participants,
conventional prediction methods may be applied. If the start
of an interaction is observed, the prediction system switches
into another mode, considering different maneuvers and their
probabilities. In the following, this second mode will be dis-
cussed in detail, since single object trajectory prediction is not
the scope of this thesis. The transition from one mode into the
other may be realized in different ways, depending highly on
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the used sensor setup. The situation adaptive stage may be
exemplarily triggered, if:

• at least one vehicle is in the sensor’s detection range,

• at least one vehicle is within a predefined distance to the
relevant vehicle,

• at least one maneuver probability of an interaction with
any other traffic participant exceeds a predefined thresh-
old.

Since the following approach is independent of the used sensor
setup for retrieving input data, the transitions between both
stages is not analyzed. Hence, it is assumed that the second
stage was already triggered and maneuver probabilities to at
least one other vehicle are already computed.
Before going into detail of the proposed approach, some basic

definitions and their context have to be pointed out. A discrete
trajectory is given by a set of samples and corresponding time
stamps. As the time base is assumed to be equidistant, a tra-
jectory can be written as:

x1:N = {xt}Nt=1, (5.1)

where x can be either scalar or multidimensional. For vehicle
trajectory purposes, the state vector xt contains at least the
position of the vehicle in some coordinate system at time t. As
trajectories depending on traffic maneuvers are discussed in the
following, the same state vector as defined as the observation
vector ot in Chapter 3 is used, see Eq. (3.3). Thus, the vehicle
and lane oriented coordinate system is used.

The task of situation- (or maneuver-) dependent trajectory pre-
diction is formulated as follows: Given (i.e., observed) is a tra-
jectory x1:N , consisting of N data samples in a vehicle and
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Figure 5.2.: Close loop system for vehicle’s trajectory prediction.

lane oriented coordinate system referring to the interaction of
a traffic participant pair1. Furthermore, the probabilities of the
maneuver recognition for the observation sequence x1:N for all
models λi (in this thesis: overtaking, following and flanking)
are computed, see Section 3.3: P (λi|x1:N ) (i = 1, . . . ,3). The
results of the prediction approach presented in the following
have to be twofold:

• A set of trajectory predictions have to be determined:

x̂(i,k)
N+1:N+∆N , i= 1,2,3, k = 1, . . . ,Ki (5.2)

∆N denotes the prediction horizon, Ki the number of
trajectories predicted for the i-th maneuver and (i,k) the
index of the k-th prediction of the i-th maneuver.

• Furthermore, the probability for each predicted trajectory
given the observed trajectory x1:N has to be computed:

P (x̂(i,k)
N+1:N+∆N |x1:N ) (5.3)

1In general, there may be more than one other traffic participant, a ve-
hicle is interacting with. However, it is assumed in this thesis, that the
relevant vehicle is only interacting with one other participant, what re-
flects most common traffic scenarios on extra urban roads. Otherwise,
resulting trajectories from more than one vehicle pair have to be merged
afterwards.
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Figure 5.3.: Concept for maneuver adaptive vehicle’s trajectory
prediction.

The concept for predicting trajectories using the probabili-
ties of recognized maneuvers is depicted in Figure 5.3. For
the input observation sequence x1:N a prediction stage is trig-
gered for every maneuver λi, which are assumed to be suc-
cessively given. Thus, for every maneuver, a set of predic-
tions x̂N+1:N+ΔN are computed, including their probabilities
P (x̂(i,k)

N+1:N+ΔN |x1:N ,λi), for a given observation sequence and
maneuver. How to achieve this will be outlined in this section
later on.

To take the computed maneuver probabilities P (λi|x1:N ) into
account, a second step is required to weight all trajectories de-
pendent on the assumed maneuver. This results in the prob-
abilities P (x̂(i,k)

N+1:N+ΔN |x1:N ) for every prediction by a simple
multiplication. Mathematical more precise, the resulting prob-
abilities are P (x̂(i,k)

N+1:N+ΔN ,λi|x1:N ), applying Bayes’ theorem.

96



5.2. Trajectory Prediction Approach

Thus, the most challenging part is to predict a set of trajectories
for a given input sequence x1:N assuming a specific maneuver
λi. In this thesis, a method based on the comparison of different
reference trajectories and a higher-level concept of Case-based
reasoning is presented.

5.2.1. Case-Based Reasoning

Case-based reasoning (CBR) is a method to solve and to rea-
son about problems, when a general analysis of the underlying
system is lacking, see (Kolodner, 1992) and (Perner, 2007).
Therefore, the actual problem is interpreted as a case, which
has to be solved by using a database containing previously
solved cases including their solutions. Generally spoken, CBR
consists of the steps Retrieve, Reuse, Revise and Retain. Be-
sides different application areas as understanding and solving
customer service problems (help desk), also some classification
works for automobile applications are published, as in (Vacek
et al., 2007). In this work CBR is used to classify different
traffic situations for cognitive automobiles.

Adapting the principle of CBR to the prediction of vehicle’s
trajectory in traffic maneuvers is depicted in Figure 5.4. The
interpretation of the case to be solved is the current observation
sequence x1:N , which has to be predicted into future. The
required predictions are the missing solution to this case. The
prediction for this sequence follows the general CBR cycle as
follows:

1. Retrieve: The first task is to retrieve similar cases, i.e.
trajectories y(j)

1:Nj
, of the repository, which has to be built

up for every maneuver (see Section 5.2.3). The most cru-
cial challenge therefore is to define an adequate similarity
measure, what is discussed in Section 5.2.2. To use these
cases for prediction purposes, Nj >N has to be required,
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Figure 5.4.: Case-based reasoning for vehicle’s trajectory prediction.

splitting the trajectory y(j) into two parts: the first one
indicates the similar part to x1:N (indicated as y(j)

1:Ñj
) and

its further course y(j)
(Ñj+1):Nj

. The number of selected sim-
ilar trajectories is indicated as J .

2. Reuse & Revise: In this stage the selected trajectories
y(j)

(Ñj+1):Nj
are used to draw conclusions on the required

predictions x̂(k). This is presented in detail in Section
5.2.3 with all needed intermediate steps.

3. Retain: This last stage is executed, when the complete
maneuver was performed, so that the ground truth of the
complete sequence x was already performed. At this time,
the complete sequence may be retained to the repository.
Since this step is not the focus of this thesis, it is only
remarked, that this enables the prediction system to be
adapted over time. As an example, it is able to adapt the
system to specific drivers, if a large number of trajectories
of them are stored and may be reused in future for better
prediction results. However, retaining trajectories in the

98



5.2. Trajectory Prediction Approach

repository requires adequate strategies to prevent, that
too many and too similar trajectories are stored in it, or
to prevent the storage to grow exceedingly.

5.2.2. Similarity Measure for Trajectories

In the following the retrieve stage of the proposed CBR cycle is
discussed in detail, which depends especially on the definition of
a similarity measure to compare the given observation sequence
x with the repository. Basic requirements therefore are:

• handling of different spatio-temporal starting points of
the trajectories,

• handling of different lengths of the trajectories,

• handling of different sampling rates,

• robustness to sensor noise and outliers,

• robustness to translations and rotations.

Different similarity measures for comparing trajectories may
be applied. In (Hahn et al., 2008) the Levenshtein Distance
on Trajectories (LDT (x,y)) is used, extending the Levenshtein
distance LD to d-dimensionality. Thus, the number of required
operations (insert, delete, replace) are counted to transform x
into y.

