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Abstract Computed Tomography Imaging Spectrometer (CTIS)
systems are snapshot hyperspectral imaging devices capable of
capturing dense spectra of static as well as dynamic scenes. A
three-dimensional hyperspectral cube is smeared across the spa-
tial dimension via Diffractive Optical Element (DOE) and pro-
jected across multiple angles forming a two-dimensional com-
pressed sensor image. In this paper we demonstrate material
characterization and classification capability of a compact CTIS
system leveraging spectral signatures. Then we propose an ap-
proach to simultaneously reconstruct and segment into regions
corresponding to different materials hyperspectral images with
enhanced spatial resolution from CTIS sensor measurements.

Keywords CTIS, spectral reconstruction, super resolution, opti-
cal characterization

1 Introduction

Hyperspectral Imaging (HSI) plays an important role in the field of op-
tical characterization of materials [1]. It allows, for example, to distin-
⋆ Authors contributed equally.
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Figure 1: Optical layout of a commonly used CTIS system. Image based on [4].

guish or identify materials that look almost identical in a monochrome
or color image. HSI-devices acquire a complete spectrum for each im-
aged object point. The resulting hyperspectral cube has three dimen-
sions: the two spatial ones and the spectral dimension.

A Computed Tomography Imaging Spectrometer (CTIS) is based on
a non-scanning (snapshot) technique [2]. Other methods in this area
are the multi-aperture filtered camera and the pixel-level filter array
camera [3]. They are both based on spectral filters. CTIS, on the other
hand, uses a diffractive optical element (DOE) in combination with
computational imaging algorithms. Figure 1 shows an optical layout of
a commonly used CTIS system. The objective lens images the scene on
the left to an intermediate image plane. There, it is cropped by a field
stop, which defines the system’s field of view. The collimating lens
collimates the light, which is then spectrally dispersed by a diffractive
optical element. A re-imaging lens creates the final sensor image. An
example is shown on the right. It contains several higher diffraction or-
ders arranged around the undiffracted zeroth order image of the scene.
The higher diffraction orders are spectrally smeared. Blue light hits the
sensor closer to the center than its red counterpart.

A reconstruction algorithm is needed to get the hyperspectral
image from this spatio-spectral smeared sensor image. It solves
a similar inverse problem as the reconstruction algorithms needed
for computed tomography scanners. The different diffraction or-
ders can be conceived of as two-dimensional projections of the
three-dimensional hyperspectral-cube onto the image sensor. The
Expectation-Maximization (EM) algorithm has been predominantly
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used in CTIS image reconstruction [5]. The EM iteratively solve for
the latent hyperspectral cube starting from an initial estimate. EM can-
not handle priors and it is sensitive to the presumed noise and sys-
tem model leading sometimes to poor reconstruction quality. Deep
learning-based approaches have been devised to tackle the shortcom-
ings of the EM solver: In [6] the authors used a sequential approach
with a CNN followed by an EM solver wherein the CNN provides the
initial estimate for the EM stage. Zimmermann et al. [7] proposed an
end-to-end learning approach performing customized reshaping oper-
ations at the beginning to get an input shape suitable for 3D processing
of high dimensional input data that is followed by a U-Net like architec-
ture used to refine the estimated hyperspectral cube. We have recently
proposed HSRN [8] tackling for the first time spectral reconstruction
and spatial super-resolution from CTIS measurements. It allows to
achieve a higher spatial resolution than that of the zeroth diffraction
order while reconstructing accurate spectral information.

2 Method

We propose a two-stage approach for object classification using hyper-
spectral data captured by a CTIS system (see Figure 2). In the first
stage we train our HSRN [8] architecture for hyperspectral reconstruc-
tion and spatial super resolution with up to ×5 the resolution of the
zeroth diffraction order for synthetic data. In the second stage, the re-
constructed hyperspectral cubes are used to train a ResUnet [9] to per-
form semantic segmentation. The network produces two segmentation
maps, one corresponding to object classes and the other underlining
whether those objects are real or fake. Note that the two networks are
trained separately. In more details, we use slightly modified architec-
tures of both networks for better reconstruction quality and to avoid
over-fitting. For HSRN [8] we increase the number of filters within the
refinement network from 64 to 128 for all convolution layers and set
the super-resolution factor to 5 for synthetic data and 2 for real data
while keeping the rest of the architecture unchanged. For ResUnet [9]
we use the modified architecture shown in Figure 2, the network has
two output layers, one for each segmentation task. We train both net-
works for 500 epochs and use the training settings of HSRN suggested
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Figure 2: Left: Proposed two-stage architecture for hyperspectral image reconstruction
and semantic segmentation, the two networks are trained separately. Upper
right: The slightly modified ResUnet architecture used to learn object class
and real/fake segmentation maps. Lower right: A reconstruction example
with ×5 spatial super-resolution and the corresponding segmentation maps,
we also show spectral density curves of two selected image regions (real and
fake lemons) along with the Pearson correlation coefficient to assess the accu-
racy of the reconstructed spectra.

in [8]. The cross-entropy loss is used to train the ResUnet.

3 Datasets

Synthetic data We use Fourier optics to simulate CTIS sensor images
using hyperspectral cubes from FVgNet dataset [10] containing 252 la-
beled scenes of real and fake fruits and vegetables. A DOE that gener-
ates a structure with 5 × 3 diffraction orders is used in the simulation
(see Figure 2). The simulated zeroth order has a spatial resolution
of 102 × 102 pixels while the ground truth hyperspectral cubes have
510 × 510 pixels which corresponds to a ×5 spatial super-resolution
of the reconstructed cube. As in [10], we use a spectral range of
[400nm, 730nm] with 34 spectral bands. We chose randomly 80% of
the scenes as training data and the rest for testing, random vertical and
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Figure 3: Photo of the miniaturized prototype together with the ground truth setup.

horizontal flipping is used as data augmentation.

