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Abstract A spectral line is modeled by a Voigt profile, which is
a convolution of a Gaussian and a Lorentzian. The width of the
Gaussian is described by the standard deviation o; the width of
the Lorentzian, by its lower quartile 4. One common method
of computing a Voigt profile uses the real part of the complex-
valued Faddeeva function, which is conceptually demanding
and whose evaluation is computationally expensive. Other com-
putational methods approximate Voigt profiles by simpler func-
tions. We show that the shape of a Voigt profile only depends on
the ratio p = /0 and, consequently, introduce a one-parameter
family of standardized Voigt profiles. Then we present a con-
ceptually simple and efficient numerical method for computing
these standardized Voigt profiles — we only require basic nu-
merical integration. Next we compute the second derivative by
a finite-difference formula and determine empirically the rela-
tionship between the shape parameter p and the location of the
inflection points described by their quantiles. This empirical re-
lationship suffices to determine the parameters of a Voigt profile
directly from data points and thus avoids the use of computa-
tionally costly, time-consuming, and sometimes failing general
iterative fitting methods. In particular, this new and faster ap-
proach allows more real-time analyses of spectral data.

Keywords Voigt profile, classification, standardization, compu-
tation, line spectra analysis, spectroscopy
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1 Introduction

The centered Voigt profile is defined as the convolution

Vix;o,9) = /+oo G(x —z;0)L(z7y)dz (1)
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of a centered Gaussian and a centered Lorentzian,
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with width parameters ¢ > 0 and 7 > 0. For any pair of parameters,
the total area of the Voigt profile is one,

/fo V(ix,o,v)dx=1 . 3)

Thompson reviews some computational algorithms [1]. Based on work
by Johnson, Wuttke provides a library in which the Voigt profile is
computed via the complex Faddeeva function [2].

Section 2 briefly reviews the geometries of the Gaussian and the
Lorentzian. The section particularly stresses that up to scaling and
shifting there is only one shape of a Gaussian - the standardized Gaus-
sian is the shape prototype. Moreover, the inflection point of the Gaus-
sian reveals the width parameter. Section 3 shows that the shape of
a Voigt profile depends only on the ratio of the parameters p = v /0.
Therefore Voigt profiles form a one-parameter family of the standard-
ized form V(x; 1; p) with shape parameter p > 0. Then, Section 4 presents
an elementary numerical method to compute these standardized Voigt
profiles. Finally, Section 5 applies numerical differentiation to the com-
puted standardized Voigt profiles and establishes an empirical rela-
tionship between the location of the point of inflection and the ratio
parameter p. This empirical relationship shows how p and eventually
the parameters 7y and o can be read of a graph of a Voigt profile.

The relationship between the inflection point and the shape parame-
ter allows to match Voigt profiles to line spectra directly without having
to use general iterative fitting algorithms. Section 6 sketches a proce-
dure to do so.
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2 Geometries of the Gaussian and Lorentzian

Of course, the Gaussian does not need an introduction. We review only
briefly the aspects relevant to our treatment of the Voigt profile.

Any Gaussian can be transformed into any other Gaussian by a lin-
ear transformation. So, the tabulated standard Gaussian is the shape
prototype of all Gaussians. See Figure 1.

The transformation rule

o
oV2m

with scaling parameter a > 0 is of particular interest. For example, for
« > 1 the expression on the right-hand side describes that the graph is
compressed horizontally and stretched vertically by the factor «. The
area stays the same. This has the same effect as, on the left-hand side,
dividing the standard deviation ¢ by «, i.e. the effect of consistently
compressing the width parameter. Consequently, for all Gaussians, the
inflection points are invariantly one standard deviation away from the
maximum. Also, the inflection points are invariantly located at the
quantiles 0.1587 and 0.8413.

A Lorentzian also looks bell-shaped. See Figure 2. However, a
Lorentzian approaches the horizontal asymptote ¥ = 0 so slowly that
the improper integrals for the expected value and the standard devi-
ation diverge. Regardless of the symmetry about zero, the expected
value and the standard deviation are undefined. We need another
quantity to describe the width of a Lorentzian.

The values £7 are the upper and lower quartiles. They are the
locations that cut off the top and bottom 25% of the area under the
Lorentzian.

As for the Gaussian we have the transformation rule

G(x;o/a) = e~ x/(20%) = a-G(a-x;0) 4)

. 72 v/
L(x;y/a) = (2 a?) /a2 ((ax)? +92)
_ ay —a-La-x;7)

m((a-x)%+7?))

for @ > 0. For example, halving the parameter - (left-hand side), com-
presses the Lorentzian horizontally by the factor two and doubles it
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Figure 1: The Gaussian with ¢ = 1. The Figure 2: The Lorentzian with y = 1. The

inflection points deviate are at upper and lower quartiles are at
+0. The left inflection point has £7. The left inflection point has
the quantile rank =~ 0.1587. the quantile rank 1/3.

vertically (right-hand side). The area stays the same. The parameter
is a sensible width parameter and has an invariant geometric meaning.