The Dynamic Time Warping (DTW) distance, extensively
used in speech recognition tasks in the past, is applied to
extended application areas of the comparison of time series
(Berndt and Clifford, 1994). In (Vlachos et al., 2004) an ex-
tension of DTW is presented, archiving translation, scale and
rotation invariance. A comparison of different similarity mea-
sures is presented in (Zhang et al., 2006), including the DTW
distance and some Euclidean distance based measures.
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However, most of these approaches seem to be lacking in cop-
ing with sensor noise, see (Vlachos et al., 2005). A possible
approach to handle this drawback may be the Longest Com-
mon Subsequence (LCS) model. Originated in the field of string
matching, the LCS computes the longest common substring of
two input string sequences. In (Hermes et al., 2009), an adap-
tion to the task of comparing vehicle trajectories is presented,
which motivates the usage of LCS in this thesis.

The LCS is defined for matching two trajectories x and y of
lengths Nx and Ny by the recursive formulation:

lcs(x1:Nx ,y1:Ny ) =
0, if Nx = 0∨Ny = 0
lcs(x1:(Nx−1),y1:(Ny−1) +s(xNx ,yNy ), if s(xNx ,yNy ) 6= 0
max{lcs(x1:Nx ,y1:(Ny−1)), lcs(x1:(Nx−1),y1:Ny )}, otherwise

(5.4)

The function s(x,y) is a similarity measure of two sequence
points x and y. For string matching purposes, where the length
of the longest substring has to be found, s(x,y) = δx,y (Kro-
necker delta). For the comparison of trajectories, this is usually
not sufficient, since the similarity of the two trajectory points
have to be taken into account, too. Thus, a decision criterion
has to be defined, either x and y should be matched to each
other or not. In this thesis the definition of s introduced in
(Hermes et al., 2009) is used. Let D be the dimension of x and
y (which corresponds to the dimension of the used observation
vector):

s(x,y) =


0, if ∃d ∈ [0,D] : |x(d)−y(d)|> ε(d)

1
D

D∑
d=1

(
1− |x

(d)−y(d)|
ε(d)

)
, otherwise

(5.5)
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with the crucial decision threshold ε ∈ RD. The choice of this
parameter is a non-trivial task, since it indicates if two points of
the trajectories are interpreted as similar or not. One solution
as presented in (Vlachos et al., 2005) is the usage of the minimal
standard deviation std of both trajectories, i.e.

ε(d) = min
(
std(x(d)),std(y(d))

)
(5.6)

to take the general course of the trajectories into account. Since
it turned out that this results in non-plausible effects, in this
work ε is set manually for each dimension using numerous test-
ing sequences. See (Omerbegovic, 2012) for more detailed in-
formation on that.

To transform the LCS value lcs(x,y) into a distance measure
the following mapping is applied:

dlcs(x1:Nx ,y1:Ny ) = 1−
lcs(x1:Nx ,y1:Ny )

max(Nx,Ny)
, (5.7)

holding the distance properties:

• dlcs ≥ 0,

• dlcs(x1:Nx ,y1:Ny ) = 0 ⇐⇒ x = y,

• dlcs(x1:Nx ,y1:Ny ) = dlcs(y1:Ny ,x1:Nx).

The normalization in Eq. (5.7) using the maximum length of
both trajectories ensures the definite property. One of the main
advantages of this definition is that it ensures the interpretation
as a probability measure. This probabilistic interpretation is
one of the requirements of the complete trajectory prediction
approach of this chapter. Implementation of dlcs is usually done
by dynamic programming, which ensures an effective reuse of
intermediate results during the recursion.
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In the following Section 5.2.3, the complete procedure of pre-
dicting trajectories using the proposed CBR-based approach is
presented using one exemplary situation.

5.2.3. CBR Cycle for Trajectory Prediction

Before executing the different stages of the prediction approach
depicted in Figure 5.4, an appropriate database has to be built
up. For this purpose, the same sequences as for training the
HMMs of Chapter 3 are used, consisting of simulated trajecto-
ries using the simulation tool CarMaker R©(see Figure 3.5). The
resulted database consists of trajectories y of different length.
The state vector of the database trajectories only consists of
the relative longitudinal and lateral position between the two
vehicles, and the relative velocity (referring to the observation
vector Eq. (3.3), the relative acceleration is neglected).
In the following the different stages of the CBR cycle are

described at one exemplary, simulated trajectory indicating an
overtaking maneuver. Since overtaking situations imply most
difficulties for prediction purposes, the focus is set on this ma-
neuver. However, the same procedure is done for following and
flanking maneuvers, which is presented in the following Section
5.3. The used situation represents the beginning of an over-
taking maneuver with two lane changes, where the first lane
change is currently starting at the point in time when the pre-
diction is triggered (see Figure 5.5).

The first step is to retrieve similar trajectories from the database.
For this purpose, the LCS distance dlcs(x1:Nx ,y) of the input
trajectory x1:Nx to all database sequences is computed. Simi-
lar trajectories are selected, due to a predefined threshold csim,
i.e., a trajectory y(j) of length Nj of the database is selected, if

dlcs(x1:Nx ,y
(j)
1:Nj

)< csim (5.8)
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holds. Besides the selection of the threshold csim, the values
of ε (i.e., ε(dx), ε(dy), ε(vrel)) of the LCS calculation for each
dimension are of utmost importance (see Eq. (5.5)). Both vari-
ables determine the number J of selected trajectories y(j)

1:Nj
. In

Figure 5.5 examples of different values of ε are shown, where
the decision criterion is set to csim = 1. In Figure 5.5(b), where
all values of ε are smaller than in Figure 5.5(a), it is clearly
observable, that not all trajectories y(j) were selected, which
paths are most similar to the ground truth x(n+1):Nend

(com-
paring to the complete trajectory database). Since this is not a
reasonable characteristic of this approach, the threshold values
of ε should not be set too small. An overall best solution for
the choice of the parameters is not possible, since it depends
highly on the requirements on calculation time and memory.
The larger the value of ε in one dimension is, the more tra-
jectories are selected of the database due to variations in this
value. For this thesis numerous simulations with different sets
of threshold values ε and csim are performed to find an ade-
quate parameter selection. In the following, the parameters of
Figure 5.5(c) are used, as it results in a reasonable number of
trajectories with respect to the used databases.

After associating the trajectories y(j)
1:Ny

(j = 1, . . . ,J) of the
database to the given input sequence x1:N , a probabilistic
weight has to be computed for all of them:

P (y(j)
1:Ny
|x1:N ,λi) :=

1−dlcs(y(j)
1:Ny

,x1:N )
J∑
l=1

1−dlcs(y(l)
1:Ny

,x1:N )
, (5.9)

where λi = λover indicates the given overtaking maneuver for
the current situation.

The last step of the retrieve stage is, that the selected tra-
jectories y(j)

1:Ny
have to be split into two parts. The first one

indicates the similarity to the input sequence x1:N . This is in-
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Figure 5.5.: Retrieval of trajectories y of the database due to a given
observation sequence x1:N with different values for ε. Trajectories are
chosen, if dlcs(x1:Nx

,y(j)
1:Nj

)< 1 holds.
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dicated as y(j)
1:Ñy

and is received as the similar subsequence from
the LCS computation. The further courses of these trajectories
are indicated as y(j)

(Ñy+1):Ny
and are used in the following to

compute the required predictions for x1:Nx .

