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Abstract To achieve the necessary improvements in lightweight
packaging waste sorting plants to increase the recycling rate,
sensor-based material flow monitoring and plant control is the
subject of current research and development. This study inves-
tigates whether data from existing sensor-based sorters could be
used for this purpose. The results show that data recorded dur-
ing sorting correlate strongly with ideal analysis data. Further-
more, a correlation between the data of the first sorter and the
output fractions of later sorting stages could be established. The
results therefore show a great potential for the use of sensor-
based sorting data.
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1 Introduction

In 2019, 79.6 Mio. t [1] of packaging waste were created within the Eu-
ropean Union (EU), marking the highest value recorded. To reduce the
negative impact of packaging waste in general and plastic packaging
in particular, a variety of new waste legislation measurements was pre-
sented throughout the last few years. One of them being the recycling
rate for plastic packaging waste of 50% by 2025 [2]. This results in new
requirements for lightweight packaging waste sorting plants to enable
the aspired circular economy.
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Many conventional sorting plants are currently operated as black
boxes. Besides the manual analysis of input and output compositions,
little process data is gathered and stored to enable plant control. How-
ever, the collection of such data is essential to find key aspects for opti-
mization of both existing and newly built sorting plants. The research
project “EsKorte” investigates not only the implementation of addi-
tional sensors for material flow monitoring but also the exploitability
of existing, but not yet used, sensor-based sorting (SBS) data for mate-
rial flow monitoring and control. Two research questions have been ad-
dressed with the presented analysis of SBS-data gathered during multi-
level sorting of plastic packaging waste material using an experimental
setup with a near-infrared sensor:

(1) Is SBS-data suitable for monitoring key sorting parameters?

(2) Is SBS-data suitable for predicting the sorting results of successive
sorting steps?

2 Materials and Methods

2.1 Materials

The sample material was collected in a plastic packaging waste sorting
plant in Austria. The samples taken in the output fractions were bev-
erage cartons (BC), polyethylene terephthalate (PET) bottles, as well as
containers made from polyethylene (PE) and polypropylene (PP). The
samples included different brands, filling quantities and contents to
represent the variety of plastic packaging waste. To ensure the best
possible detection and sorting during the trials, the samples were man-
ually cut into 3x3 cm pieces. This is due to the experimental setup
requiring a reduced grain size. Caps and strongly curved particles
were excluded from the sample material to ensure uniform particle
properties. Three mixtures were created with the sample material (see
Table 1). M1 represents an evenly distributed material, M2 a higher
share of transparent PET-material and M3 a dominant polyolefin con-
tent. The corresponding pixel (px) and object (obj) shares differ due to
the different area densities.
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Table 1: Composition of sample mixtures (M1-M3) based on weighing (top) and corre-
sponding average classified sensor data (bottom).

M1 M2 M3
kg wt% kg wit% kg wit%
BC| 0.507 25 0.4046 20 0.1925 10
PET| 0.507 25 0.8092 40 0.1925 10
PE| 0.507 25 0.4046 20 0.7700 40
PP | 0.507 25 0.4046 20 0.7700 40

px  px%| obj obj% | px px%| obj obj%| px px%)| obj obj%

BC | 1073070 37 |1620 33 |838767 27 |1232 23 |403373 20 | 617 18
PET| 1030385 35 |1971 40 |1644041 52 (3072 57 |395155 19 |765 22
PE | 415414 14 | 674 14 |336186 11 |542 10 |619754 30 (1011 30
PP | 405092 14 | 654 13 |336577 11 |545 10 |626035 31 (1030 30

2.2 Experimental setup

The multilevel sorting was conducted with a chute sorter (working
width 500 mm, length: 455 mm) using an NIR-sensor (Model: EVK
Helios-G2-NIR1 [3]). The experimental setup, including the vibration
conveyor for material separation, is presented in Figure 1.
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Figure 1: Experimental setup and associated schematic layout [4].

The detected pixels are 1.60 mm wide and have a length smaller than
1.60 mm (depending on the sliding speed). For the classification a
teach-in was created in “SQALAR” [5]. To achieve the required clas-
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sification close to 100% in each particle not only the pure materials,
but also the mixed spectra resulting from labels on the objects were
included. The settings for the differentiation of background and mate-
rial (Spectrum Mean Intensity < 340) were determined in an iterative
process. In preliminary tests the light settings where evaluated. Lower
background light caused better object localization for PET, while higher
emitter light caused stronger excitation in the NIR range. The recom-
mended default settings were altered accordingly. The reference spec-
tra, as well as the resulting classified false color images can be seen in
Figure 2.
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Figure 2: Reference spectra for classification (a) First derivative of reference spectra (b)
Created material classes with assigned spectra (c) False colour images (orange:
BC, blue: PET, red: PE, green: PP, grey: Not Classified [NC]).

2.3 Data aquisition

Each pixel is classified based on the chosen reference spectra in the soft-
ware. During the trials this classification is visualized in a livestream of
false colour images on a screen. Real-time data recording is achieved
by using Matlab [6] to continuously scan and analyze the false-color
images on the screen. The resulting values include the total number
of counted pixels per material as well as the corresponding number of
objects. An object is defined as an area bigger than 70 pixels of the
same colour. Objects smaller than 70 pixels are typically fault detec-
tions and therefore ignored. Further the trial time and input mass for
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each sorting step is documented to calculate the throughput.