3 Standardization and Classification of Voigt Profiles

Let « > 0. For a Voigt profile we obtain the transformation rule
Vix;o/a,v/a) = / G(x—z;0/a)L(z;v/a) dz

:/°° a-G(a-(x—z);0)a-L(a-zy)dz

—00

/ o? Glax —az;0) L(a-z; ) dz
Substitute u = « -z, hence du = a dz,

= vc/m G(ax —u;0) L(u; y) du

=ua-V(a-x;0,7)

In particular, we get for « = o a standardized expression with Gaussian
width parameter 1,

V(x;1,v/0)=0-V(c-x;0,7) . (5)
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Equivalently, every Voigt profile is a suitably scaled standardized Voigt
profile,

1 u oy
V(UI(TI’)’) - EV(E/l/ E) . (6)
The shape of a Voigt profile only depends on the ratio p = y/c. The
Voigt profiles can be classified into different shapes with respect to the
single parameter p > 0.

Now we show that V(x;0,v) and V(x;0/a,v/a) = a-V(a-x;0,7)
with homogeneously scaled parameters have the inflection points at
the same quantiles. Let p denote the x-coordinate of an inflection point
of f(x) = V(x;0,7), so p is a zero of the second derivative f”. The
second derivative of the scaled function satisfies

d? d? 3. o1
W(a-V(zx«x;a,'y)):ﬁ(rx-f(wx)):ac fax) )

which possesses the correspondingly scaled zero p/a. The quantile
rank at this position is given by

p/« wtp/u
/ a-fla-x)dx = / f(u)du 8)
—00 J —00
where we substituted u = a-x and du = «-dx. The right-hand side
describes the quantile rank of the unscaled function at the inflection
point p. The quantile rank of the inflection point is a scaling invariant.
Section 5 establishes empirically an increasing relationship between
the shape parameter p and the quantile rank of the smaller inflection
point. There is a one-to-one correspondence between the Voigt profile
shapes and the parameter p = /0.

4 Quick-and-Dirty Computation of Voigt Profiles

We compute a standardized Voigt profile V(x;1,p) approximately by
suitably truncating the improper convolution integral and by numeri-
cally integrating the remaining definite integral.

Due to the symmetry of the Gaussian, G(x — z;0) = G(z — x;0), the
Voigt profile value at x equals the integral with respect to z over the
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product of the Gaussian with mean x and the centered Lorentzian.

geo)

/ G(x—z1)L(zp)dz = / G(z—x;1)L(z;p)dz 9)
We know that the values of the Gaussian are very close to zero outside
[ — 40, u + 40}, so a sensible truncation is

.00 x+4
/ G(z—x;1)L(z;p)dz z/ \ G(z—x;1)L(zp)dz . (10)
—00 xX—
Since both functions, the Gaussian and the Lorentzian, can be approx-
imated quite accurately by polynomials on reasonably small intervals,
a piecewise low-degree numerical integration formula is sufficient for
practical accuracy. We use the iterated trapezoid rule and iterated mid-
point rule so that the proximity of the two estimates indicates how
accurate they are. Moreover, the arithmetic mean of these values pro-
duces the result of the iterated trapezoid rule with twice as many
subintervals. Finally, a weighted average of the two iterated trapezoid
values coincides with Simpson’s rule. These steps are the beginning of
Romberg’s scheme and can be extended, if more accuracy is needed.
To set up the iterated integration rules we divide [x — 4, x + 4] into n
equidistant subintervals of length Az = 8/n. The trapezoid rule uses
thenodes zy = x —4+k-Azwith0 <k < n.

V(x;1,p) = Tu(x;p) = (G(ZO - X;21> L(zoip)

n_l G(zn — x;1) L(zu; p)
k;G(zk—x,l)L(zk,p) + 5 )-Az

:(G(*4;1)L(x74;9)+ni:l 1 e—(zk—x)2/2 P

2 = \2r t(z2 + p?) *
G(41) L(x—|—4;P)) 8
2 n
_ 8 ( e 8 N
ny/2m \2((x —4)2 4 p?)
n—1  ,—(—4+8k/n)?/2 -8

e
S ars/mri 2((x+4)2+p2))
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On the other hand, let my = x — 4+ (k—1/2)Az with 0 < 1 < n denote
the midpoints of the subintervals. The iterated midpoint rule is

V(x;1,p0) = My(x;p) Z G(my — x;1) L(my; p) - Az

i —(mg—x) 2/2 P §
= (mg+02) n

80 i o~ (—4+8(k=1/2)/n)2/2
V2 = (x —4+8(k—1/2)/n)%+ p?

