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Abstract This study explored the possibility of detecting differ-
ent types of meat in a miniaturized patty by applying a random
forest classifier on the spectral dimension followed by neighbor-
hood majority voting on the spatial dimension to improve the
random forest prediction. Hyperspectral images of patties made
of 100% beef, 100% pork, and 100% horse meat were acquired
with a short-wave infrared (SWIR) hyperspectral camera. The
pixel-wise meat type prediction by random forest multi-class
classifier was accurate to 97.5%. After the majority voting of the
neighboring pixels, the prediction accuracy increased to 100%.
As next, synthetic hyperspectral images of adulterated patties
were generated for validating the model. The prediction accu-
racy of the model on the synthetic images were bigger than 98%.
The findings of the proposed workflow support the development
of rapid analysis tools in tandem with machine-learning to de-
tect adulteration in minced meat.
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1 Introduction
Meat is known for its commercial and nutritional values, yet it is prone
to fraudulent and accidental adulteration which violates consumers’

safety and protection [1-3]. Besides falsification of meat by other ma-
terials than the declared ingredients (e.g. beef/offal), the proportion
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of ingredients or the main components (e.g. meat muscles vs fat) may
deviate from the stated composition [2,4,5]. The DNA-based analy-
sis is the golden standard of authenticating the meat species and their
origin, but it’s a time-consuming method [3].

Most of the past studies utilized hyperspectral imaging (HSI) in the
visible and near-infrared region (VNIR) (450 to 1000 nm) in tandem
with chemometrics and artificial intelligence with promising outcomes.
Both minced meat and meat cuts can be authenticated via these tools
by examining either the whole composition or only the fatty acids pro-
files [4-9]. However, the spatial information was often left out due to
the complexity of the data dimension, and the prediction models were
often trained by averaged spectra [4, 6,8-10]. Ropodi et al. demon-
strated the application of multi-spectral imaging in the visible region
using 16 spectral features with help of the support vector machine
(SVM) giving 93.5% accuracy in detecting horse meat in beef minced
meat. The authors also reported that the color-change during storage
had a negative influence on the prediction results [6]. Jiang et al. used
HSI in the VNIR range coupled with pixel-wise partial least square
regression (PLSR) to quantify duck in beef minced meat. The PLSR
model was trained by average spectra of patties with different levels of
adulteration. Afterwards, the pixel-wise regression was applied in the
spatial domain to generate adulteration heat maps [8].

This paper explored the feasibility of detecting different meat species
in a patty by using a hyperspectral camera in the short-wave infrared
(SWIR) region between 930 to 2500 nm in tandem with a pixel-wise ran-
dom forest (RF) multi-class classifier, followed by neighborhood major-
ity voting on every pixel across the 2D spatial dimension. The trained
RF classifier aimed to classify every pixel into one of three classes as
beef, horse or pork, regardless of the meat’s freshness level. The neigh-
borhood majority voting was applied subsequently on spatial dimen-
sion to improve the pixel-wise classification.

2 Materials and methods

2.1 Meat Sample Preparation and Training Datasets

Minced meat of 100% pork, 100% beef, and 100% horse were purchased
from local butchers in Munich, Germany. A patty with ca.10 g of each
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meat type was placed on a sterile Petri dish and measured on the pur-
chase day (Day 0) and five days after the purchase day (Day 5). Between
Day 0 and Day 5, meat was stored in the fridge at T = 6 £ 2°C. Patties
containing different meat types were not used in this study to avoid the
uncertainty in the ground truth image pixel labels of those mixtures.
Instead, synthetic patties were generated to validate the model. The
process of generating synthetic patty is elaborated in section 2.4.