2.4 Experimental procedure

Each test run consists of four sorting levels (BC, PET, PE, PP), while ev-
ery level includes both rougher and cleaner (see Figure 3). In a rougher,
all target particles are to be sorted out, whereby the purity is low. In the
cleaner, this fraction is purified by removing impurities. All input and
output fractions were analysed at lower throughput to avoid overlap
(Average values: rougher: 9 kg/h, cleaner: 8 kg/h, analysis: 2 kg/h).
For each mixture (M1-M3) five repetitions of test runs were performed.
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Figure 3: Flowchart of multilevel sorting; A: Analysis.

2.5 Data analysis

The data from all test runs were analysed with respect to the following
parameters. x represents the number of pixels or objects. Yield ;s is
the result in respect to the input composition, while Yield;,,,; refers to
the input of the respective sorting stage.

standard deviation

(1) Coefficient of variation = re e

(2) Yieldppur = 52
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Xi,Level
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3 Results

3.1 Reproducibility

Both pixel-based and object-based data was analysed to evaluate the
reproducibility of data gathered from sensor-based sorters. The results
show low values for the coefficient of variation (CV): CVp;y = 0.07,
CVopject = 0.1. The CV values increased with each sorting level, indi-
cating a slightly better usability of sensor data from early sorting steps
(see Figure 4). The higher values for NC are noteworthy, though these
are also in most cases below the critical limit of CV = 0.5. In general,
the type of material class influences the CV values more than the input
mixture (see Figure 5).

pixels objects

o
kS

°

>

0 25%~75% ] tnput [25%~75% ] nput
| T Range within 1.51QR | B¢ ] I Rangewithin 1.51QR " BC

— Median Line 8 PET — Median Line i PET
Mean e

+Outliers Rest

°
&

o

o

PE
Mean il

« Outliers Rest

°
=

°

2

°
©
=3
=

o
©

i I | il
:Bﬁ\: gl =% @Mt sg-od H ’

5 2 2 225 3 O 9 25 3 N EE EEE
BC PET PE PP NC BC

°
0

coefficient of variation [-]
o
Y

coefficient of variation [-]
°

o
=)

] Bﬂ{H’j Be ﬁ; g 3

=e-H

°
o

o

o

B 5 23 O 2 2 O 5 253 G D
PET | PE | PP | NC

Figure 4: Coefficient of variation throughout the sorting levels. Pixel-based data (left)
and object-based data (right); I: Input, R: Rest.

3.2 Exploitability of sensor-based sorting data

To assess whether the SBS data of BCroygpe, is suitable for monitoring,
a comparison was made with the input analysis data generated at op-
timal singulation (“ground truth”). In Figure 6 it can be seen, that the
pixel data represents the ground truth slightly better than the object
data. Nevertheless, the object data also shows a linear correlation and
is similar to the input composition at small values.
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Figure 5: Influence of mixtures and materials on coefficient of variation.
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Figure 6: Comparison of Input analysis and data from SBS in BCryyger; Pixel-based (left)
and object-based (right).

3.3 Monitoring of Yield

To determine whether the SBS data is suitable for monitoring, the yield
was assessed in relation to the input as well as in relation to the re-
spective sorting stage (see Figure 7). There is no continuous correlation
between input composition and yield but clusters depending on the
sorting level were discovered. The best values are for BC, followed by
PET. For Yieldpyt, the values for PE and PP are usually around 45 -
60 px%, from which it could be deduced that the input-related yield
drops sharply from the third sorting stage onwards, regardless of ma-
terial. In contrast, the sorting level-related yield (Figure 7: right) shows
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a clearer distinction between PE and PP. The low values of PE result
from a poorer discharge behaviour, which could be observed during
the tests. In general, at least a rough prediction of yield based on SBS
data generated in the first sorting step appears to be possible.
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Figure 7: Yield depending on BCryygner composition. Pixel-based values in relation to
input (left) and respective sorting stages (right).

3.4 Monitoring of Purity

Since the purity of output fractions is a relevant criterion for recycla-
bility, its monitoring with SBS data was further investigated. Figure 8
visualises that the composition of mixture (M1-M3) is more important
than the sorting level, since there is no gradient along the sorting levels
within a mixture. Lower limits and averages are higher for object-based
values, which might be because pixel-based purity is degraded by mis-
classifications at the edges of particles.

The proportion of the target fraction increases with the purification
steps (see Figure 9), which is plausible since it reflects the behaviour
of sorting plants. The values of the input analysis (black) and the val-
ues of BC Rougher (réd) are very similar, while in the eject of the rougher
(purple) the purity increases strongly. The purity of the output frac-
tions, i.e. the cleaner eject (blue), is the highest and usually has the
smallest range. The correlation with BCgyygper data for all output frac-
tions has a maximum range of 10.6 percentage points. This includes
results for the fourth sorting level.
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Figure 8: Dependence of purity on mixtures (M1-M3) and sorting levels (BC, PET, PE,

PP); left: pixel-based, right: object-based.
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Figure 9: Increasing material shares [obj%] with increasing sorting level (left) and depen-
dence of purity [obj%] in output fractions on BCryygpner composition (right).

4 Conclusion

The data presented demonstrates that SBS data has high potential for
material flow monitoring. The data shows a low variation with rep-
etition and a strong correlation between the results of the optimally
singulated analysis and the data recorded during sorting. Based on the
data of the first sorting stage (BC), a clear distinction of the yields of
the different sorting stages is possible. Furthermore, there is a clear
correlation between the BCroyg4,, data and the resulting purity of the
output fractions. Based on these results, further investigations can be
made to not only monitor but predict the sorting performance.
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