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Abstract Multispectral Imaging is an increasingly applied tech-
nique for the estimation of several quality parameters across the
food chain. The microbiological quality and safety as well as
the detection of food fraud are among the most significant as-
pects in food quality and safety assessment. MSI analysis was
performed using a VideometerLab instrument (Videometer A/S,
Videometer, Herlev, Denmark), while more than 9000 food sam-
ples were examined in total, for the assessment of microbiolog-
ical quality and the detection of food fraud. For estimating mi-
crobial populations, total aerobic counts (TAC) were determined.
Several regression and classification algorithms were employed,
including partial least squares regression (PLS-R), support vec-
tor machines (SVM), partial least squares discriminant analysis
(PLS-DA), tree-based algorithms etc. The slope of the regres-
sion line, root mean squared error (RMSE), coefficient of deter-
mination (R-squared) and accuracy score were used as metrics

87



A. Lytou et al.

for the evaluation of models’ performance. In adulteration case,
the prediction of different levels of pork in chicken meat and
vice versa yielded high accuracy scores i.e., over 90% , while,
using the SVM algorithm, the presence of bovine offal in beef
was successfully detected. Additionally, Random Forest algo-
rithm was efficient (accuracy>93% ) in discriminating seabass
and seabream fish fillets. Concerning microbiological quality, as
indicated by the performance indices, the developed models ex-
hibited satisfactory performance in predicting microbial load in
different foods (RMSE<1.00, R-squared>0.80). Indicatively, MSI
spectral data combined with PLS-R could satisfactorily predict
TAC and Pseudomonas spp. counts on the surface of chicken fil-
lets regardless of storage temperature and batch variation based
on the performance metrics (R-squared: 0.89, RMSE: 0.88) while,
this algorithm presented also satisfactory performance in estima-
tion microbial populations in brown edible seaweed (R-squared:
0.80, RMSE: 0.90). However, in this case, selecting the appro-
priate analytical approaches and machine learning algorithms is
still challenging.

Keywords Multispectral Imaging, Food Quality, Machine
Learning, Food Fraud

1 Introduction

The interest in using optical technologies that are capable of real-time
quality, safety and authenticity assessment has been continuously in-
creasing [1]. Food industry, apart from stabilizing the products to avoid
food losses and food waste, should also focus to the development of
rapid analytical technologies for the estimation of the microbiological
quality and freshness. The last few decades there has been a huge effort
from stakeholders to investigate alternative methods that are suitable
for online, real-time food quality/safety assessment [2]. In recent years,
rapid development of non-invasive sensing technologies for food qual-
ity contributed to significant transformations in the supply chain [3].
The data acquired from sensors do not indicate anything without pro-
cessing and conversion into useful information using pattern recogni-
tion or prediction models. Towards this direction, machine learning
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algorithms such as, Partial least squares regression (PLS-R), Linear dis-
criminant analysis (LDA), and Quadratic discriminant analysis (QDA)
have been reported as reliable tools for the development of predictive
models models for quality or adulteration assessment in meat [4], [5].
Moreover, deep learning approaches such as artificial neural networks
(ANNSs) and support vector machines (SVMs) have been employed, val-
idated, and compared through available online platforms/tools (e.g.,
sorfML, Metaboanalyst), softwares (e.g., The Unscrambler) or program-
ming languages (R, MatLab, Python), in an attempt to provide accurate
predictive models for food spoilage assessment [6], [7]. This work is
an overview of studies investigating Multispectral Imaging Analysis,
by analyzing various foodstuffs, in an attempt to collect a satisfactory
amount of MSI data which in combination with machine learning mod-
els can provide significant information about the quality and authen-
ticity of foods.

2 Materials and Methods

The whole experimental procedure is briefly shown in Figure 1. The
four main steps of the analytical process were 1. Samples’ collection,
2. Microbiological analysis, 3. Multispectral Imaging Analysis and 4.
Data analysis.

® Samples’ collection: Various food samples (9000 samples in to-
tal) were collected during the last 5 years. In brief, poultry meat
(2300), beef (400), pork (700), fish (1000), pineapple (400), leafy
vegetables (500), seaweeds (500), shellfish (500) etc, were sub-
jected to microbiological and MSI analysis, whereas 2000 sam-
ples were analysed covering different adulteration scenarios (i.e.,
chicken vs pork, beef vs offal etc.) In an attempt to increase the
diversity of the samples and subsequently the size and the vari-
ability of the dataset, apart from the fresh samples, samples that
were stored at different temperatures (0, 5, 10, 15°C) for certain
time intervals, were also tested. In this way, samples with dif-
ferent microbiological populations and freshness levels were also
analysed.

