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Abstract The ripeness of fruit can be measured in a non-
destructive way using hyperspectral imaging (HSI) and deep
learning methods. However, the lack of labeled data samples
limits hyperspectral image classification. This work explores
self-supervised learning (SSL) as pretraining for HSI classifica-
tion of fruit ripeness. Three state-of-the-art SSL methods, Sim-
CLR, SimSiam, and Barlow Twins are implemented, and augmen-
tation techniques for HSI are developed. A 3D-2D hybrid con-
volutional network is proposed to support the pretraining pro-
cedure. This model is evaluated against a ResNet-18 and a HS-
CNN. The pretraining is evaluated on the fruit ripeness predic-
tion task using the proposed second version of the DeepHS fruit
data set. Besides comparing the classification performance of the
pretrained models to only supervised training, the influence of
the model architecture and size, pretraining method, and aug-
mentations for SSL is investigated. This work shows that it is
possible to transfer the ideas of SSL to HSI. It is possible to ex-
tract essential features in an unsupervised manner via this pre-
training. Pretraining stabilizes classifier training and improves
the classifier performance. Further, it can partially compensate
for the need for large labeled data sets in HSI classification.

Keywords Self-supervised learning, pretraining, hyperspectral
imaging, HSI classification, fruit ripeness

97



L. A. Varga, H. Frank, and A. Zell

1 Introduction

Knowing the ripeness of fruit is of great interest in the food industry.
Especially exotic fruit, like avocados, kiwis, or papayas, are harvested
when still unripe, kept in storage rooms, and are often shipped for
weeks from far away. In addition, those kinds of exotic fruit often have
a relatively high price. A reliable estimation of the fruit’s ripeness state
is required.

For this, usually, chemical and physical indicators like the sugar con-
tent and fruit flesh firmness are employed, all of which are obtained by
destructive measurement.

It is also possible to predict the ripeness of fruit using hyperspec-
tral imaging (HSI) [1, 2], which is non-destructive and therefore has
become increasingly popular in recent years. Current work shows that
combining HSI and deep learning can improve those predictions even
further [3–5].

However, deep neural networks are usually trained in a supervised
manner. Obtaining the actual ripeness state of a fruit still comes with
destroying it, making the labeling process tedious and labeled samples
scarce. Training networks on small training sets can be challenging,
and overfitting becomes likely. Therefore, it is desirable to also use
unlabeled fruit recordings that can be obtained without much effort.

Self-supervised learning (SSL) methods have produced astonishing
results in computer vision [6–8] and may be applied for pretraining in
this particular case of hyperspectral image classification to stabilize the
training and potentially improve the network’s predictions.

2 Experiments

2.1 Data Set

This work extended the already publicly available hyperspectral fruit
data set, DeepHS [5], by additional recordings of avocados, kiwis, man-
gos, persimmon, and papayas. We used the same measurement setup
and proceeding described by Varga et al. [5]. Each fruit was recorded
by the Specim FX 10 with 224 bands (398 nm - 1004 nm) and the Corning
microHSI 410 Vis-NIR Hyperspectral Sensor with 249 bands (408 nm - 901
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nm). Labels (firmness, sugar level, and overall ripeness) were obtained
by destructive measurement.

The resulting DeepHS v2 data set consists of 4671 recordings in total,
1018 labeled. Only the labeled subset was used for classification, while
for self-supervised pretraining, also the unlabeled samples were used.

2.2 Models

Varga et al. [5] already proposed the HS-CNN network, a small con-
volutional neural network specialized for HSI data and the application
for fruit ripeness classification.
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Figure 1: Architecture of the 3D-2D hybrid model.

We suggest a slightly modified variant, a 3D-2D hybrid model, us-
ing a 3D convolution instead of a 2D convolution in the first layer –
inspired by HybridSN [9]. Its architecture is shown in Fig. 1. The back-
bone consists of a 3D convolutional layer for spectral-spatial feature
learning and two 2D convolutional layers for more abstract spatial fea-
ture learning. Finally, a fully-connected layer operating on the spectral
dimension is used for actual classification. With the hybrid version, we
obtained a larger model (≈ 20× as many parameters than the baseline).

Additionally, we evaluated our methods using a ResNet architec-
ture [10], which is also commonly employed for self-supervised learn-
ing (e.g., [6–8]) but has significantly more parameters compared to the
other two models.

2.3 Self-supervised Pretraining

The model was pretrained using one of the three SSL methods: SimCLR
[6], SimSiam [7], Barlow Twins [8].
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All employ a siamese network architecture [11] where each branch
is built by the encoder, the convolutional part of the classifier model,
followed by a projection head. For the latter, we used a MLP with
two layers. A ReLU non-linearity and batch normalization [12] was
applied for each layer. The input dimension was 50 (for the baseline or
hybrid model, and 512 for the ResNet-18), the hidden dimension was
16, and the embedding dimension was eight. For SimSiam, we used
an additional prediction MLP, consisting of a single linear layer with
input and output dimension of eight. The temperature parameter for
SimSiam was chosen to be τ = 0.1. For Barlow Twins, a weighting factor
λ = 0.01 was used.