To reuse and retain the selected trajectories y(j)
(Ñy+1):Ny

and
to receive an adequate number of reasonable predictions to
x1:N , different steps have to be conducted. The assumptions
for the final set of predictions are that their number should be
appropriate small and that the complete trajectory consisting
of input sequence x and prediction should be passable (i.e., its
patch has to be at least continuous). Furthermore, the final
predictions should be associated with a probabilistic weighting
value corresponding to Eq. (5.9). The following three steps are
therefore performed sequentially:

• clustering all selected trajectories,

• merging the trajectory clusters to representatives,

• final transformation to receive drivable (continuous) tra-
jectories.

In the following, y(j)
(Ñy+1):Ny

is denoted simplified as y(j). For
clustering the trajectories different approaches may be applied.
Algorithms like k-means result in a predefined number of clus-
ters, which is not preferable in the context of this thesis. To
provide a varying number of clusters, depending on the num-
ber and courses of the input trajectories y(j), an agglomerative
clustering algorithm is used in this thesis as shown in Algorithm
3. As a first step, every trajectory is interpreted as a singleton
cluster. Afterwards, two clusters are combined iteratively de-
pending on a minimization of the distance value between two
clusters. Obviously, the LCS distance dlcs of Eq. (5.7) is used
applying the same threshold ε. The procedure terminates if
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Algorithm 3 Clustering algorithm for trajectories
Require: clustering threshold cclu ∈ [0,1]
Require: trajectories y(j), building one cluster each
for all a1,a2 ∈ [0, . . . ,J ],a 6= b do
dA1,A2 ← dlcs(y(a1),y(a2))

end for
while ∃ Clusters A1,A2: dA1,A2 < cclu do
assign clusters A1,A2 with dA1,A2 =min! to single cluster
update all distances: dA1,A2 ←

1
|A1||A2|

∑
a1∈A1

∑
a2∈A2

dlcs(y(a1),y(a2))

end while

there are no more clusters A,B with a common distance value
dlcs(A,B) smaller than a predefined cluster threshold cclu.
In Figure 5.6 the results of the clustering algorithm are shown

for the already known situation. The resulted clusters A1, A2,
A3 and A4 are illustrated in different colors. As can be seen,
one cluster represents trajectories of an overtaking maneuver
with only one lane change. Three different kinds of overtak-
ing maneuvers, varying mainly in the way of the second lane
change, are represented by the other three clusters. By decreas-
ing the threshold cclu the number of clusters would be increased.

The result of the clustering algorithm is a number of K trajec-
tory clusters, consisting of trajectories y(ik), with k = 1, . . . ,K
and ik = 1, . . . , |Ak|. Here, ik is the trajectory index of the k-th
cluster Ak and |Ak| is the number of trajectories in this clus-
ter. These clusters have to be merged into single representative
trajectories each. Therefore, two different steps have to be ex-
ecuted:
First, a weighted mean ŷ(k) for each cluster is computed,

taking into account all trajectories of the cluster and their as-
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Figure 5.6.: Results of the agglomerative clustering of Algorithm 3.
The stop criterion cclu is set to 1.

sociated probabilities according to Eq. (5.9):

ŷ(Ak) =
∑

ik∈Ak

P (y(ik)
1:Ny

|x1:N ,λover)y(ik) (5.10)

Thus, trajectories which are more similar to the input sequence
x1:N have a higher impact on the resulted, merged trajectory
ŷ(Ak) than trajectories of the same cluster which are less similar
to x1:N (less similar means a higher distance value dlcs). Since
the trajectories vary in their lengths, a normalization in time
has to be conducted. In this thesis, the DTW algorithm is
used for that purpose with respect to the longest trajectory
y(ik). The result of this merging procedure is shown in Figure
5.7.

The second step is to calculate the combined probabilities for
each cluster, which is easily accomplished by summing up over
all trajectory probabilities of the cluster. As a result, each clus-
ter Ak has a corresponding probability value P (ŷ(Ak)|x1:N ,λi).

The final step to receive the predictions x̂(k) (see Figure 5.4)
is to align the end of the input sequence x1:N (i.e., x1:N (N))
with the start of ŷ(Ak) (i.e., ŷ(Ak)(1)). Therefore, a monotonous
function f (k) is used to compensate the difference z(k) := ŷ(Ak)(1)−

107



5. Maneuver adaptive Trajectory Prediction

−100 −80 −60 −40 −20 0 20 40 60 80 100

0

1

2

3

4

d
x
 [m]

d
y
 [

m
]

 

 

x1:N Observed trajectory
x(N+1):Nend

Ground truth

ŷ
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Figure 5.7.: Results of the merging procedure for all trajectory clusters
according to Eq. (5.10).

x1:N (N) resulting in a continuous trajectory x̂(k) in every di-
mension d

x̂(k) = ŷ(Ak) +z(k)f (k), (5.11)

where f (k) is a monotonically decreasing function of the same
length as ŷ(Ak) with codomain [0,1]. Prediction results are
shown in Figure 5.8, where f is used in terms of a linear func-
tion. The probabilities P (x̂(k)|x1:N ,λover) of every possible pre-
diction are

P (x̂(1)|x1:N ,λover) = 0.46, P (x̂(2)|x1:N ,λover) = 0.28,
P (x̂(3)|x1:N ,λover) = 0.19, P (x̂(4)|x1:N ,λover) = 0.07,

which are the same as P (ŷ(Ak)|x1:N ,λover).
Finally, the complete trajectory x has to be included to the

database in the retain stage. Therefore, the trajectory of the
complete maneuver x1:Nend

is recorded and saved as depicted
in Figure 5.4. Thus, the end of the trajectory has to be defined
which depends highly on the used sensor setup. In cases of
limited sensor range and field of view the detection range of
traffic participants defines implicitly maneuver’s start and end.
Car-to-Car messages, used as input information as presented in

108



5.3. Results and Evaluation

−100 −80 −60 −40 −20 0 20 40 60 80 100

0

1

2

3

4

d
x
 [m]

d
y
 [

m
]

 

 

x1:N Observed trajectory
x(N+1):Nend

Ground truth

x̂
(1) Prediction 1

x̂
(2) Prediction 2

x̂
(3) Prediction 3

x̂
(4) Prediction 4

Figure 5.8.: Results of the prediction approach for a given input se-
quence and assuming an overtaking maneuver.

Chapter 4 require other approaches, like the usage of relative
distances as the definition of the point in time of start and end
of the maneuver.

5.3. Results and Evaluation

In this section, results of the proposed prediction approach with
simulated data (Section 5.3.1) and with real world data (Section
5.3.2) are presented. Possible evaluations are presented after-
wards in Section 5.3.3. For all results, the prediction thresholds
are set to csim = cclu = 1.

5.3.1. Results of Maneuver dependent Prediction

In the following, results for simulated sequences are presented
using the same procedure as detailed in the last section. In
all cases a specific maneuver is assumed to be executed, which
corresponds to the exact driving behavior. The combination of
these predictions with the probabilities of the maneuvers λi is
presented in the next section using real world data.
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Overtaking Maneuvers: In the last section one exemplary se-
quence of an overtaking maneuver was depicted consisting of
two lane changes using ε= (5m,0.25m,10km/h) as LCS thresh-
old. Trajectory prediction was triggered at one characteristic
point in time. In the following, results of another sequence
performing an overtaking maneuver are presented, where pre-
diction is triggered at different points in time. For more results
this thesis refers to the appendix of (Omerbegovic, 2012).
In Figure 5.9 a sequence is evaluated assuming an overtak-

ing maneuver. Prediction is triggered at four different points
in time of the maneuver, resulting in different numbers K of
trajectory predictions with different probabilities. For the first
three triggered predictions of Figure 5.9(a), Figure 5.9(b) and
Figure 5.9(c), one prediction represents an overtaking maneu-
ver with only one lane change (trajectory prediction x̂(2) in all
figures). The corresponding probability P (x̂(2)|x1:N ,λover) de-
creases when going forward in the sequence, corresponding to
the ground truth of the further course of the trajectory. In other
words, the later the prediction is triggered, the greater the prob-
ability of correctly predicting a maneuver with two lane changes
is. At the last point in time of Figure 5.9(d), the second lane
change is currently executed. Thus, only one trajectory is pre-
dicted, which is clustered from all retrieved trajectories. Con-
sequently, the calculated probability is P (x̂(1)|x1:N ,λover) = 1
in this case.

