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Abstract Machine learning by means of neural networks has de-
veloped an indispensable method to solve intricate challenges in
optical quality control for manufacturing. When the technology
became usable for inline inspection tasks first, neural network
architectures themselves were at focus. However, it has become
increasingly obvious that the degree of success in implementing
vision Al systems is highly dependent on a well-structured and
reliable infrastructure. These aspects are commonly summarised
under the terms of machine learning operations (MLOps) and
human centered design (HCD). Our experiments are conducted
using the industrial Al software Neuralyze®, which has served
as a basis for several research projects starting in 2019 to test
new approaches to machine learning in manufacturing. In our
research, we introduce approaches on how to ideally integrate
those methods into Al software concepts to derive an optimum
benefit. It is a key goal to retain standardized handling semantics
despite the variety of model architectures and use cases.
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1 Introduction

As the applied counterpart to computer vision, machine vision has
been putting academic knowledge of image processing into practice
almost continuously for over 40 years. This is also the case for ma-
chine learning based on convolutional neural networks (CNNs), which
emerged as a novel approach to analyze camera data in actual applica-
tions about a decade ago. The discipline, usually referred as DL/ML
(Deep Learning / Machine Learning) developed into a major research
topic since then.

The related transfer into practical application however was subject to
significant obstacles in its early phase - it’s primary reason being the
lack of computing power to be of any value in industrial production
use cases. This barrier successively lowered by the fast development of
GPU hardware and the related increase of GPU power. It also benefited
from the growing interest of the scientific community, going along with
the implementation of libraries offering abstractions for fundamental
mathematical operations as well as transparent access to computing
resources from high level programming languages, like Keras [1].

2017 marks a change with the release of Keras 2.0 as a hugely im-
proved toolset to enable easy access for experimentation with CNNs.
The top-level-library TensorFlow [2] added additional capabilities to
the point of automated image set downloads. It further decreased the
threshold to access deep learning technology, also for non-computer
scientists. This also marks about the point where desktop GPU power
had developed accordingly to enable first machine vision applications,
yet still on very small image sizes.

Since then, major model architectures have evolved which focus on
image analysis [3]. Their constant development has lead to a number
of core applications that have emerged in the process. The central cate-
gories comprise classification, object detection and semantic segmenta-
tion, with a number of distinctive forms such as anomaly detection or
combinations as in instance segmentation. In the majority of cases, the
descendants of these architectures are capable of solving even the most
complex machine vision problems when used appropriately.

This suggests that in terms of technical feasibility, as of 2024 almost
any conventional image analysis task can be solved fast enough for
inline processing in industry. This holds even more true as machine
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vision also encompasses the entire vertical design of the image acquisi-
tion and processing pipeline, and thus also has control over data gen-
eration.

However, experience in industry-grade development of those sys-
tems shows that the exclusive focus on the technical solution leaves key
aspects of the deployment unaddressed. This can lead to poorly per-
forming and and unsustainable vision Al solutions in the field. From
a practice-oriented point of view, it becomes apparent that a consistent
and well-structured development environment has a crucial impact on
the operational success of machine learning systems. Our research
seeks to explore ways to standardize these methods and make them
more accessible.

2 Related work

Several prior works have already addressed the importance of a unified
approach to cope with the complexity of Al applications. In general,
the accuracy and performance of ML systems and in particular Vision
Al systems depends on three main factors

1. the chosen model type
2. the model implementation
3. as well as the quality of the input data,

which implies a high complexity of these systems [4]. The interde-
pendence of these three factors requires a high level of care already in
the development phase with respect to versioning and reproducibility
of the entire ML pipeline. During operations (MLOps), the data qual-
ity and quality of the models must also be continuously monitored in
order to detect malfunctions at an early stage.

One particular challenge is the large landscape of tools for specific
tasks, often developed on a small scale by start-ups or communities.
The widely different operating paradigms encountered turned out to
be an obstacle in constructing seamless workflows. In addition, the
market for MLOps software is currently very dynamic due to the per-
manent release of new solutions. As one example, “Tensorflow Ex-
tended” offers a generic platform for the development of ML systems

37



M. Schatzl et al.

that maps the complete ML lifecycle “end-to-end” [5]. However, spe-
cially trained personnel such as data scientists, ML engineers and in-
frastructure teams are required to set up and operate such platforms.

In order to simplify access to ML systems for domain experts with-
out Al expertise, first technical steps are already being taken by devel-
oping explanation methods to understand ML model predictions. Yet
these methods are still mainly aimed at data scientists. In addition,
"best practices” from classical software development are increasingly
being adopted and adapted to increase confidence in the development
process [6] [7].

