• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Lesen sie das Kapitel
  • No readable formats available
  • Measuring similarity of rendered and realimage pairs using domain translation byemploying Conditional GenerativeAdversarial Networks

    Naveen Raj Datha, Marcus Thiel

    Kapitel/Beitrag aus dem Buch: Heizmann M. & Längle T. 2020. Forum Bildverarbeitung 2020.

     Download

    One way for the visual inspection of assemblies with
    many variants is to compare camera images with the corresponding
    rendered view of the CAD model. In this paper, we
    address the problem to decide whether there are significant
    differences between camera and rendered images, which signal
    an assembly error. Our approach uses a Conditional Generative
    Adversarial Network (CGAN) to translate the camera
    image to a rendered like one, followed by error detection by
    comparing the translated and rendered images.

    :

    Empfohlene Zitierweise für das Kapitel/den Beitrag
    Datha N. & Thiel M. 2020. Measuring similarity of rendered and realimage pairs using domain translation byemploying Conditional GenerativeAdversarial Networks. In: Heizmann M. & Längle T (eds.), Forum Bildverarbeitung 2020. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000124383-22
    Lizenz

    This chapter distributed under the terms of the Creative Commons Attribution + ShareAlike 4.0 license. Copyright is retained by the author(s)

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.

    Weitere Informationen

    Veröffentlicht am 25. November 2020

    DOI
    https://doi.org/10.58895/ksp/1000124383-22