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Abstract This paper describes a novel computer vision method
for the estimation of lycopene concentration in tomatoes using
a multispectral imaging approach with up to 15 bands. It is
shown that combining intensity measurements at wavelengths
from near-infrared to ultraviolet using a neural network model
achieved correlation of R2=0.977 and RMS error=4.63 mg/kg
against ground truth lycopene concentration. Our results are
comparable or superior to other methods from the literature,
which are analysed in detail in the paper. The method can be
reproduced with minimal cost and demonstrates the feasibility
of the method for industrial application. The main contribution
is that a broader range of wavelengths are considered compared
to most previous work, with rigorous analysis using a combina-
tion of simple regression and artificial neural networks.
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1 Introduction

Tomatoes have a vital role in food supply, accounting for 16% of global
vegetable3 production during the last decade [1]. Tomatoes are a rich
source of nutrients, including vitamins A and C, lycopene, and potas-
sium. Lycopene is one of the most valuable bio-active compounds in

3 Tomatoes are technically fruits but often classified as vegetables in a culinary sense.
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tomatoes due to a health stimulating carotenoid with antioxidant prop-
erties and helps to prevent cardiovascular diseases, cancers, neurode-
generative maladies, and other conditions [2, 3]. With an estimated
global annual production of 180 million tonnes [4] tomatoes are the
primary natural source of lycopene in our diets. Lycopene content cor-
relates with the maturity of a tomato [5] and is therefore a critical factor
in supply chain logistics for optimising harvesting, transportation and
storage.

Humans have a natural ability to assess food quality and safety
via a simple analysis of the appearance of the tomato in the visi-
ble spectrum. The availability of sensors beyond the visible spec-
trum and progress in computer vision are extending this basic sub-
jective capability, with 1000s of peer reviewed papers featuring key-
words “hyperspectral imaging” and “fruit/vegetable/etc” during the
last decade. The latest research is aimed at estimation of properties
including ripeness, disease and nutritional value [6].

This paper describes a novel non-destructive method for the esti-
mation of lycopene concentration in tomatoes using multispectral data
analysis. The main contribution is that a broad range of wavelengths
is considered (15 bands between 365nm and 940nm) and rigorously
analysed using a combination of simple regression and artificial neu-
ral networks. The outputs offer invaluable information for researchers
of automated tomato lycopene estimation (or general ripeness/quality
estimation using lycopene as a proxy).

2 Related Work

Traditional methods for the precise measurement of lycopene content
are high performance liquid chromatography (HPLC), thin layer chro-
matography (TLC) [7], and spectrophotometric absorbance (SPM) [8].
These chemometric methods have been available for several decades
but are time consuming, require hazardous chemicals and destroy the
samples.

Non-invasive spectroscopic techniques such as near infrared spec-
troscopy (NIRS), nuclear magnetic resonance spectroscopy, Raman
spectroscopy (RS) and fluorescence spectroscopy are powerful spectro-
scopic techniques and have been investigated for applications in the
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food industry. However, these methods are mostly expensive, are lim-
ited to a small number of sample measurement points, and are dedi-
cated for laboratory use only [9, 10].

Consequently, computer vision techniques have been explored that
deploy reflected or transmitted light to measure lycopene concentra-
tion. Some of these methods use the visual spectrum (VIS) in the form
of the CIE L*a*b* colour representation. Other methods use multispec-
tral or hyperspectral techniques, often extended to near-infrared (NIR)
and/or ultraviolet (UV) wavelengths.

Methods based on the L*a*b* representation of the visual spectrum.
Aries et al. [5] achieved a promising logarithmic regression correla-
tion of R2=0.96 between lycopene and the a* value from a chroma
meter, when averaging 14 spots on the equatorial region of tomatoes.
Vazques-Cruz et al. [11], used a similar approach with a point spec-
trophotometer, to obtain linear regression R2=0.985 using neural net-
works (NN) with two hidden layers to map intensities of L*, a*, b*,
a*/b* and area of vine leaf to lycopene concentration. Ye et al. [12],
claim a lower correlation of R2=0.81, but using a handheld camera and
ambient lighting, thus showing promise for realistic low-cost appli-
cations. The highest result found in the literature was a correlation
between a* and lycopene of R2=0.985, from Barrios et al. [13] using
third-grade polynomial regression. In their case, images were taken by
a compact camera with white LED illumination and so appears also
more practical than some of the earlier methods.