Due to the often probabilistic nature of ML systems, a key factor
of good usability, expectation conformance according to ISO 9241-
110:2020, is not given. This means that a system does not always be-
have similarly, and in particular predictably, even in repeated, identical
interactions [8]. This complicates user experience (UX) design in the
context of Al systems, since different misbehavior in particular can-
not be predicted before model implementation is complete. Here, the
use-case-specific development of ”Al playbooks” for designers and de-
velopers, which collect typical errors in the operation of ML systems
can provide a remedy [8]. In addition, a comprehensive meta-study on
guidelines for the development and design of Al systems has already
summarised initial guidelines for the design of human-AlI interaction.
The derived 18 core design principles for human-centered design of Al
systems are bundled in the Microsoft HAX Toolkit [9]. However, both
of the described guidelines have been evaluated only on publicly avail-
able AI products for end users, but not yet on “critical” applications as
found in industry.

Finally, to further democratize ML, recent research suggests the no-
tion of “human-centric machine learning.” Al systems are now con-
ceived as a symbiosis between humans and machines, and a shift in
perspective from “human-in-the-loop” to “"ML-in-the-loop” is called
for [10] [11] [12].

3 Methodology

The initial ideas of the methods we target do not originally arise from
a machine learning context. They evolved from good practice in ad-
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jacent fields, like Development Operations (DevOps) as a practice to
unify and streamline all processes that are necessary to manage and
build software code. Based on this ideal, MLOps emerged to achieve
something analogous for the development of machine learning appli-
cations. Human Centered Design (HCD) originated from experimental
psychology in the first half of the last century, expanding to a large
range of fields since then. [13].

3.1 Machine Learning Operations (MLOps)

Organizations are confronted with many obstacles when optimizing
machine learning systems within their technical lifecycles. Version-
ing of models, result repeatability, and preserving constant perfor-
mance across different environments are among the key operational
concerns [14]. Cross-functional cooperation, handling a variety of tools,
and incorporating ML workflows with current procedures are organi-
zational hurdles [14]. Issues with data quality, resource constraints,
and model deployment challenges are the main concerns in industrial
settings. We have devised a general method to address these problems
in the beforementioned sectors.

We illustrate our efforts with Neuralyze®, a software framework
developed by senswork for Al-based image analysis, which puts the
above tasks into practice. Figure 1(a) shows the general overview of a
project in Neuralyze®. It serves as an informational entry point to pro-
vide any user in cross-functional collaboration projects with insights
into the development process. This is of high importance for all in-
volved personas of a vision Al project.

Figure 1(b) shows the data management step in the annotation tab.
Users are provided with tools to handle data, which includes data
cleaning, sorting, and tagging, gaining insights on the metadata, la-
beling the data, and finally creating datasets.

The subsequent step in an MLOps cycle is model development. The
availability of ready-to-use datasets on sites like Kaggle [15] causes
a significant change in focus toward model development. Many aca-
demic articles similarly emphasize getting high performance scores on
benchmark datasets, with the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) being one of the most well-known examples [16].
Industrial experience has however shown that a more balanced strategy
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that incorporates data-centric strategies frequently produces superior
long-term results.
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(a) The setup tab gives an overview of a  (b) The annotation tab provides tools to
complete Al project. work on data.

(c) The training tab offers facilities to train ~ (d) The inference tab enables model test-
computer vision models. ing and evaluation based on metrics.

Figure 1: Human centered interface of Neuralyze® Desk.

Neuralyze® follows the paradigm of data-centric AI (DC-AI). Data-
centric Al is an emerging paradigm that emphasizes enhancing data
quality and quantity to improve Al systems, complementing the tradi-
tional model-centric approach [17,18].

Figure 1(c) shows the training tab in Neuralyze®. In this working
area, users can develop a machine vision model based on the dataset
created before. Users have the option to select predefined model archi-
tectures like ResNet [19]. The focus of this selection is put on model
architectures that have proven effective in the field. Combined with
a data-centric Al approach, this allows for the efficient and rapid de-
velopment of models ready for production. Furthermore, the most
important hyper-parameters, with default values based on empirical
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experience from industrial practice, are accessible to the user. Among
them are the input size, batch size, number of epochs, learning rate,
and a predefined selection of loss functions.

Figure 1(d) shows how models are evaluated in Neuralyze®. Vari-
ous performance indicators and error metrics have been proposed for
both regression and classification algorithms in engineering and sci-
ences [20]. These metrics are often dependent on the dataset and the
specific application of the model [21]. In Neuralyze® we have imple-
mented the most important metrics for this task. These metrics are
visualized in Neuralyze® so that users can easily evaluate the trained
models based on them.

3.2 Human Centered Design (HCD)

Human-Centered Design (HCD) is an interdisciplinary approach that
focuses on optimizing products towards user-friendlyness. As the
design and implementation of engineering software is generally pro-
found, and these systems are often highly complex, they require seam-
less interaction between humans and technology. We will outline the
critical role of HCD in creating effective, efficient and satisfying engi-
neering software solutions in relation to the scope of our work.