The trapezoid value with twice as many subintervals is the arithmetic
mean

Ton(x;0) = (Tu(x;0) + Mu(x;0)) /2 (11)
and Simpson’s rule is the weighted average

5u(xsp) = 2T ZTl0R) i ) (12)

Figure 3 shows some computed Voigt profiles for various ra-
tio parameters p that have been computed using the above formu-
las with n = 32 subintervals at the equidistant arguments x €
{—16.0,—15.9,—1538,...,16.0}. We use equidistant arguments to pre-
pare for the consistent use of a finite-difference formula to determine
numerically the second derivative of the Voigt profile.

5 Empirical Relationship between the Shape Parameter
and the Points of Inflection

To approximate the second derivative of a Voigt profile based on the
equidistant samples we use the finite difference formula

d2 Vix—Mh1,0)—2V(x;1,0)+ V(x+ k1,

Figure 4 shows the second derivatives of Voigt profiles for various
parameters p that are computed by the finite difference formula. We
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Figure 3: The standardized Voigt profiles
V(x;1,p) for various p = /0
ratios and their numerically de-
termined inflection points.
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Figure 4: The numerically determined sec-
ond derivatives of V(x;1,p) for
various p. The zeros (inflection
points of V) depend monotoni-

cally on the shape-parameter.

Table 1: The positions of the inflection points for various shape parameters p. The limit-
ing quantile rank for p — co seems to be 1/3, see Figure 2.

Index v|Shape Param. p, |Inflection Points|Quantile Rank Qy

Gauss 0 (£1,0.242) 0.1587
1 0.5 (£1.16,0.179) 0.2190
2 1 (+1.34,0.140) 0.2550
3 2 (£1.74, 0.094) 0.2922
4 4 (£2.69, 0.055) 0.3178
5 8 (+4.83,0.029) 0.3288
6 16 (£9.35,0.015) 0.3321
7 32 (i18.53, 0.007) 0.3330
Lorentz 00 n.a. 1/3

see qualitatively that the deviation of the inflection points from the
mean increases with the parameter p. We compute estimates of these
positions by finding the pair of neighboring second-derivative values
with a sign change to which we apply linear interpolation. The func-
tion value estimates of the inflection points are also computed as linear
interpolations of the neighboring already computed function values.
The results are documented in Table 1.

According to the scatter plot in Figure 5 we start with the linear
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Figure 5: The location of the points of in- Figure 6: Relationship between quantiles

flection depends monotonically of the smaller point of inflec-
on the shape-parameter p. A tion and the shape parameter.
linear fit with theoretically pre- The shown function is given by
scribed intercept 1 provides a QR = 1/3—-1/(p + C)** with
reasonable fit. C=(1/3-0.1587)"1/23,
model
x=14+m-p , (14)

in which we choose the intercept 1 from the limiting case as the posi-
tion of the inflection point of the Gaussian. Based on a least squares
approximation for the data points (py,x,), 1 < v < n, we compute the
slope estimate

Yo pv(xy —1)
2

]’,ﬁ =
n
v=1Pv

~ 0.536 . (15)

There is another useful relationship. We pair the shape parameter p
with the quantile rank of the left inflection point. We have already com-
puted estimates of the symmetrically located points of inflection. Now
we numerically integrate the Voigt profile between the inflection points,
subtract this estimated area from one, and divide it by half to obtain
the quantile. The numerical integration uses the iterated Simpson rule
on the equidistant nodes between the inflection points and, separately,
computes the trapezoids from the inflection points to the neighbor-
ing node inside. The widths of these trapezoid are smaller than the
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equidistant stepsize since we estimated the position (and the value) of
the inflection point by linear interpolation. The resulting quantiles are
listed in Tab 1 and the relationship is shown in Figure 6. By inspired
guessing we have found

_ b withe= (1/3—0.1587)""*and k ~ 2.3 . (16)

1
R~ -
OR~3 (p+C)F

6 Application to Line Spectra

To analyze a line spectrum of Voigt profiles we propose the following
procedure. First, numerically compute the first and second derivatives
of the spectral data. A spectral line consists of a subinterval [¢, m]
with positive first derivative and a subinterval [m, r] with negative first
derivative. Integrate the original data over [/, 7], keeping track of the
integral values from ¢ to (1) the first sign change of the second deriva-
tive, (2) the sign change of the first derivative at m, (3) the second sign
change of the second derivative, and (4) the right endpoint r. Use asym-
metries such as “the value at (4) is not twice the value at (2)” or “the
values at (1) and (3) are not symmetric about (2)” to determine overlap-
ping spectral lines and suitably adjust the values. The adjusted ratio
(1)/(4) determines the shape parameter, the adjusted horizontal differ-
ence between the location of the maximum and the inflection points
determines the parameter ¢, and, finally, the adjusted value (4) deter-
mines the required vertical scaling of the Voigt profile.

The details of this procedure, especially the necessary adjustments
for significantly overlapping spectral lines are the subject of current
research.
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