A critical component of SSL are the data augmentations. We evalu-
ated 21 augmentation techniques, including four basic image transfor-
mations (rotating, flipping, cropping, random noise), two more specific
ones (wavelength-dependent noise and pixel-wise intensity scaling), 13
augmentations that modify parts of the hyperspectral cube (i.e., drop
or blur specific pixels, channels, or an entire sub-cube [13]), as well as
two mixing augmentations (inspired by MixUp [14] and ScaleMix [15]).

Based on the ablation studies (see Sec. 4), only a subset of the aug-
mentations (random rotations with probability 50%, random cropping
with probability 30%, modification of the hyperspectral cube, and mix-
ing with probability 20%) was actually used for pretraining.

The networks were optimized with SGD [16] with a weight decay of
10−4, a momentum of 0.9, and a learning rate of 10−2, decayed with the
cosine decay schedule without restart [17]. We trained for 80 epochs
with an effective batch size of 32.

2.4 Evaluation

For the evaluation of self-supervised pretraining, the produced embed-
dings were considered. They were evaluated qualitatively (based on 3D
visualizations) and quantitatively (based on the k-Nearest-Neighbor
accuracy). For the visualization, the feature values of the embed-
ding were plotted in three-dimensional space, after applying PCA. k-
Nearest-Neighbor (k-NN) classification [18] was employed for the em-
bedded labeled samples, using k = 5, the cosine distance and leave-
one-out cross-validation (see, e.g., [7, 19]).
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Additionally, we measured the performance for classification with-
out and with pretraining. For the pretrained model, first, the fully-
connected part was trained on top of the pretrained backbone, and
then all model weights were further fine-tuned on the classification
task (e.g., [6–8]). Without pretraining, the randomly initialized model
was trained using settings similar to Varga et al. [5].

After the supervised training, the model was evaluated on the test
set. Test time augmentations [20] were applied with probability 50%.

Using five different seeds each, we conducted experiments for all
possible combinations of fruit types, cameras, and categories.

3 Results

(a) Embedding, before (left) and after pretraining (right).
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(b) k-NN accuracy.

Figure 2: (a) 3D visualization of the embedding before and after pretraining via Barlow
Twins – coloring by ripeness levels: unripe (green), ripe (yellow), overripe (red)
and unlabeled (black). (b) k-NN accuracy on the ripeness levels of the labeled
samples (train and validation set) during pretraining with SimCLR. For the
hybrid model and the avocados, recorded by the Specim camera.
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To evaluate the pretraining per se, we visualized the embeddings in 3D
and monitored the k-NN accuracy during pretraining (see Fig. 2).

The spatial arrangement in the 3D space correlates with the ripeness
level; samples of the same ripeness level are brought closer together.
This fits the development of the k-NN accuracy, which increases as
pretraining advances and finally converges towards 80%. This shows
that pretraining can extract meaningful features and find useful repre-
sentations for the data, without using label information.

Table 1: Classification accuracies (median, IQR) for regular classifier training versus Sim-
CLR pretraining plus fine-tuning, for the HS-CNN (baseline) and hybrid model.
One example for the five different fruit: Avocado (ripeness, Specim), kiwi (sugar,
Specim), mango (firmness, Specim), kaki (sugar, Specim), papaya (ripeness, Corn-
ing), and over all fruit, categories and camera types. Highest accuracies in bold.

Avocado Kiwi Mango Kaki Papaya Overall

Baseline Without pretraining
83.3%

(±4.2%)
65.2%

(±4.3%)
50.0%

(±33.3%)
50.0%

(±4.3%)
77.8%

(±11.1%)
55.6%

(±32.2%)

With pretraining
87.5%

(±0.0%)
73.9%

(±8.7%)
50.0%

(±8.3%)
66.7%

(±8.7%)
88.9%

(±0.0%)
58.3%

(±32.2%)

Hybrid Without pretraining
75.0%

(±4.2%)
73.9%

(±13.0%)
50.0%

(±33.0%)
58.3%

(±13.0%)
88.9%

(±11.1%)
54.2%

(±33.3%)

With pretraining
91.7%

(±4.2%)
78.3%

(±4.3%)
50.0%

(±16.7%)
58.3%

(±4.3%)
88.9%

(±11.1%)
58.3%

(±36.1%)

Further, the pretrained model was evaluated on the downstream
classification task. Especially, classification performance with pretrain-
ing and additional fine-tuning was compared to classification without
pretraining.

We present the classification accuracy per fruit in Tab. 1.
The pretraining led, for all examples, to a performance improvement.

We achieved an overall classification accuracy of 58.3%. Comparing the
baseline model initially designed for pure classification to our newly
proposed hybrid model with pretraining, overall, we could observe an
improvement of approx. 3% in classification accuracy. For some fruit,
it could be increased by more than 10%. Where this was not the case,
the IQR was reduced, indicating that pretraining increased stability.