Following Maneuvers: For trajectory prediction assuming a
following maneuver, the same approach is used as outlined in
the last section for overtaking maneuvers. As the dynamic
complexity is not comparable to overtaking maneuvers, con-
ventional prediction approaches may be also applied here. To
enable a consistent framework, the proposed CBR-based ap-
proach is used instead. The used database of Figure 3.5 only
consists of about 100 sequences (in comparison with about 900
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(b) During first lane change.
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(c) During passing of the vehicles.
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x̂
(1), P (x̂(1)|x1:N ,λover) = 1.0

(d) During second lane change.

Figure 5.9.: Trajectory prediction results for one sequence at different
points in time assuming an overtaking maneuver including their
probabilities P (x̂(i)|x1:N ,λover).

sequences of overtaking maneuvers), mainly differing in the rel-
ative distance of both vehicles. This safety distance is mostly
depending on the absolute velocity of both vehicles. In the sim-
plest case, vehicles are driving with the same constant velocity.
Nevertheless, the used database also contains maneuvers with
acceleration and deceleration stages as well as with rather small
differences in the absolute velocities of both vehicles. The con-
sidered dimensions for the complete CBR cycle are again, dx,
dy and vrel, but additionally the absolute velocity of the head-
ing vehicle vlead is taken into account. Evaluation with both
state vectors showed the better adaption on the scenario with
the extended version. The threshold of the LCS computation
is set to ε = (5 m,1.75 m,10 km/h,10 km/h), where the value
of dy is increased significantly.

111



5. Maneuver adaptive Trajectory Prediction

−5 0 5 10 15
−80

−60

−40

−20

t [s]

d
x
 [

m
]

 

 

x1:N Observed trajectory

x(N+1):Nend
Ground truth

x̂
(1) Prediction 1

(a) Relative long. distance dx.

−5 0 5 10 15
−10

0

10

20

30

t [s]

v
re

l [
k
m

/h
]
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(b) Relative velocity vrel.

Figure 5.10.: Trajectory prediction results for one sequence assuming a
following maneuver.

maneuvers may be taken into
account.2

Prediction results for one sequence describing a following ma-
neuver are depicted in Figure 5.10. As for all other testing se-
quences, the prediction approach using the following database
results in only one prediction x̂(1) (i.e., J =K = 1), with prob-
ability P (x̂(1)|x1:N ,λfoll) = 1. For illustration issues, the rela-
tive lateral distance dy and the relative velocity vrel are plotted
over time. The predicted trajectory describes a following ma-
neuver with a safety distance of about 40 m, which corresponds
well with the ground truth. In situations where the following
distance does not corresponds to the safety distance of the cur-
rent absolute velocity (e.g., performed by non-safety-conscious
drivers), the prediction approach will perform worse while us-
ing the given database. However, prediction performance will
be increased when the CBR system is adapted over time by
retaining sequences of the same driver (or driver behavior) to
the repository. The relative velocity tends to zero (as certainly
the ground truth).

2As there is no general definition of the considered traffic maneuver, es-
pecially of their starting and ending points in time, other values of ε may
also be applied.
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x1:N Observed trajectory

x(N+1):Nend
Ground truth

x̂
(1) Prediction 1

(b) Relative velocity vrel.

Figure 5.11.: Trajectory prediction results for one sequence assuming
an flanking maneuver.

Flanking Maneuvers: Trajectory prediction for flanking ma-
neuvers has similar properties as for situations assuming fol-
lowing maneuvers. The dynamic complexity is on a similar
level, which motivates the small required database of about
50 sequences (see Figure 3.5). Furthermore, the resulted pre-
dictions also consists of only one trajectory x̂(1) with proba-
bility P (x̂(1)|x1:N ,λflank) = 1. The considered dimensions are
dx, dy and vrel as the absolute velocity of both vehicles does
not have any impact. The threshold ε is set again to ε =
(5 m,1.75 m,10 km/h).

Prediction results for one sequence describing an approach-
ing vehicle with a small relative velocity on the adjacent lane,
decelerating and flanking the other vehicle are depicted in Fig-
ure 5.11. As they are the most crucial parameters, values for
dx and vrel are plotted over time, again. The retrieve stage re-
sults in a set of ten similar trajectories (J = 10), which are all
clustered to one single cluster (K = 1). As the execution of any
flanking maneuver does not vary much in its relative kinematic
dimensions, the prediction x̂(1) matches very well the ground
truth of the trajectory x.
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5.3.2. Results of Prediction Approach

After showing different prediction results assuming different
maneuvers, the contribution of this section is twofold:

• providing results using maneuver probabilities,

• providing results with real world data.

The first point corresponds to the final prediction results of the
proposed approach, which are stochastically independent of the
maneuver λi (see Figure 5.3).

For every query of the trajectory prediction, the probabilities
P (λi|x1:N ) of the maneuver recognition of Chapter 3 are com-
puted. These values are used for weighting the predictions x̂(k)

for each assumed maneuver. As the recognition results do not
allow a meaningful interpretation, even in a logarithmic repre-
sentation, a proper transformation to the range [0,1] has to be
applied (as mentioned in Section 3.3, the used forward variables
have usually very small values, which are individually hard to
interpret).
A typical situation, where the usage of a probabilistic consid-

eration of different traffic maneuvers is required, is presented in
the following: A vehicle is approaching another traffic partici-
pant on the same lane, either accelerating or decelerating, and
possible further trajectories may include overtaking maneuvers
with single or multiple lane changes or even no lane change
and overtaking maneuver at all. Single trajectory prediction,
assuming each, a following and an overtaking maneuver are
shown in Figure 5.12 (flanking maneuvers are neglected). In
Figure 5.12(a) and Figure 5.12(b) the prediction results assum-
ing an overtaking and a following maneuver are depicted, for
the longitudinal and lateral relative distances dx and dy, and
for the longitudinal distance dx over the time t, respectively.
Assuming an overtaking maneuver, there are two predictions
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(c) Assuming an overtaking
maneuver.
Parameters: vrel, dx
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(3), P (x̂(3)|x1:N ,λfoll) = 1.0

(d) Assuming a following maneu-
ver.
Parameters: vrel, time t

Figure 5.12.: Trajectory prediction results assuming each, a following
and a flanking maneuver in terms of different parameters including their
probabilities P (x̂(i)|x1:N ,λi).

x̂(1) and x̂(2) describing a maneuver with one and two lane
changes. Their probabilities are similar, which seems to be rea-
sonable, as it is a very early point in time of the maneuver.
As mentioned in the last section, the prediction approach as-
suming a following maneuver results in only one trajectory x̂(3)

with probability P (x̂(3)|x1:N ,λfoll) = 1 representing a specific
safety distance (depending on the absolute velocity). In Figure
5.12(c) and Figure 5.12(d) the relative velocities are plotted.