Real data We have implemented a setup to validate that our recon-
struction method also works on real world CTIS data. A photo of the
system is shown in Figure 3. For the dataset needed to train our model,
we always acquire a CTIS measurement together with a ground truth
measurement. Our CTIS system is built with off-the-shelf lenses, a
computer-generated hologram, a commercial smartphone lens and a
13 MP monochrome smartphone image sensor. The dimensions of the
prototype are only 36.0 mm × 40.5 mm × 52.8 mm. This small size is
achieved by using a Galilean instead of the commonly used Keplerian
beam expander. Its diagonal field of view is 29◦. The DOE creates a
5 × 5 arrangement of the diffraction orders. The zeroth order image
size is 420 × 312 pixels, which corresponds to around 10% of the hor-
izontal and vertical sensor size. Filters are used to limit the captured
spectral range from 470 nm to 700 nm. Each CTIS measurement is
made of two images captured with different exposure times (7.8 ms
and 250 ms). This is needed to get an image with a well exposed ze-
roth order and one with well exposed higher diffraction orders. Our
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prototype is therefore not a single-shot camera. Figure 4(a) shows a
sample acquisition of a ColorChecker. The zeroth order part of the im-
age taken with the longer exposure time is exchanged with that of the
shorter exposure time. More information about a similar system can
be found in [11]. Amann et al. [11] use the same prototype, just with a
different shortpass filter.

(a) Sensor image (b) Modulation transfer function (sagittal)

Figure 4: Sensor image of the CTIS prototype and MTF measurement results comparing
the CTIS prototype with the ground truth setup.

To capture the ground truth data, we built a hyperspectral camera
based on a VariSpec tunable color filter. The hyperspectral image is
captured time-sequentially. We use a flip mirror to bypass light into
this reference system. This way, it sees the object from the same point
of view as the CTIS system. The VariSpec filter has a bandwidth of
7 nm. We therefore capture our scenes in 7 nm steps and also recon-
struct the CTIS images with this channel width. The camera captures
the scene with a spatial resolution that is around ×4 higher (in each
dimension) than that of the zeroth order image of the CTIS prototype.
Figure 4(b) shows a modulation transfer function (MTF) of the CTIS
system compared to the ground truth system. This has been deter-
mined using a measurement of a Siemens star. It shows that we have a
three times better imaging quality with the ground truth system than
with the CTIS system (zeroth order). It thus can be used to train our
network accounting for super-resolution.
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4 Experimental Results

Synthetic Data Spectral reconstruction, as well as semantic segmenta-
tion results, are presented in this section. To highlight the contribution
of spectral information for object classification, we compare results ob-
tained by training the ResUnet using the reconstructed hyperspectral
cubes from CTIS measurements with the ones obtained using RGB im-
ages extracted from the reconstructed hyperspectral cubes. Quantita-
tive results are shown in Tables 1 and 2, while the qualitative are in
Figures 5 and 6. From Table 1 and Figure 5 it can be seen that the

Table 1: Quantitative metrics for spectral reconstruction and image super-resolution on
FVgNet [10].

Split PSNR (dB) SSIM MAE (1e−3)
Train 51.943 0.995 1.5
Test 51.781 0.995 1.6

Table 2: Quantitative metrics for semantic segmentation on the test set of FVgNet [10]:
Obj refer to the semantic segmentation task on object classes meanwhile R/F
refer to the task of classifying real and fake objects (better in bold).

Input mIoU (%) F1 Precision Recall
Obj R/F Obj R/F Obj R/F Obj R/F

RGB 78.61 91.54 0.878 0.953 0.862 0.966 0.907 0.941
Hyperspectral 86.63 91.95 0.926 0.956 0.902 0.958 0.957 0.954

model produces acceptable reconstructions both spatial and spectral-
wise with ×5 super-resolution factor. Figure 5 shows how semantic
segmentation using only RGB data fails sometimes to learn correct
pixel labels due to the limited information carried out by the three color
components, instead the network might rely heavily on semantic cues.
In the case of semantic segmentation from spectral data, results are
much better for both classification tasks, in particular achieving a gain
of more than 8% on the objects’ semantic segmentation task. Although
segmentation metrics for Real/Fake classification task using spectral
data is only slightly better than the one using RGB as shown in Table
2 and Figure 6, such behavior can be due to the network capability to
better leverage semantic cues in the latter case.
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Figure 5: Qualitative results on hyperspectral reconstruction and semantic segmentation
of various objects. We show also spectral density curves of some chosen image
regions.

Real Data In this section we present reconstruction results on real
data captured by our compact CTIS system. Figure 7 shows a few re-
constructed images in sRGB space and some selected individual spec-
tral bands along with spectral density curves of some image regions to
highlight the discrepancies between the spectrum of real and fake red
peppers.

5 Conclusion

We presented a compact CTIS prototype using a Galilean design and a
ground truth acquisition apparatus that allows to capture high quality
hyperspectral images. We showcased spectral reconstruction and ma-
terial classification capability from CTIS measurements using a deep
learning based approach to reconstruct spatially super-resolved hyper-
spectral cubes and perform semantic segmentation of fake and real
fruits and vegetables leveraging their spectral signature.
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Figure 6: Qualitative results on Real/Fake semantic segmentation. We also show spectral
density curves of some chosen image regions.
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Figure 7: Qualitative reconstruction of a real CTIS scene containing real and fake red
peppers. The reconstruction image has ×2 the resolution of the zeroth diffrac-
tion order.
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