2.2 SWIR hyperspectral imaging system and data acquisition

The SWIR spectra in the region (930 - 2500 nm ) were captured using
HySpex SWIR 384 SN 3197 (Norsk Elektro Optikk AS, Oslo, Norway)
with a 5.45 nm sampling interval which delivers 288 data points per
spectrum. The camera was equipped with 1m objective with ca. 84
cm distance between the objective and the sample’s surface, resulting
in an image resolution of 0.33 mm/px with 32 bit color depth. The
samples on the translating stage were exposed to two halogen light
sources mounted at a symmetrical angle. The reflection spectra were
recorded by the push broom method at an acquisition rate of 33800 ps
per spectral line.

2.3 Radiometric Correction and Initial Pre-processing

A radiometric correction was applied to all images using the software
HyRad (Norsk Elektro Optikk AS, Oslo, Norway), which adjusted each
spectrum based on the reflection of a white reference. The subsequent
data preprocessing explained below was performed using the Python
3.9.12 programming language.

Initially the saturated spectral values of a given pixel were replaced
by the nearest pixel’s unsaturated spectral values or by the averaged
spectrum of the surrounding unsaturated pixels [11,12]. Then the re-
gion of interest (ROI) was extracted by removing the irrelevant image
sections, such as background, sampling stage, and Petri dish. The ROI
extraction process utilized Gaussian blurring filter with a kernel size
of (4x4) and 0.5 standard deviations on the grayscale image obtained
from the first spectral feature (930 nm) followed by the automatic Otsu
thresholding method to create a mask [13,14]. Finally, all spectra within
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the mask were extracted and scaled using the ‘Standard Scaler” func-
tion from scikit-learn python library.

2.4 Random Forest Classification and Dataset

A random forest (RF) multi-class classifier with 100 trees, ‘entropy’
as the criterion for node-splitting and 20 as the tree’s maximum
depth, was trained using all spectral features (288 features) in 3 cross-
validations. A balanced amount of data across three meat categories
were ensured in the training data set. There were 43200 data points
from meat measured on Day 0 and 28800 data points from meat mea-
sured on Day 5. Not all data points were used for training; the unused
data points were set aside to generate synthetic hypercubes in valida-
tion stage.

Pixel-Wise Prediction & Majority Class Of The Neighboring Pix-
els. Every pixel was classified into one of three classes (beef, horse, or
pork) by the trained random forest classifier. Consecutively, each pre-
diction result was evaluated spatially by comparing it to the majority
class from its surrounding pixels (kernel size 3x3). In case of a class
mismatch between the observed pixel and the majority class within the
neighbors, the RF prediction probability for all classes of the observed
pixel were replaced by the averaged probabilities of its surrounding
pixels.

Synthetic Patties For Validation. Synthetic patties (50x50 px) with
segmented regions in various shapes, sizes, and grey levels were gener-
ated automatically using the function ,random_shapes” from the scikit-
image python library. Every shape and the background were assigned
to a particular class based on its grey level (Figure 5). Sequentially,
each pixel was filled with a random spectrum belonging to the assigned
class hence generating a hypercube.

3 Results and discussion

As seen in Figure 1, no difference can be observed by the naked eye
either between the spectra of different meat types or between fresh and
old. Nevertheless, the classification model in this study focused on dif-
ferentiating the meat types, not the freshness level of the meat. There-
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fore, the experiment aimed to generalize 100% beef patty regardless of
the mixture of fresh or old beef as a beef patty.

3.0 4
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Figure 1: Average spectra of all patties.

Beef 23111| 703 | 186
Horse | 666 (23167 167
Pork | 116 | 124 23760

Predicted
Class

~
<]
a

Beef

Horse

True Class
Figure 2: Confusion matrix from pixel-wise RF multi-class classifier.

The pixel-wise RF classification gave an accuracy of 97.3%, where
"pork” has the highest precision, recall, and f1-score values (each 99%),
followed by "horse’ (each 97%) and ’'beef” with 96% recall and 97% of
each precision and fl-score. A closer look at the confusion matrix in
Figure 2 shows a higher number of falsely predicted ‘beef’ as "horse’
and vice versa. The mis-classifications from pixel-wise RF classifier
were more apparent to occur on single pixels than in a region (Figures
3 and 4, pixel-wise images).