Spectral methods. Some works have incorporated non-visible light
into computer methods for lycopene estimation, as already stated. The
motivation for this is that better-discriminating, and generally richer,
data for riper tomatoes may be accessible.

A linear correlation coefficient of R2=0.96 between predicted and
measured lycopene values was published by Polder et al. [14], using
a hyperspectral camera with 256 spectral bands. A multispectral ap-
proach with 19 wavelengths using LED illumination by Liu et al. [15]
gave a lower value of 0.94, but using a set-up more practical for non-
laboratory conditions. Tihalun et al. [16] use both VIS/NIR spectrome-
ter and chroma meter for Hunter L*a*b* representation of VIS. In con-
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trast to other works, that paper used transmitted light passing through
the tomato sample rather than reflected light. Results favoured the
L*a*b* method: R2=0.96 compared to R2=0.85 with the spectrometer.

Discussion of the prior work. The non-destructive lycopene content
detection methods considered above are presented in Table 1. The re-
sults suggest that non-destructive estimation of the lycopene content
by optical sensors is viable. Five methods have R2 higher than 0.95,
of which, four are based on L*a*b* colour space. Multi/hyper spectral
methods have an average correlation of R2=0.916 compared to R2=0.943
for the L*a*b* colour space methods.

Table 1: Comparison of previous methods with that proposed in this paper.

The success of the L*a*b* methods are probably due the a* parameter
representing a green (chlorophyll) to red (lycopene) transition, reflect-
ing a tomato’s natural colour changes during maturation. Fig. 1, shows
the relationship between a* and lycopene concentration using data cap-
tured for this paper (method described below). That is, an initial rapid
transition from green to red as lycopene increases, followed by minimal
change in a* thereafter. This demonstrates why a* alone can be success-
ful, but also that it is not very discriminating for ripe tomatoes. In ad-
dition, hardware used for a* methods are well established off-the-shelf
components with time-proven calibrations, compared to hyperspectral
or multispectral systems which are usually bespoke with proprietary
calibration methods.
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Figure 1: Measured relationship between a* and lycopene concentration. The graphs are
identical with polynomial regression, but with axes reversed.

A higher R2 value for a given regression might be an indicator of
a superior fit to the data, but it can also be misleading in terms of
achieving a useful model. For example, regression of measured a* vs
ground truth lycopene concentration can be high as R2= 0.96 or as low
as R2=0.80 depending on the somewhat arbitrary axis order (Fig. 1).
Further, the regression offers no scientific basis to the underlying rela-
tionship. R2 of a linear regression between estimated and ground truth
lycopene is more robust due to its resilience against over-fitting (as is
root mean squared error (RMSE)). Unfortunately, not all past methods
provide such parameters for comparison.

In addition to accuracy, other important factors for real-world appli-
cation are practicality, speed and cost. The highest R2 in L*a*b* meth-
ods are detected using multiple points around the sample relying on
close proximity of the sensor (e.g. [5, 11]). Such a sampling technique
is less practical than a single distant snapshot for high-throughput,
high-speed sorting applications. Hyperspectral and multispectral tech-
niques with more bands might increase the complexity of the system
further. Therefore, the requirement of our method (and some others)
for specialised illumination must be balanced against its benefits of
more robust data capture.
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3 Multispectral method for lycopene estimation

For this research, multispectral light reflections in 15 bands between
365nm and 940nm were used to investigate the precision of the method
and its practicality for use in a controlled but non-contact industrial
environment. The aim was to attain robustness and high correlation
of predicted and measured lycopene content, especially for fully ripe
tomatoes, while using commercially available devices that can easily be
deployed in industry. The wavelength range was selected based on the
assumption that a multispectral system consisting of more than three
bands, covering both the full VIS spectrum and beyond, should contain
more information than a system just utilising RGB sensor information
converted to L*a*b*. That is, the L*a*b* data comprise a subset of the
broader multispectral data and so should not exceed it in performance.