Afterwards, the maneuver probabilities are used as weight-
ing factors for all predicted trajectories. Respective results are
shown in Table 5.1. For the probabilities of each maneuver
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x̂(k) P (x̂(k)|x1:N ,λi) P (λi|x1:N ) P (x̂(k)|x1:N )
x̂(1) 0.51 0.59 0.30

x̂(2) 0.49 0.59 0.29

x̂(3) 1.0 0.83 0.83

Table 5.1.: Probabilities of the trajectory prediction approach of Figure
5.12 considering overtaking and following maneuvers (k = 1,2→ λover,
k = 3→ λfoll).

holds: P (λfoll|x1:N )>P (λover|x1:N ). That is due to the decel-
eration during the input sequence x1:N , which is not an indica-
tor for an upcoming overtaking maneuver. Thus, the prediction
of a following maneuver is most likely with P (x̂(3)|x1:N ) = 0.83.
Although, this does not match to ground truth of the depicted
trajectory x, it’s seems to be reasonable, as the upcoming lane
change maneuver is not obvious at this point in time. For more
results at different points in time and for the combination of
other maneuvers, please refer to (Omerbegovic and Firl, 2013)
and (Omerbegovic, 2012).

An evaluation with real world data has to be done, to show the
general applicability of the proposed approach. Sensor noise
and the robustness to outliers in the input sequence are only two
possible challenges, which cannot be handled with simulated
data appropriately. Therefore, the sensor setup depicted in
Figure 3.12 is used, where a fusion of camera and radar data is
applied.
In Figure 5.13, prediction results for one sequence are de-

picted at different points in time. Firstly, the noisy sensor data
has to be considered, mainly resulted due to the bad lateral res-
olution of the used radar sensor. To be aware of that, the LCS
threshold is increased in its lateral distance component and is
set to ε = (5 m,1 m,10 km/h). The different stages of the se-
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(a) Before lane change.
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(b) During first lane change.

−30 −20 −10 0 10 20 30 40
−2

0

2

4

d
x
 [m]

d
y
 [

m
]

 

 

x1:N Observed trajectory

x(N+1):Nend
Ground truth

x̂
(1), P (x̂(1)|x1:N ,λover) = 0.53

x̂
(2), P (x̂(2)|x1:N ,λover) = 0.46

x̂
(3), P (x̂(3)|x1:N ,λover) = 0.01

(c) During passing of the vehicles.
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(d) During second lane change.

Figure 5.13.: Trajectory prediction for one sequence captured by the
sensor setup of Figure 3.12 at four different points in time assuming an
overtaking maneuver including their probabilities P (x̂(i)|x1:N ,λover).

quence are similar to the one evaluated in Figure 3.14, as one
vehicle is firstly following another one, suddenly performs an
overtaking maneuver including two lane changes. For the first
three predictions (Figure 5.13(a) - Figure 5.13(c)) two different
possible trajectories with a second lane change and one tra-
jectory indicating an overtaking maneuver with only one lane
change are predicted. At the last prediction of Figure 5.13(d),
where the second lane change is being executed, no more trajec-
tories keeping the left lane can be retained from the repository
correctly, and thus no trajectory cluster k is built. All predic-
tions represent reliable trajectories for the given scenario, al-
though their probabilities seem to be hardly interpretable. This
is an expected phenomenon for such situations, where also hu-
man experts have problems in performing accurate prediction
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(e.g., one lane change vs. two lane changes)3.
Nevertheless, the prediction results become more accurate,

when being combined it with the corresponding maneuver prob-
abilities P (λi|x1:N ). Their results are mapped into the range
[0,1] by applying a monotonic transformation. As the maneu-
ver recognition results are usually given by their natural loga-
rithm (see figures of Chapter 3), the two required boundaries
of the mapping function are clow < 0 mapped to the proba-
bility P (λi|x1:N ) = 0 and chigh = 0 mapped to the probability
P (λi|x1:N ) = 1 (as ln(0) = 1). Another possible transformation,
especially when considering the probabilities of two different
maneuvers λ1 and λ2, is to analyze their ratio (see Eq. (4.1))
and map the single probabilities to [0,1] by remaining their
ratio value.
For the sequence evaluated in this section, the results of the

maneuver recognition at the four different points in time are
depicted in Table 5.2. As already mentioned, trajectory pre-
diction assuming a following or a flanking maneuver results in
only one prediction each (which are not illustrated separately in
Figure 5.13). The final predictions indicating an overtaking tra-
jectory are combined regarding the number of performed lane
changes resulting in four different predictions. Probabilities for
following and flanking trajectories are very well interpretable,
as e.g., the following probability Px̂,foll is equal to 0, when the
two vehicles performs the passing stage of the overtaking ma-
neuver. When currently starting the first lane change, a rather
low probability of 0.25 for a following trajectory represents the
reliable uncertainty, if the lane change is executed or the ma-
neuver is stopped. Both overtaking probabilities (Px̂,over1 and
Px̂,over2) are nonzero, expect for the last prediction of Figure

3In fact, also the driver himself is not always being sure of how his own
maneuver will continue when starting it. Thus, a reliable prediction
of the trajectory in a probabilistic manner is rather impossible in such
situations.
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Pover Pfoll Pflank Px̂,over1 Px̂,over2 Px̂,foll Px̂,flank

Fig. (a) 0.75 0.25 0.0 0.27 0.48 0.25 0.0

Fig. (b) 0.78 0.18 0.04 0.25 0.53 0.18 0.04

Fig. (c) 0.86 0.0 0.14 0.46 0.40 0.0 0.14

Fig. (d) 0.78 0.20 0.02 0.78 0.0 0.20 0.02

Table 5.2.: Maneuver probabilities at the four distinct points in time of
trajectory prediction, see Figure 5.13. The transformed maneuver prob-
abilities are Pover,Pfoll,Pflank, which are each mapped to the range
[0,1], with

∑
iPi = 1. Additionally, the probabilities of the trajectory in-

dicating a following (Px̂,foll := P (x̂(foll)|x1:N )) or flanking (Px̂,flank)
maneuver or an overtaking with one (Px̂,over1) or two lane changes
(Px̂,over2) are depicted.

5.13(d), where the second lane change has already started, and
consequently Px̂,over1 = 0 holds.

5.3.3. Evaluation

After showing and analyzing results of the proposed predic-
tion approach, in this section the framework is evaluated by
comparing its results to ground truth data, as well as with a
classical predictor, namely a Kalman filter. A database has to
be defined for both of them, including trajectories for which
prediction is triggered at different, predefined points in time.
The set of used trajectories includes sequences of overtaking
maneuvers, as already used for the CBR repository in the last
section, extended to stages of following (at the beginning of the
sequence) and flanking (in the middle of the sequence). Trajec-
tory prediction is triggered for all sequences (excluded of the
CBR database for this case).

Comparison with ground truth: For a comparison of the pre-
diction results with ground truth data, a reasonable definition
of a prediction error has to be done. Assuming the point in
time of prediction as N , the prediction horizon as ∆N and K
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(a) Before lane change.

0 2 4 6 8
0

2

4

6

8

10

t [s]

A
ve
ra
g
e
er
ro
r
e

 

 

Average error of d
x
 [m]

Average error of d
y
 [m]

Average error of v
rel

 [km/h]

(b) During passing of the vehicles.