The falsely predicted pixels by pixel-wise RF classifier were corrected
by comparing each pixel with its neighbors (majority voting; 3x3 ker-
nel; see 2.4). The significant improvement can be observed in fresh
(Figure 3) and five days old patties (Figure 4), comparing the images in
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Figure 3: Fresh Meat (Day 0) Classification; Left: grayscale images at 1115 nm; Cen-
ter: Pixel-wise classification results; Right: Pixel-wise classification results after
neighborhood majority voting and probability values correction. Each pixel
was colored based on the predicted class: red refers to ‘beef’, green refers to
"horse’, and blue refers to ‘pork’.

the middle (pixel-wise) to the images on the right (neighborhood ma-
jority voting). The success of the model is remarkably dependent on
the correlation between the camera’s spatial resolution, the accuracy of
pixel-wise prediction, and the kernel size used in neighborhood major-
ity voting.

The spectra at 1115, 930, and 1250 nm respectively appeared to be the
most important features observed by RE. The inclusion of these features
led to the biggest decrease of a tree’s impurity in RF model [15]. These
regions refer to the 2nd and 3rd overtone regions of C-H molecular
group, except at 930 nm where O-H and C-H are overlap [16]. These
findings indicate that a prediction model can be built using only these
spectral features, which is to be explored further. For instance, the
fat region seems to be in the highest contrast after observing the gray
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Figure 4: Old Meat (Day 5) Classification; Left: grayscale images at 1115 nm; Center:
Pixel-wise classification results; Right: Pixel-wise classification results after
neighborhood majority voting and probability values correction.

scale images at 1115 nm (see the pictures on the left in figure 3 and 4).
Besides, a study by Lestari et al. demonstrated an improved prediction
by using 1D FTIR on the extracted fat from meatballs in detecting rats
in beef meatballs [17].

A comparison between patties from day 0 and day 5 shows that false
predictions occurred more often on patties from day 5 (Figure 4, middle
images) than day 0 (Figure 3 , middle images), as previously stated by
Ropodi et al [6]. However, in our case, this could also be due to fewer
spectra collected for old patties (day 5) than fresh patties (day 0).

The validation of the complete workflow on synthetic patties showed
promising results. The falsely classified pixels were mostly corrected
by neighborhood majority voting. The shape of the kernel, which was
square altered the shape of regions containing edges, as depicted on
the synthetic patty images in figure 5.

71



E. Djaw et al.

Classes Distribution Ground Truth

o @ 4
20 n

30 ﬂ
0 10 20 30 40 0 10 20 30 40
Neigbourhood
Pixel-wise Voting

0 10 20 30 40

0 10 20 30 40

Figure 5: Synthetic Patties with 90.4% beef (A + B or "Red” area), 2.8% horse (C + D or
"Green” area), and 6.8% pork (E + F or “Blue” area) of which 2.8% old beef (B),
1.0% old horse (C), and 5.8% old pork (F).

Furthermore, figure 5 also validates the model’s generalization, re-
gardless of the freshness level. The old beef spectra (B) were mostly
falsely predicted as horse and some of the old pork (E) were predicted
as horse or beef.

4 Conclusions and Outlook

Random forest multi-class classification on the spectral dimension
followed by neighborhood majority voting in the spatial dimension
showed promising results to authenticate minced meat of different
types (beef, horse, and pork). The prediction by pixel-wise RF clas-
sifier based solely on spectral dimension was accurate to 97.5%. After
introducing the majority voting of the neighboring pixels in the spatial
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dimension, the prediction accuracy increased to 100%.

The findings of this study can be used to develop rapid analysis tools
for minced meat authentication. Furthermore, a prior image processing
on the grayscale image to separate high-fat from low-fat regions may
also provide an alternative approach, which is to be explored in detail
as next.
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