In this paper, multispectral data capture is optimised in the follow-
ing ways. (1) Tomatoes were illuminated by dome lighting to avoid
shadows and specular reflections. (2) The size and hardware construc-
tion were chosen to ensure uniform intensity over the entire fruit 3D
surface. (3) The tomato was imaged from four sides to avoid situations
where the red pigment is not evenly established during growth. While
this arrangement might have limited direct applicability, the aim is to
establish a robust baseline on which to build upon in future research.

Experiment: methods and materials. Fifty cultivar Saluoso tomatoes
were harvested in late-autumn from a hydroponic greenhouse in south-
east Slovakia. They were selected randomly, but covered a complete
range from fully green to fully red. A multispectral image was cap-
tured (see below) for each tomato sample. Each sample was then
blended within an hour and dissolved in hexan-etlylen-aceton followed
by spectrophotometric absorbance measurement at 503nm, in accor-
dance with the method of Anthon and Barrett [17]. This process al-
lowed the acquisition of a ground truth baseline from which compar-
isons could be made. One sample was later removed due uncertainty
during dissolution.

Multispectral images were captured by a Basler Ace monochromatic
and near infrared area-scan camera. For each case, a series of LEDs
in the range 365nm to 940nm were used to illuminate the sample in a
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bespoke Technomedia dome with 340mm inner diameter. The system
was calibrated with a spectralon target plate at seven points to ensure
uniformity of image intensity between each wavelength.

Images were then segmented using basic thresholding functions in
Halcon software. Next, image processing was split into two paths. (1)
Convert the three images corresponding to RGB bands (478nm, 520nm,
635nm) to the L*a*b* colour space to calculate an average pixel in-
tensity of a* for correlation with lycopene concentration. (2) Average
segmented image intensities were fed into a shallow neural network
(SNN), with five hidden layers, trained using the MATLAB fitnet

function to map the multispectral data to measured lycopene values.

Tomato surface area involved in computation. Lycopene is not dis-
tributed evenly inside tomatoes, but is almost four times more concen-
trated in the skin compared to the pulp, and five times higher than the
seeds [18]. Further, different parts of a tomato’s surface may be more
mature than other parts. The multispectral images were therefore taken
from four sides: stem, bloom, left and right. Results are shown in Ta-
ble 2. These R2 regression results confirm the hypothesis that larger
coverage improves correlation.

Table 2: R2 correlation between a*
and ground truth lycopene
content for various sides of
sample. Logarithmic, 2nd,
3rd and 4th grade polyno-
mial regressions are shown.

Selected spectra and wavelength bands contribution. The green
colour of unripe tomatoes is due to the prevalence of chlorophyll. Dur-
ing ripening, the synthesis of lycopene results in a red colour. Lycopene
has a carotenoid molecular structure of eleven double bonds, allowing
it to absorb energy from UV light between 270 and 310nm and blue
and green light between 350 and 530nm [19]. In the proposed method
therefore, this range is covered with seven spectral bands from 365 to
520nm. This is in addition to three wavelength bands in red spectra
to capture the green to red colour shift. In total 15 wavebands were
included, including NIR.
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In Fig. 2, the measured average intensity of each waveband is plot-
ted as a function of ground-truth lycopene concentration. Polynomial
regression lines are also shown for ease of comparison. The figure
shows several wavelengths with similar shape, suggesting little benefit
of including them all. However, about seven different trends can be
recognised. For a well-designed neural network, during training, the
weights will become optimised to exploit these trends.
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Figure 2: Averaged pixel intensity of reflected light as a function of lycopene for all
wavelengths. [Colour coding approximately matches wavelength. “+”: ultravi-
olet/blue, “x”: yellow/green, “ · ”: red/infrared.]

