Multidimensional imaging techniques provide powerful ways to examine various kinds of scientific questions. The routinely produced data sets in the terabyte-range, however, can hardly be analyzed manually and require an extensive use of automated image analysis. The present work introduces a new concept for the estimation and propagation of uncertainty involved in image analysis operators and new segmentation algorithms that are suitable for terabyte-scale analyses of 3D+t microscopy images.
Umfang: XII, 243 S.
Preis: €54.00 | £50.00 | $95.00
These are words or phrases in the text that have been
automatically identified by the
Named Entity Recognition and Disambiguation service,
which provides Wikipedia
()
and Wikidata
(
)
links for these entities.
Stegmaier, J. 2017. New Methods to Improve Large-Scale Microscopy Image Analysis with Prior Knowledge and Uncertainty. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.5445/KSP/1000060221
Dieses Buch ist lizenziert unter Creative Commons Attribution + ShareAlike 3.0 DE Dedication
Dieses Buch ist Peer reviewed. Informationen dazu finden Sie hier
Veröffentlicht am 8. Februar 2017
Englisch
266
Paperback | 978-3-7315-0590-7 |