HCD places users at the center of the design process by iteratively in-
volving them through prototyping, testing, and feedback collection at
every stage of development [22]. In engineering software, usability is-
sues can lead to reduced productivity or costly mistakes in high-stakes
environments like aerospace, healthcare, and manufacturing [23].

In order to create engineering software with optimum usability, it is
necessary to align the design with user needs. This requires knowl-
edge of their characteristics, goals, tasks, environment and resources.
The findings are collected by means of a user context analysis. The ex-
amination of these findings leads to requirements for the information
architecture, system design and interaction design.

The industry-grade systems investigated in the research project rep-
resent processes that involve both manual activities, e.g. in production,
and pure information work. This results in a wide range of potential
requirements. Their identification requires the participation of various
groups of stakeholders. Stakeholders in industry (quality assurance,
production, technology deployment planning) as well as domain ex-
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perts in relation to machine learning and Al applications must be in-
volved.

Both in-depth and contextual interviews were used to collect data
that served as the basis for the creation of proto-personas and task
models. These easily understandable and communicable artefacts have
been iteratively discussed and adapted with the respective stakehold-
ers. For the DeKIOps project, 12 interview partners from both the
industrial context and machine vision experts were surveyed.

It went apparent that tasks within the field of data exploration and
feature engineering, belonging to the domain of data experimentation
are difficult to define and cannot be fully mapped by engineering soft-
ware. It is likely that these tasks have to be further performed by hu-
man experts in the future, using auxiliary tools that are closely tailored
to the tasks. For machine learning on image data (vision Al), tasks re-
lating to the creation and continuous, iterative improvement of neural
models (training, retraining, monitoring) have been identified as key
topics.

4 Discussion

MLOps frameworks are becoming more and more necessary as the
complexity of implementing machine learning models in industrial
systems increases. This is particularly important in machine vision,
where productivity expectations require tasks like segmentation, clas-
sification, and object recognition to be improved. In this work, we uti-
lized a prototype platform to show how MLOps concepts, such as au-
tomated monitoring and continuous integration/discovery, might sim-
plify model construction for users who are technically inclined but may
not be machine learning experts. This technique covers critical difficul-
ties including model versioning, scalability, and performance monitor-
ing [4].

4.1 Findings and Interpretation

Academically trained data scientists have historically been key roles in
industrial AI model development. Our prototype, however, seeks to
transfer this accountability to users who have received technical voca-
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tional training. The system enables such users to iteratively update and
upgrade models as new product features or flaws develop. Though it
was intended to someday be usable by non-academic users, those with
an academic background now dominate the platform.

The platform’s user-friendly interface effectively promotes commu-
nication and interaction among the various stakeholders in an orga-
nization, such as technicians, project managers, sales staff, and even
non-technical personnel. This significantly increases the number of
people who can enhance, manage, and optimize Al systems without
requiring traditional Al development experts like data scientists. This
type of cross-disciplinary collaboration is absolutely necessary to en-
sure that Al systems function reliably under various constraints, such
as real-time processing, strict compliance with safety regulations, and
scalability for large-scale operations [5].

The integration of Human-Centered Design (HCD) principles en-
sures that users without deep ML knowledge can interact effectively
with the platform via simplified interfaces. This inclusion of HCD en-
sures that the system not only performs technically but is also usable
and efficient for the end-users [22].

4.2 Limitations and Future Work

Even while the platform makes model construction easier, data scien-
tists and machine learning experts are still needed for specialized solu-
tions when dealing with demanding tasks. Furthermore, it is still dif-
ficult to define a terminology that unites ML experts and non-experts.
Subsequent investigations will concentrate on creating a common lexi-
con and verifying how successfully non-technical users can utilize the
system, finding difficulties they encounter.

An interesting question is whether the methods and processes of
HCD can be applied for machine learning and Al systems on a general
basis. Analysing the context of use in the DeKIOps project, it became
clear that some HCD methods pose new challenges. The extension of
HCD towards the scope of machine learning is a field of research to be
further explored in the future.
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5 Conclusion

In conclusion, scalable and dependable machine learning model de-
ployment in industrial contexts requires the integration of MLOps
frameworks, as the Neuralyze® platform demonstrates. Through the
prioritization of data-centric Al and the facilitation of cross-functional
cooperation, MLOps guarantees that models are resilient, replica-
ble, and condition-adaptive. Simultaneously, an adoption of Human-
Centered Design principles improves the platform’s usability, making
it accessible to both Al professionals and non-experts. The success-
ful use of MLOps and HCD in difficult operational situations will be
crucial for industrial Al systems as they develop further.
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