Figure 5.14.: Evaluation of the proposed trajectory prediction approach
in comparison to ground truth data for dx, dy and vrel at two different
points in time of prediction.

predictions for a given input sequence x1:N . Then, the overall
prediction error for this sequence is given as:

e=
K∑
k=1

P (x̂(k)
N :(N+∆N)|x1:N )|x̂(k)

N :(N+∆N)−xN :(N+∆N |, (5.12)

where the errors for each single prediction are weighted due to
their calculated probabilities. e is computed for each dimension
(dx, dy, vrel) separately. For a given number of Q trajectories,
for which prediction is queried, the overall error of the proposed
approach is given as:

e= 1
Q

Q∑
q=1

eq, (5.13)

where eq is the prediction error of the q-th trajectory according
to Eq. (5.12).
In Figure 5.14 the prediction errors for the relevant dimen-

sions are shown for a time horizon of 10 and 8 seconds, respec-
tively. The smaller prediction horizon in Figure 5.14(b) is due
to the limited length of some trajectories in the database. The
functions e(t) are mainly increasing, especially for dy and vrel.
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Even the prediction error for the longitudinal distance dx are
reaching up to 10 meters, this result is at least acceptable when
taking the large prediction range of 10 seconds into account.
Regarding the results for the lateral distance dy, the error re-
mains quite small, even for large prediction time horizons. For
both examples, the error e for dy is below 1 meter, which has to
be noticed as very convincing, as the used sequences includes
a plenty of lateral, dynamic maneuvers. These are usually one
of the most challenging situations for trajectory prediction ap-
proaches.

Comparison with KF prediction: The comparison of the pre-
diction approach with ground truth data does not allow a fully
representative evaluation of the proposed predictor. Therefore,
the comparison to state of the art trajectory prediction ap-
proaches has to be drawn. In the following, a Kalman filter
is used as one of the most common techniques. Two different
assumptions are made, for vehicle’s motion in longitudinal and
lateral direction:

• longitudinal motion is according to the discrete Wiener
process acceleration (DWPA) model.

• lateral motion is according to the discrete white noise
acceleration (DWNA) model.

Details of both model assumptions can be found in (Bar-Shalom
et al., 2001) and are not discussed in this thesis.

For a comparison of both prediction methods, the same
database is adopted, as used in the previous paragraph. There-
fore, the error e is calculated at 4 different points in time of
the sequences (see Figure 5.13). For a better comparison of
both prediction methods, the prediction horizon is limited to
3 seconds. In Figure 5.15 the results for the dimensions dx, dy
and vrel are depicted. For the longitudinal, relative distance
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Figure 5.15.: Comparison of the proposed situation adaptive trajectory
prediction (SATP) approach and a Kalman filter for dx, dy and vrel.

dx, the proposed adaptive prediction method performs worse
than the KF predictor. This originates from the underlying
motion model, which approximate the driving behavior accu-
rately in most cases. Even if the course of the driving maneuver
is not predicted correctly (e.g., the number of performed lane
changes), the error of dx keeps often comparative small. For
the predicted relative velocity vrel, the error of the KF is again
smaller than the one of the maneuver dependent prediction
approach. However, the difference between both prediction ap-
proaches is much smaller, and actually would change its sign
if observing larger prediction horizons. The main advantage of
the approach of this thesis is reflected best in the error curves
of the lateral distance dy. As the KF is not able to predict
vehicle’s trajectories accurate when performing maneuvers in-
cluding multiple lane changes, the corresponding error is quite
large. Furthermore, the difference between both prediction er-
rors would increase if taking larger prediction horizons into
account. The reason therefore is the simplified assumptions of
the acquired motion model in comparison of the flexible CBR-
based approach of this thesis.
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5.4. Summary

In this section an approach was presented how the maneuver
recognition results may be used for predicting vehicle’s trajec-
tories in a probabilistic way. Thus, the probabilistic informa-
tion on the execution of different interactions between traffic
participants is used to robustly predict their future courses on
a largest possible time horizon. Therefore, two different steps
are executed. Firstly, trajectories are predicted for all relevant
maneuvers assuming the specific interaction is true. The sec-
ond stage combines the resulting prediction for every maneuver
with the corresponding probabilities according to the procedure
of Chapter 3.

The second step implies some simplified multiplications only
as a weighting, the focus of this chapter was on how to pre-
dict a trajectory assuming a single maneuver as given. The
conceptual design follows the principle of Case-based reason-
ing (CBR), as for each maneuver a database is constructed.
When prediction is queried, the database is searched for sim-
ilar trajectories (cases). These trajectories are used to draw
conclusions to possible predictions of the further course of the
current trajectory (included in the reuse and revise CBR stage).
The applied distance measure is the Longest Common Subse-
quence (LCS). The complete prediction framework, including
the retain stage, is able to adapt on different drivers or driving
characteristics.

Results are gathered with simulated as well as with real world
data. Different types of sequences were tested, where prediction
was triggered at different points in time. Furthermore, single
results for one assumed maneuver were presented, as well as
the final combined results using the corresponding maneuver
probabilities. For an evaluation of the proposed approach, a
comparison with ground truth data was outlined. Furthermore,
a state of the art Kalman filter was used for benchmarking the
system of this thesis.
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To account for the increased functionality of future advanced
driver assistance systems (ADASs), the understanding of more
and more complex situations becomes requisite. Therefore, ex-
tended modeling approaches have to be applied to recognize
and consider all crucial properties in the traffic scene. In this
work a framework was proposed to model and assess extra ur-
ban traffic situations. This scenario information may assist
a variety of different features. After reviewing different ap-
proaches, a probabilistic model was selected for recognizing
maneuvers of multiple traffic participants, independent of the
used sensor setup and of the triggered ADAS feature.

The basic concept to model and recognize traffic maneuvers
was outlined in Chapter 3. Therefore, the exact definition of
the problem was given first, considering maneuvers in terms of
interactions between multiple traffic participants with spatio-
temporal dependencies (overtaking, following and flanking ma-
neuvers). Hidden Markov Models (HMMs) were chosen for that
purpose, which fit best the given requirements of this thesis
due to their structure and efficient training and evaluation al-
gorithms. At the beginning, the input data has to be defined
properly, as it directly corresponds to the recognition capabil-
ities of the model. Basically, the relative kinematic informa-
tion between the interacting vehicles was considered therefore.
To take more characteristic information of the traffic situation
into account, additional a priori knowledge (e.g., about dif-
ferent road types) was added using Bayes’ theorem. For the
challenging consideration of multiple other objects the required
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free space for the execution of the maneuver was added to the
model’s observation vector. Thus, occupancy grids were intro-
duced in this thesis, adapted on the current scenario. There-
with static objects may be considered, like road boundaries or
construction sites, as well as other dynamic traffic participants
and their predicted trajectories. This flexible approach enabled
a very accurate modeling of the entire traffic situation by keep-
ing model complexity low at the same time. Model complexity
is thus independent of the number of traffic participants in the
scene which have to be considered. Only the calculation of the
occupancy value becomes more challenging with an increased
number of vehicles.
The recognition stage of the proposed framework was exe-

cuted by using the forward algorithm, which computes effec-
tively the conditional probability of the observation sequence
for all given maneuver models for one point in time. These mod-
els had to be trained before using simulated data and taking
different driver and vehicle characteristics into account. Recog-
nition results were presented with simulated as well as with real
world data for different types of sequences of extra urban traf-
fic scenarios. They were visually analyzed by a comparison
to human expert knowledge, showing the general reliability or
the approach. Also for input data containing heavy noise, the
calculated maneuver probabilities can be still interpreted well.
Even if the proposed model enables the consideration of mul-

tiple traffic scenario characteristics (and thus enables realistic
recognition results in most situations), there are still some open
issues which are not handled so far. All scenarios discussed in
this thesis are assumed to consist of a constant number of lanes,
which may vary in their occupied status. Thus, scenarios like
access roads or motorway exits will results in non-plausible
recognition results, due to the non-consideration of a priori
knowledge about the driving behavior of traffic participants in
such scenarios. Another drawback of the presented modeling
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concept is the limited prediction capabilities due to the missing
of an underlying kinematic motion model of each traffic par-
ticipant. One open task of future work is the integration of
motion assumptions into the maneuver modeling framework.
As this is hardly possible with the proposed HMM, other ap-
proaches have to be discussed here. One possible solution may
be the usage of factorial HMMs. Besides the disadvantageous
need of approximate inference algorithms, factorial HMMs are
able to add structural information about the underlying sys-
tem, what includes enhanced predictive modeling capabilities
(see also (Ghahramani and Jordan, 1997)).