Further, experiments, visible in Fig. 3, show that pretraining even
could compensate for the need for large amounts of labeled samples.
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Figure 3: Classification accuracy (median and IQR) versus fraction of labeled samples
used for classifier training for the baseline model with default classifier training
(red) and hybrid model with pretraining (via SimCLR) plus fine-tuning (blue).
Example: Avocado, Specim camera, ripeness classification.

4 Ablation Study

4.1 Classifier Model

For each of the three models, the classification accuracy with and with-
out pretraining is visualized in Fig. 4.

Baseline Hybrid ResNet-18
Model

0

20

40

60

80

100

Ac
cu

ra
cy

 [%
]

Without pretraining With pretraining

Figure 4: Classification accuracies for the HS-CNN baseline, hybrid and ResNet-18 model,
without pretraining (red) and with pretraining via SimCLR (blue).
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For classification without pretraining, the HS-CNN performs best
among all three models (55.6% accuracy). With pretraining, the per-
formance can be improved only by a small amount, probably due to
the affected backbone extracting only spatial and no spectral features.

The hybrid model, with 54.2% accuracy, performs slightly worse for
classification without pretraining than the baseline, possibly due to
overfitting. However, more importantly, with pretraining, the accu-
racy improved by a larger amount – reaching equal accuracy (58.3%)
and indicating that a more powerful backbone makes pretraining more
effective for the hybrid variant.

The ResNet-18 performs worse than the other two models without
and with pretraining. Again, this is probably due to overfitting and
spatial feature extraction. However, it has the most significant improve-
ment (more than 5%) by pretraining.

Overall, pretraining improved the classification accuracy relative to
classification without pretraining. This improvement is more signifi-
cant for larger models. We claim that pretraining can prevent overfit-
ting and enables the training of larger models.

4.2 Self-supervised Pretraining Method

SimCLR SimSiam Barlow Twins
Method
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Figure 5: Classification accuracies for pretraining via SimCLR, SimSiam, Barlow Twins us-
ing the hybrid model. Over all fruit, categories and both cameras.

Secondly, we compare the three pretraining methods employed [6–8].
Although their approaches are very different, the classification per-

formance is rather similar (visualized in Fig. 5). Overall, SimCLR per-
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formed best, slightly better than SimSiam, which both have a median
classification accuracy of 58.3%. Barlow Twins obtains only 56%.

4.3 Augmentations

Further, we evaluated the influence of the 21 proposed data augmen-
tation techniques, by grouping them and using only one group for
pretraining, respectively. Fig. 6 shows the resulting classification accu-
racies for the avocado fruit as a representative example.

The basic augmentations (rotating, flipping, cropping, and cutting)
showed the highest accuracy (> 80%) and therefore seemed to be most
important. The pixel augmentations, like the modification of edge pix-
els and dropping random or consecutive pixels, were also helpful for
pretraining. On the other hand, dropping multiple consecutive chan-
nels led to the worst classification accuracy (< 70%). Also, dropping or
blurring visible color channels decreased performance.

In general, distorting the spectrum resulted in low classification ac-

Figure 6: Classification accuracies for self-supervised pretraining (via SimCLR) using
only the group of (a) basic augmentations, (b) noise augmentations, (c) aug-
mentations that blur or drop random pixels, (d) drop consecutive pixels, (e)
blur or drop random channels, (f) drop consecutive channels, (g) drop a sub-
cube, (h) blur or drop edge pixels, (i) blur or drop edge channels, (j) blur or
drop visible color information channels, and (k) mixing augmentations. Over
all three SSL methods. Example: Avocado, Specim, ripeness classification.
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curacy. We found that, for hyperspectral image data, introducing noise
systematically instead of entirely random is more valuable.

5 Conclusion

In this work, the hyperspectral data set of ripening fruit was extended
by two new measurement series and three new fruit types.

Further, we show that it is possible to transfer the ideas of SSL to
hyperspectral data. SSL pretraining extracts essential features in an
unsupervised manner and allows using larger models. It can stabilize
classifier training and improves the classification accuracy in some sit-
uations. Therefore, pretraining can partially compensate for the need
for large labeled data sets in HSI classification.

Fig. 7 shows the improvements achieved using SSL pretraining for
the ripeness classification for the five different fruit. The classification
accuracy could be boosted by more than 10% for the avocados and also
for the kiwis. For mangos, kakis, and papayas, the classification itself
is not stable, but for the papayas as well as overall, pretraining could
reduce the variability. Summarizing, the pretraining allows a more
reliable ripeness classification for specific exotic fruit.

Avocado Kiwi Mango Kaki Papaya
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Figure 7: Classification accuracies for the baseline model without pretraining (red) ver-
sus the hybrid model with SimCLR pretraining (blue). For the Specim camera
and the five different fruit (avocado, kiwi, mango, kaki, papaya), classified by
all three categories (ripeness, firmness and sugar content).
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