* Microbiological analysis: For the estimation of total aerobic
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Multispectral Imaging (MS) - VideometerlLab

Machine learning algorithms

Figure 1: Schematic representation of the procedure from samples’ collection to data
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analysis in brief.

counts (TAC), a specific quantity of food sample was transferred
aseptically to a stomacher bag, diluted ten times using sterile
maximum recovery diluent (MRD) and homogenized in a stom-
acher (Lab Blender, Seward Medical, London, UK) for 120 s at
room temperature. The homogenate was then serially diluted in
testing tubes and 0.1 mL of the appropriate dilution was spread
in duplicate on the respective culture medium depending on the
microbial group. After incubation, colonies were enumerated and
their counts were logarithmically transformed (log CFU/g).

Multispectral Imaging Analysis (MSI): Multi-spectral images
(MSI) were captured using a Videometer-Lab instrument
(Videometer A/S, Herlev, Denmark) that acquires images in 18
different non-uniformly distributed wavelengths from UV (405
nm) to short wave NIR (970 nm), namely, 405, 435, 450, 470, 505,
525, 570, 590, 630, 645, 660, 700, 850, 870, 890, 910, 940, and
970 nm. LED-based spectral imaging as illustrated in Figure 2
is a fast, non-destructive, and versatile technology for providing
high contrast food chemical maps when combined with machine
learning methodology. LEDs covering UV, Visual, and NIR wave-
lengths are sequentially strobed into an integrating sphere with a
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superwhite coating. The food sample is placed in the opening of
the lower half sphere and receives a very homogenous and dif-
fuse illumination. The built-in calibration and exposure control
ensures optimal dynamic range, reproducibility, and traceability.

Camera and lens

",i-

Emission filter changer

Integrating sphere

LEDs of multiple
wavelengths

Sample is placed in
target opening

— Backlight or background S 3

Figure 2: VideometerLab instrument used for spectral imaging of food systems. LED
strobes of UV-Vis-NIR wavelengths are used to generate a spectral image. Re-
flectance and fluorescence modes may be combined in the same imaging se-
quence.

The spectral image, as illustrated in Figure 3, provides informa-
tion about a rich set of important food compounds like plant and
microbial metabolites, pigments, moisture, and lipids. Further
it offers a way to measure or remove effects from physical food
properties like scattering, specularity, translucency, and hetero-
geneity.
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Figure 3: LED band-sequential imaging for MSI results in a spectral cube data structure
that maps many food-related compounds.
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¢ Data analysis: Various algorithms were employed in the analysis
of the MSI data, including Partial Least Squares Regression (PLS-
R), Support Vector Regression (SVM-R), tree-based algorithms
(Random Forests Regression (RF-R) and Extra Trees) k-Nearest
Neighbours” Regression (kNN-R), Linear Discrimination (LDA),
Quadratic discrimination (QDA) etc. A part of the dataset was
used for the training of the model, while an independent, exter-
nal dataset was used for the validation (testing) of the model. The
performance of the developed models was evaluated via the fol-
lowing metrics and indicess: root mean squared error (RMSE),
correlation coefficient (r), overall accuracy, precision, and recall.

3 Results

Some indicative results of the MSI applications using various foods are
presented below.

3.1 Estimation of microbial population in chicken fillets regardless
of storage temperature and batch variation: A PLS-R model was de-
veloped by Spyrelli et al [8] for the estimation of microbial counts in
chicken fillets. The model parameters and performance metrics (slope,
R-squared, RMSE), for the estimation of the population of TAC and
Pseudomonas spp. using MSI spectral data, are presented in Table 1.

Table 1: Performance metrics of PLS-R models estimating TAC and Pseudomonas spp.
population of chicken fillets using MSI data.

TAC Number of samples‘slope (a)‘R—squared‘RMSE‘

Calibration 330 0.74 0.86 0.73
Cross Validation 330 0.73 0.84 0.78

Prediction 72 0.77 0.90 0.98
Pseudomonas spp.