One of the main challenges for all situation assessment ap-
proaches was discussed in Chapter 4: their evaluation. As it
highly depends on the context of addressed ADAS feature, no
general evaluation method is available. In this thesis, a method
was presented by predicting safety critical situations, which are
crucial for most systems. Thus, dynamic lane change maneu-
vers and abrupt brakings were selected as occurring in many
extra urban scenarios. The prediction of these situations was
realized by analyzing the ratio of two different maneuver prob-
abilities each. Evaluation was done using a database of more
than 100 sequences of real world data for both situations, fo-
cusing on two different aspects: As a first step, the prediction
time with respect to the point in time of the real maneuver
execution was analyzed. Since many features require a gen-
eral robustness to wrongly triggered executions (as for most
driver warning and braking or steering intervention systems),
an evaluation of the ratio of true and false positive rates was
performed afterwards. Thereby, the high potential of the pre-
sented method was pointed out, by predicting most safety crit-
ical situations at an early point in time with a reasonable low
false positive rate.
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Section 4.2, where also the independence of the used sensor
setup was demonstrated by applying Car-to-Car communica-
tion (C2C) messages as input data. The triggered feature in
this work was a security module which verifies the trustwor-
thiness of incoming C2C messages and was used in addition to
other security approaches like cryptography. The basic concept
of message verification was based on a deviation of received mo-
bility information in the message (e.g., position, speed) with
a prediction based on already received messages and an ade-
quately selected motion model. The Kalman filter which was
used for this purpose turned out to be an effective estima-
tor in most situations. However, significant flaws have been
identified in cases of highly dynamic traffic scenarios, where
the verification flow was adapted by the proposed probabilistic
maneuver prediction. An adaption of the Kalman gain was in-
troduced, when correctly predicting a dynamic lane change or
abrupt braking maneuver, leading to a significantly enhanced
accuracy and robustness of the overall verification system. The
complete framework was implemented and integrating into an
already existing software architecture of the simTD project.
By applying the probabilistic maneuver recognition frame-

work to the domain of C2C communication and its security as-
pects two different attainments have to be pointed out. Firstly,
the usability of the C2C technology as input data of the recog-
nition approach of this work was shown, including its evaluation
yielding promising results. Secondly, the integration of the pro-
posed concept into a complete software architecture proves the
possible benefit for ADAS features. However, there are still
some aspects, which have not been analyzed completely so far.
Up to now, only the motion information included in Cooper-
ative Awareness Messages (CAMs) were considered for mes-
sage verification. Especially during high dynamic situations,
event based messages as Decentralized Notification Messages
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proposed framework. Examples therefore are the information
about a lane narrowing as at the beginning of a construction
zone, or the information on certain accident events as skidding
vehicles. Considering this information will increase system’s
robustness by adapting the a priori probabilities of certain ma-
neuvers in those cases and evaluate incoming messages with
respect to that knowledge. Furthermore, system’s behavior
should be analyzed, when being in situations like acceleration
lanes or interchanges, as they are not directly considered in the
used maneuver modeling.

In Chapter 5 another benefit of the calculated probabilistic in-
formation about different traffic maneuvers was pointed out.
The prediction of future trajectories of single traffic partic-
ipants was analyzed with respect to the recognition results.
As most state of the art prediction approaches use a specific
motion model, optionally adapted using information on road
geometry or assuming collision-free trajectories, those lack in
robust predictions in dynamic traffic maneuvers for large time
horizons. As reasonable predictions using the presented HMM
based method are not possible, its probabilistic information
was integrated into a prediction framework motivated by Case-
based reasoning (CBR). Therefore, databases of trajectories for
each considered maneuver were built up by varying different
characteristic parameters of the maneuver execution. Predic-
tion for a given sequence was done by first retrieving similar
trajectories (cases) of the databases, which was done by using
an adaption of the Longest Common Subsequence (LCS). This
similarity measure was mapped to a probability value for each
trajectory which was passed through the further process. These
cases were used in the reuse and revise stage, to infer about the
further course for the given trajectory. Closing the CBR cy-
cle with the retain stage offers the prediction framework the
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acteristics. The last prediction step combined the resulted pre-
dictions with the recognition results for each maneuver yielding
in multiple possible trajectories with associated probabilities.
Results for the presented prediction approach were presented

using simulated and real world data. Therefore, different se-
quences of maneuvering vehicles were observed proving the
plausibility of the resulted predictions at different points in
time. Predictions assuming one given maneuver were computed
as well as the final results, combined with the corresponding
maneuver probabilities. Evaluation was performed by compar-
ing the predicted trajectories including their probabilistic in-
formation with ground truth data as well as with a state of the
art predictor, where a Kalman filter was used in this thesis.
The presented trajectory prediction approach offers some ma-

jor advantages compared to commonly used predictors. As
motivated by the shortcomings of most predictors when being
executed in dynamic traffic maneuvers, the proposed frame-
work has its strength in those situations. There, prediction
results are accurate, even when calculated over large time hori-
zons of some seconds. Furthermore, the probabilistic nature
enables prediction results which match well with the interpre-
tation of human experts concerning those situations. Different
further courses of single vehicles are usually possible and han-
dled in this work, especially when multiple traffic participants
are involved.
However, there are still some drawbacks, which will motivate

some future work in this field. The comparison with the KF in-
dicates that the missing motion model, causes larger prediction
errors particular in dimensions of longitudinal position and ve-
locity. Thus, a combination of the proposed concept with an un-
derlying motion model would help to overcome this shortcom-
ing. One possible solution for this may be to add another step
to the framework, where the received predictions are adapted
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the implementation in this work requires both, memory and
processing power as the used databases are appropriate large
to model all variants of the maneuver execution. To overcome
this problem, the overall size of the database has to be limited,
e.g., by deleting non-used or too similar cases. However, the im-
pact on the prediction accuracy has to be evaluated therefore.

Furthermore, to close the loop from trajectory prediction to
the proposed maneuver recognition framework, a usage of this
prediction approach to model the impact of dynamic traffic
participants on the execution and required free space of traf-
fic maneuvers is desirable. Therefore, the used sensor systems
of this thesis are not able to provide an adequate quality of
kinematic information about relevant objects with respect to
detection range, field of view and a high position accuracy.
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A.1. Sensor and Software Architecture for Observing
Traffic Maneuvers

In Chapter 3, an experimental vehicle was described gathering
real world data for evaluating the proposed maneuver recog-
nition approach. In the following the used sensor setup is de-
scribed, including the applied development environment.

The vehicle’s perception system was built up at Adam Opel
AG while participating in the German research initiative Aktiv,
more precise in the containing subproject Active Safety - Ac-
tive Hazard Braking, see the project’s web page (Aktiv, 2010)
for more information. The vehicle was used as an observer of
further vehicles performing certain traffic maneuvers in the for-
ward sensor field of view (see Figure 3.12). Radar and camera
image data are both processed on the vehicle’s hardware plat-
form, basically consisting of 5 Car-PCs for sensor data fusion
and situation analysis tasks.