Shallow Neural Network (SNN). The additional information available
from multispectral data was incorporated using Levenberg-Marquardt
backpropagation SNN with 5 hidden layers. This approach is known to
better model the non-linear interaction of sparse data. Modern meth-
ods for computer vision typically use convolutional neural networks
(CNNs). However, that is deemed unnecessary here since the inputs
are single values corresponding to mean intensity measurements for
each wavelength (i.e. there is little benefit from setting entire images
as inputs, as expected by most CNN architectures). In future work,
it might be possible to use CNNs in order to incorporate potentially
useful spatial information.

82



Multispectral lycopene measurement

To investigate the influence of the various wavebands on the appear-
ance of lycopene, an SNN was trained for all possible band combina-
tions using identical settings. In addition, one more input to the SNN
was added: the physical size of the tomato sample as a 16th possi-
ble input. The motivation for this is that, as lycopene is more highly
concentrated near the surface, the physical size may affect average con-
centration levels of the sample. As presented below, the best prediction
was, indeed, achieved with that additional input.

For evaluation, the leave one out cross validation (LOOCV) method
was used. Given a sample size of 49 therefore, 49 training sessions were
performed for each of 65,535 possible combinations of wavebands from
1 to 16 bands. Fig. 3 shows the general effect of the number of bands
considered (1,2,...16) in terms of performance.
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Figure 3: SNN performance expressed in maximum and average R2 correlation (left) and
minimum and average RMSE (right) of prediction against number of input
wavelength bands.

Multispectral LOOCV linear regression correlation reached a max-
imum of R2=0.9765 for lycopene prediction and measured ground
truth concentration. This corresponds to RMS error of prediction of
4.63 mg/kg. A combination of 11 bands gave this result (all those in
the legend for Fig. 2 except 485nm, 520nm, 635nm, 850nm).

It was found that the SNN performance does not improve when the
number of input bands is above about eight. This might be due to the
introduction of noise with additional bands with very similar shape or
due to the model over-fitting. Therefore, although the 11 wavebands in
the optimal SNN mentioned above had best correlation in experiments,
it is likely that almost equally good outputs are possible with fewer (not
necessarily identical) inputs.
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Discussion. Our method allowed us to explore both the multispectral
and the L*a*b* approaches. At best, we found that fitting a* against
lycopene concentration using 4th grade polynomial regression gave
R2=0.9557. While this sounds promising, the a* value rapidly con-
verges with moderate lycopene concentration, meaning the regression
curve has limited use above certain maturity levels. This problem is
also apparent in some other research that focuses on L*a*b* space. Fur-
ther, high-grade polynomials such as this are widely known to over-fit
and should be interpreted with care.

As an alternative to the above approach, where polynomial fitting
might be somewhat arbitrary, we have also trained SNNs with varying
numbers of hidden layers for all possible combinations of the wave-
lengths and sample size. Through trial-and-error, it was found that
results improved with the number of hidden layers up to about 5, be-
yond which, little improvement was obtained. For this reason, only
results from SNNs with exactly five hidden layers are presented. Re-
sults show that the stability and prediction of correlation increase with
the number of wavebands, as hypothesised. Additional bands, includ-
ing those outside the visual spectrum, have proven their contribution
to model robustness and preciseness.

The results from both previous works and our own, are shown in
Table 1. This indicates that the performance of our method is compa-
rable to others, while maintaining a more reproducible approach and
application of cross-validation, which not all others do.

4 Conclusion

While previous research has shown promise for lycopene concentration
estimation using computer vision, this research offers a more robust
grounding with detailed experiments in controlled conditions. This
demonstrates what may be possible using intensity analysis at a range
of wavelengths in a laboratory setting, which can be reproduced with
minimal cost. The limitations of L*a*b* space are demonstrated and it
is shown how our multispectral approach goes some way to overcome
these using neural networks. Future work will aim to investigate how
the approach can be extended to operate in an agricultural setting.
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