Calibration 330 0.73 0.85 0.83
Cross Validation 330 0.71 0.83 0.88

Prediction 72 0.70 0.90 1.21

For TAC, the RMSE and R-squared values for model calibration and
cross validation were 0.73 and 0.78 log CFU/ cm?, as well as 0.86 and
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0.84, respectively, whereas the respective values for the prediction were
0.99 log CFU/cm? and 0.90, respectively. The predicted values were
mostly observed within the area of 1.0 log CFU/cm?, which is con-
sidered microbiologically acceptable, while an overestimation for low
counts (below 4.0 log CFU/cm?) was evident. Concerning the PLS-R
model assessing Pseudomonas spp. counts, RMSE and R-squared values
were 0.83 log CFU/cm? and 0.85, respectively, for calibration, while for
cross validation they were 0.87 and 0.83 log CFU/cm?, respectively.
For the prediction of Pseudomonas spp. counts, RMSE and R-squared
values were estimated at 1.21 and 0.90 log CFU/cm? respectively.

3.2 Microbiological quality assessment of seaweed obtained from dif-
ferent geographical areas and harvest years: The prediction model
development and validation for the MSI of A. esculenta from MI and
SAMS samples, from different harvest years are presented below (Ta-
ble 2), while the findings of this study have been extensively described
in [9]. The performance of the model developed in separate for the
samples from the different geographical areas was not satisfactory.

Table 2: Linear regression fit parameters between actual and predicted TAC values for
the different datasets (A. esculenta MI, SAMS, MI+SAMS) acquired from MSI

analysis.
MI slope (a)|R-squared |RMSE

Cross Validation| 0.67 0.67 0.96

Prediction 0.49 0.51 0.95
SAMS

Cross Validation| 0.79 0.79 1.18
Prediction 0.56 0.40 1.83
MI+SAMS

Cross Validation| 0.92 0.92 0.81
Prediction 0.84 0.81 1.04

Extended spectral differences have been observed among the years
of harvesting suggesting that maybe the MSI is not suitable for effi-
cient microbial population estimation due to the dependence of this
method from the “colour” of the samples that can be misleading for
the prediction model. In the case that data from SAMS and MI were
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combined, performance statistics values were improved compared to
those models developed for each origin in separate (R-squared: 0.80,
RMSE: 1.04). Probably by enlarging the size of data, the model was
trained /learned better (good performance statistics in cross validation)
and the differences in products among the differences in years were
more successfully incorporated into the model, while the significance
of the visual features (colour related) was degraded.

3.3 Discrimination of fish fillet samples based on different fish
species: Several machine learning algorithms were tested for their abil-
ity to classify fish fillets to the correct fish species. All the tested models
yielded high accuracy scores (>90 % classified to the correct group) for
images captured both from the skin and from the flesh side of the fillet
(Table 3). Models developed using data from images captured from the
skin side, exhibited even better performance (accuracy > 96 % ).

Table 3: Accuracy scores ( % ) for the discrimination of fish fillets based on species (i.e.,
seabass, seabream) using different algorithms.

Accuracy %|SVM |Extra trees|Random Forest

Skin 98.39| 97.85 96.77
Flesh  [95.65| 93.48 94.57

3.4 Detection of meat adulteration: In Table 4 the performance met-
rics for the external validation and the classification in five classes for
the MSI data is presented. The developed models yielded high per-
formances especially for the classes containing higher proportions of
chicken (classes 0 and 25% ).

The classification models of SVMs for the detection of the adulter-
ation of beef with bovine offal (bovine hearts) showed higher or equal
performance in terms of accuracy scores for the respective cases com-
pared with the pork-chicken adulteration scenario. The overall correct
classification (accuracy) for the case of pork in chicken and offal in beef
was 90 % and 100.00 % , respectively. These findings are part of results
published before [10].
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Table 4: Linear regression fit parameters between actual and predicted TAC values for
the different datasets (A. esculenta MI, SAMS, MI+SAMS) acquired from MSI
analysis.

True class
Pork in chicken|0 %| 25 % |50 %|75 % {100 %
Recall (%) (100 100 100 | 100 | 50
Precision (% ) {100 100 100 |66.67| 100

Offal in beef |0 %| 25% |50 %|75 % {100 %
Recall (%) |100 100 100 | 100 | 100
Precision (% ) |100 100 100 | 100 | 100

4 Conclusion

MSI data coupled with machine learning algorithms exhibit potential
towards efficient detection of adulteration and microbial counts esti-
mation and could be a rapid and non-invasive tool for the quality as-
sessment in various foodstuffs.

This work has been funded by the project DiTECT (861915).
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