The fusion of sensor input data from the ARS300 radar sen-
sor and the CSF200 mono camera is mainly done by the fol-
lowing principles. For detection purposes of traffic participants
or other objects, data perceived by the radar sensor is pro-
cessed mainly. For classifying the received objects, information
of radar and camera are both taken into account. While camera
images provide quite dense scenario information, the radar sen-
sor data makes kinematic object properties available directly.
Both advantages are employed extensively for classifying ob-
jects under different environment conditions. In many cases,
especially when detecting an object for the first time, cam-
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era image data is used for verifying the objects given from the
radar sensor. When objects are detected and classified, they
are tracked over time by both sensors, depending on the con-
ditions for detecting them at different points in time (weather
conditions, line of sight and separation of nearby objects). So
the advantages of both sensors are combined.
Besides these steps for detecting, classifying and tracking ob-

jects, an interpretation of the current scene was implemented
for a best possible execution of the hazard braking function-
ality. Therefore, the traffic situation is analyzed with respect
to different situation types of rear-end collisions. For that pur-
pose all detected road lanes are marked with a flag indicating
its occupancy status. A lane is marked as free if no other dy-
namic objects or road boundaries are detected, otherwise it is
occupied (compare the continuous valued definition of the oc-
cupancy grids of this thesis in Section 3.2.4). Depending on the
number of lanes and its occupancy status different braking and
warning interventions are triggered if an upcoming collision is
recognized.

For evaluating the complete system of recognizing and track-
ing other traffic participants including an interpretation of the
scene regarding the automated hazard braking system, an on-
line evaluation environment is used, as depicted in Figure A.1.
The interface is spitted into two parts: On the right side the
camera image is depicted including all radar detections (yel-
low rectangles) and all classified objects (red rectangles). Be-
low this image basic buttons for recording the complete data
stream are located. On the left side basic information of the
situation analysis is shown. Therefore, a virtual top view of
the traffic scene is visualized containing the information of all
detected road boundaries and lane markings. Furthermore, all
classified vehicles are displayed whose colors are depending on
weather they are relevant braking targets are not.
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Figure A.1.: Development Environment used for extracting and analyz-
ing data for maneuver recognition.

A.2. Integration of Message Verification Approach

In Section 4.2 the presented method for recognizing and pre-
dicting traffic situations was briefly described to be integrated
into an overall system for Car-to-X (C2X) security. In the
following this integration of the mobility data verification is
detailed with respect to the overall system architecture.

The architecture of most applications for Intelligent Trans-
portation Systems (ITS) was defined as a reference by the Eu-
ropean Telecommunications Standard Institute (ETSI) (Intel-
ligent Transport Systems, 2009), basically motivated by the
ISO/OSI reference model (Zimmermann, 1980). The main
ITS layers are ITS Applications, ITS Facilities, ITS Network
and Transport and ITS Access Technologies. Furthermore,
the ETSI has identified security aspects to be critical for all
ITS layers in C2X communications. While cryptographic ap-
proaches are commonly used especially on network layer, the
method presented in this thesis based on mobility data ver-
ification promises an easy and efficient security protection on
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Figure A.2.: Integration of mobility data verification framework into
the C2X vehicle architecture, see (Firl et al., 2013).

facility layer at a comparatively low computational cost. For an
overview of different security and privacy protection approaches
for the complete ITS reference model for C2X communication
systems please refer to (Stübing, 2013).

The integration of the proposed mobility data verification ap-
proach into the C2X vehicle architecture is depicted in Figure
A.2. This architecture was implemented using simTD vehicles
(simTD, 2011) while focusing in the following on the relevant
parts for message verification. The first verification stage based
on a Kalman Filter was part of the official project and its field
trials. However the second stage of this thesis using the maneu-
ver prediction is also fully integrated into the framework but is
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The architecture consists of two different modules: the Con-
trol Communication Unit (CCU) and the Application Unit
(AU).1 The CCU is responsible for all communication aspects
between the different network layers. It is based on a 400 MHz
PowerPC based on a Linux system. The AU on the other side
hosts all C2X applications which are executed especially in the
fields of road safety and traffic efficiency. It is running on a 2.7
GHz Dual Core system with an operating Windows Embed-
ded. The CCU and the AU communicates with each other via
Ethernet.

Incoming C2X messages are first passed through the lower
access layer and are verified in the network & transport layer in
a cryptographic manner. This binary verification results either
in a valid or invalid message. The second verification step
consists of the proposed mobility verification approach, which
is triggered on facility layer. All verification stages, i.e. the
basic checks, the Kalman Filter and the maneuver recognition
stage (see Figure 4.9), are implemented as a separate package
within the Java/OSGi bundle.

A.3. Kalman Filter for Mobility Data Verification

In the following the main equations and assumptions are pre-
sented for the usage of the Kalman Filter (KF) for mobility
data verification as shortly presented in Section 4.2.2, see also
(Stübing et al., 2011). As only information about position
speed and heading of the vehicle is transmitted in the current

1Both modules form the so-called ITS Vehicle Station (IVS) in each
equipped vehicle, compared to the fixed ITS Central Stations (ICS),
which are each responsible for a given type of road network. In (Stübing
et al., 2010) the complete simTD architecture is presented.
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implementation of CAM messages, the state vector at time k
of the KF is defined as:

xk := (dx,dy,vx,vy) (A.1)

Thus, the state transition model Fk is assumed to be a motion
of constant velocity, i.e.:

Fk =


1 0 ∆tk 0
0 1 0 ∆tk
0 0 1 0
0 0 0 1

 (A.2)

So the prediction step is done according to

x̂k = Fk · x̂+
k−1. (A.3)

The corresponding prediction error Pk, according to

Pk = FkPk−1F
T
k +Qk, (A.4)

has to be calculated and is called system identification. This
is done offline with numerous reference traces. As a clear de-
pendency on the current type of road, a recommend approach
could be a dynamic switching between different saved system
noise matrices. However, this was not implemented so far in
this work and should be a topic for future work.
For the followed update stage the transition matrix Hk is

used reflecting the correspondence of system state and sam-
pled date. In this work Hk is set to the identity matrix. For
weighting the new sample date with the predicted system state
the Kalman Gain Kk is used:

Kk = PkH
T
k (HkPkH

T
k +Rk)−1. (A.5)
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surement noise into account, denoted as the measurement vari-
ance Rk. In contrast to Pk, the measurement noise has not to
be calculated at every point in time, as incoming CAMs (sam-
pled data) include additional information about the current
accuracy of all transmitted values.
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Next generation advanced driver assistance systems (ADASs) have to per-
form in more and more complex traffi c situations including varying scenario
conditions and multiple traffi c participants. While current systems react 
mainly on single object information, future system should also be able to 
take different traffi c participants and their relations into account. For an 
accurate execution of these systems a robust and accurate understanding 
and consideration of the entire situation is required. Thus, adequate mod-
eling concepts have to be applied to take all spatio-temporal dependencies 
into account including multiple, interacting traffi c participants. In this thesis
an approach is presented to model and recognize traffi c maneuvers in 
terms of interactions between different traffi c participants on extra urban 
roads. Results of the recognition concept are presented and evaluated using
different sensor setups and its benefi t is outlined by an integration into 
a software framework in the fi eld of Car-to-Car (C2C) communications. 
Furthermore, recognition results are used in this work to robustly predict 
vehicle’s trajectories while driving dynamic traffi c maneuvers.
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